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Measurement variability in two‑dimensional 
shear wave elastography (SWE) of common 
carotid artery (CCA)
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Abstract 

Background:  Recently, vascular shear wave elastography (SWE) applications have gained the interest and shown 
potential clinical value. However, there is limited evidence about the variability in Young’s modulus (YM) estimates. 
The purpose of this study was to quantify sources of variability associated with SWE measurements in common 
carotid artery (CCA).

Results:  Mean YM of both anterior proximal and distal region of interest  (ROIs) of the right CCA was significantly 
different (61 kPa vs 55.6 kPa; p < 0.001). Mean YM of anterior and posterior proximal and distal ROIs of the left side was 
significantly different (58.9 kPa vs 52.4 kPa; p < 0.001). Mean YM of right anterior and posterior proximal and distal ROIs 
was significantly different (58.3 kPa vs 51 kPa; p < 0.001).

Conclusions:  US SWE was able to assess YM in CCAs although YM measurements were highly variable. The difference 
between YM between anterior and posterior walls is attributed to an artifact of the SWE technique that has not previ-
ously been reported and requires further investigation.
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Background
Shear wave elastography (SWE) is a quantitative imag-
ing tool that provides a color SWE map over a greyscale 
B-mode image. SWE has been used in a wide range of 
non-vascular applications and found to provide reliable 
and clinically valuable estimates of tissue stiffness. There 
are three potential sources of variability: fundamental 
technical limitations associated with measurement accu-
racy and repeatability, imaging-related variability, and 
patient-related confounders [1]. Several previous studies 
have demonstrated that region of interest size, unit, probe 
load, anatomical area, breathing, pulsation, and depth 
can all contribute to variability in SWE measurements 

[2–4]. Acoustic nonlinearity within a tissue can also be 
a confounder [5]. Although these sources of variability 
have been reported, the relative contributions of con-
founders have not been fully investigated. Understanding 
and identifying sources of variability in SWE measure-
ments will be essential in determining whether the SWE 
technique is sufficiently sensitive to small differences in 
YM associated with pathology. Additionally, acquisition 
standardization may help reduce manufacturer variabil-
ity which may improve our ability to evaluate scanner 
performance.

Studies have shown that SWE can be used to distin-
guish between disease and non-disease tissue based on 
their elasticities [6–8]. However, there are currently no 
guidelines for standardization of ROIs and different ROI 
sizes are used without considering the impact of such 
variation. The influence of ROI size has been investigated 
extensively in clinical applications [9–11]). In some breast 
studies, small ROIs (up to 3  mm) [12, 13] were used to 
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determine lesion YM values, while others have used rela-
tively large ROIs to cover the whole lesion [9, 14]. A pre-
vious study by Yoon et al. [15] investigated factors related 
to inter-observer differences using SWE, and an inverse 
relationship was observed between the sizes of ROI and 
the inter-observer measurement. A smaller ROI is there-
fore thought to increase the chance of a sampling error, 
whereas a larger ROI is more vulnerable to heterogene-
ity. Studies have not so far investigated factors such as tis-
sue depth, and other potential sources of variability such 
as observer experience. Variations of elastic modulus over 
different ROI sizes have also been reported in muscle elas-
tography [16]. A larger ROI size is recommended for accu-
rate SWE measurement, and variability in YM estimates 
is associated with smaller ROI [17]. Most vascular SWE 
applications have focused on the carotid artery (which has 
an intima-media thickness of about 0.6 mm), so the ROI 
size adopted needs to be larger than the artery. This means 
that YM estimates will be inevitably affected by adjacent 
structures with differing elasticity. This is likely to reduce 
the reliability of SWE measurement of vessel wall elastici-
ties. The minimum ROI size of 2 mm is usually applied for 
vascular applications in order to minimize errors in YM 
estimates due to tissue heterogeneity [7, 18]

This study aimed to quantify sources of variability asso-
ciated with SWE measurements.

