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Abstract

Most stochastic shortest path problems include an assumption of independent weights
at edges. For many practical problems, however, this assumption is often violated indi-
cating an increased number of applications with stochastic graphs where edge weights
follow a distribution that has a possible correlation with weights at adjacent edges.
Real-world information in conjunction with existing dependencies in networks can
significantly contribute to the computation of the optimal solution to stochastic short-
est path problems. For example, the knowledge of a congestion arising on the current
road results in a better traveler’s choice of an alternative route. Markov dependabil-
ity models describing the correlation in the length of availability and unavailability
intervals of technical components could support optimal decisions to avoid high main-
tenance costs.

In this thesis, an innovative model class for stochastic graphs with correlated weights
at the edges is introduced. In the developed model edge weights are modeled by PH
distributions and correlations between them can be encoded using transfer matrices for
PH distributions of adjacent edge weights. Stochastic graph models including corre-
lations are important to describe many practical situations where the knowledge about
system parameters like traveling times and costs is incomplete or changes over time.

Based on PH-Graphs efficient solution methods for Stochastic Shortest Path Prob-
lems with correlations can be developed. Competing paths from origin to destination
in a PH-Graph can be interpreted as CTMDPs. Optimal solutions to different shortest
path problems can be obtained from finding an optimal policy in a CTMDP. For ex-
ample, the problem of finding the reliable shortest path to maximize the probability of
arriving on time under realistic assumptions can be efficiently treated. Formulations of
shortest path problems with correlations as well as solution methods from the CTMDP
field are presented.

We address the parameterization of PH-Graphs based on measured data from sim-
ulated systems. Fitting methods for parameterization of transfer matrices are adopted
from MAP fitting approaches. Also similarity transformations for order 2 acyclic
PHDs in composition are considered. Our experiments and examples show that corre-
lation has a significant impact on shortest paths in stochastic weighted networks and
that our solution methods are effective and usable in online decision senarios.
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Chapter 1
Introduction

The optimization of shortest path problems in weighted stochastic graphs has been
studied extensively and has been applied in various fields of computer science, commu-
nications, transportation systems, and engineering, to name just a few. Often weights
in a graph have been assumed to be deterministic, or independent and identically dis-
tributed random variables (see, e.g., [84, 119]). Then efficient algorithms for comput-
ing shortest paths are well known [64]. However, these assumptions are violated in
most practical problems. Typically, real-world shortest path problems are too complex
such that there is a major challenge in building an accurate model to define weights
in a stochastic graph model. For this reason it is worthwhile finding the appropriate
description of uncertainty and dependencies in weighted graph models.

When probabilistic edge weights are considered one is dealing with different ver-
sions of Stochastic Shortest Path Problems (SSPPs) [159]. Various settings and prob-
lem formulations have been considered [7, 29, 33, 34, 35, 36, 78, 82, 135, 136, 143,
145, 160, 164, 167, 174, 175]. Classically, the problem of finding optimal paths is
given when a path with the minimal expected time should be computed (see, e.g.,
[29, 71, 99]). Another variant is given when a path maximizing the probability of ar-
riving at the destination node within a given time interval should be computed (see,
e.g., [72, 77, 123]). One important issue which should be investigated is how estab-
lished stochastic modeling methods can help to incorporate more realism in SSPPs and
shed some light of how dependencies between weights can influence optimal paths.

The aspect of correlation is rarely considered when solving different SSPPs. Some
of the earliest and most noteworthy results concern the form of the optimal policy
under various assumptions about edge congestion states and risk aversion [71, 99,
172]. In transportation and traffic networks, correlations often occur due to network
disruptions, risks of accidents, construction zones on highways and city roads, natural
disasters, and congestions. For example, the regular morning congestion in rush hour
traffic is typically between 6 : 30 and 8 : 30, and long traveling times on highways
also imply long traveling times on periphery [99]. For these reasons different kind of
dependencies among edge traveling times can occur and it is known that the negligence
of these correlations can result in non-optimal solutions.

In this thesis, we propose a stochastic model class for the analysis of stochastic
graphs with dependencies, called a Phase-type Graph (PH-Graph). The new model is
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based on Phase-type distributions (PHDs) [69, 133] and Markovian Arrival Processes
(MAPs) [132] and is represented by a Markov chain which describes correlated du-
rations of consecutive time intervals. When interpreting Phase-type distributed dura-
tions as weights, a PH-Graph describes a stochastic graph with correlated weights on
adjacent edges. Dependencies between adjacent edge weights can be introduced by
defining a transfer matrix which is similar to the D1 matrix of a MAP. A PH-Graph
model collects PHDs for weights of all edges and transfer matrices for adjacent edges.

The main feature of PH-Graph models is that edge weights can be interpreted de-
pending on the context of the problem making a large variety of applications possible.
Nevertheless, open questions regarding their applicability in real-world problems arise.
In particular, how PH-Graphs based on PHDs and MAPs can be integrated in stochas-
tic control models for optimization in order to determine the optimal decision under
realistic conditions being considered. For example, how PH-Graphs capturing correla-
tions can be used in conjunction with real-world information to determine the optimal
policy for the route to traverse? Then, the knowledge about congestion on a highway,
vehicle accident, weather-related hazards on roads, shipments or plane routes can be
used by a decision maker to choose an optimal path.

PH-Graph is a Markovian model which can be transformed into a Continuous-Time
Markov Decision Process (CTMDP) such that the optimal paths correspond to the op-
timal policies and can computed efficiently [148]. CTMDPs are sequential decision
models which have been applied to a variety of problems in computer and commu-
nication systems, inventory and manufacturing control, nuclear plant and epidemic
management, to name just a few. They are widely used in order to improve the associ-
ated real-world system or to determine the effective way to control it. Often modeled
problem situations correspond to real-world problem situations and one is interested
in the optimal policy due to various assumptions about system parameters.

These assumptions contribute to understanding how such models could help to pro-
vide insight about optimal system behavior. Research about parameterization of CT-
MDPs using sophisticated distributions like PHDs and transfer matrices is needed to
accommodate empirical behavior of a modeled process.

As already mentioned, PH-Graphs are based on PHDs and MAPs, that are pop-
ular among researchers in the field of stochastic modeling. These are Markov pro-
cesses with an intuitive stochastic interpretation integrating the concept of phases and
events [115]. In particular, PHDs are described by Continuous-Time Markov Chains
(CTMC) with an absorbing state providing several exponentially distributed time inter-
vals, also known as stages. PHDs represent a versatile and computationally tractable
class of probability distributions which lead to an easier numerical analysis since they
make use of Markov property and efficient matrix analytic methods [115]. Their main
conversing feature is that using PHDs any non-negative distribution can be approxi-
mated arbitrary close [138]. PHDs allow one to capture empirical and stochastic be-
havior from the measured data efficiently [108, 168]. However, if one is interested in
description of correlated data MAPs should be used rather than PHDs. MAPs repre-
sent a Markovian modeling technique which is strongly connected to PHDs. They are
based on CTMCs with marked transitions such that the process generates an arrival
event when particular transitions occur. These stochastic behavior enables modeling
of autocorrelated interevent times which are represented by a fixed PHD, but there are
still many open questions when transfering these concepts to PH-Graphs. The first

2



CHAPTER 1. INTRODUCTION

question arising is: how can the correlation between interevent times which are dis-
tributed according to an arbitrary PHD be described? One of the ways to deal with this
challenge is to adopt the concept of D1 matrix from MAPs to transfer matrices.

The mathematical representation of PHDs and MAPs is determined by an underly-
ing CTMC. Due to the non-uniqueness of the matrix representation, representations
maximizing the first joint moment that can be reached when PHD is expanded to a
MAP have been investigated in the past [41]. Nevertheless, the next question is: which
representations of different PHDs are most suitable when maximizing their correla-
tion? This thesis proposes the treatment of these questions.

Although, PHDs and MAPs are not broadly used in practical system modeling yet
their flexibility and practicability in matching empirical data to their parameters can-
not be neglected today. Parameter fitting for PHDs and MAPs is a complex non-linear
problem. Much theoretical and practical research has focused on the features of PHDs
and MAPs, their applicability in stochastic models and fitting algorithms, such that
several software solutions to generate PHDs and MAPs according to observed data
are available [38, 44, 52, 96, 108, 139, 140, 165, 166, 168]. For example, efficient
algorithms allow generation of PHDs with up to 20 phases in at most a few minutes.
Parameter fitting for MAPs is a more complex optimization problem than parameter
fitting for PHDs since also long range behavior should be considered to match param-
eters adequately. Nevertheless, the technology is mature enough and well accepted by
researchers such that the Markovian models based on PHDs and MAPs can be widely
used in applied probability.

1.1. Contribution

The main theoretical contribution of this thesis is a novel model class for weighted
stochastic graphs with correlated weights at the edges. In the developed model, edge
weights are modeled with Phase-type distributions, a versatile class of distributions
which can be used to approximate any continuous distribution. Modeling of correlated
edge weights is done by adding dependencies between the PHDs of adjacent edge
weights. The concept of a transfer matrix adopted from D1 matrix from MAPs field is
introduced.

In this way we first provide modeling of graphs with stochastic edge weights which
can describe many real-world problems with uncertain and time varying parameters.
Based on PH-Graphs efficient solution methods for Stochastic Shortest Path Problems
with correlations is developed. This is done by generation of a suitable Continuous-
Time MDP and the application of established solution methods. The new PH-Graph
model, integration and adopting of methods for its parameterization is the core contri-
bution of this thesis.

The proposed parameterization algorithms of the transfer matrix are adopted from
MAP fitting approaches. Additionally, we present similarity transformations for Phase-
type distributions that can be applied to increase the range of correlation that can be
modeled by the newly developed PH-Graph model. These theoretical insights are used
in an expectation-maximization fitting algorithm to identify the most suitable initial
transfer matrix. In the two phase fitting approach, first the parameters of PH distri-
butions have to be determined. Hence, PHDs with representations which are most
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1.2. OUTLINE

suitable for subsequent fitting of transfer matrix with maximal first joint moment can
be generated.

Around our PH-Graph model we develop a corresponding CTMDP that captures
possible correlations in order to compute the optimal policy under realistic conditions.
When a human decision maker needs to decide on which policy to follow, information
about currently realized edge weight is required to exploit the effect of correlation, as
visualized in Fig. 1.1. The developed CTMDP method returns the optimal policy for
each possible realization of the current edge weight, such that a human decision maker
can select one to execute. Thus providing a framework for decision support. Finally,
the thesis is accompanied by case studies to demonstrate the practical potential of
optimization based on PH-Graphs.

Several parts of this thesis have already been published before. Basic concepts de-
scribed in Sections 2.1.3, 2.4, 2.5 appeared in [47]. The basic PH-Graph model con-
cepts in Sections 3.2, 5.1 and 5.2 have been published in [40]. Parameterization
concepts and results from Chapter 4 appeared in [47] and [40]. Results appeared in
Chapter 5 are published in [40]. The empirical work described in Section 7.1 appeared
also in [40]. Parts of theoretical results presented in Chapter 6 are in principle based
on [41].

PH-graph parameterization phase
PH distributions,

Transfer matrices,
CTMDP

CTMDP algorithms optimization phase

optimal policies

user selection selection phase

single policy execution phase

real-world information
(e.g., history of realized values)

Figure 1.1.: Decision support based on PH-Graph and corresponding CTMDP

1.2. Outline

The thesis consists of six chapters which are organised as follows:

• In Chapter 2 basic concepts from the field of Markov Decision Processes and
Stochastic Shortest Path Problems are summarized. We give a comprehensive
introduction to Phase-type distributions and Markovian Arrival Processes which
are of great importance throughout the thesis. Indispensable knowledge there-
fore like concepts of Markov processes and dynamic programming are also in-
cluded.
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CHAPTER 1. INTRODUCTION

• In Chapter 3 we develop our PH-Graph to model weighted stochastic graphs
with correlated PHD weights at the edges. We first model edge weights by
Phase-type distributions. Then we introduce a composition of two Phase-type
distributions which describes correlated weights at adjacent edges using the
transfer matrix. We add dependencies between the entry phase of the second
PHD and the exit phase of the first PHD.

• Chapter 4 presents methods to parameterize the required PHDs for edges and
transfer matrices based on measured data. We first describe several fundamental
algorithms and results in the field of fitting PHDs and MAPs. We adopted fitting
methods to parameterize transfer matrices. From several examples the fitting
quality of our algorithms can be evaluated.

• Chapter 5 gives the formulation of the PH-Graph model as Continuous-Time
Markov Decision Process. We discuss how solutions to many shortest path prob-
lems can be obtained as the computation of an optimal policy in a CTMDP. We
formulate basic shortest path problems and present the corresponding solution
algorithms from the field of CTMDPs.

• In Chapter 6 we describe similarity transformations for acyclic PHDs. We inves-
tigate which representations of both PHDs are most suitable in order to maxi-
mize the first joint moment of PHD composition. We present similarity transfor-
mation method for 2-order APHDs in order to generate a representation which
allows for fitting a transfer matrix with maximal first joint moment. When opti-
mal representations are known, parameterization of PHDs and transfer matrices
in PH-Graphs can demonstrably be simplified.

• In Chapter 7 we demonstrate the usability and effectiveness of our solution
methods by solving stochastic shortest path problems in real-world case studies.
We compute shortest paths using a vehicular traffic model under realistic as-
sumptions and analyze the computational effort using different types of graphs
approximating road networks. The second case study considers finance appli-
cation. In the third case study we analyze model from the maintenance field.
When, for example, a human decision maker needs to decide which policy to
follow, our methods provide useful results taking correlations in real-world net-
works into consideration.
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Chapter 2
Preliminaries

2.1. Markov Processes

A Markov process {X(t)}∞
t≥0 is a stochastic process where X(t) is a random variable

with parameter t describing the time. The values corresponding to random variables
are called states such that the set of all possible states defines the state space S . In
the following we consider Markov chains building the basis for Markovian Decision
Processes and Phase-type Distributions, which we consider in Sections 2.2, and 2.4.

The set T denotes the parameter space: If T = {0,1,2, . . .}, then we have a discrete-
time parameter space; If T = {t : 0≤ t <∞}, then we have a continuous time parameter
space. Thus the Markov chain can evolve either at a discrete set of time points or
continuously in time.

Markov chains have a conditional probability distribution function characterized by
the Markov property [162]:

Prob(X(tk+1) = xk+1 |X(tk) = xk, . . . ,X(t1) = x1) = Prob(X(tk+1) = xk+1 |X(tk) = xk),
(2.1)

for tk+1 > tk > tk−1 > · · ·> t0. Eq. 2.1 states that given the current state xk and the time
tk, the next state of the Markov process X(tk+1) depends only on xk and on tk but not
on the past of the process.

A Markov process is called nonhomogeneous when transitions out of state X(t)
depend on t. When transitions out of state X(t) do not depend on t, the process is called
homogeneous [162]. All Markov processes discussed in this thesis are homogeneous.

The time spent in a state is denoted as a sojourn time. In the continuous time case it is
exponentially distributed. Whereas in the discrete-time case it exhibits the geometrical
distribution. Exponential and geometrical distributions are the only distributions which
satisfy the memoryless property, i.e., the sojourn time Y spent by a Markov process in
state i is independent of how long the process has previously been in state i

Prob(Y > t + s |Y > t) = Prob(Y > s) for all t, s≥ 0,

such that the behavior satisfies the Markov property.
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CHAPTER 2. PRELIMINARIES

2.1.1. Discrete-Time Markov Chains

A discrete-time Markov chain (DTMC) is a Markov process {X(t)}∞
t≥0 with discrete

infinite set of times which satisfies the Markov property from Eq. 2.1
Conditional probabilities pi j(k) = Prob(X(tk+1) = j |X(tk) = i) are the single-step

transition probabilities. They specify the probability of making a transition from state
xk = i to state xk+1 = j when time increases from k to k+1. In homogeneous Markov
chains these probabilities are independent of time parameter k such that the time index
k can be skipped resulting in pi j = Prob(X(tk+1) = j |X(tk) = i) for all k = 1,2, . . ..
Transition probabilities for all states i, j ∈S are collected in the transition probabili-
ties matrix P̂

P̂(i, j) = pi j, 0≤ pi j ≤ 1, ∑
j

pi j = 1.

A DTMC is fully characterized by the tuple (π0, P̂) with initial probability vector π0,
where π0(i) gives the probability that the Markov process starts in state i, i ∈S .

Single-step transition probabilities may be generalized to n-step transition proba-
bilities p(n)i j = Prob(X(tk+n) = j |X(tk) = i), where p(1)i j = pi j. p(n)i j can be computed
using the Chapman-Kolmogorov equations [162] resulting in a n-step transition matrix
P̂n. Then transient probabilities after n time steps can be obtained as

π
(n) = π0 P̂n, (2.2)

such that π(n)(i) describes the probability with which the Markov process occupies
state i after n transitions have occured. In some cases transient probabilities converge
to a limiting distribution of the Markov chain. Particularly, if the limit limn→∞ P̂n

exists, then the n-step transition probabilities p(n)i j become independent of n

π = lim
n→∞

π
(n) = π0 lim

n→∞
P̂n

Then a distribution π is called a limiting distribution of the Markov chain. The con-
ditions under which the limiting probabilities exist are, e.g., irreducibility and aperi-
odicity of a finite Markov chain [162, 115], and ergodicity for infinite Markov chains.
A limiting distribution π is called a steady-state distribution if it converges to a vector
with strictly positive components with π I1 = 1, independently of the initial distribution
π0. Steady-state probabilities can be obtained from the system of linear equations

π = πP̂, π I1 = 1, 0≤ π(i)≤ 1. (2.3)

2.1.2. Continuous-Time Markov Chains

A continuous-time Markov chain (CTMC) is a Markov process {X(t)}∞
t≥0 with con-

tinuous time parameter set T = R≥0 which satisfies the Markov property from Eq. 2.1
Transition probabilities of a continuous-time Markov process are given by pi j(t) =

Prob(X(t + s) = j |X(s) = i) in the homogeneous time case and depend on the differ-
ence t between s and t + s and not on the actual values s and t + s. Values pi j(t) are
collected in a matrix Pt .

State probabilities at time t are given by π(t)( j) = Prob(X(t) = j) for j ∈S such
that ∑ j π(t)( j) = 1. Then the vector π0 = (π(t)(1),π(t)(2), . . .) is the initial probability
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2.1. MARKOV PROCESSES

vector of a Markov process. As mentioned above, the sojourn time in state i of a
CTMC is exponentially distributed with parameter λ (i), 0≤ λ (i)< ∞. Thus the times
between state transitions are exponentially distributed. Let Yi describe the sojourn time
in state i, its distribution function is

Prob(Yi ≤ t) = 1− eλ (i) t , t ≥ 0. (2.4)

This distribution describes the time a Markov process spends in a state before making
any transition.

Now the evolution of a CTMC can be described. At any given point in time, the
process occupies one of the states, i.e., X(t) = i. State holding time is exponentially
distributed with parameter λ (i) such that after this time has elapsed the process jumps
to the next state j with probability p(i, j) = λ (i, j)/λ (i). Here λ (i, j) gives the transi-
tion rate from i to j. Summation of all transition rates result in ∑ j λ (i, j) = λ (i) such
that λ (i) is the total event rate of the state i. Therefore, the behavior of CTMC can be
described by n×n infinitesimal generator (transition rate) matrix Q

Q(i, j) =

{
−λ (i) if i = j,
λ (i, j) if i , j.

(2.5)

If a transition from i to j can occur, then it holds that λ (i, j)> 0 and consequently all
non-diagonal entries of Q are non-negative, i.e. Q(i, j) ≥ 0. In contrast, all diagonal
elements of matrix Q are non-positive assuming that λ (i)> 0, i.e., Q(i, i)< 0. It holds
that

∑
j

Q(i, j) = 0.

For a CTMC we can specify the embedded process {Xr}r∈N0 if only the sequence
of transitions that can occur is considered. Single-step transition probabilities are
collected in transition probability matrix P̃ with entries P̃(i, j) = Prob(X(r + 1) =
j |X(r) = i) which are equal to zero if i = j

P̃(i, j) =
Q(i, j)
−Q(i, i)

, for j , i, Q(i, i) , 0. (2.6)

All elements of matrix P̃ satisfy 0≤ P̃(i, j)≤ 1 and ∑ j P̃(i, j) = 1.
Consider a homogeneous CTMC. Let π(t)(i) be probability that the process is in

state i at time t.
π
(t)(i) = Prob(X(t) = i).

These transient probabilities can be obtained by solving the system of differential equa-
tions [162]

d
dt

π
(t) = π0 Q. (2.7)

The solution π(t) is analytically given by

π
(t) = π0 eQt , (2.8)

where eQt is the matrix exponential and is defined by the infinite series

eQt = I+Qt +
Q2t2

2!
+

Q3t3

3!
+ · · · . (2.9)

8
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Unfortunately, evaluation of Eq. 2.9 can be computationally unstable and difficult to
compute [55, 152, 169]. In particular, numerical methods for evaluation of the matrix
exponential can be complex and often require the optimal parameter selection [5, 6, 63,
106, 128, 144, 157]. Methods for solving linear differential equations like the Runge-
Kutta-Fehlberg method or an implicit method TR-BDF2 [80, 124, 151] can be used
but possess no stochastical context. Uniformization (also known as Jensen’s method
or the method of randomization) provides an accurate numerical solution and yields
the stochastical interpretation [101, 163]. In the following we give the description of
this method along the lines of [163].

Uniformization The method is based on Taylor series expansion for the matrix
exponential. Recall that eQt = ∑

∞
n=0

(Qt)n

n! . Thus the numerical solution of Eq. 2.7 can
be given by

π
(t) ≈

r(t,ε)

∑
n=0

π0
(Qt)n

n!
, (2.10)

where r(t,ε) denotes the upper truncation point such that the required error tolerance
ε is satisfied. However, since diagonal elements of Q are negative the computation of
Eq. 2.10 can lead to rounding errors.

Next the uniformization rate α ≥maxi(|Q(i, i)|) is determined. Then the rate of the
sojourn time distribution of all states is uniformized with α by setting Q(i, i) =−α for
all i∈S . In fact, the original CTMC with non-identical transition rates is transformed
into a stochastic process in which transition epochs are generated by a Poisson process
at a rate α . Therefore the infinitesimal generator Q is transformed to obtain the matrix

P = I+
1
α

Q, (2.11)

which is the transition probability matrix of embedded process of a CTMC with ele-
ments in the interval [0,1]. Then it holds that Q = Pα−Iα and the matrix exponential
relation becomes

eQ t = e(Pα−Iα)t = ePα te−Iα t = ePα t

(
∞

∑
n=0

In (α t)n

n!

)−1

= ePα t I−1 e−(α t)= ePα t e−(α t),

since In = I for all n and ex = ∑
∞
n=0

xn

n! . Expanding the term ePα t in Taylor series
Eq. 2.10 can be written as

π
(t) =

∞

∑
n=0

π0 Pn︸  ︷︷  ︸ e−(α t) (α t)n

n!︸            ︷︷            ︸
=

∞

∑
n=0

φ(n) β (n,α t).

(2.12)

The expression

β (n,α t) = e−(α t) (α t)n

n!
(2.13)

gives the density function of Poisson process {Nt | t ≥ 0} with rate α . The specified
Poisson process is associated with an uniformized CTMC such that β (n,α t) describes

9
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the probability that exactly n transitions have occured in time interval [0, t). Each
time the Poisson process with rate α generates a transition epoch the state transitions
are governed by the embedded DTMC. Poisson probabilities can be computed with
the method described in [76] where all computations are numerically stable and only
positive values are used.

The term φ(n) = π0 Pn gives transient probabilities for the embedded DTMC, i.e.,
the i-th element of the vector φ(n) is the probability that the embedded process is in
state i after n transitions.

The sum formula 2.12 needs to be truncated such that we obtain

π
(t) =

r(α t,ε)

∑
i=l(α t,ε)

π0 P i e−(α t) (α t)i

i!
+ ε, (2.14)

where the lower truncation point l(α t,ε) and the upper truncation point r(α t,ε) can be
pre-computed such that the required error tolerance ε is satisfied. Numerical methods
on computation of lower and upper truncation points can be found in [162].

Stationary Distribution The steady-state distribution of a CTMC is given by a
long-run probability vector π such that π(i) is the probability of being in state i when
statistical equilibrium has been reached. Under the condition that the stationary distri-
bution exists, probability π(i) no longer depends on time t for all i ∈S . The steady-
state distribution exists when there is a point in time at which the rate of change of
transient probability vector π(t) is zero, i.e., when d

dt π(t) = 0 holds in Eq. 2.7. In a fi-
nite, irreducible, homogeneous CTMC the limit limt→∞ π(t) exists and the steady-state
distribution may be determined by solving the system of linear equations [162]

π Q = 0, ∑
i∈S

π(i) = 1. (2.15)

Example 2.1. Consider a 2-state CTMC with infinitesimal generator Q and a state
transition diagram as shown in Figure 2.1. The initial distribution vector is π(0) =
(0,1). The uniformization rate can be determined as α = 3 and we obtain the DTMC
shown in Figure 2.2. We computed transient probability vectors from Eq. 2.14 for some
values of t. For accuracy ε = 10−3 we obtain

π
(0.1) = (0.2415,0.7585), π

(1.5) = (0.6659,0.3341),

π
(0.5) = (0.5963,0.4037), π

(2) = (0.6666,0.3334),

π
(1) = (0.6593,0.3407), π

(3) = (0.6667,0.3333).