Methods
Participants and study protocol
This study was approved by Research Ethics Commit-
tee (REC reference 14/EM/0056). SWE images obtained 
from our spontaneous coronary artery dissection 
(SCAD) patients and healthy subjects (n = 127) were ana-
lyzed retrospectively. All participants provided written, 
fully informed consent.

Measurement setup
SuperSonic Imagine Aixplorer ultrasound imaging sys-
tem was used to assess the variability of SWE measure-
ments at different CCA locations in Young’s modulus 
(kilopascal, kPa) using a curvilinear 4–15  MHz trans-
ducer. Measurement was obtained by an experienced 
certified clinical sonographer with efficient training on 
ultrasound SWE.

SWE image analysis
The SWE scans were analyzed retrospectively, and 
arterial wall YM was quantified using the Aixplorer’s 
in-built analysis software for 2  mm ROIs. ROIs were 
placed in different CCA locations to assess the variabil-
ity of YM measurements with ROI position as shown 
in Fig. 5. The locations include anterior, posterior, left, 
right, distal, and proximal. Criteria for inclusion of 

measurements in further statistical analysis were as 
follows: (1) good image acquisition; (2) complete fill-
ing of the shear wave elastogram; and (3) adequate 
cine-loops. Exclusion criteria included are as follows: 
(1) poor image acquisition; (2) insufficient shear wave 
elastogram filling; and (3) cine-loops with less than five 
SWE frames.

Statistical analysis
Data were analyzed using statistics software (GraphPad 
Prism® version 7 (Prism, California, USA) and SPSS soft-
ware version 24 (IBM Corporation, New York, USA). The 
Shapiro–Wilk test was performed to test for normality. 
Mean coefficient of variation (CV) and Bland–Altman 
analysis were used to assess the variability. A p value of 
p < 0.05 was considered statistically significant.

Results
Dependence of mean YM on ROI location
Mean YM measurements within the different ROIs were 
analyzed to assess variability and agreement of YM meas-
urements within different ROIs, as well as between con-
secutive imaging frames to assess inter-frame variability. 
Table 1 provides a summary of mean YM measurements 
from different ROIs, comparing differences between 
ROIs adjacent (proximal and distal to the carotid bifur-
cation), anterior and posterior walls, and left and right 
sides.

Paired differences between the measurements from 
each of the 127 participants were quantified, and a 
paired t test was used to identify significant differences 
(p < 0.05). The mean difference in mean YM between 
adjacent ROIs, for each participant, is shown in the 
Bland–Altman plots in Fig. 1.

Bland–Altman analysis showed that the 95% CI for 
differences in left and right sides was between − 48 and 
50 kPa with 1 kPa estimated bias, which was not a signifi-
cant bias (Fig. 2).

Anterior and posterior wall measurements from each 
participant showed a statistically significant difference 
in mean anterior YM compared to the posterior estimate 
using a paired t test on the 127 participants; the average 
anterior YM was 7 kPa [95% CI:4–10 p =  < 0.001] higher 
than the posterior wall.

Bland–Altman analysis reveals very wide 95% limits of 
agreement, ranging from 41 to − 28 kPa and a bias of 7 kPa 
(Fig.  3). The absolute mean difference in estimated YM 
between the participants’ anterior and posterior walls was 
7 kPa. The Box and Whisker plots in Fig. 4 show that the 
anterior and posterior wall measurements were also signifi-
cantly different between the population groups (p < 0.01).
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Inter‑frame YM reproducibility
Table  2 shows that left CCAs are more variable than 
right CCAs with a difference of 14%. Variability is 
more obvious in the posterior wall compared to the 
anterior wall of CCAs.