Observe that, after a certain time t, the transient probabilities no longer change. Solv-
ing Eq. 2.15 we obtain the steady state distribution π = (0.6667,0.3333).

2.1.3. Absorbing Markov Chains

An important class of CTMCs are absorbing Markov chains since they provide the
basis for analysis of the process behavior up to the moment that it enters an ab-
sorbing state. For Markov chains there exists a broad theory on the description of
states (see [105, 162, 47] and references therein). In the following we describe the
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1 2

1.5

3

(a) A state transition diagram of the CTMC.

Q =

[
−1.5 1.5

3 −3

]

(b) The infinitesimal generator Q.

Figure 2.1.: State transition diagram and generator matrix of a CTMC

1 2

0.5

0.5

1
(a) A state transition diagram of the uniformized
CTMC with uniformization rate α = 3.

P =

[
0.5 0.5
1 0

]
.

(b) Transition matrix P.

Figure 2.2.: State transition diagram and generator matrix of the uniformized CTMC

concepts of reachability, communicating, transient and absorbing states from these
sources.

Definition 2.1. A state j is called to be reachable from a state i if it holds for the
transition probability

p(t)i j = Prob(X(t +u) = j|X(u) = i)> 0

for some t. In that case the process can move from state i to state j after some amount
of time t.

Then states i and j can communicate with each other if i is reachable from j and
vice versa [105, 47]. Now assume that some subset C of the state space contains only
communicating states. Then this subset C is called a communicating set. Additionally,
if P̃(i, j) = 0 for all i ∈ C and all j ∈S \C , then there is no feasible transition from
C to outside states. In that case C is called a closed set [105, 47].

Definition 2.2 (Def. 2.2 in [47]). If C consists of a single state i, then i is said to be
an absorbing state.

By definition it holds for the absorbing state i that P̃(i, j) = 0 for all j ∈ S \C
and thus we have P̃(i, i) = 1. After entering an absorbing state the Markov process can
never leave it. From this point the process behavior will not change and its lifetime can
be determined. In performance models entering an absorbing state corresponds with
an occurrence of some event such that we are only interested in the process behavior
until absorption.

The states of a Markov chain can be classified according to whether and when it is
possible to return to a state after leaving it.

Definition 2.3. For a Markov process {X(t)}∞
t≥0 we define the following probability

fi = Prob(Eventually return to state i | X(0) = i)

= Prob(X(k) = i for some k ≥ 1 | X(0) = i).

11
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If fi = 1, then the state i is said to be recurrent. Otherwise, if fi < 1, the state i is said
to be transient.

For a transient state i ∈S there is a positive probability of leaving it forever, and a
recurrent state i is one which will be visited infinitely often [47].

Let C denote the set of all transient states. In a Markov chain with transient sets
there is the possibility of moving to some state j from which there is no return to this
set, and it can never enter this set again once it leaves it. A transient state may be
visited again, but with some positive probability it will not [105, 47].

A Markov chain where every state is either absorbing or transient is defined as ab-
sorbing Markov chain [47]. Without loss of generality we can assume that there is a
single absorbing state n+ 1. Absorbing Markov chains have the important property
that the probability to reach an absorbing state tends to 1 independently of the initial
state, i.e., limt→∞ Prob(X(t)< n+1) = 0 [114, Theorem 2.4.3].

Theorem 2.1. The probability that a finite absorbing Markov chain reaches an ab-
sorbing state in k steps tends to 1 as k→ ∞.

We now describe the canonical matrix representation for absorbing CTMCs as given
in [47]. Let S be the finite state space of a continuous time absorbing Markov process
{X(t)}∞

t≥0 where a set of transient states is denoted by ST = {1, . . . ,n} and a single
absorbing state is n+ 1. States of the CTMC are ordered as shown in the following
infinitesimal generator matrix Q [47]

D0 d1

0 0




n

1

1n

Q =

(2.16)

In Q the n transient states occur first following by an absorbing state n+1. The n×n
submatrix D0 contains only transition rates between transient states. The n×1 vector
d1 describes transitions from transient states to the single absorbing state. Since no
transitions from the absorbing state to any transient state are possible, the row vector
0 consists entirely of 0’s. The element 0 in the right lower corner defines the transition
rate out of the absorbing state n+1.

Subgenerator matrix D0 plays an important role in the numerical analysis of ab-
sorbing Markov chains and Phase-type distributions. In particular, the matrix D0 is
nonsingular [114, Theorem 2.4.3]. We give the definition of the fundamental matrix
according to [105].

Definition 2.4. The matrix (−D0)
−1 is the fundamental matrix of an absorbing con-

tinuous time Markov chain. The entry (−D0)
−1(i, j) gives the expected total time spent

in state j before absorption given that the initial state is i.

Example 2.2. The absorbing Markov chain with transition matrix Q in Figure 2.3 has
two transient states 1 and 2. The absorbing state 3 has no transition rates to any other
state. Regions of the matrix Q, namely D0, d1, and 0 are marked.
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1 2

3

0.5

1.5
2 1.8

(a) The state transition diagram for the absorbing
CTMC.

−2.5 0.5 2

1.5 −3.3 1.8

0 0 0




Q =

(b) The matrix for the absorbing CTMC.

Figure 2.3.: An absorbing CTMC with two transient and one absorbing state. Hence
D0 is a 2×2 matrix and the vector d1 is of dimension 2×1.

2.2. Markov Decision Processes

This section deals with continuous-time Markov Decision Processes (CTMDP) which
are closely related to continuous-time Markov chains. CTMDPs represent a class of
stochastic processes with a countable discrete state space [162] like CTMCs. The
latter forms the basis for CTMDPs which are also known as stochastic dynamic pro-
gramming, or continuous-time controlled Markov chains [148]. CTMDPs were first
introduced by Howard in [97] and have found a wide application in performance eval-
uation, e.g., in queueing systems [149], manufacturing control processes [111, 65],
e.g., inventory control [26], system biological processes, as e.g., stochastic models
for infectious diseases control [22, 176], dynamic routing processes [130, 68], and
finance [24], e.g., optimization problems in insurance [155, 156, 161].

The key idea is to use decision making by adding decisions and rewards to Marko-
vian process in order to reach an optimization goal. The resulting Markovian structure
can then be exploited in numerical analysis of the model and in generating optimizing
decisions.

In this section, we first provide the basic definitions and notations for CTMDPs. We
then proceed with an explanation of the basic processes associated with this model.
Our attention can be restricted to CTMDPs in which decisions are made when a state
has been entered and to DTMDPs in which decisions are made at transition times as
explained in [148, 24].

Continuous-time MDPs A CTMDP is a probabilistic model concerning a non-
deterministic choice with multi-periods that corresponds to dynamic decision making
in stochastic environments. In MDPs decisions are made in sequential manner such
that the results of current decisions and induced possibilities for future decisions are
considered. The graphical representation of the decision making process and of the
state evolution process is given in Fig 2.4.

CTMDPs can be defined by the tuple (S ,D ,H ,R,Q) [148, 24] with the following
model components:

• A countable state space S . Each state i is associated with a set of possible
actions. Given the current state at time point tn, an action from the set of avail-
able actions in that state has to be selected. This decision is carried out by the
decision maker, controller, or agent.
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Current state i

Decision epoch tn

Next state j

Decision epoch tn+1

Decision maker

Transition reward run
n (i, j)

Transition to state j
with probability Qun (i, j)

−Qun (i,i)

State holding time is
exponentially distributed
with parameter −Qun (i, i)

The accumulated state
reward is run

n (i) per time
unit spent in state i

Decision un Decision un+1

Figure 2.4.: Graphic representation of the decision making process, state evolution
process, and reward process in a CTMDP.

• A countable decision space D :=
⋃

i∈S D(i). Let mi be the number of different
decisions in set D(i). Given current state i at time point tn, the admissible set of
decisions is a subset Dn(i) ∈D .

• A set of decision epochs H . At each decision epoch tk ∈H , or point in time
decisions are made through selecting an available action u. The set H contains
non-negative real numbers. Furthermore, it is either a discrete set or a continu-
ous set, and it is either finite or infite, i.e. |H | ≤ ∞. The set of decision epochs
determines the sequence of selected actions Y (k), k = 0, . . . , |H |−1, where ran-
dom variable Y (k) denotes a nondeterministically selected decision u in state i,
u ∈Dk(i), i ∈S .

• A set of rewards R. Each time an action in state i is taken, the decision maker
obtains a certain reward ru

n(i) at some point in time tn. The received state reward
depends on the state i, and on the selected action u, u ∈Dn(i), i ∈S .

The transition reward is denoted by ru
n(i, j), ru

n(i, j) = 0 for i = k, ru
n(i, j) = 0

for Qu(i, j) = 0, ru
n(i, j), ru

n(i)< ∞. It is received when transition from state i to
state j occurs. This reward is also referred as impulse reward.

Since ru
n(i, j), ru

n(i) can take positive and negative values, it could be also inter-
preted as an incurred costs, or as an income.

• A set of transition rates Q = {Qu(i, j)| i, j ∈S ,u ∈D(i)}, Qu(i, j)> 0, for i ,
j,, ∑ j Qu(i, j) = 0. Furthermore, we denote λ (i) = −Qu(i, i). The decision
u chosen in some state i determines the transition probability distribution for
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the next state. Then infinitesimal generator Qu prescribes transition rates for
successor states.

Process Evolution We denote the corresponding stochastic state evolution pro-
cess as {X(t)}∞

t≥0, and the corresponding stochastic decision process as {Y (t)}∞
t≥0 [148].

The initial state of the CTMDP at the time t0 can be determined according to the
initial distribution vector π . Then the evolution of a system can be decribed as fol-
lows [127, 148, 81].

Assume that the system is observed to be in state i, i ∈ S at some point in time
t ≥ 0. Then the decision maker knows a set of available decisions, and selects an action
u∈Dt(i). The process stays an exponentially distributed time in state i, i.e., the sojourn
time in state i is exponentially distributed with parameter −Qu(i, i) = ∑ j Qu(i, j) [81].

Afterwards the decision maker obtains a transition reward, and system state changes
to a different state j. If we consider the system on the time interval [t, t +∆t), ∆t > 0,
then the received reward per transition is ru

t (i, j) [127]. If the system is in state i at
time t, the probability that the system is in state j at time t +∆t given that decision
u is always made in the interval [t, t +∆t) when the system is in state i is given by
Qu(i, j)+o(∆t).

While the process stays an exponentially distributed time in a state, the decision
maker accumulates state reward ru(i) per time unit in state i. In principle, the model
allows for a reward received at random or predefined point in time prior to next deci-
sion epoch, or for a reward collected continuously in some interval, or a combination
of both as described in [148].

Policies To optimize some performance criteria of a CTMDP decision rules and
policies are needed. Assume that at some point in time t information about admissible
decisions Dt(i) is available. A decision rule prescribes a decision that has to be chosen
from this set. Formally, the decision rule is a mapping ut : S → D such that ut(i) ∈
Dt(i), i.e. ut contains decision rules for all states at some point in time t [148].

The policy can be defined as a sequence of decison rules d = (u0,u1, . . . ,uT−1) for
T ≤ ∞. The policy defines a decision rule for all states to be used at each decision
epoch t [148]. Formally, let P = n

i=1 D(i) and the vector u ∈P describes decision
rules for all states. Then, a piecewise constant deterministic policy d is a function
d : [0, . . . ,T ]→P [127, 42].

It is assumed that the policy d is a measurable function where measurable should be
understood as Lebesque measurable [127]. Let Π denote the set of piecewise constant
deterministic policies.

For a stationary deterministic policy it holds for elements in the sequence d =
(u0,u1, . . . ,uT−1) that ui = u for ∀i ∈ {0, . . . ,T − 1}. The same decision rule given
by u is used at each decision epoch [42]. Let ΠSD be the set of stationary deterministic
policies. It holds that ΠSD ⊂Π [148].

We call a measurable policy d piecewise constant if there exists some finite index
m with 0 = t0 < t1 < .. . < tm−1 < tm = T such that ut = ut ′ for t, t ′ ∈ [ti, ti+1) where
0≤ i < m [127]. Note that in the case of a stationary policy the index m = 1.

For any u ∈P the infinitesimal generator matrix Qu is known whose (i, j)-th ele-
ment is given by Qu(i)(i, j). Analogously, received rewards per transition are described
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through ru whose i-th component is given by ru(i)(i). Here transition rates and rewards
depend on the selected decision and on the current state. Once decision u has been
chosen the system operates as an induced CTMC [148].

For Markov policies [148] it holds that the selected decision depends on the system’s
past only through the current state. Similarly, since CTMDPs are generalizations of
Markov chains, transition rates and rewards depend on the system’s past only through
the current state and the selected decision in that state [148]. Additionally, determin-
istic policies have the property that decisions are chosen with certainty.

Recall that at each decision epoch the decision maker has the required information
about system’s state and allowed decisions in that state. When the set of decision
epochs is discrete, decisions are made at discrete points in time. When the set of
decision epochs H is continuous, decisions could be made either continuously or
randomly, e.g., at decision epochs correponding to occurrence of some events. Our
description can be restricted to CTMDPs in which decisions are made at transition
times [148, 24].

Time Horizon Infinite horizon problems are given when the set of decision epochs
H is infinite. The model including an infinite horizon often occurs as an approxima-
tion of model with finite horizon, e.g., when the problem under study has finite but
very large horizon, random horizon, or when horizon is fixed but random steps are
used in the solution method [24].

Finite horizon CTMDP problems are given when the set of decision epochs H =
{0, . . . ,T} is finite [24]. Then decisions are not made at the final decision epoch de-
noted by T , instead the final decision is made at the previous decision epoch. In that
case the reward at the last decision epoch T is only the function of state.

One can also deal with the case when the considered time horizon is an inter-
val [148], it is then denoted as H = [0,T ] with T < ∞. In the following we define
the CTMDP model [24].

Definition 2.5. A CTMDP is given by the tuple (S ,D ,H ,R,Q), where S is a state
space, D is a decision space, H is a set of decision epochs, R is a set of rewards, and
Q is a set of transition rates for all possible state-decision combinations. For a finite
horizon H the terminal reward is a mapping r f in : S → R, r f in(i) giving the reward
at final decision epoch T . If H is an infinite set, there is no terminal reward.

Now suppose that we consider a system in a finite time interval [0,T ]. As already
defined in the literature [127, 42], let Ω be a set of all step functions on [0,T ] into S ,
and let F be the σ -algebra of the sets in the space Ω induced by sets {ω ∈Ω |ω(t) =
si} for all t ∈ [0,T ], i ∈S . Applying a measurable policy d on the system results in a
sample path ω describing states of the system at time t, t ≤ T . CTMC of the system is
then generated by the probability space (Ω,F ,Pd

π) [42].
For almost all r ∈ {0, . . . ,T} with 0 ≤ r ≤ t ≤ T a matrix Vd

r,t is defined [127, 42]
such that the (i, j)-th element is defined as Pd

π{ω(r) = si, ω(t) = s j}/Pd
π{ω(r) = si},

for a sample path ω ∈Ω when policy d is used.
The element Vd

r,t(i, j) contains the conditional probability that the induced CTMC
is in state j at time point t given that CTMC is in state i at time point r and the policy
d is used in interval [r, t] [42]. Along the lines of Miller [127] the following condition
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holds
Vd

r,t = I+Qd(r)(t− r)+o(t− r), (2.17)

such that the matrix Vd
r,t is shown to be defined by solutions of the differential equations

d
dt

Vd
r,t = Vd

r,t Qd(t), (2.18)

where the initial condition is Vd
r,r = I. Transient probabilities pd

t of the CTMDP with
initial probability distribution vector π at time 0 can be obtained by computing

pd
t = πVd

0,t and pd
t = pd

r Vd
r,t . (2.19)

Note that for a fixed policy d we obtain a stochastic process {X(t),Y (t)}T
t≥0 which

defines a gain process {G(t)}T
t≥0 [42]. G(t) describes the accumulated reward in the

finite time interval [0, t), t ≤ T . Let vector gd
t,T contain the values of accumulated

reward in the time interval [t,T ]. Each time the process stays in state i and decision u
is chosen the gain process changes with a rate ru(i).

Optimality Criterion Accordingly to a nondeterministic choice of decision and
induced transition rates the sequence of rewards obtained in an CTMDP is stochastic.
Since the aim of a CTMDP model is to control the system in such a way that some pre-
defined optimization function is either maximized or minimized, the rewards are used
to evaluate the selected decisions. In particular, different policies could be compared
using the decision criteria, e.g., the expected total reward [98]. In the following basic
decision criteria existing in MDP theory [98, 81] are described.

Let rut be the reward vector for decision vector ut taken at time t, such that rut (i)
is the expected reward gained by staying one time unit in state i . Furthermore, let
gT be the vector containing rewards gained at final decision epoch T . For the total
reward criterion in finite horizons [98, 42], the expected reward accumulated in the
time interval [0,T ] should be computed. The accumulated reward for some fixed policy
d can be obtained as

gd
t,T = Vd

t,T gT +
∫ T

t
Vd

τ,T rd dτ, (2.20)

such that the second term describes the accumulated gain until time T .
In particular, matrix Vd

τ,T contains in position (i, j) the conditional probability that
CTMDP is in state j at time T when it has been in state i at time τ and the policy d
is used in the interval [τ,T ]. The vector rd is determined by d(τ) = uτ which is the
corresponding decision vector at time τ ∈ [t,T ]. Then uτ(i) contains decisions if the
system is in state i at time τ , and the vector ruτ (i) contains the corresponding expected
rewards.

In particular, the vector gd
t,T contains at position i the expected reward accumulated

in the time interval [t,T ] if the CTMDP is in state i at time t and the policy d has been
used. Vector gd is denoted as the gain vector. The gain per state of policy d is defined
as [42, 49]

gd
0,T = Vd

0,T gT +
∫ T

0
Vd

τ,T rd dτ. (2.21)
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2.2. MARKOV DECISION PROCESSES

The expected reward which is also called the gain of policy d with initial probability
distribution π is given by [42, 39]

Gd = π gd
0,T . (2.22)

For the time averaged reward criterion [98, 42] one is commonly interested in an
average reward accumulated per time unit in a long run. The gain vector is given by

gd
t,T =

1
(T − t)

(
Vd

t,T gT +
∫ T

t
Vd

τ,T rd dτ

)
, for T > t. (2.23)

For the accumulated reward to absorption criterion [42] the absorbing states corre-
spond to events of interest in the system, i.e. states satisfying certain properties. Then
the gain vector describes the accumulated expected reward till absorption. Let SA ∈S
be a set of absorbing states, i.e. states satisfying some properties of interest. Let the
vector rd

A contain zero rewards for absorbing states i ∈SA and rd
A( j) is determined by

ruτ ( j) otherwise. Then the gain vector is given by [42]

gd
t,T = Vd

t,T gT +
∫ T

t
Vd

0,τrd
A dτ, (2.24)

where the second term determines the accumulated expected reward until time T on
the state space S \SA. The vector gT is the reward vector of the final decision epoch
T . gT is independent of the policy, and its initialization depends on the underlying
computational problem as described in [42].

In the case of infinite horizons MDPs we consider the system on the interval [0,∞).
Possible result measures for the system are the accumuluted average reward, the ac-
cumulated reward to absorption, or the discounted reward. For the average reward
criterion [98] the gain vector at time 0 is given by

gd
0 = lim

T→∞

1
T

(∫ T

0
Vd

τ,T rd dτ

)
. (2.25)

For the accumulated reward to absorption criterion [98, 42] the state space S is defined
in a similar way to the above criterion for finite horizons.

Optimal values and policies Since the gain vector contains at position i the ac-
cumulated reward of the system under certain policy d ∈Π, the objective is to choose
a measurable policy which minimizes (maximizes) the gain vector in all components
and this policy is called the optimal policy [127]. We define [127, 42]

gmin
t,T = inf

d∈Π

(
gd

t,T
)
, gmax

t,T = sup
d∈Π

(
gd

t,T
)

(2.26)

as the extreme (optimal) values for the gain vector gd
t,T , 0 ≤ t ≤ T . A policy is called

optimal if it results in minimal (maximal) extreme values [127, 42]

dmin = arg inf
d∈Π

(
gd

t,T
)
, dmax = arg sup

d∈Π

(
gd

t,T
)
. (2.27)

The policies dmin, dmax need not be unique. Often the ε-optimal policies are consid-
ered, where it holds for an ε-optimal policy d that

∣∣∣gmin/max
t,T −gd

t,T

∣∣∣ ≤ ε . The prob-
lem of computing the minimum (maximum) accumulated average reward with infinite
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horizon and the problem of computing the minimum (maximum) long-run average
reward with finite horizon admit stationary optimal policies as described in [28] – op-
timal policies can be computed using dynamic programming [28, 148]. The minimum
(maximum) total reward problem admits piecewise constant optimal policies, which is
proved in [127].

DTMDPs After discussing continuous-time MDPs we will give a precise defini-
tion of discrete-time MDPs (DTMDP) where time is also divided into periods or
stages [148, 24], such that time steps are assumed to be equal. If time horizon H
is infinite, there is no terminal reward.

Definition 2.6. [24] A DTMDP is given by the tuple (S ,D ,H ,R ′,Q′), where S is a
state space, D is a decision space, H is a set of decision epochs with H = {0, . . . ,T},
T ≤∞, R ′ is a set of rewards, and Q′ is a set of transition probabilities for all possible
state-decision combinations.

The value given by r
′u
n (i) is a one-stage reward at decision epoch n if the current

state is i and decision u is chosen. At next decision epoch n+1 the system state is de-
termined according to probability distribution given by Q′. Set Q′ contains stochastic
transition kernels Pu such that entry Pu(i, j) gives the probability that a next state at
time n+1 is j if the current state is i and decision u is taken at time n [24].

DTMDPs are of fundamental interest in the analysis of CTMDPs. Since CTMDPs
have to be solved numerically, a possible solution can be also obtained by considering
an embedded state process which can be determined by converting a CTMDP model
using uniformization [148].

Similarly to the continuous-time case, the basic criteria are the total reward, and the
average reward criterion for problems with infinite horizon [148, 28]. For the expected
total reward criterion on infinite horizons the gain vector at time 0 for the given initial
state i is given by

gd
0(i) = lim

T→∞

1
T

Ed,i

(
T

∑
t=0

r′ut (Xt)

)
, d ∈Π, i ∈S , (2.28)

where the limit defining the total reward gd
0(i) exists [28].

If we consider the system on the finite interval [0,T ], the total expected reward is
given by [28]

gd
0(i) = Ed,i

(
gT +

T−1

∑
t=0

r′ut (Xt)

)
, d ∈Π, i ∈S , (2.29)

where vector gT is the initial gain vector at time T . gT is independent of policy d ∈
Π and is added to the accumulated reward of the first T stages. The author in [28]
proposes the dynamic programming approach to determine optimal value and policy
for the above criterion. In particular, the optimal gain vector for a given initial state i
is the solution of the following equation

gmax
0 (i) = max

u∈D(i)

(
r′u(i) + ∑

j∈S
Pu(i, j)gmax

0 ( j)

)
,∀i ∈S . (2.30)
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Observe that infinite horizont CTMDPs can be numerically analyzed in several
ways [148]. One possible solution is to transform CTMDP into DTMDP and Poisson
process through a uniformization method. Afterwards, e.g., algorithms for computa-
tion of optimal policy and its value can be applied to the resulting DTMDP such that
Poisson process need not to be considered. The uniformization method for CTMCs is
described in Sec. 2.1.2.

Example 2.3. In this example we consider the stochastic job scheduling problem
(sJSP) presented in [37]. The authors considered two problems, namely minimizing
the expected makespan and minimizing the expected flow time. Therefore the schedul-
ing problem is given by a finite set of tasks with exponentially distributed service time
on more than one identical processors.

Main results developed in [37] show, that policy d with a longest expected time first
strategy (LEPT) is makespan optimal, i.e. it minimizes the expected completion time of
the sJSP. Policy with a shortest expected processing time first strategy (SEPT) is flow
time optimal.

We present the CTMDP model formalized in [131]. Let J = {1, . . . ,n} be a set of
jobs. A state space S = 2J×2J is given by tuples (R,W ), such that R describes a set
of jobs already assigned to processors, W describing a set of unfinished jobs waiting
for a processor. For each job i∈ J µ(i) describes a rate of the exponentially distributed
processing time. All processing times are independent and exponentially distributed.

Decision epochs are determined by completion times of jobs. Each time a job i
finishes a scheduling decision which job to schedule next is made. Formally, a decision
u ∈ D((R,W )) defines the preemptive schedule and a set u(i) determines the tasks to
be assigned to a processor. When job i finishes and decision u has been chosen, a next
state is (R′,W ′) with R′ = u(i) and W ′ = R∪W \{i}∪{u(i)}.

For decision u ∈D((R,W )) the transition rate matrix Qu is defined as

Qu((R,W ),(R′,W ′)) =
{

µ(i) if job i finishes
0 otherwise.

Consider now the instance with m = 2 identical processors and 4 jobs with µ(1) =
3, µ(2) = 2, µ(3) = 5, µ(4) = 7. Fig. 2.5 shows the CTMDP with initial state (R =
{2,4},W = {1,3}). In the case when job 2 finishes first, job 4 is preempted and jobs

R = {2, 4}, W = {1, 3}

R = {1, 3}, W = {4} R = {1, 2}, W = {3}

. . .