Discussion
SWE technology has been used in many applications, 
but its suitability for vascular applications remains hotly 
debated. It has been proposed that SWE might have 
potential clinical value in the diagnosis of vascular disease, 

Table 1  Summary of mean YM measurements in all ROIs, comparing differences between adjacent ROIs, anterior and posterior wall 
and left and right sides

Paired differences between the measurements from each of the 127 participants are quantified

*Indicates significant difference (p < 0.01)

ROIs comparison Mean YM (kPa) SD Paired bias Paired p value

Adjacent pairs

Left anterior proximal 59.3 26.6 0.85 0.55

Left anterior distal 58.5 25.2

Left posterior proximal 54.3 26.1 3.8 0.05

Left posterior distal 50.5 23.7

Right anterior proximal 61 27 5.4 0.0002*

Right anterior distal 55.6 26.4

Right posterior proximal 52.7 33.4 3.3 0.12

Right posterior distal 49.4 28.3

Anterior/posterior walls

Left anterior proximal and distal 58.9 24.7 6.5 0.0005*

Left posterior proximal and distal 52.4 22.4

Right anterior proximal and distal 58.3 25.5 7.2 0.0017*

Right posterior proximal and distal 51.0 28.5

Left and right CCA​

Left anterior proximal and distal 58.9 24.7 0.63 0.779

Right anterior proximal and distal 58.3 25.5

Left posterior proximal and distal 52.4 22.4 1.4 0.628

Right posterior proximal and distal 51.0 28.5

5 0 100 150

-40

-20

0

20

40

60
YM in adjacent ROIs

Average YM

D
iff

er
en

ce
 in

 Y
M

24.6

17.9

Bias = 3.4

Fig. 1  Bland–Altman plot comparing mean YM measurements 
between two adjacent ROIs in 127 participants. The 95% limits of 
agreement remain wide (~ 20 kPa) even in adjacent ROIs suggesting 
that SWE YM estimates have high intrinsic variability
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Fig. 2  Bland–Altman plot of the difference between mean YM 
measurements from the LT and RT CCA of each participant
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and in particular, detection of early changes in arterial ves-
sel elasticity [19]. However, concerns have arisen over the 
reliability of SWE YM estimates and the potential impact 
of factors such as ROI size and position on YM estimates. 
Ultimately, if measurement variability is greater than typi-
cal clinically significant differences, this will limit the use-
fulness of SWE in clinical practice. This study focused on 
the identification and quantification of sources of variabil-
ity in arterial wall SWE measurements (Fig. 5).

Our analysis of individual ROI data may help to optimize 
protocols for the estimation of arterial wall stiffness using 
SWE. This provides a more detailed evaluation of the 
potential value of SWE which may help implementation of 
SWE in the vascular clinic. This study found a wide range 
(1–259 kPa with a mean of 55 kPa) in the estimated mean 
YM within each of the 1016 ROIs ((2 anterior + 2 poste-
rior) * 2 (left and right CCAs) *127 (participants) = 1016 
ROIs). Similarly, mean YM measurements within a single 
2 mm ROI across 5 frames varied widely, with a coefficient 
of variation from 1 to 135% and a mean of 26%.

The challenges associated with the measurement of YM 
of arteries are widely recognized, but this is the first study 
to systematically estimate variability in SWE parameters 
as a function of ROI position (between adjacent ROIs, dif-
ferent positions in the vessel walls, and left vs right carotid 
arteries, within and between subjects, with varying 
machine settings and physiology, and considering inter-
observer variability) [18, 20–24]. Previous researchers 
have cited small heterogeneous vessel walls, wall motion 
due to the blood flow pulsatility, and nonlinear elastic 
properties of tissue. Assumptions made by commercial 
scanners that calculate the YM from the measured shear 
wave velocity may be valid for bulk homogeneous tissues 
but not for vessels, which support Lamb wave propaga-
tion and require a different theoretical model [24]. CCA 
stiffness also varies with the cardiac cycle which our study 
did not consider, and which may have added to the varia-
bility in our measurements. A previous study of the YM in 
the CCA of one healthy volunteer throughout the cardiac 
cycle showed a higher YM in systole (130 kPa) compared 
to diastole (80  kPa) [25]. Unfortunately, our measure-
ments were not synchronized with ECG data; however, 
a comparison of successive frames shows variations 
between frames when measuring the same ROI.