R = {3, 4} R = {1, 4} R = {2, 3} R = {1, 3}

u1

µ(2) µ(4)

un

µ(1) µ(3) µ(1) µ(2)

Figure 2.5.: CTMDP for the sJSP instance.

1, 3 are assigned to processors. In the case when job 4 finishes first, jobs 1,2 are
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assigned next. Note that jobs with a smallest rate, i.e. with a longest mean time are
assigned first. For the visualized scheduling decision u1 waiting jobs are jobs with
a highest rate which corresponds to the scheduling policy with the smallest expected
makespan.

2.3. Stochastic Shortest Path Problems

In this section we describe the stochastic shortest path problem (SSPP) which is the
most studied problem in random graphs. It is a stochastic version of the deterministic
shortest path problem.

Assume that a graph with n nodes, edge weights, and a certain destination node d
is given. The edge (i, j) is defined when for a node i the successor node j is selected.
A path q = ((i, j), ( j,k), . . . ,(l,d)) is defined as a sequence of edges that connect one
node with another. Let cq(i,d) define the sum of edge weights for a path q starting in
i and ending in d. Then starting at some node i we are interested in a successor node
j for each node, such that the shortest path formed by a sequence of successor nodes
satisfies [148, 28]

argmin
∀q

cq(i,d).

In a SSPP the edge weights are given by random variables and are represented by
rewards. Often nodes of the graph are represented by states. For some node i the
possible successor nodes define edges such that the choice of the successor edge is
associated with an admissible decision in the current state. This implies that transitions
between nodes are random, such that some control over their probability distributions
is allowed in a SSPP.

The problem is to find a policy which minimizes the expected cost of reaching
a given target state, such that the stochastic shortest path has the minimal expected
length. The SSPP are undiscounted MDPs with an absorbing, cost-free terminal state
corresponding to the destination d. Based on this formulation the SSPP can be solved
using standard MDP methods, as shown in [29, 28].

The deterministic version of the dynamic program is given when the selected deci-
sion determines the successor state with certainty, i.e. when the associated probability
distribution assigns probability 1 to the successor state. The graphic representation
of the deterministic dynamic program formulation for a SSPP instance is shown in
Fig. 2.6. The aim is to compute the optimal policy which leads to the destination node
with probability 1 and results in minimal expected total reward [148, 28].

2.3.1. Literature Overview

The huge application area of stochastic shortest path problems includes online stochas-
tic route planning [136, 135], robot navigation [160], minimum and maximum reach-
ability times [59, 42] to name a few. There are some prominent treatments in the
literature, e.g., Andreatta and Romeo [7] introduced the version of I-SSPP (indepen-
dent edge weights) where random edges can be either active or inactive in deterministic
graphs with stochastic topology. The decision maker knows the system state contain-
ing information about active and inactive edges which enables him to make a decision
to reroute each time the system state corresponding to a node in a graph is reached.
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s1 s3 s4

s5

s2

r3(1) = 4 r4(3) = 2

r5(1) = 9
r5(3) = 3

r5(4) = 2

r2(1) = 2

r3(2) = 3
r4(2) = 1

Figure 2.6.: Example of the deterministic SSPP. The destination node is s5. All ac-
tions are deterministic since they lead to an unique successor state with
probability 1.

The I-SSPP problem was subsequently studied in [145]. The authors also considered
the joint probability distribution of random variables describing edge weights which
presumes dependent random variables. The problem under this model is called R-
SSPP. In this variant the edge weights are learned as the decision maker traverses the
graph such that the realizations of random variables describing edge weights after-
wards remain constant and known by it. However, the proposed R-SSPP algorithm
based on a dynamic programming approach has exponential run time in the number of
realizations of the network. The algorithm for I-SSPP is exponential in the number of
edges in the graph. The authors also show that the recognition version of the R-SSPP
is NP-complete, and that the I-SSPP is #P-hard, and can be computed in polynomial
space [145, Theorem 3,4].

In [29] the authors obtained optimality results for the problem where at each node
the probability distribution over all possible successor nodes is available. The problem
with negative edge weights has been treated under some important assumptions. Then
it has been shown that the optimal cost vector is the unique solution of Bellman’s
equation and that the policy iteration approach computes an optimal stationary policy
starting from arbitrary policy. Further real-time dynamic programming approach based
on Markov decision theory was proposed in [33]. For further complexity results and
heuristic algorithms we refer to [143, 145, 136, 135, 175].

In [34] the authors treated the bus network problem in order to compute an optimal
plan within a city minimizing the expected traveling time. The formulation of the bus
network problem included a time-dependent Markov decision process where the deci-
sions in each state are whether or not to take a bus when it arrives. The model has then
been extended in [35] such that stochastic state transitions as well as stochastic, time-
dependent action durations were added to the CTMDP. For further time-dependent
versions of SSPP we refer to the literature [82, 78, 174].

In the field of robotics, SSPP often builds a basis for mobile robot navigation.
In [160] the authors developed partially observable MDPs for autonomous office nav-
igation. The system state contains information about environment topology, distance,
sensor and actuator data. This enables one to estimate the position of a robot from the
Markov model and the decision maker chooses the decision about navigation with re-
spect to temporary uncertainty in position and sensor data. The Markov model, where
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it is assumed that the location of the robot is always known but the state of an edge can
change as the robot traverses the graph, was proposed in [36]. We refer to the literature
for further treatments using partially observable MDPs [160, 167].

2.3.2. SSPP Definition

In this section we first provide basic definitions and notations for the stochastic version
of the shortest path problem. Then we proceed with a description of basic solution
methods and relevant approaches on the field.

Definition 2.7. [59] A SSPP can be described as an infinite horizon discrete-time
MDP (S ,D ,H ,R ′,Q′), where it holds for the state space S = ST ∪SA. A set
ST = {1, . . . ,n} contains transient states which are associated with n graph nodes.
A set SA contains absorbing states. For a single destination problem, the set SA

contains a single absorbing state n+ 1 corresponding to the destination node in the
graph.

The considered graph is deterministic in the sense that only edge weights are de-
scribed by random variables but the edges themselves are certain. In the SSPP the
discount factor γ = 1 and absorbing states are reward free.

In each state i the set of admissible decisions D(i) is associated with a set of pos-
sible successor nodes of the node i. When the decision u is selected at some time the
transition probabilities Pu(i, j) for possible successor states j are specified.

In particular, Pu is a substochastic |ST | × |ST | matrix, where Pu(i, j) gives the
probability Prob(X(t+1) = j |X(t) = i,ut = u), for i, j ∈ST , and u ∈D(i). If we are
dealing with a single destination problem, it holds that Prob(X(t +1) = n+1 |X(t) =
n+1) = 1 for all t. In the following we assume that SA = {n+1}.

Additionally, r̃u(i) are the costs of the system if the current state is i and decision u
is chosen. The destination state has the zero costs r̃(n+1) = 0 for all policies.

In the analysis of SSPP models one deals with averaging of rewards per stage over
all possible successor states [28]. Thus the expected reward per stage for state i using
decision u ∈D(i) is defined as follows

ru(i) = ∑
j∈S

Pu(i, j) r̃u( j) (2.31)

The SSPP is the computation of the minimum expected total reward of reaching
the absorbing state n+1 in the defined DTMDP when the decision maker applies the
policy that reaches n+ 1 with probability 1 [28, 29, 59]. However, the existence of
such policies is not guaranteed and will be discussed in detail in Sec. 2.3.3.

The total expected reward for policy d = (u0,u1, . . .), d ∈ Π, starting in state i is
given by [27]

gd(i) = lim
N→∞

E

[
N−1

∑
t=0

rut(X(t))(X(t)) |X(0) = i

]
. (2.32)

Note that the stationary policy is given by d = (u,u, . . .), d ∈Π (cf. Sec 2.2). In the
following we simplify the notation for d by denoting u as a stationary policy and the
corresponding gain function as gu.
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The minimal total expected reward starting in state i is defined by [28, 29]

g∗(i) = min
u∈Π

gu(i), (2.33)

such that it contains minimum of gu(i) for all admissible policies u ∈ Π. Given sta-
tionary policy u the transition probability matrix Pu of dimension |ST |× |ST | can be
defined as

Pu(i, j) = Pu(i)(i, j), (2.34)

which is substochastic since the absorbing state is not considered.
We first introduce mappings Tu : Rn→ Rn and T : Rn→ Rn defined in [27, 28] by

Tu g(i) = ru(i)(i) + ∑
j∈ST

Pu(i, j)g( j), (2.35)

T g(i) = min
u∈D(i)

(
ru(i) + ∑

j∈ST

Pu(i, j)g( j)

)
, (2.36)

for any function g : S → R. The operator Tu maps g to the vector Tu g. The Tu g is the
reward function associated with the policy u for the one-period problem.

For any function g : S →R the operators Tu, T can be given in vector notation form
as

g = [g(1), . . . ,g(n)]T ,

Tu g = [Tu g(1), . . . ,Tu g(n)]T ,

T g = [T g(1), . . . ,T g(n)]T ,

ru =
[
ru(1)(1), . . . ,ru(n)(n)

]T
.

The operator Tu g in Eq. 2.35 associated with a stationary policy u can be written in
vector matrix notation

Tug = ru +Pug. (2.37)

The reward function of an arbitrary policy d = (u0,u1, . . .), d∈Π, and N describing
the time horizon length, can be written as [28]

gd = lim
N→∞

sup Tu0Tu1 · · ·TuN−10 = lim
N→∞

sup

(
rd(0) +

N−1

∑
t=1

Pu0 · · ·Put−1rd(t)

)
, (2.38)

which results in the following equation for a stationary policy u

gu = lim
N→∞

sup (Tu)
N 0 = lim

N→∞
sup

N−1

∑
t=0

(Pu)t ru. (2.39)

2.3.3. Proper and improper policies

According to the definition of the SSPP involving a policy that reaches the absorbing
state n+ 1 with probability 1 we introduce the concept for such a policies along the
lines of Bertsekas [28]. Intuitively, if an admissible policy d ∈ Π reaches the state
n+ 1 with probability 1, then in the induced absorbing Markov chain there is a path
connecting each state i with the absorbing state n+1 and containing non-zero transi-
tion probabilities along this path.
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Definition 2.8. [29, 28, Definition 2.1.1] A stationary policy u is proper if it reaches
the absorbing state with positive probability after at most n stages. That is

pu = max
i∈ST

Prob(X(n) , n+1 |X(0) = i, u) < 1, (2.40)

such that
∞

∑
t=0

(Pu)t is finite. Otherwise the stationary policy u is said to be improper.

It has been shown in [28] that if the proper policy u is used the following holds

Prob(X(t) , n+1 |X(0) = i, u) ≤ (pu)b
t
n c < 1, (2.41)

for i ∈ST , which is the maximal probability of not reaching the absorbing state n+1
after t stages. It follows from Eq. 2.41 that the absorbing state will be reached with
probability 1 [28], i.e. limt→∞ (Pu)t = 0. In particular, if the proper policy u is used,
the associated total gain is finite, i.e. the expected total reward in the t-th decision
epoch is bounded by [28]

(pu)b
t
n c ·max

i∈ST
|ru(i)(i) |, (2.42)

such that the expected total reward starting in state i is finite

gu(i)≤ lim
T→∞

T−1

∑
t=0

[
(pu)b

t
n c ·max

i∈ST
|ru(i)(i) |

]
< ∞. (2.43)

In [28] the authors introduce the following two important assumptions for the dynamic
programming theory according to the SSPP.

1. The existence of at least one proper policy is required.

2. Each improper policy u results in an infinite expected total reward for at least
one initial state, such that some component of the sum ∑

N−1
t=0 (Pu)t ru diverges to

∞ as N→ ∞ .

These assumptions are satisfied in, e.g., the deterministic versions of SSPP shown
in Fig. 2.7. Here at least one proper policy exists if there is a path connecting every
initial node i with the destination node (n+1) [29]. For example the policy u1 shown
in Fig. 2.7 is proper because the resulting paths connect each node with the destination
4.

A policy is improper if there exists some initial state i, such that the path starting in
i doesn’t lead to the destination state. The same holds if the path starting in i contains
infinitely cycles of positive length. In that case the costs incurred for an initial state i
are infinite.

Example 2.4. The policy u2 shown in Fig. 2.7 is improper since the second assump-
tion does not hold. The policy minimizing Eq. 2.39 will always choose the decision
u2(3′) = 2 since ru2(3′) = 0. The decision rule u2(3′) = 2 results in expected total
reward gd2(1′) = 1 for the initial state 1′. Though the proper policy with decision rule
u2(3′) = 4 would result in value 2 for the expected total reward starting in 1′.
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1 2 3

4

Policy u1

1′ 2′ 3′

4′

Policy u2

1

1
1

1

u1(3) = 2
1

u1(1) = 4
u1(2) = 4

1

0

u2(3′) = 2
0

1

1

Figure 2.7.: Two instances of deterministic SSPP. The destination node is 4, and 4′

respectively. All actions are deterministic since they lead with probability
1 to the unique successor state. The rewards are depicted on edges.

If all policies terminate inevitably in the destination node n+1 the two assumptions
are also satisfied. Furthermore if it holds for all rewards ru(i) > 0, then the second
assumption is satisfied [28].

Observe that the first assumption about the existence of at least one proper policy
in fact states that the destination node will be reached with probability 1 in a finite
number of steps. The length of the time horizon depends on the policy and thus is
random [27].

We can conclude from the above assumptions that a proper policy is given when
paths starting in initial states reach a destination with probability 1, such that the cor-
responding total reward is equal to the path length. An important property of a proper
policy u is that the attained rewards gu(i) starting in state i, for i = 1, . . . ,n, are the
unique solution of Bellman’s equation [27, 28, 148]

gu(i) = ru(i)(i)+ ∑
j∈ST

Pu(i, j)gu( j), i = 1, . . . ,n, (2.44)

such that the gain vector gu with components gu(i) is the unique fixed point of the
mapping Tu.

In turn, the optimal total expected rewards g∗(i) starting in state i, i = 1, . . . ,n, are
the unique solution of Bellman’s equation (see [27, Proposition 7.2.1(b)])

g∗(i) = min
u∈D(i)

(
ru(i)+ ∑

j∈ST

Pu(i, j)g∗( j)

)
, i = 1, . . . ,n, (2.45)

where the optimal reward vector g∗ containing components g∗(i) is the unique fixed
point of the mapping T .

2.3.4. Dynamic programming algorithm

In this section we discuss the dynamic programming method and the Bellman’s opti-
mality equation which holds for the expected total reward minimization in SSPP under
the above assumptions. In the following we propose the main results from the dynamic
programming theory for SSPP developed in [29, 28].
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First, let g0 be the 1×n vector of zeros such that g0(i) = 0 for all i ∈ST . The map-
ping T k denotes the function which results from applying the mapping T in Eq. 2.36
to the function T k−1

(T kg0)(i) = (T (T k−1g0))(i), (2.46)

such that if we start with (T 0g0)(i) = g0(i), the optimal reward T kg0(i) for the k-stage
problem can be obtained. In particular, T kg0(i) is the minimal expected total reward
for reaching an absorbing state n + 1 starting from the initial state i in the k-stage
problem.

Similarly, the mapping T k
u is given by

(T k
u g0)(i) = (Tu (T k−1

u g0))(i), (2.47)

describing the rewards corresponding to a stationary policy u for reaching an absorbing
state n+1 starting from the initial state i in the k-stage problem.

Applying the mapping Tu to the function (T k−1
u g) for a stationary policy u can be

resolved inductively by

(T k
u g) = (Pu)kg+

k−1

∑
n=0

(Pu)nru.

To illustrate the case where k = 2, first observe for k = 1 that

Tug = ru +Pug,

and

(T 2
u g) = Tu(Tug) = Tu(ru +Pug) = ru +Pu(ru +Pug) = ru +Puru +(Pu)2ru.

Example 2.5. Let us consider a SSPP instance with ST = {1,2}, SA = {3}, and the
set of admissible decisions D(i) = {u1,u2} for all i ∈ST . The transition probability

s1 s2

s3

u1
0.3

0.4

0.3

u2

0.4

0.2

0.4

u1

0.5

0.25

0.25

u2

0.3

0.2

0.5

Figure 2.8.: State transition graph including admissible decisions u1, u2 and the in-
duced transition probabilities.

matrices corresponding to the decisions u1, u2 and rewards are given below

Pu1 =

 0.3 0.3 0.4
0.25 0.5 0.25

0 0 1

 , Pu2 =

0.4 0.4 0.2
0.3 0.5 0.2
0 0 1

 , ru1 =(0.6,0.75,0)T , ru2 =(0.85,0.8,0)T .

The function T can be now computed for the states 1, 2, 3 as

T g(i) = min
u1,u2

(
ru1(i)+∑

3
j=1 Pu1(i, j)g( j), ru2(i)+∑

3
j=1 Pu2(i, j)g( j)

)
.

When the initial expected reward vector is defined as g0 = (0,0,0), we obtain

T g0(1) = 0.6, T g0(2) = 0.75, T g0(3) = 0.
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Convergency results Let again g0 = 0. Observe that for every stationary policy
u its infinite horizon reward is the limit of the k-period reward associated with u as
k→ ∞ [28, Corollary 1.2.1.1]

gu = lim
k→∞

(
T k

u g0

)
. (2.48)

Observe that Eq. 2.44 states that the gain vector gu corresponding to policy u is the
unique solution of the Bellman’s equation. Equivalently the gain vector gu is the solu-
tion of the equation

gu = Tu gu = ru +Pu gu. (2.49)

The dynamic programming iteration computes the values

gk+1(i) = min
u∈D(i)

(
ru(i)+ ∑

j∈ST

Pu(i, j)gk( j)

)
, i = 1, . . . ,n, (2.50)

such that the sequence of generated values converges to g∗(i). Then the optimal infinite
horizon total expected reward is equal to the limit of the optimal k-period expected
reward [28, Corollary 1.2.1]

g∗ = lim
k→∞

(
T k g0

)
. (2.51)

Thus if we start with (T 0g0)(i)= g0(i) and iterate the dynamic programming algorithm
infinitely often, we compute in the limit the optimal reward g∗.

Eq. 2.50 can be transformed to dynamic programming for finite horizon by reversing
the time index. The initial reward function g0 equals to the terminal reward function. If
we consider the k-decision epoch problem, then the value gk(i) represents the optimal
reward starting from state i and obtaining terminal reward g0 at the end of k-th decision
epoch.

Observe that the optimal gain vector g∗ satisfies the Bellman’s equation [28, Propo-
sition 1.2.2]

g∗ = T g∗, (2.52)

which is equivalent to Eq. 2.45. In fact, the Bellman’s equation can be expressed as
the dynamic programming algorithm taken to its limit as k→ ∞.

The stationary policy u is optimal if u(i) results in the minimum in the righthand
side of the Bellman’s equation 2.52 for each i ∈S . Thus it holds that

T g∗ = Tug∗, (2.53)

where Tug is defined in Eq. 2.49.
For the stationary policy u the total expected reward function can be computed as

(I−Pu)gu = ru, (2.54)

which follows from the fact that the equation gu = Tugu results in a system of n linear
equations with n unknowns i = 1, . . . ,n, each corresponding to the vector component
gu(i)

gu(i) = ru(i) +
n

∑
j=1

Pu(i, j)gu( j). (2.55)
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Furthermore the Eq. 2.54 can be equivalently written as

gu = (I−Pu)−1ru. (2.56)

Note, that the matrix Pu is substochastic since it is restricted to transient states. We
now have to show that the matrix (I−Pu) is invertible. Consider the homogeneous
equation (I−Pu)x = 0, i.e. x = Pux. Taking the power of (Pu)n it admits that x =
(Pu)nx. Observe that limn→∞(Pu)n = 0, i.e. the absorption occurs with probability 1.
Then limn→∞(Pu)nx = 0, so x = 0. In this case the equation (I−Pu)x = 0 has only
the trivial solution x = 0, which is the necessary and sufficient condition for the matrix
(I−Pu) to be invertible (cf. [105, Theorem 3.2.1]).

The optimal stationary policy u∗ and the corresponding gain vector g∗ can be com-
puted using value iteration, policy iteration and linear programming which we briefly
describe in Chap. 5.

2.4. Phase-Type Distributions

Markov chains introduced in Sec. 2.1 characterize probability distributions based on
the exponential distribution. This phase-type distributions (PHDs) are more complex
than the exponential distribution, and can be described by the time until absorption
in a CTMC. The roots of PHDs open on to the method of stages first introduced by
Erlang where time intervals should be modeled as a random number of exponentially
distributed phases [115]. In the following we describe the concept of PHDs, basic
definitions, and their classification based on work [47].

Continuous-time Phase type distributions The PHDs belong to matrix ana-
lytic probabilistic models where the distribution of a PHD random variable is defined
using a matrix D0 and initial distribution vector π . The pdf, cdf, moments and variance
are also defined in terms of the matrix and initial vector. In this section we concentrate
on continuous time PHD and give the basic definitions from the sources [132, 47].

Before we introduce the definition of a PHD, let S be the state space of the con-
tinuous time absorbing Markov process {X(t)}∞

t≥0 with n transient states contained
in the transient set ST = {1, . . . ,n} and one absorbing state n+ 1 contained the set
SA = {n+1}.

A phase-type distribution is defined as the distribution of the lifetime X , i.e., the
time to enter an absorbing state from the set of transient states ST of an absorbing
continuous time Markov process {X(t)}∞

t≥0 [47]. The background absorbing CTMC
{X(t)}∞

t≥0 has an initial probability vector π and the infinitesimal generator Q given
in Eq. 2.16. The intensity matrix Q contains the matrix D0 describing transition in-
tensities between transient states, which are also called phases. Then a PHD with n
transient states is said to have order n [47]. The rows of the intensity matrix Q sum to
zero [47]

D01 + d1 = 0. (2.57)

In the following let 1 and 0 be the vectors of an appropriate dimension. In [47] the
following inequalities are givens

D0(i, i)≤ 0, D0(i, j)≥ 0 for i , j, d1(i)≥ 0 and ∑
j∈ST

D0(i, j)≤ 0. (2.58)
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Observe that the underlying absorbing Markov chain has the initial distribution vec-
tor [π,π(n+1)] with π1+π(n+1) = 1. π is a 1×n vector and gives the probabilities
to start in any transient state. π(n+1) is the initial probability for the absorbing state
n+1 [47]. In the following we assume that π(n+1) = 0.

In the underlying absorbing Markov process, the sojourn time of each phase i, 1 ≤
i ≤ n, is exponentially distributed with parameter λ (i) = −D0(i, i) as explained in
Eq. 2.4. Consequently, the parameters of the involved exponential distributions can be
obtained from the diagonal elements of the subintensity D0 [47]

λ (i) =−D0(i, i) =

(
∑
j,i

D0(i, j)+d1(i)

)
. (2.59)

The exit vector d1 gives the exit rates. The column vector can be determined as [47]

d1(i) = λ (i)−∑
j,i

D0(i, j). (2.60)

The random variable X describing the time before absorption is of phase-type with
representation (π,D0), which is a sufficient representation since the exit vector d1 and
π(n+1) can be obtained from it [47].

Example 2.6. Consider a PHD with the subgenerator D0 given in Figure 2.9(b). For
this PHD it holds that all states are entry states, i.e., π(i) , 0 for i∈ST . Furthermore,
it is possible to escape from every transient state i.

11
2

21
2

30.44

0.56

5

(a) A state transition diagram of a PHD.

D0 =

[
−1 0.44
0 −5

]
, d1 =

[
0.56

5

]
π =

[ 1
2

1
2

]
(b) The infinitesimal subgenerator matrix D0,
the exit-rate vector d1 and the initial probabil-
ities π of the PHD.

Figure 2.9.: Symbolic representation of the PHD of Example 2.6.

Distribution and Moments In this paragraph we give the basic analytic properties
of PHDs from [47]. The random variable X is PH distributed with representation
(π,D0). Then the underlying Markov process {X(t)}∞

t≥0 has the intensity matrix Q
given in Eq. 2.16. The distribution function of the random variable X is defined as

F(x) = 1−π eD0x1 for x≥ 0 (2.61)

and its density function is given by

f (x) = π eD0xd1 for x≥ 0, (2.62)

where the vectors π and d1 are strictly positive such that the value of the density
π eD0xd1 equals or is greater than 0 [115]. Observe that the matrix exponential eD0x in
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Eq. 2.61 is defined by the standard series expansion [114]

eD0x = ∑k≥0
1
k!
(D0x)k, (2.63)

where it analogously holds that eQt = ∑k≥0
1
k!(Qt)k.

Let us consider the behavior of the underlying Markov process {X(t)}∞
t≥0. Analyz-

ing Markov chains one is often interested in transient probabilities. Consider the transi-
tion probability matrix Pt defined in [47]. The entry Pt(i, j)=Prob(X(t)= j|X(0)= i)
gives the probability of being in state j at time t, given that the initial phase is i [47].
These probabilities can be obtained using the matrix exponential [47]

eQt =

[
eD0t 1− eD0t1

0 1

]
, (2.64)

as
π
(t) = π Pt = π eQt , (2.65)

where π(t)(i) gives the probability that the Markov process {X(t)}∞
t≥0 is in phase i at

time t.
In Def. 2.4 we give the definition of fundamental matrix (−D0)

−1. Since the entry
−D−1

0 (i, j) gives the expected total time spent in phase j before absorption, given that
the initial phase is i, the moments of the PHD can be expressed in terms of the moment
matrix M =−D−1

0 . Particularly, the i-th moment of a PHD is defined as [47]

µi = E[X i] = i!πMi1. (2.66)

A further important property of PHDs is that continuous PHDs are dense in the class
of distributions on R≥0 (see [47] and references therein). In turn, discrete time PHDs
are dense in the class of distributions on N. Furthermore, Erlang distributions with n
phases can approximate deterministic distributions as n→∞. All this makes the PHDs
a flexible and versatile stochastic tool, as e.g., any distribution with a strictly positive
density in (0,∞) can be approximated arbitrarily close by a PHD [138].

Figure 2.10.: Transient probabilities for states 1, 2, and absorbing state 3.

Example 2.7. Consider the 2-order PHD given in example 2.6. The transient proba-
bilities are plotted in Fig. 2.10. The pdf and cdf are visualized in Fig. 2.11.
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Figure 2.11.: The pdf and cfd of PHD defined in Example 2.6.

2.4.1. Acyclic Phase-Type Distributions

Acyclic PHDs represent the largest subclass of PHDs for which canonical representa-
tions exist. We represent the PHDs belonging to this subclass along the lines of [47].

The PHD (π,D0) can be represented as an acyclic phase-type distribution (APHD),
if the transition rate matrix D0 can be transformed into an upper (or lower) triangu-
lar matrix by symmetric permutations of rows and columns. As described in [47],
the matrix representation (π,D0) has (n2 + n)/2 parameters for the matrix and n− 1
parameters for the initial vector.

Note that if the matrix D0 is of an upper triangular form, phase i can only be con-
nected with phase j if j > i. Then no cycles along the paths from initial to the absorbing
state can occur. We now give an overview of some relevant PHD subclasses.

Exponential and Erlang Distributions Originally, PHDs were introduced in
the method of stages, where random time intervals are modeled as an aggregate of
exponentially distributed time intervals. Thus we consider the class of exponential and
Erlang distributions first.

The exponential distribution is characterized by its rate parameter λ . The corre-
sponding PHD has only one single state and initial distribution π = [1] as shown in
Figures 2.12(a), 2.12(b) from [47].

11 2
λ

(a) An exponential distribution with parameter
λ , and 2 being an absorbing state.

Q =

[
−λ λ

0 0

]
(2.67)

(b) The infinitesimal subgenerator D0.

Figure 2.12.: Markovian representation of the exponential distribution as given in [47].

A. K. Erlang introduced in [69] the representation of distributions as a sum of n
exponential phases with the same intensity λ . Let Xi be n mutually independent, expo-
nentially distributed random variables with parameter λ > 0, 1 ≤ i ≤ n. The random
variable Y for their sum can be defined as Y = ∑1≤i≤n Xi. Then it has an Erlang distri-
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bution denoted by E(n,λ ), and its density is given by [47]

f (x) =
λ n

(n−1)!
xn−1e−λx for x≥ 0. (2.68)

The distribution function is defined by [47]

F(x) = 1−
n−1

∑
i=0

(λx)i

i!
e−λx for x≥ 0. (2.69)

The i-th moment of the Erlang distributed random variable Y is given by [47]

E[Y i] =
(n+ i−1)!
(n−1)!

1
λ i . (2.70)

Thus, the mean of Y is E[Y ] = n
λ

and the variance equals VAR[Y ] = n
λ 2 [47].

For the initial distribution vector it holds that π = [1,0, . . . ,0]. The underlying
Markov process is visualized in Figure 2.13 [47].

11 2 . . . n n+1
λ λ λ λ

(a) A graphic representation of the Erlang(n,λ )
PHD.

D0 =


−λ λ . . . 0 0
0 −λ . . . 0 0

. . . . . .
. . . . . . . . .

0 0 . . . −λ λ

0 0 . . . 0 −λ


(2.71)

(b) The infinitesimal subgenerator D0.

Figure 2.13.: Erlang representation of a PHD from [47].

The Markov process starts in phase 1 and traverses through the successive states
until it reaches the absorbing state n+1. Thus, the time to absorption described by Y is
the summation of all holding times which are identically exponentially distributed with
parameter λ . The Erlang distribution E(n,λ ) has a squared coefficient of variation of
C2 = n−1 which is less than one for n > 1. Distributions with a coefficient of variation
greater than one can be modeled as finite mixtures of exponential distributions.

The Erlang distribution can be used as an approximation for a deterministic distribu-
tion. Particularly, n = ∞ phases are required to represent a deterministic distribution.
In practice, smaller number of phases can also be used, e.g. a PHD of order 10 is of-
ten manageable and can be good enough. For example, deterministic distribution with
mean time λ can be approximated by the Erlang(n, n

λ
) PHD. In this case the coefficient

of variation is close to zero.

Hypo-exponential and hyperexponential distributions The hypo-exponential
distribution is a generalized Erlang distribution. Let Fi(·) be the exponential distribu-
tion as described in [47] with

Fi(x) = 1− e−λ (i)x for x≥ 0, 1≤ i≤ n.
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The density function for the rate λ (i) is given by [47]

fi(x) = λ (i)e−λ (i)x for x≥ 0.

The hypo-exponential distribution is defined by the number of stages n and the set of
parameters λ (i). Its density function is defined as [47]

f (x) =
n

∑
i=1

(
n

∏
j=1, j,i

λ ( j)
λ ( j)−λ (i)

)
fi(x) for x≥ 0, λ (i) , λ ( j) for i , j. (2.72)

For the initial distribution vector it holds that π = [1,0, . . . ,0]. The graphical repre-
sentation is given in Fig. 2.14(a) and 2.14(b) from [47].

11 2 . . . n n+1

λ (1) λ (2) λ (n−1) λ (n)

(a) Markovian representation of the hypo-
exponential distribution. In particular
λ (1), . . . ,λ (n) are not necessarily identi-
cal.

D0=



−λ (1) λ (1) ... 0 0

0 −λ (2) ... 0 0

... ...
... ... ...

0 0 ... −λ (n−1) λ (n−1)

0 0 ... 0 −λ (n)


(2.73)

(b) The infinitesimal subgenerator D0.

Figure 2.14.: The hypo-exponential distribution as given in [47].

The hyperexponential distribution is defined as a convex mixture of n exponential
distributions [47]. Its graphical representation is given in Figure 2.15 from [47]. The
density function is defined as [47]

f (x) =
n

∑
i=1

π(i)λ (i)e−λ (i)x for x≥ 0. (2.74)

The distribution function is defined as [47]

F(x) =
n

∑
i=1

π(i)(1− e−λ (i)x) for x≥ 0. (2.75)

The first moment is defined as E[X ] = ∑
n
i=1

π(i)
λ (i) and its variance is given by [47]

VAR[X ] = 2
n

∑
i=1

π(i)
λ (i)2 −

(
n

∑
i=1

π(i)
λ (i)

)2

. (2.76)

For the squared coefficient of variation it holds [47]

C2 =
E[Y 2]

(E[Y ])2 −1 = 2
∑

n
i=1

π(i)
λ (i)2

(∑n
i=1

π(i)
λ (i))

2
−1 (2.78)
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1π(1)

2π(2)
...

nπ(n)

n+1

d1(1)

d1(2)

d1(n)

(a) A graphic representation of the hyperexpo-
nential distribution.

D0=



−λ (1) 0 ... 0 0

0 −λ (2) ... 0 0

... ...
... ... ...

0 0 ... −λ (n−1) 0

0 0 ... 0 −λ (n)


(2.77)

(b) The infinitesimal subgenerator D0.

Figure 2.15.: The hyperexponential distribution as given in [47].

π(1)
...

. . .

. . .π(m)

λ (1) λ (1) λ (1)
λ (1)

λ (m) λ (m) λ (m)
λ (m)

(a) A graphic representation of the HErD.

Q =


Q1 0 . . . 0
0 Q2 . . . 0

. . . . . .
. . . . . .

0 0 . . . Qm

 (2.79)

(b) The infinitesimal generator Q.

Figure 2.16.: Symbolic representation of the HErD from [47].

Hyper-Erlang distribution A hyper-Erlang distribution denoted as HErD [73], is
a mixture of m mutually independent Erlang distributions weighted with the initial
probabilities π(1), . . . ,π(m), where ∑

m
i=1 π(i) = 1 [47]. Its graphical representation is

given in Figure 2.16 from [47].

2.4.2. Series Canonical Representation

Cumani developed in [56] canonical representations for PHDs which provide the im-
portant advantage of having only 2n− 1 free parameters in contrast to APHDs with
(n2 + n)/2 for the matrix D0 and n− 1 parameters for the initial distribution vector
(cf. Sect. 2.4.1). To achieve a minimal representation, the APHD should be considered
as a stochastic mixture of all possible paths from initial states to the absorbing state.
In the following we describe the concepts as given in [56, 47]. We first introduce the
concept of elementary series.

Definition 2.9. [47] Let n be the order of the considered APHD. An elementary series
of order m≤ n is defined as the following series

ES =< λ (i1)λ (i2) . . .λ (im)>,

where i1, i2, . . . , im−1, im is a sequence of states along the acyclic path from an initial
state i1 to the absorbing state im = n+1.

As described in [47] it holds that D0(ik, ik+1) , 0 for k = 1,2, . . . ,m, λ (im) = 0 and
the rate between two states ik, ik+1 is given by λ (ik). The maximal number of possible
elementary series in a n-order APHD is given by 2n−1 [47].
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1π(1),0

2π(2),0

3π(3),0

4

1 2 3 4

1 2 4

2 3 4

2 4

3 4

Figure 2.17.: An acyclic 3-phase PHD and its elementary series.

Example 2.8. Figure 2.17 represents a 3-order APHD with its elementary series.

Let λ and µ be two rates of exponential distribution with λ ≤ µ . Then the following
equality holds [56, 47]

λ

s+λ
= τ

µ

s+µ
+(1− τ)

λ µ

(s+λ )(s+µ)
. (2.80)

In Eq. 2.80 λ

µ
∈ (0,1] is the probability for the path until absorption containing only a

phase with the transition rate µ , as described in [47]. Then, the probability (1− λ

µ
) is

used to describe the path until absorption containing two phases with intensities λ and
µ [47]. Since it holds that λ ≤ µ , the two successive phases are given in ascending
order of the transition rates.

1 . . . ⇔
µ > λ

(1− λ

µ
) . . .

(λ

µ
) . . .

λ

λ µ

µ

Figure 2.18.: Substitution step for the exponential distribution with rate λ using rate
µ > λ as visualized in [47].

Using Eq. 2.80 an elementary series for some phase with transition rate λ can be
substituted by a mixture of two elementary series, one containing a phase with tran-
sition rate µ > λ , and the other containing both phases with the rates λ and µ . This
substitution is illustrated in Figure 2.18 from [47]. It is known that each ES has a hypo-
exponential representation (2.73). The cdf of an elementary series has the Laplace
transform [47]

F(s) =
λ (i1)λ (i2) . . .λ (im−1)

s(s+λ (i1))(s+λ (i2)) . . .(s+λ (im−1))
=

1
s

m−1

∏
k=1

λ (ik)
(s+λ (ik))

. (2.81)

As described in [47] elementary series build the basis of the minimal APHD repre-
sentation since its cdf can be represented by the mixture of the cdfs of its elementary
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series. Then each ES is weighted proportionally to its probability, which is given by
the product of transition intensities along the ES path and the initial probability of the
first state of the ES [47]. For m states i1, i2, . . . , im from the j-th elementary series ES j

of an APHD, the probability of the elementary series is defined by [47]

τ j = π(i1)
D0(i1, i2)
−D0(i1, i1)

D0(i2, i3)
−D0(i2, i2)

. . .
D0(im−1, im)
−D0(im−1, im−1)

d1(im)
−D0(im, im)

. (2.82)

Observe from Eq. 2.81 that each of the exponential distributions in the convolution
can in principle be reordered [147]. Thus one is interesting in a basic representation,
also called a basic series, which is in hypo-exponential representation with increasing
rates. By repeated use of the substitution in Eq. 2.80 the elementary series can be
transformed to a mixture of basic series [47].

Definition 2.10. [47] Let 0 < λ (1) ≤ λ (2) ≤ . . . ≤ λ (n) be n positive real numbers
in ascending order. Then the basic series (BS) is defined as the following series

BSi =< λ (i) . . .λ (n−1)λ (n)>,

where each tuple of i, . . . ,n transient states determines the acyclic path till absorption.

π(1)

π(2)
. . .

π(n)

n+1

λ (1)

λ (n−1)

λ (n)

(a) The series canonical form, in par-
ticular 0 < λ (1) ≤ λ (2) ≤ . . . ≤
λ (n−1)≤ λ (n).

D0=



−λ (1) λ (1) 0 ... 0

0 −λ (2) λ (2)

...
...

...
... −λ (n−1) λ (n−1)

0 −λ (n)



(b) The infinitesimal subgenerator D0.

Figure 2.19.: PHD in series canonical form as defined in [47].

Definition 2.11. [47] The subgenerator in Figure 2.19 from [47] defines a series
canonical form. A mixture of basic series of an APHD with transition intensities in
ascending order, i.e. λ (i)≤ λ (i+1)≤ . . .≤ λ (n), defines an APHD.

The series canonical form is one of the minimal representations. It has 2n− 1 de-
grees of freedom: n transition rates and n−1 initial probabilities.
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In the series canonical form the rates are ordered ascendingly such that transitions
are only possible from phase i to the successor phase i+ 1. Furthermore the process
can escape only from the last phase n. Thus we need only n transition parameters
for the matrix D0. All transient states may be entry states satisfying π(i) ≥ 0, for all
i = 1, . . . ,n. Since the absorbing state cannot be entered initially, we need only n− 1
initial probabilities.

Example 2.9. Consider the following APHD

D0 =

[
−1 0.8
0 −1.5

]
, d1 =

[
0.2
1.5

]
, π =

[
0.6 0.4

]
.

To obtain the series canonical form the transition from phase 1 to the absorbing
state should be eliminated. In particular, the ES1 =< 0.8 1.5 > occurs with prob-
ability 0.6 0.8

1 = 0.48, the ES2 =< 0.2 > occurs with probability 0.6 0.2
1 = 0.12, and

the ES3 =< 1.5 > occurs with probability 0.4 1.5.
1.5 = 0.4. If we apply the substituting

step to the ES2 with λ = 1 and µ = 1.5, we obtain two series, namely < 1.5 > with
probability λ

µ
= 1

1.5 = 0.66, and the series < 1 1.5 > with complementary probability

1− λ

µ
= 0.33. Since the original series ES2 occurs with probability 0.12, the probabil-

ity of < 1.5 > is given by 0.12 ·0.66 = 0.08, and the probability of < 1 1.5 > is given
by 0.12 ·0.33 = 0.04.

Now observe that all basic series are determined and the resulting distribution in
series canonical form is given below.

Dcan
0 =

[
−1 1
0 −1.5

]
, dcan

1 =

[
0

1.5

]
, π

can =
[

0.52 0.48
]
.

The probability of the ES1 =< 1 1.5 > is completed to 0.48+ 0.04 = 0.52, and the
probability of ES2 =< 1.5 > is given by 0.4+0.08 = 0.48.

2.4.3. Bilateral Phase-type Distributions

The extension of PHD to bilateral phase type distribution (BPHD) on the entire line
(−∞,∞) was first introduced in the work of Ahn and Ramaswami [4]. In the earlier
work of Shanthikumar [158] a class of bilateral PHDs was defined where positive and
negative parts of a BPHD random variable can be represented as a mixture of sums
of iid exponentially distributed random variables. These mixtures of sums could also
be infinite since infinite state space Markov chains were incorporated. It has been
shown that the class of BPHDs is closed under convolution and mixtures involving
consideration of the infinite Markov chains. However, in [4] only finite state space
Markov chains were considered. In the following we describe the concepts from [158,
4, 95].

Assume that a partitioning of n transient states is given by ST = S1 ∪S2. Now
we can introduce the Markov modulated reward process B = {B(t) : t ≥ 0}. During
the sojourn time of the underlying Markov process in the state i ∈S1 the accumulated
reward increases with rate ci > 0. Analogously, during the sojourn time of the Markov
process in the state j ∈S2 the accumulated reward decreases with rate c j > 0. The
reward function B(t) describes the total accumulated reward of the Markov process
{X(t)}∞

t≥0 in the time interval (0, t), i.e. over the finite horizon.
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Consider that B(0) = 0 and once the absorbing state is reached no further changes
occur to the reward B(X), where X is the absorbing time of the underlying Markov
process. We first introduce the diagonal reward matrices

C1 = diag(ci, i ∈S1), C2 = diag(c j, j ∈S2), C∗ = diag(C1,−C2). (2.83)

Note that diag(ci, i ∈ S ) represents the matrix with elements ci, i ∈ S on the di-
agonal. The diag(A1,A2) represents the matrix with the matrix A1 on the diagonal
following by the matrix A2 on the diagonal.

Definition 2.12. The total accumulated reward till absorption Y = B(X) is a bilateral
phase-type distributed random variable with representation (π,D0,C∗).

We also represent the result from [4].

Theorem 2.2 (Theorem 3 in [4]). Let Y be a bilateral phase-type distributed random
variable. Then we obtain two random variables Y+=max(0,Y ) and Y−=−min(0,Y )
which are both phase-type distributed.

Note that Y+,Y− have both realizations in R+. The general formula for the k-th
moment of Y is given by

E[Y k] = k!π(MC∗)k1, (2.84)

where M =−D−1
0 is given in Def. 2.4.

Properties BPHDs inherit several important properties of PHDs first mentioned
in [4]. BPHDs are closed under convolutions and mixtures, the proof of these prop-
erties can be adapted from proofs presented in [115]. Furthermore, the BPH class
is closed under the minimum and the maximum operation, as mentioned in [95]. If
we consider the case where the partition S2 is empty and all reward rates ci = 1 for
the transient states from S1, one can verify that PHDs on [0,∞) represent a subset of
BPHDs.

Similarly to PHDs, the matrix representation is not unique. Let V be a non-singular
diagonal matrix with positive elements, then the tuple (π,VD0,VC∗) defines the same
BPHD [95]. This similarity property allows the definition of all reward rates as ci =
1 for all transient phases i ∈ ST such that C∗ = I∗, where I∗ is a diagonal matrix
containing I∗(i, i) = 1 for state i ∈S1 and I∗(i, i) =−1 for state i ∈S2 as given in [4].

As mentioned above, one of the most interesting properties of BPHDs is that they
can be represented as a mixture of a positive and negative PHDs. For this purpose
consider two PHDs (π(a),D(a)

0 ), (π(b),D(b)
0 ) and two constants 0≤ α,β ≤ 1 satisfying

α +β ≤ 1. Then the positive part of a BPHD can be modeled by the PHD given by
(π(a),D(a)

0 ).
Correspondigly, the negative part is modeled by the PHD represented as (π(b),D(b)

0 ).
The initial probabilities π(a), π(b) can be weighted with constants α and β such that
P(Y > 0) = α , P(Y < 0) = β and an atom at 0 obtains the probability P(Y = 0) =
1−α−β . The given PHDs (π(a),D(a)

0 ), (π(b),D(b)
0 ) are then conditional distributions

of |Y |, given that Y > 0, and that Y < 0 respectively.
The constructed BPHD Y has the representation

([απ
(a),βπ

(b)], diag(D(a)
0 ,D(b)

0 ), diag(I,−I)).
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(a) A graphic representation of the BPH distri-
bution.
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(a)
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(b) The infinitesimal subgenerator D0

Figure 2.20.: The bilateral phase-type distribution constructed as the mixture of two
PHDs in hyperexponential representation based on [95].

Fig. 2.20 contains the graphic representation of the construction for PHDs (π(a),D(a)
0 ),

(π(b),D(b)
0 ) in hyperexponential representation which are both of order 2. Then the

k-th moment of the BPH distributed random variable Y can be also represented by

E[Y k] = k!α π
(a)(M(a))k1 + (−1)k k!β π

(b)(M(b))k1, (2.86)

such that the BPHD is given by the convex mixture of two PHDs.

Example 2.10. We present an example from [4] to demonstrate capabilities of BPHDs
that can be used modeling interesting characteristics. Consider the acyclic BPHD

11 2 . . . n−1 n n+1 . . . 2n−1 2n

λ λ λ λ λ p2 µ µ µ µ q3

λ p3

λ p1
µ q2

µ q1

Figure 2.21.: The BPHD composed as the convolution of two Erlang distributions both
of order n (see [4]).

of order 2n visualized in Figure 2.21. It holds that S1 = {1, . . . ,n} and S2 = {n+
1, . . . ,2n}. The first n transient phases have mean sojourn times 1/λ and reward rates
1, whereas the remaining n phases have mean sojourn times 1/µ and reward rates−1.

The process starts in the phase 1∈S1 and goes first through the sequence of phases
from the set S1. With probability p2 the process traverses the path containing remain-
ing phases from the set S2. At the end of this path the process gets absorbed with
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probability q3. In that case the BPH random variable is realized as the difference of
two independent Erlang random variables X1 and X2, where X1 ∼ Erlang(n,λ ) and
X2 ∼ Erlang(n,µ).

After a start in phase 1 and going through the sequence of states 1, . . . ,n, the process
may also go back to the initial phase 1 with probability p1, which would lead to the
repeated visit of all states from the set S1. The other possibility is to jump from the
state n to the absorbing state with probability p3.

Analogously, once the sequence n+ 1, . . . ,2n is passed through, the process may
jump to the initial state 1 with probability q1 or goes back to the state n + 1 with
probability q2, which leads to the repeated traversing of the phases from the set S2.

In the case where the probabilities p3 = 0 and q1 = 0 the sequence of phases n+
1, . . . ,2n from the set S2 is traversed at least once and the process cannot jump back to
initial state 1, if the whole sequence of states has been traversed. In the case that p2 =
1, q3 = 1, and λ = µ , the BPHD has mean zero. Observe that the return probabilities
p1, q2 can be used to model the positive and negative parts as a geometric mixture of
successive convolutions of the corresponding Erlang distribution.

Fitting methods for BPHDs A possible fitting approach for BPHDs considers
positive and negative values from the trace separately and then determines parameters
for both PHDs according to these parts [95]. In the last step established fitting methods
can be applied to obtain a PH distribution. Then the construction in Fig. 2.20 can
be used to obtain a BPHD for the whole sample [4]. However, this approach has a
disadvantage that the fitting of BPHDs with continuity behavior at zero will in general
result in small likelihood at zero. The approach developed in [95] presents moments
bounds and the moment matching algorithm for ABPHDs dealing with pdf functions
having equal left and right limit at zero.

2.5. Markovian Arrival Processes

In this section we consider Markovian Arrival Processes (MAPs) which belong to
powerful stochastic models enabling models with correlated inter-event times. MAPs
were first introduced by Neuts [132] and can be considered as a generalization of
PHDs. They were originally used as input processes for queueing systems enabling
analytical solutions [121]. In this thesis MAPs are used in some simulation models.
Application areas of MAPs range from queueing, communications, performance anal-
ysis, reliability and finance to name a few. However, there is a huge amount of work
about MAPs and their applications. We refer to [139, 53, 129, 14, 54] for further
studying of MAPs and their applications.

The flexibility and versatility of MAPs are based on their main properties; first, the
inter-arrival times are PH distributed, which allows an application of established fitting
methods to the real world data. Secondly, the correlation between inter-arrival times
can be modeled, which is present in many real data traces. In the following we describe
the concept of MAPs and give an overview based on [47].

Basic definitions A MAP is a Markov process which can be described by an irre-
ducible Markov chain where some transitions correspond to the occurrence of an event
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also called as arrival.

Definition 2.13. [47] Formally, a MAP with representation (π,D0,D1) is a Markov
chain with a finite state space S , initial vector π and irreducible infinitesimal gener-
ator matrix Q with

Q = D0 +D1, D1 ≥ 0, D1 , 0, D0(i, j)≥ 0 for i , j.

Similarly to PHDs, the size of the state space n = |S | defines the order of the MAP.
The constraint on the row sums is given by [47]

D0 I1 =−D1 I1. (2.87)

The stochastic behavior of a MAP is as follows: The MAP starts in state i with prob-
ability π(i), stays in the state i an exponentially distributed time with rate λ (i) which
can be derived from Eq. 2.87 as −D0(i, i) = ∑ j,i D0(i, j) +∑ j D1(i, j). Afterwards
either the transition from D0 or from D1 occurs. Transitions from the infinitesimal
subgenerator D0 are not associated with an event. The MAP only goes to the phase j
with probability D0(i, j)/λ (i) [112, 47].

If the transition from the matrix D1 occurs, a MAP generates an event. The whole
probability of an event is given by ∑ j D1(i, j)/λ (i). The process then goes to the state
j with probability D1(i, j)/λ (i) for i , j. With probability D1(i, i)/λ (i) the successor
state is again i [112, 47].

Observe that the matrix D0 +D1 is an irreducible infinitesimal generator matrix of
the underlying Markov process. The stationary distribution vector πc is the solution of
πcQ = 0 with πc I1 = 1.

The event occurrence form an embedded DTMC with transition probability matrix
Ps = (−D0)

−1D1. The matrix Ps has the unique left eigenvector πsPs = πs with πs I1= 1
which describes the distribution instantly after an event occurrence. Thus πs can be
implicitly used as initial vector of the MAP such that its representation can be reduced
to the tuple (D0,D1) and the following relation holds [96, 38]

πc =
πs (−D0)

−1

πs (−D0)−1 I1
, πs =

πc D1

πc D1 I1
. (2.88)

The vector πs has a further important interpretation, namely the stationary inter-arrival
times of a MAP are PH distributed with initial distribution vector πs and infinitesimal
subgenerator matrix D0. Note that (π,D0) is also a PHD, which describes the inter-
arrival time in the first event epoch. In that case the distribution of the initial phase of
a MAP differs from the stationary inter-event distribution.