A previous study by Ramnarine et al. [18] investigated 
YM measurements in the presence of steady and pulsa-
tile flow conditions. They found that YM estimates were 
not significantly affected by the pulsatile flow. However, 
YM measurements over the cardiac cycle were estimated 
using a single SWE frame instead of cardiac gating. There 
is considerable scope for improvement in SWE technol-
ogy for vascular applications and our study highlights 
wide variability in YM measurements, which would limit 
the clinical sensitivity and potential clinical implementa-
tion of YM measurements.

Mean YM measurements between adjacent ROIs were 
expected to have the closest agreement in view of their 
close proximity. The mean difference between adjacent 
regions of interest was 14  kPa. The right posterior wall 
showed significant differences between adjacent ROIs 
with the ROI proximal to the carotid bifurcation slightly 
higher than the distal ROI (bias of 5 kPa). Rather than a 

Fig. 3  Bland–Altman plot of the difference in mean YM 
measurements between the anterior and posterior CCA wall of each 
participant
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Fig. 4  Box and Whisker plot of mean YM measurements in anterior 
and posterior CCA wall

Table 2  Coefficient of variation of the anterior, posterior, right, 
and left CCA​

Left CCA (%) Right CCA (%) Average (%)

Anterior 22 23 23

Posterior 32 28 30

Average 27 16 27
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true difference in YM between adjacent ROIs, differences 
could be attributed to SWE imaging artifacts such as a 
vertical banding sometimes observed during scans and 
placement of adjacent ROIs in these regions.

There was no significant difference between YM meas-
urements between the left and right CCA, with a bias 
of 0.6 in the anterior wall (mean 59 ± 25 kPa) and a bias 
of 1.4 between the left and right posterior walls (mean 
52 ± 26  kPa). The high variability between these YM 
measurements (95% limits of agreement from -28 to 
41 kPa) shows that measurement variability is far higher 
than the bias. Differences in results between ROIs may 
be attributed to an artifact of the SWE technique related 
to the shear wave propagation or implementation in the 
scanner, depth of the ROI, or the position of the ROI 
within the anterior wall where the surrounding tissues 
including muscles may be of high YM. A real difference 
due to different tethering between anterior and posterior 
walls would also explain the findings and requires further 
investigation. Preliminary, unpublished data from our 
vessel phantom models surrounded by water or a tissue 
mimic highlighted the importance of the surrounding 
medium, supporting this observation. It showed that in 
a submerged phantom YM anterior wall measurements 
were significantly higher than posterior wall. Moreover, 

results from our phantom test object specifically clarify 
this aspect in which YM measurements decrease with 
increasing depth, and the maximum penetration depth 
was dependent on the pipe diameter [26]

Previous studies have reported reproducibility of YM 
measurements with a coefficient of variation (COV) of 
22% compared to a mean of 26% in this study [18]. Our 
finding that inter-frame variability of the anterior wall was 
lower than for the posterior wall (CoV 22% vs 30%) sug-
gests the anterior wall YM estimate may be a more robust 
and sensitive biomarker. Considering the higher YM esti-
mate in the anterior wall, future study protocols may ben-
efit from assessing anterior and posterior walls separately.

Conclusions
This study has investigated the influence of ROI position-
ing on YM measurements across different CCA positions. 
US SWE was able to assess YM in CCAs though YM meas-
urements were highly variable. The difference between YM 
between anterior and posterior walls can be attributed to 
an artifact of the SWE technique that has not previously 
been reported. Further investigation is required to study 
the source of the variability associated with SWE vascular 
application.

Fig. 5  Different SWE regions of interest (ROIs) over anterior and posterior wall of CCA​
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