Remark that each PHD with representation (π,D0) can be described by a MAP. The
MAP (π,D0,d1π) has the same behavior as the mentioned PHD. In fact, d1 = −D0 I1
describes uncorrelated transition rates, it contains no relation between exit and entry
phases of the MAP. Thus the inter-event times of the MAP are independently and
identically distributed PHDs (π,D0).

Example 2.11. Figure 2.22 shows a 2-state MAP. The stochastic behavior of the MAP
is as follows. If it starts in state 1, it resides there for an exponentially distributed time
with mean duration of 0.2. When the exponential distribution elapses, the transition to
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(a) The state transition dia-
gram for the MAP.
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(b) The matrices for the MAP.

Figure 2.22.: A 2-state MAP. The dashed transition arrows correspond to state transi-
tions generating an event. The solid line transition arrows correspond to
transitions according to D0.

state 2 without generating an event occurs with probability 0.83
5 = 0.166. An event is

generated with rate 4.17, i.e., the process stays in state 1 with probability 4.17
5 = 0.834.

In state 2 the MAP generates events with an exponentially distributed inter-event time
with mean duration of 0.66. After generating an event the MAP stays in state 2 with
probability 0.41

1.5 = 0.273 and performs transition to state 1 with probability 1.09
1.5 =

0.726.

Distribution and Moments Since the inter-event times of a MAP are dependent
we introduce measures that describe dependencies. Let X1, . . . ,Xk be a sequence of
arbitrary k consecutive inter-event times and X an arbitrary inter-event time. In the fol-
lowing we assume that MAP has representation (D0,D1) and π = πs. The probability
density function and the distribution function of X are given by [112, 47]

f (x) = πeD0xD1 I1, F(x) = 1−πeD0x I1. (2.89)

The i-th moment µi of the inter-event time X can be computed as given in Eq. 2.66.
The joint density of a MAP generating k consecutive events with inter-event times

xi is given by [112, 47]

f (x1,x2, . . . ,xk) = πeD0x1D1eD0x2D1 . . .eD0xk D1 I1, (2.90)

which can be evaluated using the uniformization method [162]. For this, let α ≥
maxi (|D0(i, i)|), P0 = D0/α + I and P1 = D1/α . Then Eq. 2.90 can be written as [47]

f (x1,x2, . . . ,xk) = π

(
k

∏
i=1

(
∞

∑
l=0

β (αxi, l)Pl
0

)
P1

)
I1 (2.91)

where β (q, l) is the probability of l events of a Poisson process with parameter q.
The joint moments of k consecutive inter-event times are [47]

E[X i1
1 ,X i2

2 , . . . ,X ik
k ] = i1!i2! . . . ik!π(−D0)

−i1Ps(−D0)
−i2 . . .Ps(−D0)

−ik I1, (2.92)

with orders il , 1≤ l ≤ k.
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Dependency between inter-event times that are lag-k apart is often expressed in
terms of the coefficient of autocorrelation. It can be determined if dependency be-
tween the first and the k-th inter-event time should be computed [47]

ρk =
E[X1,X1+k]− (E[X ])2

E[X2]− (E[X ])2 =
π (−D0)

−1 Pk
s (−D0)

−1 I1−
(

π (−D0)
−1 I1
)2

2π (−D0)
−2 I1−

(
π (−D0)

−1 I1
)2 . (2.93)

Subclasses Since MAPs represent a powerful class of stochastic processes, they
contain several well-known stochastic processes as subclasses. An important subclass
allowing for modeling correlations between inter-event times while still remaining an-
alytically tractable is a Markov Modulated Poisson Process (MMPP) [75]. The matrix
D1 is constructed from rates of n Poisson processes with event rates λi. Thus D1 is a
diagonal event rate matrix with λi values on the diagonal. Additionally, an auxiliary
Markov process of order n selects one of the Poisson processes. In particular, if the
Markov process is in state i, the events occur according to a Poisson process with rate
λi. The MMPP can be described by a MAP.

Example 2.12. Fig. 2.23 shows the 2-state MMPP.

1 2

r1

r2

λ1 λ2

(a) A state transition diagram of a MMPP.

D0 =

[
−(r1 +λ1) r1

r2 −(r2 +λ2)

]
,

D1 =

[
λ1 0
0 λ2

]
(b) The infinitesimal subgenerator matrix D0
and the event rate matrix D1 of the MMPP.

Figure 2.23.: Symbolic representation of the 2-state MMPP.

One can easily obtain the probabilities Prob(λ = λ1) =
r2

r1+r2
and Prob(λ = λ2) =

r1
r1+r2

. Then the mean arrival rate of the 2-state MMPP is defined as

q =
2

∑
k=1

λk Prob(λ = λk) =
λ1 r2 +λ2 r1

r1 + r2
. (2.94)

An Interrupted Poisson Process (IPP) is a special case of MMPP [113]. The IPP
is a Poisson process with the rate λ which is regulated by an auxiliary on-off Markov
process. When the Markov process is in the on-state, events occur according to the
basic Poisson process. Thus the diagonal elements of D1 are either given by λ or
equals 0. On and off time intervals of the Poisson process are PH distributed.

Multiclass Markovian Arrival Processes (MMAPs) describe marked events and were
originally introduced in [88]. It has the representation (π,D0,D1, . . . ,Dk) with
(π,D0,∑

K
k=1 Dk) describing a MAP where matrices Dk define different event types. For

further studying we refer to [9, 43, 86]. Batch Markovian Arrival Processes (BMAPs)
differ in the interpretation of the event types [120, 87, 154]. Here matrices Dk con-
tain transition rates accompanied by events occuring in the batch of size k. On the
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other hand further MAP generalizations exist. Rational Arrival Processes (RAPs) also
known as Matrix Exponential Processes (MEPs) [8, 51, 32, 50] describe stochastic
processes with matrix exponential inter-event time. An additional freedom is added to
this class since the involved matrices and vectors are not restricted to have an interpre-
tation of stochastic behavior for the underlying process.
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Chapter 3
PH-Graph Model

In this chapter we introduce a stochastic graph model with Phase-type distributed edge
weights (PH-Graph). The kernel of the model is a composition of two PH distributed
random variables. Additionally the information about the existing correlation between
them is decoded. This property permits modeling of dependent edge weights on adja-
cent edges in a stochastic graph.

In the following we consider the composition of PH distributions which contains a
pair of PHDs and a matrix encoding the correlation between them. Then the PH-Graph
model containing a PHD composition for each adjacent edge pair is introduced. The
PH-Graph model encodes the existing correlations for the whole graph where edge
weights are described by PHDs.

The developed model leads to efficient solutions for issues in the context of Stochas-
tic Shortest Path Problems with correlations. In particular, it enables the computation
of the minimum/maximum expected total time for reaching an absorbing state, and
the computation of the maximum/minimum probability of reaching an absorbing state
within a given deadline, both in stochastic graphs including correlations. More com-
putational issues can be handled by the model, e.g. the modeling of PH distributed
interclaim times and claim sizes in insurance risk models.

3.1. The Composition of PH Distributions

Let PHD PHi = (πi,Di) be of order ni, and PHD PH j = (π j,D j) be of order n j where
matrices Di, D j are subgenerator matrices D0 of corresponding PHDs. PHi describes
the distribution of a random variable Xi, and PH j is the distribution of a random vari-
able X j. Furthermore the random variables Xi, X j are independent. Note that the sum
X = Xi +X j is known to be a PHD [47]. When the dependency between two PHDs
PHi, PH j is introduced the sum X = Xi+X j is also a PHD and is called a composition.

Definition 3.1. The tuple ((πi,Di), (π j,D j), Hi j) defines a composition of two PHDs
PHi and PH j. The infinitesimal subgenerator given in Eq. 3.1 describes the underlying
Markov process {X(t)}∞

t≥0 for the composition of two dependent PHDs. The initial
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probability vector is given by π = [πi,0] where 0 is the row n j-vector of 0’s.

D0 =

[
Di Hi j

0 D j

]
. (3.1)

The ni×n j matrix Hi j is called a transfer matrix with

Hi j ≥ 0, Hi j , 0, Hi j I1 =−Di I1. (3.2)

Furthermore the following equation has to hold to keep the initial distribution of PH j

invariant
πi(−Di)

−1Hi j = π j. (3.3)

The PHD composition ((πi,Di), (π j,D j), Hi j) is visualized in Fig. 3.1.

1πi(1)

. . .· · ·

niπi(ni)

di
1(1)

di
1(ni)

1′π j(1′)

. . .· · ·

n jπ j(n j)

d j
1(1)

d j
1(n j)

Hi j(1,1′)

Hi j(1,n j)

Hi j(ni,1′)

Hi j(ni,n j)

Figure 3.1.: Symbolic representation of the Markov chain corresponding to a PHD
composition. Parameters implicitly given by the matrix Hi j are high-
lighted in gray.

The resulting number of transient phases in the underlying Markov process of the
composition is ni+n j. The stochastic behavior of a composition process is as follows:
In the underlying Markov chain {X(t)}∞

t≥0 the paths of Markov chains associated with
PHi and PH j are concatenated. After the paths of the Markov chain {Xi(t)}∞

t≥0 have
been traversed the process moves along the paths of the subsequent Markov chain
{X j(t)}∞

t≥0.
The composition process starts in state k with probability πi(k). Then the process

moves along paths of the first Markov chain {Xi(t)}∞
t≥0 until some initial state of the

Markov chain {X j(t)}∞
t≥0 is reached.

When some initial state k of the first Markov chain has been entered, the process
stays an exponentially distributed time in that state. Afterwards either the transition
from Di or from Hi j occurs. If the transition from transfer matrix Hi j occurs, the pro-
cess goes to some entry state of the Markov chain {X j(t)}∞

t≥0. In fact, transfer matrix
Hi j works analogously as D1 matrix from the MAP theory. It describes transitions
corresponding to the occurrence of an event in the first Markov process.
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Similarly to a MAP (cf. 2.5) the absorption of the first Markov chain {Xi(t)}∞
t≥0

induces an embedded Markov process with transition probability matrix defined by

Pi j = MiHi j (3.4)

where Mi = (−Di)
−1. It holds that

Pi j I1 = (−Di)
−1Hi j I1 = (−Di)

−1(−Di) I1 = I1.

The matrix entry Pi j(k, l) gives the probability of starting in state l of the subsequent
Markov chain, if the composition process begins at state k of the first Markov chain.

Since the transfer matrix Hi j satisfies the Eq. 3.3, it holds that πiPi j = π j such that
π j describes the distribution instantaneously after the absorption of the Markov chain
{Xi(t)}∞

t≥0 has occurred. If the composition process starts with probability distribution
πi, then it continues in the average with probability distribution π j in entry state of
the {X j(t)}∞

t≥0. Thus the distribution function, i.e. initial vector π j of the subsequent
Markov process {X j(t)}∞

t≥0 remains invariant.
In fact, the transfer matrix Hi j of a composition describes correlated transition rates.

In particular, the entry Hi j(k, l) contains a transition rate if k is the exit phase of the
Markov process {Xi(t)}∞

t≥0 and l is the entry phase of the Markov process {X j(t)}∞
t≥0.

Thus the transfer matrix Hi j contains the relations between exit and entry phases of the
two PHDs in the composition. Observe that if Hi j = di

1 π j the PHDs in the composition
are uncorrelated.

Since two PHDs PHi, PH j in the composition are no longer independent, the de-
pendency measures can be derived, i.e. adapted from the MAP theory. Let (Xi,X j) be
two consecutive absorbing times. The joint density of a composition generating two
consecutive absorbing times xi, x j is given by

Prob(Xi = xi, X j = x j) = f (xi,x j) = πi exiDi Hi j ex jD j (−D j) I1. (3.5)

The joint moments of two consecutive absorption times Xi, X j which are correlated
according to the transfer matrix Hi j are defined as

E[Xk
i , X l

j ] = k! l!πi Mk
i Pi j Ml

j I1 (3.6)

with orders k, l, 1≤ k ≤ l, where Mi = (−Di)
−1 and M j = (−D j)

−1.
The covariance of two consecutive absorption times Xi, X j is given by

Cov[Xi, X j] = E[X1
i , X1

j ]−E[X1
i ] ·E[X1

j ] = πi Mi Pi j M j I1− (πi Mi I1) · (π j M j I1). (3.7)

Then the correlation coefficient of two consecutive absorption times in the compo-
sition can be determined as

ρXi X j =
Cov[Xi, X j]√

Var[Xi] ·Var[X j]
(3.8)

=
πi Mi Pi j M j I1− (πi Mi I1) · (π j M j I1)√

(2πi (−Di)−2 I1− (πi (−Di)−1 I1)2) · (2π j (−D j)−2 I1− (π j (−D j)−1 I1)2)

(3.9)
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Using the transfer matrix Hi j the correlation of two consecutive absorption times in
the composition can be modeled. The absorption times of PHDs in the composition
can be used in modeling and computation in different application areas. In particular,
the absorption time is often interpreted as a time which is required until some action is
performed. The consecutive absorption times in the composition can be interpreted as
correlated edge weights for adjacent edges in a stochastic graph.

Note that in stochastic graphs edge weights are defined by random variables. Since
the class of PHDs is dense in the sense of weak convergence in the class of all distri-
butions with positive support [15], edge weights can be modeled w. l. o. g. by PHDs
in stochastic graphs. Then PH distributed edge weights can be interpreted as traveling
times or costs for adjacent edges [40], failure rates of components in series [46], inter-
claim times and claim sizes in insurance risk models [15] or strength of connection in
functional brain networks [60].

Example 3.1. We consider the following two PHDs in the composition. The first PHD
PHi is given by

πi = (0.4,0.6) , Di =

(
−1.1529 0

0 −12.941

)
,

and the subsequent PHD has the representation

π j = (0.45,0.55) , D j =

(
−1.0 0.44444

0 −5.0

)
.

The transfer matrix resulting in E[X1
i , X1

j ] = 0.39050 and ρXi X j = 0.27798 is

Hi j =

(
1.1529 0

1.07842 11.86258

)
.

The underlying Markov chain {X(t)}∞
t≥0 for the composition of two PHDs is visualized

in Fig. 3.2. In particular, the equation πi (−Di)
−1 Hi j results in a vector (0.45, 0.55)

which is equal to π j.

10.4

20.6

3

4

0.44444

0.55556

5

1.1529

1.07842

11.86258

Figure 3.2.: The Markov process of the PHDs composition. The transition rates ac-
cording to the matrix Hi j are highlighted in blue.
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3.1. THE COMPOSITION OF PH DISTRIBUTIONS

Dependencies between several PHDs Generally, a PHD composition can be
extended to more than two PHDs. Let PHD PH j depend on two PHDs PHg and PHi.
Then additional phases should be introduced to code the exit phases of previous PHDs
with representation PHg = (πg,Dg) and PHi = (πi,Di). First we consider the following
infinitesimal subgenerator matrix

Dmin(g,i) = Dg⊗ Ii + Ig⊗Di = Dg⊕Di, (3.10)

where Ig, Ii are identity matrices of order ng and ni, respectively. ⊗ and ⊕ denote
the Kronecker product and Kronecker sum [58, 118] which are defined for two square
matrices A and B of order a and b as

A⊗B =

 A(1,1)B · · · A(1,a)B
...

. . .
...

A(a,1)B · · · A(a,a)B

 and A⊕B = A⊗ Ia + Ib⊗B. (3.11)

In fact, the underlying Markov process models the concurrent behavior of previous
PHD processes {Xg(t)}∞

t≥0 and {Xi(t)}∞
t≥0. If it gets absorbed, the minimum of two

PHDs PHg, PHi is determined [47]. Now the additional states (ng +1, ·) and (·,ni +1)
correspond to absorption of one of the PHDs involved. Reaching one of that states
the Markov chain evolves according to the second PHD which has not been absorbed
yet. The process described contains all combinations of transitions until absorption of
two PHDs PHg and PHi. The following infinitesimal subgenerator matrix describes
the behavior mentioned.

Dgi =

 Dmin(g,i) Ig⊗di
1 dg

1⊗ Ii

0 Dg 0
0 0 Di

 . (3.12)

The corresponding Markov chain of order ngni + ng + ni contains pairs of phases
{(k, l) : k ∈ S g

T , l ∈ S i
T }∪ {(ng + 1, l) |ng + 1 ∈ S g

A , l ∈ S i
T}∪ {(k,ni + 1) | ,k ∈

S g
T , ni +1 ∈S i

A}, and the absorbing state. The initial probability vector is given by

πgi = (πg⊗πi, πg πi(ni +1), πg(ng +1)πi). (3.13)

In fact, the Markov process with representation (πgi,Dgi) describes the PHD of the
maximum of two PHg and PHi. In the case when PHD PH j depend on more than
one predecessor PHD the transfer matrix H(g,i) j is of dimension (ngni +ng +ni)×n j.
Furthermore it holds

H(g,i) j ≥ 0, H(g,i) j , 0, H(g,i) j I1 =−Dgi I1, πgi(−Dgi)H(g,i) j = π j. (3.14)

Formally, the tuple ((πgi,Dgi), (π j,D j), H(g,i) j) defines a composition of three PHDs
PHg, PHi and PH j. The infinitesimal subgenerator given in Eq. 3.15 and the initial dis-
tribution vector π = (πgi, 0), where 0 is of dimension n j×1, describe the underlying
Markov process for the composition containing PHD depending on two PHDs.

D0 =

[
Dgi H(g,i) j
0 D j

]
. (3.15)
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Example 3.2. We consider the following PHDs in the composition. The first predeces-
sor PHD PHg is given by

πg = (0.5,0.5) , Dg =

(
−7 0
0 −0.5

)
,

and the second predecessor PHD PHi is given by

πi = (0.6,0.4) , Di =

(
−5 0
0 −1

)
.

We assume that the subsequent PHD PH j is equal to PHg. Let 1, 2 denote the states
of PHg where state 3 is the absorbing state. PHi contains transient states 4, 5, and the
absorbing state 6. The subsequent PH j contains transient states 7 and 8.

Following transfer matrices are defined

Hg j =

(
7 0
0 0.5

)
, Hi j =

(
4.16667 0.83333

0 1

)
,

such that ρXg X j = 0.3 and ρXi X j = 0.23. The subgenerator Dgi is given by

Dgi =



−12 0 0 0 5 0 7 0
0 −8 0 0 1 0 0 7
0 0 −5.5 0 0 5 0.5 0
0 0 0 −1.5 0 1 0 0.5
0 0 0 0 −7 0 0 0
0 0 0 0 0 −0.5 0 0
0 0 0 0 0 0 −5 0
0 0 0 0 0 0 0 −1


.

We computed the following transfer matrix H(g,i) j with ρ(Xg,Xi)X j = 0.162

H(g,i) j =



0 0
0 0
0 0
0 0
7 0

0.167 0.333
5 0

0.0497 0.9503


.

The underlying Markov process is visualized in Fig. 3.3.

3.2. Graphs with PH Distributed Edge Weights

We define a stochastic graph G = (V,E,P) by the triple where V is a set of nodes, E
is a set of edges, and a set P containing PHDs, and PHD compositions describing the
statistics of edge weights. The graph G is then called a PH-Graph. In particular, the
weight of an edge i ∈ E is assumed to be a non-negative random variable Xi which is
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(1,4)0.3

(1,5)0.2

(2,4)0.3

(2,5)0.2

(3,4)

(3,5)

(1,6)

(2,6)

7

8

7

0.5

7

5 7

1

0.5

5

0.5

1

7

0.167

0.333

5

0.0497

0.9503

Figure 3.3.: The Markov process of the composition of three PHDs. The transition
rates according to the matrix H(g,i) j are highlighted in blue.

a PHD PHi with representation (πi,Di) of order ni. In addition, there is an origin node
vini ∈V and a destination node v f in ∈V , vini , v f in [40].

The edges in graph G are directed. The weight of edge i ∈ E is a random variable
which can be interpreted as, for example a travel time from the starting node of i to
the destination node of i. In particular, for the edge i ini(i) ∈ V denotes the starting
node, and f in(i) ∈ V denotes the destination node. Any two edges i, j are adjacent
if f in(i) = ini( j). Furthermore we described the following sets of predecessor and
successor edges for each edge i ∈ E as described [40]

•i =
{

/0 if ini(i) = vini

{ j| f in( j) = ini(i)} otherwise

i•=
{

/0 if f in(i) = v f in

{ j|ini( j) = f in(i)} otherwise

(3.16)

Any adjacent edges i, j can have dependent weights and are modeled using the PHD
composition. For i, j ∈ E, i ∈ • j the PHD PHi in the composition corresponds to the
weight of the edge i [40]. The subsequent PHD PH j corresponds to the weight of
the adjacent edge j which follows edge i in the graph. Then the dependency between
weights of adjacent edges is encoded in the transfer matrix Hi j. Thus the entry phase
of PH j of the successor edge is dependent on the exit phase of PHi of the predecessor
edge [40].

We assume that for every v ∈V at least one path to the destination v f in exists and let
Paths be a set of all finite paths [40]. In addition, Eini = {i | ini(i) = vini} denotes a set
of edges emanating from the origin vini and E f in = {i | f in(i) = v f in} denotes a set of
edges ending in the destination v f in.

We define a path from the origin vini to the destination v f in as a sequence of edges
(i1, . . . , iK) ∈ Paths where i1 ∈ Eini, iK ∈ E f in and ik−1 ∈ •ik for k = 2, . . . ,K [40]. The
weight of a path is the sum of PHD weights of edges [40]. A possible interpretation of
a path weight can be the length of a route traversed by a vehicle until the destination
v f in is reached. Furthermore, we assume that the stochastic graph can be cyclic where
the weight of each cycle is non-negative.
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CHAPTER 3. PH-GRAPH MODEL

For a given path (i1, . . . , iK) ∈ Paths between vini and v f in for each ik−1 ∈ •ik the
PH-Graph contains the PHD composition ((πk−1,Dk−1), (πk,Dk), H(k−1) k) ∈ P. Ac-
cordingly, PHD (πk,Dk) with 1 < k <K and K > 2, appears in two PHD compositions,
once as second PHD in the composition, and once as first PHD in the composition (see
Ex. 3.3). Let (ik−1, ik, ik+1) be the corresponding subpath. Then two PHD composi-
tions ((πk−1,Dk−1), (πk,Dk), H(k−1) k), ((πk,Dk), (πk+1,Dk+1), Hk (k+1)) describe the
sum of edge weights along the subpath. Observe that even though correlation is de-
fined for subsequent edges, i.e. is defined within a PHD composition, the effect of
correlation cummulates for edges along the path of length greater than two.

In fact, a path (i1, . . . , iK)∈Paths in a PH-Graph corresponds to an absorbing Markov
chain with ∑

K
k=1 nik states (see Sec. 2.1.3). Then the state space of the absorbing CTMC

S contains the states of PHDs corresponding to edges along the path.

Definition 3.2. [40] The time until absorption along a path (i1, . . . , iK) ∈ Paths is
defined by an absorbing CTMC with subgenerator matrix given in Eq. 3.17. The initial
vector of the CTMC equals π = (ni1 ,0) where 0 is the row (n−ni1)-vector of 0’s.

Q(i1,...,iK) =



Di1 Hi1i2 0 · · · 0

0 Di2 Hi2i3
. . .

...
...

. . .
. . .

. . . 0
...

. . . DiK−1 HiK−1iK
0 · · · · · · 0 DK


. (3.17)

Example 3.3. Consider the stochastic graph in Fig. 3.4. We have two paths for a
given destination v5, namely (i1, i2, i4) and (i1, i3, i5). The visualized PHDs of order
2 are assigned to edges such that corresponding transfer matrices are highlighted in
blue. If edge weights are interpreted as traveling times, the traveling times along the

v1 v2 v5

v3

v4

i1

i2

i3 i5

i4

1π1(1)

2π1(2)

1

2

H12

1

2

H24

1

2

H13
1

2

H35

Figure 3.4.: Example of the PH-Graph with vini = v1 and v f in = v5.

paths (i1, i2, i4) and (i1, i3, i5) are described by absorbing CTMCs with the following
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subgenerator matrices and initial distribution vector π = (π1(1),π1(2),0).

Q(i1,i2,i4) =

 Di1 Hi1i2 0
0 Di2 Hi2i4
0 0 Di4

 , Q(i1,i3,i5) =

 Di1 Hi1i3 0
0 Di3 Hi3i5
0 0 Di5

 .

3.3. Summary and Overview

In this chapter we first described the composition of two PH distributions and then
presented the developed extension called a PH-Graph model. In a PH-Graph model
edge weights are described by PHDs and correlations between adjacent edge pairs are
modeled using transfer matrices - the concept adopted from MAPs. Thus PH-Graphs
allow for modeling dependent edge weights in stochastic graphs.

Stochastic graph models including correlations find applications in numerous fields,
e.g., in vehicle routing. If we consider vehicle routing as an application for PH-Graphs
then given a stochastic graph G a vehicle traverses the graph edges from the origin vini

to the destination v f in. The traveling time which is spent by a vehicle traversing the
graph is not known a priori. The vehicle only knows the PHD of edges which it travels
and the existing dependencies between edges. As the vehicle moves through the graph
the edge traveling time realized becomes known to it.

It can be assumed that every time the vehicle visits a node v f in(i) the realization of
the random variable Xi is known and can be collected in a set of realizations of traveling
times for edge i. Furthermore, in dependence of the known realized traveling times and
dependencies between edge weights of adjacent edges the vehicle can decide which
edge to traverse next. Thus one is interested in efficient parameterization methods for
PH-Graphs which will be considered in Chapter 4. Existing fitting approaches [47] can
be used to model PHDs at graph edges. More attention is devoted to fitting methods
for transfer matrices H which add correlation in PH-Graph models.

Various fitting algorithms work on specific PHD representations. Furthermore, pa-
rameters of two PHDs in the composition are incorporated in fitting of the correspond-
ing transfer matrix H. This implies that matrix representations of PHDs PHi, PH j in
the composition have significant influence on parameters of the transfer matrix Hi j. In
Chapter 6 we will show which matrix representations of two PHDs are most suitable
in order to maximize the correlation of their composition.

Based on the PH-Graph model efficient solution methods for Stochastic Shortest
Path Problems with Correlations can be developed. Competing paths from vini to v f in

in a PH-Graph can be interpreted over continuous-time Markov decision processes.
SSPP with Correlations over CTMDP requires then computation of optimal control
strategies to find the path with minimum expected total time of reaching a destination.
The extension of the PH-Graph model over CTMDPs with rewards will be introduced
in Chapter 5. The solution technique to compute the minimum expected total time
of reaching the destination and the numerical approach for time bounded reachability
results will also be presented in Chapter 5.
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Chapter 4
Fitting Algorithms

In this chapter the parameterization problem of PH-Graphs is considered. Though
various fitting approaches exist to compute PHDs for the weights of edges in a PHG,
fitting the parameters for transfer matrices is much more complex. The major reason is
that a long trace should be considered for adequate correlation fitting when trace-based
fitting methods are used. Furthermore transfer matrices should preserve important
conditions within a composition which requires an additional solution of optimization
problems.

First an introduction of trace-based fitting methods for PHDs is given in order to
explain the parameterization of the PHD composition. Then we present approaches
for fitting the transfer matrix which have been derived from existing approaches for
MAPs. In particular, an EM algorithm for MAPs has been extended to transfer matri-
ces. Although its computational effort is higher than the effort of the EM algorithm
for PHDs, it can be applied in practice. Two phase fitting approaches have also been
derived from existing approaches for MAPs. The methods can be used to compute the
parameters according to first joint moments or correlation coefficent from a trace and
are also described.

4.1. Trace-Based Fitting Methods

Assume that there is a process of interest Proc. Often the behavior of the process
Proc should be approximated using an adequate model. When models based on PHDs
and MAPs are to be used, the objective of a fitting procedure is the computation of
parameters (π,D0) (for PHDs), (D0,D1) (for MAPs), and of ((πi,Di), (π j,D j), Hi j)
(for PHD compositions). The models based on PHDs and MAPs should then exhibit
statistical properties equal or similar to properties of the process Proc.

As described in [141], the behavior of process Proc is usually substituted by a finite
observed sequence of data, e.g. inter-arrival or service times, which is denoted as a
trace T = (t1, . . . , tm). The reason is that the behavior of the process Proc cannot be
infinitely observed from the real system or from an adequate simulation model. The
trace T is defined as a realization of the process Proc. Its statistical properties should
resemble the characteristics of the underlying process Proc [141].

Let K be a set of statistical measures characterizing process Proc. A statistical
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measure κi ∈ K can be either directly given by κProc or can be estimated from the
trace T as κT [141]. The fitting procedure approximates κProc or κT by the statistical
measure of the model based on PHDs or MAPs, e.g. by κ(π,D0) computed from a PHD
with a representation (π,D0).

4.1.1. Trace Definition and Properties

Often traces contain the measured data points which correspond to preliminary obser-
vations of the process. It can be described by a sequence of m chronologically ordered
points in time ti > 0, i = 1, . . . ,m. For our application example, the trace can result
from measurements of traveling times on the road which requires bookkeeping of the
time steps of vehicles. In this case an element ti describes the traveling time of the
ith vehicle passing through the road segment. Commonly, an element ti describes the
inter-event time of the i-th event, and many other interpretations are possible. Fur-
thermore, the sequence t1, . . . , tm is assumed to be in a strict-sense stationary, which
implies a common distribution of ti independent on i.

Fitting methods can be divided in two classes. Trace-based fitting approaches use
the complete trace for the parameter computation of PHDs and MAPs. The second
class of fitting algorithms uses only some statistical measures estimated from the trace.
Consequently, the parameter of models using PHDs and MAPs are computed in order
to approximate the derived measures as close as possible. The advantages and disad-
vantages of both methods are described in [47].

In the following we describe some statistical measures which can be estimated from
the trace in order to determine parameters of models based on PHDs and MAPs. The
estimator for the i-th moment of the trace and the variance are given by [112, 47]

µ̂i =
1
m

m

∑
j=1

(t j)
i and σ̂

2 =
1

m−1

m

∑
j=1

(t j− µ̂1)
2. (4.1)

Often there are dependencies between consecutive data points ti, ti+ j, j = 1, . . .. Then
the autocorrelation or the joint moments are of interest. The coefficient of autocorre-
lation of data points that are lag k apart is estimated by [112, 47]

ρ̂k =
1

(m− k−1) σ̂2

m−k

∑
j=1

(t j− µ̂1)(t j+k− µ̂1). (4.2)

The estimator of the joint moments µi j = E[X i
k, X j

k+1] of two consecutive data points
is given by [47]

µ̂i j =
1

m−1

m−1

∑
j=1

(tk)i(tk+1)
j. (4.3)

The empirical distribution function of a trace is given by a step function with m
steps [112, 47]

FT (x) =
∑

m
j=1 δ (t j ≤ x)

m
, δ (b) =

{
1 if b = true,
0 if b = f alse.

(4.4)
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w1 =
(

(i11, t
1
1), . . . , (ic1

1 , t
c1
1 )
)
,

...

wn =
(

(i1n, t
1
n), . . . , (icn

n , t
cn
n )
)
.

Set M of measurements

Sets Ti for edges i Sets Ti j for edges i ∈ • j
t1,
t2,
...

where (ikm, tk
m) ∈ wm

with ikm = i, m = 1, . . . ,N

(ti, t j)1,

(ti, t j)2,
...

where (ikm, ti), (ik+1
m , t j) ∈ wm with

ikm = i, ik+1
m = j, m = 1, . . . ,N

Figure 4.1.: Trace extraction from the set of measurements M .

Edge Weights Trace To derive the parameters of the PH-Graph we need to con-
sider the realizations of edge weights. In order to obtain coherent parameters of PHDs
for edge weights, the measurements of entities that passed through the graph should
be collected. Then several traces could be used to compute parameters of PHDs and
transfer matrices.

A single measurement of related edge weights is a sequence wn = ((i1n, t
1
n), . . . ,

(icn
n , tcn

n )) where edges ikn ∈ E build a path, i.e., ikn ∈ •ik+1
n , and 0 < tk

n < ∞, for the
number of edges along the path 1 ≤ k ≤ cn. Here, the sequence need not start in vini

or end in v f in. Let M be a set of all measurements wn and N the number of measured
sequences.

Using sequences wn the trace Ti containing all measured weights for edge i ∈ E ,
and the trace Ti j containing all measured value pairs of adjacent edges i and j can be
obtained obtained.

In particular, the trace Ti contains a sequence t1, t2 . . . of all measured edge weights
tn from wn ∈M where wn contains a pair (ikn, tk

n) with ikn = i. Observe that if the value
tn appears in several measurement sequences or several times in one measurement
sequence, then it appears several times in the corresponding chronological order in the
trace Ti.

Similarly, the trace Ti j contains value pairs (ti, t j) which appear in some wn ∈M
such that a pair of tuples (ikn, ti), (i

k+1
n , t j)∈wn, and ikn = i, ik+1

n = j. Again the trace Ti j

contains several entries (ti, t j), if they appear several times in some wn or in several
measurement sequences. We denote Ni and Ni j as the number of elements in the trace
Ti and Ti j, respectively. Fig. 4.1 shows the extraction of traces Ti, Ti j for i, j ∈ E
graphically.

In particular, using a trace Ti and Eq. 4.1 the estimate for µ i
k = E[Xk

i ] is

µ̂
i
k =

1
Ni

∑
t j∈Ti

(t j)
k and σ̂

2
i =

1
Ni−1 ∑

t j∈Ti

(t j− µ̂
i
1)

2. (4.5)

Considering the traces Ti j the estimator of the joint moments µ
i j
k,l = E[Xk

i X l
j ] for
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weights of adjacent edges i and j is given by

µ̂
i j
k,l =

1
Ni j−2 ∑

(ti, t j)∈Ti j

(ti)k(t j)
l. (4.6)

In PH-Graphs there are dependencies between weights of adjacent edges ti, t j with
i ∈ • j. The coefficient of correlation of two consecutive edge weights is estimated by

ρ̂i j =
1

(Ni j−2) σ̂iσ̂ j
(µ̂ i j

1,1− µ̂
i
1µ̂

j
1). (4.7)

The coefficent of correlation of data points that are lag k apart is estimated by

ρ̂
k
i j =

1
(Ni j− k−1) σ̂iσ̂ j

Ni j−k

∑
l=1

(ti,·),(·,t j)∈Ti j

((ti)l− µ̂
1
i )((t j)l+k− µ̂

1
j ). (4.8)

4.1.2. Expectation Maximization Algorithm for PHDs

The Expectation Maximization (EM) approach is an iterative algorithm which com-
putes the maximum-likelihood estimate of parameters of an underlying distribution
from the complete trace. There are several EM algorithms for PHDs. Asmussen et al.
developed in [10] the EM algorithm for general PHDs. The EM fitting approach for
APHDs in canonical form was proposed in [30]. Uniformization based methods allow
for more efficient implementations of the EM algorithm [38, 48, 109]. In this section
we give an overview of the EM algorithm for general PHDs including the improvement
using uniformization described in [10, 38, 47].

If the complete measured data collected in a trace T = (t1, . . . , tm) should be used,
then usually the likelihood

L ((π,D0)|T ) =
m

∏
i=1

πeD0tid1, (4.9)

is maximized. In (4.9) the value L ((π,D0)|T ) gives the likelihood that the PHD
(π,D0) generates the trace T . Then the optimal parameter estimation satisfies

(π,D0)
∗ = arg max

(π,D0)

m

∏
i=1

πeD0tid1. (4.10)

The expectation (E) step determines the distribution of the unobserved data, given
known values of observations and the current estimate of the distribution parameters
(π̂, D̂0). The observed data corresponds to absorption times (t1, . . . , tm). The unob-
served data corresponds to the states of PHD visited before absorption, state holding
times etc. In the maximization (M) step the parameters are reestimated to be those
with the maximum-likelihood, given that the distribution was computed correctly in
the E step.

To obtain the complete data in the E-step one can use the embedded Markov pro-
cess {Xr}0≤r≤ti (see Sec. 2.1.2). Let k be the number of steps of the Markov pro-
cess before absorption occurs, and let n be the defined order of the PHD. Further-
more, the sequence X0, . . . ,Xk−1 denotes the sequence of visited states of the PHD
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until absorption. The sequence S0, . . . ,Sk−1 denotes the corresponding state holding
times [10, 47]. The behavior of {Xr}0≤r≤ti on the interval [0, ti] is given by a tuple
z = (x0, . . . ,xk−1,s0, . . . ,sk−1). Then the density function of the complete observation
can be written as [47]

f (z|(π,D0)) = π(x0)λ (x0)e−λ (x0)s0P̃(x0,x1) · · ·λ (xk−1)e−λ (xk−1)sk−1P̃(xk−1,n+1)

= π(x0)e−λ (x0)s0D0(x0,x1) · · ·e−λ (xk−1)sk−1d1(xk−1).

Considering the whole trace data (t1, . . . , tm) the observation contains m outcomes,
such that the tuple z = (x1

0, . . . ,x
m
0 , . . . ,s

1
k−1, . . . ,s

m
k−1). The likelihood function is then

given by [47]

L ((π,D0)|T ) = f (z|(π,D0)) =
n

∏
i=1

π(i)Bi
n

∏
i=1

eZiD0(i,i)
n

∏
i=1

n+1

∏
j=1, j,i

D0(i, j)Ni j ,

where the variable Bi denotes the number of times the Markov process started in state
i, Zi denotes the total time spent in state i, and Ni j is the total number of jumps from
state i to state j, for i , j, i ∈ST , and j ∈S .

The forward vector f, the backward vector b, and the flow matrix F are defined as

f(π,D0),t = πeD0t ,

b(π,D0),t = eD0td1,

F(π,D0),t =
∫ t

0

(
f(π,D0),t−u

)T (b(π,D0),u
)T du,

(4.11)

and can be computed in the E-step with standard methods like Runge-Kutta method
[11], or using uniformization [162, 47]. Using these vectors the likelihood can be
computed as [47]

L ((π,D0)|T ) =
m

∏
k=1

πb(π,D0),tk andlog(L ((π,D0)|T )) =
m

∑
k=1

log
(
πb(π,D0),tk

)
(4.12)

Given the current estimate (π,D0) of the PHD the conditional expectations of Bi,Zi,Ni j

can be obtained as [10, 47]

E(π,D0),T [Bi] = 1
m

m
∑

k=1

π(i)b(π,D0),tk
(i)

πb(π,D0),tk
,

E(π,D0),T [Zi] = 1
m

m
∑

k=1

F(π,D0),tk
(i,i)

πb(π,D0),tk
,

E(π,D0),T [Ni j] = 1
m

m
∑

k=1

D0(i, j)F(π,D0),tk
(i, j)

πb(π,D0),tk
,

E(π,D0),T [Nin+1] = 1
m

m
∑

k=1

d1(i)f(π,D0),tk
(i)

πb(π,D0),tk
.

(4.13)

In the M-step the new parameters of the PHD are estimated in order to maximize the
likelihood

π̂(i) = E(π,D0),T [Bi], D̂0(i, j) =
E(π,D0),T

[Ni j]

E(π,D0),T
[Zi]

,

d̂1(i) =
E(π,D0),T

[Nin+1]

E(π,D0),T
[Zi]

, D̂0(i, i) =−(d̂1(i)+
n
∑
i, j

D̂0(i, j)).
(4.14)
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Algorithm 4.1: EM algorithm for computing PHD (π,D0) using T = (t1, . . . , tm)

1: Choose PHD (π(0),D(0)
0 ) and set r = 0;

2: repeat
3: Compute f(π,D0),t , b(π,D0),t and F(π,D0),t using (π(r),D(r)

0 ) in Eq. 4.11 or using
uniformization [47, Eq. 3.12] for t = t1, . . . , tm ;

4: E-step: Compute the conditional expectations using Eq. 4.14;
5: M-step: Compute (π(r+1),D(r+1)

0 ) using Eq. 4.14 and set r = r+1 ;
6: until ‖π(r)−π(r−1)‖+‖D(r)

0 −D(r−1)
0 ‖< ε;

7: Return (π(r),D(r)
0 ) ;

Algorithm 4.1 from [47] describes the complete EM algorithm for general PHDs.
Observe that EM algorithm is an iterative local maximization method, such that

the sequence of estimates with a non-decreasing likelihood values is generated. The
sequence of estimates may either result in a local maximum or a saddle point which
often depends on the initial parameter choice [62, 177].

Note that it is also possible to fit a PHD according to some statistical quantities from
the measurements collected in a trace T . Commonly, k order moments are estimated
from the trace (see Eq. 4.5). Fitting algorithms according to the moments are described
in [31, 44, 94]. Then the obtained PHD representation (π,D0) could be used as the
initial parameter estimation in the EM algorithm to reduce the runtime. Methods which
use the complete trace or moments from the trace are implemented in several tools [25,
93].

EM Algorithm for Hyper-Erlang PHDs EM algorithms for PHDs have been ex-
tended to restricted classes [108, 168] which enables more efficient fitting algorithms
without reducing the resulting PHD’s quality significantly. In this section we describe
the approach developed in [168] which is implemented in the freely avalaible tool gfit.
We used this software for parameterization of PH-Graphs in our experiments. The
presented EM algorithm computes Hyper-Erlang PHDs (HErD) (see Sec. 2.4.1). The
Hyper-Erlang class constitutes no restriction since any pmf of a non-negative random
variable can be approximated arbitrary close by mixtures of Erlang distributions of
unlimited order (cf. Theorem 1 from [168]).

For HErD fitting a mixture of K mutually independent Erlang branches should be de-
termined. The i-th Erlang distribution is weighted with initial probability π(i), where
i = 1, . . . ,K and ∑

K
i=1 π(i) = 1. Furthermore the i-th Erlang branch contains si phases

with rate parameter λ (i) [47]. The density of the i-th Erlang distribution is given by
(see Eq. 4.15)

f (x) =
m

∑
i=1

π(i)
(λ (i)x)si−1

(si−1)!
λ (i)e−λ (i)x for x≥ 0, (4.15)

Let Θ = {π(1), . . . ,π(K),λ (1), . . . ,λ (K)} be the vector of parameters. The trace
T = (t1, . . . , tm) corresponds to the observed data, such that ti are independent and
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identically distributed with the density

f (ti|Θ) =
K

∑
k=1

π(k) fk(ti|λ (k)). (4.16)

The unobserved data is denoted by zi ∈ {1, . . . ,K}, i = 1, . . . ,m, which corresponds to
the Erlang branch that generated the trace element ti. Considering the whole observa-
tion T = (t1, . . . , tm) and z = (z1, . . . ,zm) the log-likelihood can be given as

logL (Θ |T ,z) =
m

∑
i=1

log(π(zi) fzi(ti |λ (zi))). (4.17)

Assume that Θ̂ = {π̂(1), . . . , π̂(K), λ̂ (1), . . . , λ̂ (K)} is the current estimation of the
parameters, and Z is the random variable generating zi. Then the probability mass
function of the unobserved data z given the observed data T and the estimates Θ̂ can
be computed by

q(zi | ti,Θ̂) =
q(zi |Θ̂) · f (ti |zi,Θ̂)

f (ti |Θ̂)
=

π̂(i) · fzi(ti | λ̂ (zi))

∑
K
k=1 π̂(k) fk(ti | λ̂ (k))

, (4.18)

q(z |T ,Θ̂) =
m

∏
i=1

q(zi | ti, λ̂ (zi)), (4.19)

and the conditional expectation of the complete data log-likelihood is given by

E(logL (Θ |Z, T )|T , Θ̂) = ∑
z∈{1,...,K}m

logL (Θ |z,T ) ·q(z |T ,Θ̂)

=
K

∑
k=1

m

∑
i=1

log(π(k)) ·q(k|ti, λ̂ (k))+
K

∑
k=1

m

∑
i=1

log( fk(ti |λ (k))) ·q(k|ti, λ̂ (k)).
(4.20)

The maximization of the conditional expectation according to the parameters Θ̂ is
performed in the M-step. In (4.20) the first term containing π(k) and the second term
containing λ (k) can be maximized independently using the following closed-form for-
mulas [168, 47]

π(k) =
1
m

m

∑
i=1

q(k | ti, λ̂ (k)), λ (k) =
sk

m
∑

i=1
q(k | ti, λ̂ (k))

m
∑

i=1
q(k | ti, λ̂ (k))ti

. (4.21)

In each iteration of successive E and M-steps the sequence of non-decreasing log-
likelihood values is generated until the algorithm converges to a local maximum.
In [168, 47] the two following convergence criteria were proposed. First the maxi-
mal difference of the values of the parameter vectors of successive iterations can be
considered. Secondly the relative difference of the log-likelihood values of successive
iterations is important. The EM algorithm for HErD fitting based on Θ = (π(1), . . .,
π(K), λ (1), . . . , λ (K)) is presented in [168, 47] and is given below.

Note that if an aggregated trace [47, Sec. 3.1.1] of length m∗ < m is considered,
an efficient speed up of the EM algorithm can be achieved, such that the runtime
complexity is reduced from O(mK) to O(m∗K) which is independent of the PHD
order in both cases.

61



4.1. TRACE-BASED FITTING METHODS

Algorithm 4.2: EM algorithm for computing HErD (π,D0) using T = (t1, . . . , tm)

1: Choose initial parameter estimates Θ̂ = (π̂(1), . . . , π̂(K), λ̂ (1), . . . , λ̂ (K));
2: repeat
3: Compute the logarithmic form of the density function given by Eq. 4.15
4: fk(ti | λ̂ (k)) = λ̂ (k)e(sk−1) ln(λ̂ (k)ti)−ln(sk−1)!−λ̂ (k)ti for all i = 1, . . . ,m, k = 1, . . . ,K;
5: E-step: Compute the pmf of the unobserved data for i = 1, . . . ,m, k = 1, . . . ,K
6: q(k | ti, λ̂ (k)) = π̂(k)· fk(ti | λ̂ (k))

∑
K
j=1 π̂( j) f j(ti | λ̂ ( j))

;

7: M-step: Compute π(k) and λ (k) that maximize the conditional expectation
Eq. 4.20 for i = 1, . . . ,m according to Eq. 4.21;

8: Set Θ̂BΘ;
9: until described convergence criterion reached;

4.1.3. EM Algorithm for Transfer Matrices

In this section we consider an EM algorithm for computing the parameters of transfer
matrix Hi j using a given trace Ti j. If we assume that PHDs (πi,Di), (π j,D j) of a
composition are given from a preceding PHD fitting step the EM algorithm computes
only the elements of the transfer matrix Hi j. The proposed approach is the extention
of EM algorithms for the parameter fitting of PHDs and MAPs (cf. Sec. 4.1.2, [47,
38, Sec. 5.2]). Considering the whole trace Ti j with consecutive traveling times of
adjacent edges i, j the likelihood function is defined as

L (Hi j |Ti j) = πi ∏
(t(k)i , t(k)j )∈Ti j

et(k)i Di Hi j et(k)j D j(−D j) I1. (4.22)

The optimal model parameters for the transfer matrix Hi j satisfy

H∗i j = argmax
Hi j

πi ∏
(t(k)i , t(k)j )∈Ti j

et(k)i Di Hi j et(k)j D j d j
1, (4.23)

such that conditions Hi j ≥ 0, Hi j I1 =−Di I1, πi Mi Hi j = π j are satisfied, and
d j

1 = (−D j) I1.
First the forward and backward vectors are defined. For the trace Ti j = ((t(1)i , t(1)j ),

(t(2)i , t(2)j ), . . . ,(t(K)
i , t(K)

j )), where the number of value pairs is K = Ni j, the kth obser-

vation corresponds to the value pair (t(k)i , t(k)j ). Consider the forward variable f(k)ti (x)
defined as

f(k)ti (x) = πi et(k)i Di(x), (4.24)

which is computed using the partial absorption time t(k)i ∈ (t(k)i , t(k)j ) and phase x at

time t(k)i . The forward value 4.24 is obtained as the joint density of being in phase x of
PHi at time t(k)i and initial distribution of the PHD PHi.

In a similar manner, the backward variable b(k)
t j (y) is defined as

b(k)
t j (y) = et(k)j D j d j

1(y), (4.25)
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which is computed using the remaining absorption time t(k)j ∈ (t(k)i , t(k)j ) of the PHD
composition, given that the initial phase of PH j is y. The backward value (4.25) is
computed as the joint density of being in phase y of PH j directly after time t(k)i and
the probability of getting absorbed at time t(k)j . The corresponding vectors of the kth

observation are denoted as the forward vector f(k)ti and the backward vector b(k)
ti . The

expressions (4.24), (4.25) can be computed using the uniformization method described
in Sec. 2.1.2.

Let β (n, α t) and matrices Pi, P j be parameters computed using the uniformization
method (2.11), (2.13). Now we can use the forward-backward procedure to compute
the transition likelihoods between states of PHi and PH j in composition. The normal-
ized likelihoods are then used as estimates for the transition rates in the transfer matrix
Hi j.

According to the Poisson process we define the following vectors

v(0) = πi and v(n+1) = v(n)Pi

w(0) = d j
1 and w(n+1) = P jw(n) (4.26)

for n = 0,1, . . .. Then forward and backward vectors can be computed as

f(k)ti =
∞

∑
n=0

β (n, α t(k)i )v(n), (4.27)

b(k)
t j =

∞

∑
m=0

β (m, α t(k)j )w(m),

where the lower truncation points li, l j ≥ 0 and the upper truncation points ri, r j < ∞

of the infinite sum can be pre-computed such that the required error tolerance ε is
satisfied [162]. Now observe that the value

X(k)(x,y) = Pr(Xi(t
(k)
i ) = x, X j(t

(k)
j ) = y |(t(k)i , t(k)j ) ∈Ti j, (πi,Di), (π j,D j), Hi j))

gives the likelihood of being in phase x of PHi at time t(k)i and phase y of PH j at time
t(k)j , given the PHD composition model and the observed value pair (t(k)i , t(k)j ). The
above transition likelihoods can be estimated elementwise using forward and backward
vectors as

X(k)(x,y) = f(k)ti (x)Hi j(x,y)b
(k)
t j (y), (4.28)

for 1 ≤ x ≤ ni, 1 ≤ y ≤ n j, and (t(k)i , t(k)j ) ∈ Ti j. Summing over all pairs in the trace
Ti j we obtain the expected value for transition likelihoods, such that

Y =
K

∑
k=1

X(k). (4.29)

The matrix Y should be normalized to have the same row sum as the matrix Hi j

Ŷ(x,y) =

n j

∑
z=1

Hi j(x,z)

n j

∑
z=1

Y(x,z)
Y(x,y), (4.30)
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which can be used as a new estimate for Hi j(x,y). The initialization of the EM algo-
rithm for the transfer matrix parameter fitting should be performed with a valid matrix
Hi j satisfying conditions Hi j ≥ 0, Hi j I1= (−Di) I1, πi Mi Hi j = π j. E.g., the initial trans-
fer matrix Hi j = (−Di) I1π j can be used, which describes uncorrelated absorption times
of PHi and PH j in composition.

Additionally, the initial transfer matrix Hi j can be computed using parameter fitting
methods according to empirical moments and correlation coefficient of the trace (see
Sec. 4.2). Finally, one can use methods described in Chap. 6 to compute the initial
transfer matrix maximizing the first joint moment of the PHD composition.

According to [38] the elements Hi j(x,y) which are initialized with 0.0 or become 0.0
during the EM step will remain 0.0 because the elements X(k)(x,y) computed in (4.28)
will result in 0.0. This property enables us to perform computations with sparse matri-
ces Hi j or with special structures within Hi j. Then the fitted matrix Hi j resulting from
this initialization preserves some predefined structure.

After steps (4.28)-(4.29) are computed, it holds that Ŷ I1 = (−Di) I1 and Ŷ ≥ 0. The
condition πi Mi Ŷ = π j is usually not satisfied after one iteration of the EM algorithm.
Thus, an additional optimization step is required to guarantee that the resulting transfer
matrix assures the invariance of the initial distribution π j within a composition.

Iterative EM Approach In the following we present a combination of the EM
algorithm and a non-negative least squares approach to obtain the transfer matrix Ŷ′
from Ŷ, such that the condition πi Mi Ŷ′ = π j holds.

In particular, to preserve the initial distribution π j the transfer matrix Ŷ has to be
repaired after each iteration or after a few iterations of the EM algorithm. This can be
achieved by solving the following non-negative least squares problem

min
Ŷ′: Ŷ′≥0, Ŷ′1=Ŷ1, πiMiŶ′=π j

(∥∥Ŷ′− Ŷ
∥∥2
)
, (4.31)

where Ŷ is the matrix from the EM iteration and Ŷ′ is the repaired transfer matrix
satisfying the initial distribution π j. The defined optimization problem with equality
constraints minimizes the entry-wise Frobenius norm

∥∥Ŷ′− Ŷ
∥∥2

. After solving the
repair step (4.31) a new iteration of the EM algorithm using the repaired matrix Ŷ′ is
performed.

Since the EM algorithm is a local maximization algorithm generating a sequence
of estimates Ŷ with a non-decreasing likelihood, the sequence may result in a local
maximum which often depends on the initial transfer matrix. Generally, the final es-
timate Ŷ has a large likelihood, such that the repaired matrix Ŷ′ will often result in
a decreased likelihood value. In principle, starting with the repaired matrix Ŷ′ could
result in a different local maximum. The iterative EM approach using uniformization
method is summarized in Algorithm 4.3. The proposed EM algorithm uses the set
Ti j = ((t(1)i , t(1)j ), . . . ,(t(K)

i , t(K)
j )) and two PHDs with representation (πi,Di), (π j,D j)

as an input.

Examples and Experiments In the following we perform series of experiments
to validate the results from the EM approach. As mentioned above the EM algorithm
converges to a local optimal solution and is not guaranteed to find a global optimum.
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Algorithm 4.3: EM algorithm for computing transfer matrix Hi j

1: Choose H(0)
i j and set r = 0;

2: Compute f(k)ti , b(k)
t j using (πi,Di), (π j,D j) in Eq. 4.27 for k = 1, . . . ,K;

3: repeat
4: Set H(r)

0 = H(r)
i j /α and compute X(k) using H(r)

0 in Eq. 4.28 for k = 1, . . . ,K;
5: E step: Compute the conditional expectation Y(r) using Eq. 4.29;
6: M step: Compute Ŷ(r) using Eq. 4.30;
7: Repair step: Set Ŷ(r) = αŶ(r). Compute Ŷ′ using Ŷ(r) in Eq. 4.31 and set

H(r+1)
i j = Ŷ′, r = r+1;

8: until ‖H(r)
i j −H(r−1)

i j ‖< ε;

9: Return H(r)
i j ;

·/M/1/∞

p12

1− p12

Q1

·/M/1/∞

Q2

·/M/1/∞

Q3

λ1λ1

λ2

λ1 p12

λ1(1− p12)

Figure 4.2.: The network of ·/M/1/∞ queues.

Often the quality of resulting transfer matrix depends on the initial transfer matrix
H(0)

i j . The same holds for the number of iterations which also depends on a number of
repair steps and is usually sensitive to the choice of randomization parameter α and
the stopping criterion [38].

We consider a simple queueing network simulation model to obtain correlated data.
From the data PH distributions are generated using the software tools gfit [168] and
Momfit [44]. Traces resulting from measurements and corresponding PH distributions
are used as input for the EM algorithm. For the trace containing about 104 samples the
runtime of the iterative EM approach for ε = 10−5 is in range from 5 to 25 seconds on
a standard PC.

To demonstrate the EM fitting procedure for transfer matrices we use a queueing
model [40] visualized in Fig. 4.1.3. The queueing network model is parameterized as
follows. It consists of three queues Q1, Q2, and Q3. Arrivals to Q1 are generated by a
MMPP with two states (see Sec. 2.5). The MMPP used in the queueing network model
is shown in Fig. 4.3.

Note that the matrix D1 is a diagonal event rate matrix with λi values on the diagonal.
If the Markov process is in state i, events occur according to a Poisson process with
rate λi.

The service time at Q1 is exponentially distributed. After leaving Q1 an entity enters
with probability p12 the queue Q2, and with probability p13 = 1− p12 the queue Q3.

65



4.1. TRACE-BASED FITTING METHODS
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(a) A state transition diagram of a 2-state MMPP.

D0 =

(
−0.005 0.001

2 −13

)
,

D1 =

(
0.004 0

0 11

)
(b) The infinitesimal subgenerator matrix D0
and the event rate matrix D1 of the MMPP.

Figure 4.3.: The 2-state MMPP for the queueing network.

Service times at Q2 and Q3 are also exponentially distributed. The probability p12 is
set to 0.99. The queue Q3 receives an additional Poisson arrival stream with rate λ2.

The visualized MMPP generating the arrivals of Q1 has a high arrival rate in state 2
and a low arrival rate in state 1. Furthermore it stays a long time in state 1 with a low
arrival rate which implies that the load of Q1 and subsequently Q2 is low.

In state 2, Q1 fills quickly such that customers are backlogged and waiting times
increase significantly. Thus many customers leave towards Q2 which also fills up. The
effect of the high arrival rate on Q3 is marginal because the routing probability from
Q1 to Q3 is small. Thus, the sojourn times in Q1 and Q2 are highly correlated whereas
the sojourn times in Q1 and Q3 are almost independent.

The PH-Graph corresponding to the queueing network model is shown in Fig. 4.1.3.
The sojourn time of Q1 corresponds to the weight of the edge i1 in Fig. 4.1.3. Analo-

i1
i2

i3

Figure 4.4.: The weights of the edges are modeled by queue residence times of Q1,
Q2, and Q3 in the open queue network in Fig. 4.1.3. The edges i1, i2 with
correlated weights are highlighted.

gously, the sojourn times of Q2 and Q3 correspond to the weights of the adjacent edges
i2 and i3, respectively.

In particular, the mean arrival rate of the MMPP is given by Eq. 2.94 and results in
λ1 = 0.0095. The service rate of Q1 is µ1 = 0.1429, i.e., the service time is exponential
with mean 7. The service rate of Q2 is µ2 = 0.0526, i.e., the service time is exponential
with mean 19. The service rate of Q3 is µ3 = 5, i.e., the service time is exponential
with mean 0.2, and λ2 = 0.1429.

The proposed queueing network is implemented in the OMNeT++ simulator [92].
Then the measurements from the simulation model were recorded to the trace. From
this trace we consider first 14,300 samples for the fitting of PH distributions and trans-
fer matrix.

First three sets TQ1 , TQ2 , and TQ3 containing measured sojourn times in queues are
extracted from the trace. Then, two sets TQ1Q2 , TQ1Q3 containing all measured value

66



CHAPTER 4. FITTING ALGORITHMS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  5000  10000  15000  20000  25000  30000  35000

So
jo

ur
n 

T
im

e

Simulation Time

Sojourn Times in Queues

Sojourn time in the first Queue
Sojourn time in the second Queue

Sojourn time in the third Queue

Figure 4.5.: Sojourn times of entities traveling through queues Q1, Q2, and Q3.

pairs of consecutive queues are extracted.

Example 4.1. [Fitting of PHD composition] Three traces TQ1 , TQ2 , and TQ3 are
used for fitting PH distributions of order 4 using the software tool gfit [168]. The
sojourn time of entities traveling through Q1 and Q2 is correlated with a correlation
coefficient ρ̂ = 0.1345 and the first joint moment µ̂ = 1.2142. The sojourn times for
each queue are summarized graphically in Fig. 4.5.

One can see that the sojourn times in Q1 and Q2 have large peaks and the cor-
relation between both sojourn times becomes visible. The sojourn time in Q3 is less
variable, such that no correlation with the sojourn time in Q1 or Q2 is visible. The
hyperexponential PHD PHi1 defined in (4.32) describes the sojourn time distribution
of queue Q1. Whereas the hyper-Erlang PHD PHi2 defined in (4.33) gives the sojourn
time distribution of queue Q2.

πi1 = (0.414,0.195,0.185,0.204), Di1 =


−0.657 0.000 0.000 0.000
0.000 −0.721 0.000 0.000
0.000 0.000 −3.429 0.000
0.000 0.000 0.000 −4.717

 ,

(4.32)

πi2 = (0.5206,0.3858,0.0936,0), Di2 =


−0.724 0.000 0.000 0.000
0.000 −3.534 0.000 0.000
0.000 0.000 −1.085 1.085
0.000 0.000 0.000 −1.085

 .

(4.33)
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Here the maximal achievable first joint moment is µ∗1,1 = 1.34, maximal correlation
coefficent is ρ∗ = 0.21 and the corresponding transfer matrix

Hρ∗=0.21
i1 i2

=


0.5088 0.0 0.1482 0.0
0.7215 0.0 0.0 0.0
0.0656 3.3635 0.0 0.0

0.0 4.7173 0.0 0.0

 .

The PHD PHi3 with πi3 = (1) and Di3 = (−0.9999) models the sojourn time distri-
bution of Q3 which is exponential because Q3 is a M/M/1 queue with a small additional
load from Q1.

The PHD composition containing PHi1 and PHi2 requires the transfer matrix Hi1 i2
to describe the correlation between the sojourn times along the edges i1 and i2. We
used the trace TQ1 Q2 as an input for the iterative EM algorithm 4.3. The matrix Ŷ(r)

resulting from the EM step and the approximation Ŷ′ resulting from the repair step are
given below

Ŷ(r) =


0.499648 0 0.157417 0
0.335285 0.386282 0 0

0 3.429211 0 0
2.581962 2.135355 0 0

 , Ŷ′ =


0.508965 0 0.148109 0
0.348646 0.372924 0 0

0 3.429212 0 0
2.418297 2.299020 0 0


The matrix Ŷ(r) from the EM step results in the correlation coefficent ρ = 0.1296

and the first joint moment 1.2099. As expected, the condition πi1Mi1Ŷ(r) = πi2 is not
satisfied.

The approximation Ŷ′ is then used as Hi1 i2 , such that ρ = 0.1294 and the first joint
moment 1.2097 which are very good approximations of the values estimated from the
trace TQ1Q2 of the simulation model.

Note that the sojourn times in Q1 and Q3 are uncorrelated. Thus the fitting of the
transfer matrix Hi1 i3 is not required to obtain the PHD composition containing PHi1
and PHi3 . The uncorrelated transfer matrix can be obtained as Hi1 i3 = di1

1 πi3 .

Example 4.2 (Fitting of Transfer Matrix). We use the hyperexponential PHD PHi1
defined in (4.32) as input. The PHD PHi2 in canonical representation is obtained using
software tool Momfit [44] and is defined as

π
′
i2 = (0.0483,0.2650,0.2358,0.4507), D′i2 =


−0.8126 0.8126 0.000 0.000

0.000 −0.8629 0.8629 0.000
0.000 0.000 −1.7067 1.7067
0.000 0.000 0.000 −3.8052

 .

(4.34)
The maximal achievable first joint moment is µ∗1,1 = 1.385, maximal correlation coef-
ficent is ρ∗ = 0.2339 and the corresponding transfer matrix

Hρ∗=0.2339
i1 i2

=


0.0765 0.4198 0.1606 0.0

0.0 0.0 0.4953 0.2261
0.0 0.0 0.0 3.4292
0.0 0.0 0.0 4.7173

 .

We computed the estimate of the transfer matrix using three different initial matrices
H(0)

i1 i2 , namely the zero correlation matrix computed as Hρ=0
i1 i2 = di1

1 π ′i2 , the maximal

correlation transfer matrix Hρ∗=0.2339
i1 i2 , and the matrix Hρ=0.1129

i1 i2 which is computed
using a fitting method according to empirical moments of the trace (see Sec. 4.2).
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Figure 4.6.: Log-likelihood values for different initial transfer matrices.

Queueing network trace
Trace Hρ=0

i1 i2 Hρ=0.1129
i1 i2 Hρ∗=0.2339

i1 i2
ρi1 i2 0.1345 0.0806 0.0622 0.1070
µ

i1 i2
1,1 1.2142 1.1375 1.1079 1.1802

µ
i1 i2
2,2 11.5112 8.927 8.4685 9.0546

µ
i1 i2
3,3 233.7016 167.69 154.5642 160.5274

log-likelihood −1.730e+04 −1.757e+04 −1.743e+04

Table 4.1.: Moments and log-likelihood values for the queueing network simulation
trace for different initial transfer matrices.

Figure 4.6 shows log-likelihood value curves for different initial transfer matrices.
One can see the impact of initial transfer matrix on initial log-likelihood value and on
the convergence speed of the EM algorithm.

Table 4.1 contains the correlation coefficent, the first three joint moments of the
trace and log-likelihood values of the fitted transfer matrices when the EM algorithm
is initialized with three different transfer matrices. The repair step has been performed
ones for the final estimate.

Starting the EM algorithm with the initial matrices H(0)
i1 i2 =Hρ=0

i1 i2 and H(0)
i1 i2 =Hρ=0.1129

i1 i2
no significant correlation can be reached as shown in Tab. 4.1. However, the initial
transfer matrix H(0)

i1 i2 = Hρ∗=0.2339
i1 i2 results in good approximations for the quantities of

the trace.
The results differ if different frequencies of repair steps are used within the iterative

EM approach. First, the EM algorithm is initialized with Hρ=0
i1 i2 and a different num-

ber of repair steps is performed. Figure 4.7 shows the log-likelihood values resulting
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Figure 4.7.: Log-likelihood values for different number of repair steps within iterative
EM approach for H(0)

i1 i2 = Hρ=0
i1 i2 .

Queueing network trace
Trace no repair steps 3000 repair steps 600 repair steps

ρi1 i2 0.1345 0.0806 0.0798 0.1119
µ

i1 i2
1,1 1.2142 1.1375 1.1363 1.1882

µ
i1 i2
2,2 11.5112 8.927 8.7957 8.9916

µ
i1 i2
3,3 233.7016 167.69 163.3031 162.6987

log-likelihood −1.730e+04 −1.731e+04 −1.732e+04

Table 4.2.: Moments and log-likelihood values for the queueing network simulation
trace for different number of repair steps using initial transfer matrix Hρ=0

i1 i2 .

for different frequencies of repair steps. One can see that different number of repair
steps result in different local maxima. Furthermore, the repaired transfer matrix often
results in a decreased likelihood value. Nevertheless, the estimate with a smaller log-
likelihood value can result in a better approximation of the correlation coefficent and
the moments from the trace. The results according to the quantities of the trace are
summarized in Table 4.2.

We also performed experiments using the initial transfer matrix with high correla-
tion coefficent

Hρ=0.2245
i1 i2

=


0.0765 0.4081 0.1722 0.0

0.0 0.0 0.4682 0.2532
0.0 0.1362 0.0 3.2929
0.0 0.0 0.0 4.7173

 ,
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Figure 4.8.: Log-likelihood values for different number of repair steps within iterative
EM approach for H(0)

i1 i2 = Hρ=0.2245
i1 i2 .

Queueing network trace
number of repair steps

Trace 0 10 300 3000
ρi1 i2 0.1345 0.1070 −0.0481 0.1741 0.0389
µ

i1 i2
1,1 1.2142 1.1802 0.9295 1.2886 1.0702

µ
i1 i2
2,2 11.5112 9.0546 6.2133 9.9988 7.8254

µ
i1 i2
3,3 233.7016 160.5274 114.5717 176.8562 137.0110

log-likelihood −1.743e+04 −1.758e+04 −1.769e+04 −2.038e+04

Table 4.3.: Moments and log-likelihood values for the queueing network simulation
trace for different number of repair steps using initial transfer matrix
Hρ=0.2245

i1 i2 .

which has been obtained using two phase fitting approach and results in ρi1 i2 = 0.2245.
Figure 4.8 shows the impact of different frequencies of repair steps for H(0)

i1 i2 =Hρ=0.2245
i1 i2 .

The results according to the quantities of the trace are summarized in Table 4.3. One
can see that larger number of repair steps not necessarily results in a better log-
likelihood value.

For example, the transfer matrix which has been repaired in each iteration results in
the smallest log-likelihood value. Although the number of iterations is high, only un-
satisfactory approximation of correlation from the trace can be obtained. In contrast,
already 30 repair steps could be an adequate choice to obtain a good approximation
of the correlation coefficent and higher order moments.
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Since the proposed iterative EM approach is a heuristic the number of repair steps
resulting in the optimal solution cannot be determined exactly. However, a good strat-
egy is to start with repair steps after few EM iterations. Then, repairing a transfer
matrix can result in a different local optimum.

EM Algorithm for Extended Composition The PHD composition with repre-
sentation ((πi,Di), (π j,D j), Hi j) can be extended when additional correlation between
PH j, PHi should be added. The composition process starts in some initial state x with
probability πi(x). Then the process moves along the paths of the first Markov chain
{Xi(t)}∞

t≥0 until some initial state of the second Markov chain {X j(t)}∞
t≥0 is reached.

Afterwards the composition restarts in some initial state of the first Markov chain
{Xi(t)}∞

t≥0 and the process iterates. Thus the transfer matrix H ji describes transitions
corresponding to the occurence of an event in the second Markov process. The ex-
tended composition can then be defined as

((πi,Di), (π j,D j), Hi j, H ji). (4.35)

In that case different traces could be used to compute parameters of the PHD compo-
sition. The trace T is described by a sequence of m chronologically ordered points in
time (t1

i , t2
j , t3

i , t4
j , . . . , t

m−1
i , tm

j ), such that the pairs (tk
i , tk+1

j ) and (tk
j , tk+1

i ) are corre-
lated for k= 1, . . . ,m−1. From the above trace the measurements wi j

n =( (i, ti)n,( j, t j)n )

and w ji
n = ( ( j, t j)n,(i, ti)n ) can be constructed for n = 1, . . . ,bm/2c (cf. Sec. 4.1.1).

Then the trace Ti j contains value pairs (ti, t j) which appear in wi j
n , and the trace T ji

contains value pairs (t j, ti) from w ji
n .

For the computation of the parameters for the transfer matrix Hi j the Algorithm 4.3
with the trace Ti j can be used as described in Sec. 4.1.3. The parameters of the sec-
ond transfer matrix H ji can be also determined using the EM-algorithm 4.3 with the
trace T ji and by reversing the order of PHDs, such that ((π j,D j), (πi,Di), H ji) is the
resulting PHD composition. Note that in this case the likelihood function is computed
for every trace entry separately as defined in (4.22).

It is in principle possible to interpret the extended composition as a MAP with rep-
resentation

D0 =

[
Di 0
0 D j

]
, D1 =

[
0 Hi j

H ji 0

]
.

In that case the two phase iterative EM algorithm for MAPs (see [47, Sec. 5.3.3]) can
be used to compute parameters of the above matrix D1. The parameters Di, D j are
assumed to be precomputed from the previous PH fitting step, such that only elements
of D1, i.e. of Hi j and H ji are determined.

Observe that the likelihood function of the extended composition can be defined
considering the whole trace

L (Hi j, H ji |T ) = πi

m−1

∏
k=1

etk
i Di Hi j etk+1

j D j H ji. (4.36)

For evaluating of (4.36) the forward-backward procedure defined in EM algorithm for
MAPs (see [47, Sec. 5.2]) can be in principle used. However, in that case both condi-
tions πi Mi Hi j = π j and π j M j H ji = πi will usually not hold and should be repaired
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after each EM iteration. The further drawback is the high computational effort of the
resulting fitting procedure. Like in the EM algorithm for MAPs forward vectors all
have to be precomputed and stored. For very large traces this means a huge number
of vectors have to be computed and a high amount of memory is needed to store the
vectors.

4.2. Two Phase Approaches

Fitting methods directly using the complete trace often have a high complexity, since
traces can be very large containing up to a million or more entries. In turn, fitting
algorithms based on derived measures are usually much more efficient. Indeed they
are limited to an information according to a concrete statistical measure, but avoid an
increased computational complexity and instability. In the case when, e.g. parameters
of a MAP should be computed, it can be fitted to a process given by its empirical
density function of the inter-arrival time distribution and by the lag correlation of the
trace.

In this section we consider two phase fitting approaches for determining the param-
eters of a transfer matrix. The methods are based on two phase fitting approaches
for MAPs where first the parameters of a PHD with representation (π,D0) are com-
puted. Similarly to MAPs, in the first step the parameters of two PHDs in composition
with representation (πi,Di), (π j,D j) are determined. Here various fitting methods for
PHDs can be applied (see e.g. [10, 30, 93, 108, 168, 47]). Generally, PHD fitting al-
gorithms can handle different input data. The approaches described in [10, 168, 108]
fit PHDs to a trace. The algorithms from [30, 93] consider pdf, cdf, and the trace. The
moments based fitting algorithm from [90] determines parameters of a PHD, such that
up to three moments can be matched.

In the second phase of the MAP fitting approach, the parameters of the matrix D1 are
determined, such that the inter-arrival time distribution of MAP remains unchanged.
This requires that π is the stationary distribution of the resulting MAP with represen-
tation (D0,D1). Furthermore the lag correlation function of the resulted MAP approx-
imates the correlation of the inter-arrival times collected in the trace.

Similarly to the MAP fitting approach, in the second phase the matrix Hi j of PHD
composition is constructed. Therefore the matrix Hi j should be parameterized in order
to satisfy conditions given in Eq. 3.2, 3.3 Furthermore the correlation function of the
resulting composition with representation ((πi,Di), (π j,D j), Hi j) approximates the
correlation of the edge weights collected in the trace Ti j.

In the following we first present two phase fitting algorithms for MAPs according to
the joint moments and the autocorrelation which are briefly described in [45, 96, 47].
Then we describe the adapted two phase approach for fitting of a transfer matrix H
according to the joint moments and the correlation coefficient.

4.2.1. Joint Moment Fitting of MAPs

For joint moment fitting of MAP (D0, D1) matrices D0 and D1 are constructed in
separate steps. First, the matrix D0 and the vector π are determined using algorithms
for fitting PHDs.
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In the second step, the matrix D1 is determined such that lag correlation function
of the resulting MAP approximates the one of the trace. Therefore the following
conditions have to be satisfied to ensure that the inter-arrival time distribution de-
termined in the first step remains invariant, namely D1(i, j) ≥ 0, D1 I1 = −D0 I1, and
π(−D0)

−1D1 = π as described [45, 96].
We can formulate the linear system of equations considering these constraints [45,

96, 47]. Let x be the column vector of size n2, which is composed by the columns of
the matrix D1 as shown below:

D1 =
[
{D1}1 {D1}2 . . . {D1}n

]
with x =


{D1}1
{D1}2

...
{D1}n

 (4.37)

where {D1}i denotes the ith column of D1. The coefficient matrix A and the column
vector b encode the necessary conditions as follows:



[
In×n

] [
In×n

]
· · ·

[
In×n

]
ψ

ψ

. . .

ψ


︸                                                          ︷︷                                                          ︸

A 2n×n2

·


x


︸    ︷︷    ︸

xn2

=


d1

π


︸     ︷︷     ︸

b2n

, (4.38)

where ψ = πM, such that the first n rows of A correspond to the condition given in
Eq. 2.87, and the other rows correspond to the second condition π(−D0)

−1D1 = π .
A proper matrix D1, i.e. the corresponding vector x, satisfying necessary constraints

is the solution of the following system of linear equations and inequalities

A x = b, x≥ 0. (4.39)

Observe that the A x = b is determined for n = 2 and under-determined for n ≥
3 [45]. In the last case, e.g. the simplex algorithm can be used to solve the prob-
lem (4.39).

Non-Negative Least Squares Problem Assume that some joint moments µ̂i j

from the set of measured joint moments J should be matched by the matrix D1. In
this case the fitting problem can be written as the minimization problem [96, 47]:

min
D1(i, j)≥0,D11=−D01,πMD1=π

(
∑

µ̂i j∈J

(
βi j

µi j

µ̂i j
−βi j

)2
)
. (4.40)

In Eq. 4.40 (π,D0) is a representation of a PHD that is expanded to a MAP representa-
tion (D0,D1) with i, j-th order joint moments µi j. The set J contains joint moments
which have to be approximated. The non-negative coefficients βi j can be used to priv-
ilege some of the moments.
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The exact solution of the Eq. 4.40 is found if the minimum becomes zero. Otherwise
an approximation in terms of the Euclidean norm is determined.

The i, j-th order joint moment for two consecutive events of a MAP is given by

µi j = E[X i
1,X

j
2 ] = i! j!πMi+1D1M j I1. (4.41)

Letting xi = πMi+1 and y j = M j I1 the i, j-th order joint moment can be expressed as a
linear constraint

µi j =
n

∑
k=1

n

∑
m=1

xi(k)D1(k,m)y j(m). (4.42)

Assume we are interested in the first order joint moment

µ11 = E[Xt ,Xt+1] = π(−D0)
−1Ps(−D0)

−1 I1.

The splitted vectors result in x1 = π(−D0)
−1(−D0)

−1, y1 = (−D0)
−1 I1. The resulting

linear condition (4.42) can be concatenated to the matrix A and vector b as shown
below [96, 47].

[
In×n

] [
In×n

]
· · ·

[
In×n

]
ψ

ψ

. . .

ψ

x1(1) ·y1(1) x1(2) ·y1(1) ... x1(n) ·y1(n)


︸                                                                                      ︷︷                                                                                      ︸

A (2n+1)×n2

·


x


︸    ︷︷    ︸

xn2

=


d

π

µ̂11


︸       ︷︷       ︸

b2n+1

.

(4.43)
Here the coefficient β11 is set to one. Observe that (4.43) is a non-negative least squares
problem with n2 variables and 2n linear constraints which can be solved with standard
algorithms for non-negative least squares problems [47, 116].

4.2.2. Joint Moment Fitting of Transfer Matrices

We adapted the described fitting method for MAPs from Sec. 4.2.1 to compute the
parameters of the transfer matrix H. In the second fitting step, we start with two PHDs
(πi,Di), (π j,D j) that are the part of composition ((πi,Di), (π j,D j), Hi j). The matrix
Hi j has to satisfy the following two conditions to maintain the PHDs determined in the
first step, namely Hi j I1 =−Di I1, and πi(−Di)

−1Hi j = π j as given in (3.2), (3.3).
We can formulate the constraints as a linear system of equations. Since the transfer

matrix is of dimension ni× n j, the vector x is a column vector of size nin j, which is
composed similarly to (4.37)

Hi j =
[
{Hi j}1 {Hi j}2 . . . {Hi j}n

]
with x =


{Hi j}1
{Hi j}2

...
{Hi j}n


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where {Hi j}i denotes the ith column of H. The coefficient matrix A and the vector b
can be rewritten as



[
Ini×ni

] [
Ini×ni

]
· · ·

[
Ini×ni

]
ψi

ψi

. . .

ψi


︸                                                            ︷︷                                                            ︸

A (ni+n j)×(nin j)

·


x


︸    ︷︷    ︸

x(nin j)

=


di

1

π j


︸     ︷︷     ︸

b(ni+n j)

, (4.44)

where ψi = πiMi and di
1 = (−Di) I1. The first ni rows of A correspond to the first

constraint Hi j I1 = −Di I1, and the second n j rows are added according to the condi-
tion πiMiHi j = π j. A proper H matrix which can be obtained from vector x satisfy-
ing (4.39).

Assume now that joint moments µ̂
k,l
i j from the set of measured joint moments Ji j

should be approximated by PHD composition containing H. The fitting problem can
be formulated as the optimization problem [96, 47]:

min
Hi j(i, j)≥0, H1=−H1, πiMiHi j=π j

 ∑
µ̂

k,l
i j ∈Ji j

(
βk,l

µ
k,l
i j

µ̂
k,l
i j

−βk,l

)2
 , (4.45)

where µ
k,l
i j is the k, l order joint moment of PHD composition ((πi,Di), (π j,D j), Hi j)

(see (3.6)). The joint moments of two consecutive absorption times in PHD composi-
tion can be derived using moment matrices Mi = (−Di)

−1 and M j = (−D j)
−1 of the

corresponding PHDs

µ
k,l
i j = E[Xk

i , X l
j ] = k!l!πi Mk+1

i Hi j Ml
j I1,

which can be expressed as a linear constraint

µ
k,l
i j =

ni

∑
r=1

n j

∑
m=1

xk(r)Hi j(r,m)yl(m), (4.46)

where xk = πiMk+1
i and yl =Ml

j I1. The above expression for µ
k,l
i j (4.46) can be plugged

in for µ
k,l
i j in the minimization problem (4.45).

We now consider how the first joint moment can be expressed as a linear con-
straint in detail. The first order joint moment of two consecutive absorption times
in PHD composition ((πi,Di), (π j,D j), Hi j) is given by µ

1,1
i j = πi M2

i Hi j M j I1. The
splitted vectors are x1 = πi(−D−1

i )(−D−1
i ) and y1 = (−D−1

j ) I1. Then the linear con-
straint (4.46) can be concatenated to the matrix A and the vector b from Eq. 4.44 as
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follows

[
Ini×ni

] [
Ini×ni

]
· · ·

[
Ini×ni

]
ψi

ψi

. . .

ψi

x1(1) ·y1(1) x1(2) ·y1(1) ... x1(ni) ·y1(n j)


︸                                                                                        ︷︷                                                                                        ︸

A (ni+n j+1)×(nin j)

·


x


︸    ︷︷    ︸

x(nin j)

=


di

1

π j

µ̂
1,1
i j


︸        ︷︷        ︸

b(ni+n j+1)

,

(4.47)
where the weight β1,1 is set to one. The resulting problem (4.47) is a non-negative least
squares problem with nin j unknowns and ni +n j +1 constraints. The problem can be
solved with standard algorithms for non-negative least squares problems [116].

Example 4.3. We consider again the trace TQ1 Q2 from the small queueing network
model in example 4.1. The set TQ1 Q2 contains measured sojourn time pairs of con-
secutive queues. The estimated first joint moment of the trace is µ̂ = 1.2142, and the
sojourn time of entities traveling through Q1 and Q2 is correlated with correlation
coefficent ρ̂ = 0.1345.

Furthermore the sets TQ1 , TQ2 contain the measured sojourn times in queues. Fol-
lowing PHDs have been fitted to the traces TQ1 , TQ2

πi1 = (0.414,0.195,0.185,0.204), Di1 =


−0.657 0.000 0.000 0.000
0.000 −0.721 0.000 0.000
0.000 0.000 −3.429 0.000
0.000 0.000 0.000 −4.717

 ,

πi2 = (0.5206,0.3858,0.0936,0), Di2 =


−0.724 0.000 0.000 0.000
0.000 −3.534 0.000 0.000
0.000 0.000 −1.085 1.085
0.000 0.000 0.000 −1.085

 .

We formulate the following linear system of equations. The coefficient matrix A is
of dimension 9×16 and results in

I4×4 I4×4 I4×4 I4×4
ψi 0 0 0
0 ψi 0 0
0 0 ψi 0
0 0 0 ψi

z1 z2 z3 z4

 ,

where the vector ψi1 = πi1Mi1 = [0.6313,0.2714,0.0540,0.0433] and 0 is the 1× 4
vector containing zeros.

The linear constraint according to the first joint moment corresponds to the last row
of the matrix A . In particular, the row vector x1 = [0.9608,0.3761,0.0157,0.0092]
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and the row vector y1 = [1.3802,0.2830,1.8421,0.9211], such that

z1 = [1.326, 0.519, 0.021, 0.012],
z2 = [0.271, 1.77, 0.692, 0.029],
z3 = [1.77, 0.692, 0.029, 0.016],
z4 = [0.885, 0.346, 0.014, 0.008].

Furthermore, the vector

b = [0.6571,0.7216,3.4292,4.7173,0.5206,0.3859,0.0935,0,1.2142]′,

where the first 4 values correspond to the exit rates of the PHD (πi1 ,Di1), the next
4 values correspond to the πi2 , and the last value is µ̂ = 1.2142. The problem has
been implemented in matlab where the function lsqnonneg has been used to obtain the
transfer matrix Hi1 i2


0.5090 0 0.1481 0
0.3617 0.3599 0 0

0 3.4292 0 0
2.3363 2.3811 0 0

 .

The matrix Hi1 i2 results in the correlation coefficient ρ = 0.1322779 and the first joint
moment µ1,1 = 1.2142 which is a very good approximation of the ρ̂ = 0.1345 estimated
from the trace TQ1Q2 .

4.2.3. Autocorrelation Fitting of MAPs

In a two phase approach fitting of a given number of lag k correlations can be incorpo-
rated. In this section we present how this fitting method can be expressed as a linear
constrained non-linear optimization problem from [96, 47]. In the second phase the
given PHD with representation (π,D0) should be expanded to a MAP (D1,D0), such
that the lag k autocorrelation coefficients of the MAP approximates lag k autocorrela-
tion coefficients ρ̃k, k = 1, . . . ,K of some observed process.

In the following we summarize an exact lag 1 correlation fitting problem described
in [96]. First observe that the formula for lag 1 autocorrelation in Eq. 2.93 can be
expressed in terms of arrivals intensity λ = 1

π(−D0)
−1 I1

as

ρ1 =
λ 2π (−D0)

−2 D1 (−D0)
−1 I1−1

λ 22π (−D0)
−2 I1−1

.

Using m = (−D0)
−1 I1 the above term can be reformulated as

λ
2
π (−D0)

−2 D1m = ρ1

[
λ

22π (−D0)
−2 I1−1

]
+1,
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which can be concatenated to the matrix A and vector b as

[
In×n

] [
In×n

]
· · ·

[
In×n

]
ψ

ψ

. . .

ψ

m(1)φ m(2)φ ... m(n)φ


︸                                                                 ︷︷                                                                 ︸

A (2n+1)×n2

·


x


︸    ︷︷    ︸

xn2

=


d

π

ω


︸    ︷︷    ︸

b2n+1

. (4.48)

where φ = λ 2π (−D0)
−2, and m(i) is the i-th element of the vector m. The right

hand side is denoted as ω = ρ̃1

[
λ 22π (−D0)

−2 I1−1
]
+ 1. Observe that ρ̃1 is the

lag 1 autocorrelation coefficient which has to be approximated by the expanded MAP
(D0,D1), and can be often estimated from the trace.

In the case where more lag k autocorrelation values should be matched, the fol-
lowing optimization problem with linear constraints given in Eq. 4.39 can be defined

min
D1(i, j)≥0,D11=−D01,π(−D0)−1D1=π

(
K

∑
k=2

βk (ρk− ρ̂k)
2

)
. (4.49)

The problem (4.49) is the squared difference between lag k autocorrelation coefficients
of the observed process and the fitted MAP. The lag K is the largest autocorrelation
coefficient that should be matched, and weight βk is used to privilege lower lag auto-
correlations.

As mentioned in [96] higher higher lag autocorrelations result in non-linear con-
straints. For example the lag 2 first order joint moment

E[Xt ,Xt+2] = π(−D0)
−1P2

s (−D0)
−1 I1

would lead to a term containing squared elements of the matrix D1 [47].

4.2.4. Correlation Fitting of Transfer Matrices

Similarly to the autocorrelation fitting of MAPs described in Sec. 4.2.3, the exact cor-
relation fitting of transfer matrix Hi j represents a linear constrained non-linear opti-
mization problem.

We start with two PHDs with representation (πi,Di), (π j,D j) which are computed
separately. In the second phase the matrix Hi j has to be constructed, such that the
correlation function of a composition ((πi,Di), (π j,D j), Hi j) approximates the one
of the trace. In particular, the correlation of a composition can be defined as a linear
constraint. According to formula (3.8) we obtain

ρi j =
πi M2

i Hi j M j I1− [(πi Mi I1) · (π j M j I1)]√
(2πi (−Di)−2 I1− (πi (−Di)−1 I1)2) ·

√
(2π j (−D j)−2 I1− (π j (−D j)−1 I1)2)

Let σ2
i = (2πi (Mi)

2 I1− (πi Mi I1)2) and σ2
j = (2π j M2

j I1− (π j M j I1)2). Then the expres-
sion

ρi j

√
σ2

i σ2
j = πi M2

i Hi j M j I1− [(πi Mi I1) · (π j M j I1)]
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can be rewritten as a linear constraint

φHi j f = ρi j

√
σ2

i σ2
j +[(πi Mi I1) · (π j M j I1)] , (4.50)

where f = (−D j) I1, and φ = πi(−Di)
−1(−Di)

−1 I1. Let ω denote the right hand side of
Eq. 4.50 which can be concatenated to the matrix A and vector b as



[
Ini×ni

] [
Ini×ni

]
· · ·

[
Ini×ni

]
ψi

ψi

. . .

ψi

f (1)φ f (2)φ ... f (n j)φ


︸                                                               ︷︷                                                               ︸

A (ni+n j+1)×(nin j)

·


x


︸    ︷︷    ︸

x(nin j)

=


di

1

π j

ω


︸     ︷︷     ︸
b(ni+n j+1)

, (4.51)

where f (i) is the ith element of vector f . The ω contains the correlation coefficient
ρ̂i j from the original process which can be often estimated from the trace Ti j. The
problem (4.51) is a non-negative least squares problem with nin j variables and ni +
n j +1 linear constraints, and can be solved using standard algorithms for non-negative
least squares problems [116].

If more lag k correlation values should be matched, the fitting problem is a linearly
constrained non-linear optimization problem with linear constraints given in Eq. 4.44.
Assume that lag k correlation coefficents ρ̂k

i j should be matched, such that K is the
largest lag correlation coefficient. The fitting problem can be formulated as the fol-
lowing minimization problem

min
Hi j(i, j)≥0,Hi j1=−Di1,πiMiHi j=π j

(
K

∑
k=2

βk

(
ρ

k
i j− ρ̂

k
i j

)2
)
. (4.52)

In the problem (4.52) the weights βk can be used to priviledge either the lower lag k
correlation or the higher lag k correlation coefficient.

Example 4.4. Analogously to example 4.3 we used the traces TQ1 , TQ2 , TQ1Q2 , and
PHDs (πi1 ,Di1), (πi2 ,Di2) to fit the transfer matrix Hi1 i2 . We solve the problem (4.51)
using matlab function lsqnonneg. The resulting transfer matrix is

Hi1 i2 =


0.5145 0.1426 0 0
0.7216 0 0 0

0 1.6964 1.7324 0.0003
0 4.7173 0 0

 .

The matrix Hi1 i2 results in the correlation coefficient ρ = 0.102288 and the first joint
moment µ1,1 = 1.165641 which are both very good approximations of the values ρ̂ =
0.1345, and µ̂1,1 = 1.2142 estimated from the trace TQ1Q2 .
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4.3. Summary and Remarks

Prior work has shown the effectiveness of methods to fit the parameters of PHDs ac-
cording to some measured data. For example, EM algorithms can be applied to fit
PHDs efficiently and guarantee good fitting quality, even for complex empirical den-
sity functions. We refer to [47] for PHD fitting methods according to pdf, cdf and a
given number of moments of trace. These and other existing fitting techniques form
a solid basis for obtaining parameters of PHDs in composition. However, fitting the
parameters of transfer matrices according to some paired trace data Ti j has not been
focused in the context of PHG parameter fitting.

In this chapter we adapted the EM algorithm from the area of PHD and MAP pa-
rameter fitting. The approach is an extension of iterative approaches considering the
whole trace data which means that the effort is proportional to the uniformization
method over value pairs of the trace. Consequently, its effort can be very high when
large traces are used, e.g., with up to 106 value pairs.

Furthermore, the EM algorithm requires an additional optimization since the quality
of the resulting transfer matrix is usually not satisfactory with respect to PHD com-
position. Specifically, it is not guaranteed that the initial distribution of the successive
PHD in a composition is valid when the resulting transfer matrix is used.

However, after repairing the transfer matrix the EM algorithm often stucks in local
solution areas which is actually typical for expectation-maximization approaches. In
particular, it is not yet clear which initial transfer matrix and which PHD representa-
tions are best suited for some given data set. The adapted EM algorithm is applied to
an example trace resulting from the queueing network simulation model. Our results
provide transfer matrices which capture the trace correlation very well.

In addition, two phase fitting approaches for MAPs are adapted. Two phase methods
start with fitting of both PHDs in a composition and then compute parameters of the
transfer matrix according to joint moments or correlation coefficients from the trace.
Although the efficiency of these methods has been shown several times in literature
(see [47] and references therein), the representation of two PHDs has large influence
when fitting a transfer matrix. Note that PHD representation is non-unique. Entries
in PHDs (πi, Di) and (π j, D j) put constraints on the representation of transfer matrix
Hi j, such that the range of the first joint moment that can be fitted is usually limited.
We investigate this aspect in Chap. 6.

It should also be mentioned that estimation of correlation from a trace is a non
trivial task. First, real world traces are often not available, such that using traces from
simulation models seems to be indispensable. Furthermore, it is not yet clear which
data set is correlated if only poor information about correlations is available.
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Chapter 5
Solutions to SSPP with correlated edge weights

In this chapter we develop a CTMDP based on the PHG model that can capture corre-
lations between adjacent edge weights in stochastic graphs. The PHG model aims
at decoding information about existing correlations for the whole stochastic graph
according to a real or simulated system under consideration, e.g., simulated routing
graph. In this chapter we formulate problems arising in the SSPP context in terms
of decision problems in CTMDPs. Different algorithms and their variants to compute
optimal policies for CTMDPs are described.

First we consider the computation of a path with minimum expected weight starting
in the origin and ending in the destination node. Then we add a solution technique
considering a history of realized edge weights along the covered path.

The other challenging problem for SSPP with correlations is to compute the path
that has the maximum/minimum probability of reaching a destination within a given
time horizon. This results in the problem of computing the maximum/minimum prob-
ability to reach a set of goal states within a given time bound in CTMDPs which is
a well studied problem [127, 49, 131, 42]. We present a numerical method based
on discretization to compute and to approximate the maximum/minimum gain vector
per state in a CTMDP for a finite interval [0,T ] which is an adaptation of the algo-
rithm [127] to compute the accumulated reward in a CTMDP over a finite interval.

In the following the model concept including the CTMDP extension of the PHG
model is introduced and it is shown that efficient solution techniques for the SSPP
with correlations based on the developed model can be applied.

5.1. SSPP formulation of the PH-Graph model

In this section describe a SSPP formulation associated with a PH-Graph (V,E,P) in
order to solve the stochastic shortest path problem with correlations based on [40].
Then the stochastic shortest path problem in stochastic graphs with dependent edge
weights can be efficiently solved using algorithms for CTMDPs. In particular, we
build an undiscounted CTMDP with a single absorbing state such that the optimal
policy minimizes the expected total reward of reaching the destination v f in from the
origin vini.
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The states of the CTMDP are described by tuples (i,x) where i∈E and x∈{1, . . . ,ni}
is a phase of the PHD assigned to the edge i. The set of transient states can be formal-
ized as

ST = {(i,x) | ∀i ∈ E, x ∈ {1, . . . ,ni}} . (5.1)

The set of absorbing states contains a single absorbing state denoted as (0,0) which
corresponds to the destination v f in, such that SA = {(0,0)}. Then the state space is
defined as S = ST ∪SA and contains ∑

|E|
i=1 ni +1 states.

In particular, for some state (i,x) the choice of the successor edge j ∈ i• is associated
with an admissible decision u. Let D(i) be the set of possible decisions for a current
state (i,x) which only depends on the edge i and not on the current phase of the PHD
PHi. Then

D(i) =
{
{ j | j ∈ i•} if i• , /0,
{0} if i•= /0.

(5.2)

Let Qu((i,x), ( j,y)) be the transition rate from the state (i,x) to the state ( j,y) if the
decision u ∈D(i) is made. It holds that

Qu((i,x),(i,x)) =− ∑
( j,y)∈S ,( j,y),(i,x)

Qu((i,x),( j,y)) (5.3)

Then the infinitesimal subgenerator Qu prescribes the transition rates for successor
states as follows.

Qu((i,x),( j,y)) =


Di(x,y) if j = i, i > 0
Hiu(x,y) if j = u, u ∈ i•, i > 0, u > 0
di

1(x) if j = 0 and y = 0
0 otherwise.

(5.4)

The absorbing state (0,0) has a single decision u ∈D(0) such that the transition rates
are Qu((0,0),( j,y)) = 0 for all ( j,y) ∈ S . Note that the absorbing state is reached
when some edge i ∈ E f in has been traversed and thus can be interpreted as the destina-
tion v f in.

Given the set of transition rates Q = {Qu((i,x),( j,y))|(i,x),( j,y) ∈S ,u ∈ D(i)}
the CTMDP described can be transformed into a DTMDP using the method of uni-
formization (see Sec. 2.1.2). The uniformization rate α is selected such that α ≥
max(i,x)∈S

(
maxu∈D(i) (|Qu((i,x),(i,x))|)

)
holds. The entries of the transition matri-

ces of the embedded Markov processes are then defined as

Pu((i,x),( j,y)) =
{

Qu((i,x),( j,y))/α if (i,x) , ( j,y)
1+Qu((i,x),( j,y))/α if (i,x) = ( j,y)

(5.5)

such that for each u ∈D(i) the matrix Pu is stochastic.
The expected rewards for all states have the same unit value (cf. Eq. 5.22)

ru(i,x) =
{

1 for all (i,x) ∈ST , u ∈D(i),
0 for (i,x) = (0,0).

(5.6)

Now consider a stationary policy u which assignes a decision rule u(i,x) ∈D(i) to
each state (i,x) ∈S . Then the transition probability matrix Pu of dimension |S | ×
|S | is defined by (cf. Eq. 2.34)

Pu((i,x),( j,y)) = Pu(i,x)((i,x),( j,y)). (5.7)
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Observe that in the case where the policy u is improper, the absorbing state (0,0) can
never be reached from some states, i.e. the total expected reward of that policy from
some states will be infinite. In that case some component of the sum ∑

∞
t=0(Pu)tru

diverges to ∞ as t→∞. On the other hand, for every proper policy u these rewards are
expected to be finite for every state. In this case a policy u reaches an absorbing state
with probability 1, i.e. a policy is guaranteed to eventually reach an absorbing state.
Then the sum ∑

∞
t=0(Pu)tru is finite such that the following matrix exists

Nu = (I−Pu)−1 =
∞

∑
t=0

(Pu)t , (5.8)

where the value Nu((i,x),( j,y)) is the mean number of visits of state ( j,y) before the
absorbing state is reached starting from state (i,x) [105, 40]. We define for the proper
policy u

ξ
u(i,x) = ∑

( j,y)∈S
Nu((i,x),( j,y)) (5.9)

as the mean number of steps until absorption starting from (i,x). Note, that matrices
Pu have been obtained using uniformization with rate α as given in Eq. 5.5. Consider
now the CTMC induced by the proper policy u applied to the CTMDP. Then the scaled
value ξ u(i,x)

α
is the expected total time spent in transient states before absorption if the

process starts in state (i,x), i.e. it is the expected path weight corresponding to the
policy u.

Note that the existence of at least one proper policy is required in SSPP MDP (see
Sec. 2.3.3). Since the matrix Di of a PHD PHi is nonsingular, the absorption occurs
with probability 1 (cf. Eq. 2.1). Consequently, the PHD PHi for each edge i is eventu-
ally left. Thus starting from arbitrary edge i ∈ Eini on the path leading to v f in the path
to the absorbing state (0,0) exists which satisfies the requirement.

Example 5.1. Consider the stochastic graph highlighted in grey in Fig. 5.1. The edge
weights are described by hyperexponential PHDs of order 2. The absorbing state
corresponds to the destination v3. In states (i1,1), (i1,2) two successor edges exist
such that D(i1) = {i2, i3}. Furthermore, it holds that D(i2) = D(i3) = {0} since
i2, i3 ∈ E f in. The transition probabilities for successor states of the states (i1, ·) are
given as

Pi2 =

(
0.9231 0 0.0769 0

0 0.1373 0 0.8627

)
, Pi3 =

(
0.9231 0 0.0461 0.0307

0 0.1373 0.5176 0.3461

)
.

The transition probabilities for the states associated with edges i2 and i3 are given as
P0((i2,1),(0,0)) = P0((i3,1),(0,0)) = 0.0667,
P0((i2,2),(0,0)) = P0((i3,2),(0,0)) = 0.3333,
P0((i2,1),(i2,1)) = P0((i3,1),(i3,1)) = 0.9333,
P0((i2,2),(i2,2)) = P0((i3,2),(i3,2)) = 0.6667.
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v1 v2 v3
i1

i3

i2

1π1(1)

2π1(2)

i3
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1

2
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0
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Figure 5.1.: Example for the SSPP of the PH-Graph with vini = v1 and v f in = v3.

5.2. Analysis of Paths in PH-Graphs

In section 3.2 we defined the absorbing CTMC corresponding to a path (i1, . . . , iK) in
a PH-Graph as given in [40]. The subgenerator matrix Q(i1,...,iK) defined in Eq. 3.17
contains nonsingular matrices Di on its diagonal and thus is a nonsingular matrix. Then
the matrix (−Q(i1,...,iK))

−1 is the fundamental matrix (cf. Def. 2.4) of the absorbing
CTMC corresponding to the PHG path. The entry (−Q(i1,...,iK))

−1((i,x),( j,y)) gives
the expected total time spent in state ( j,y) before absorption given that the initial state
is (i,x) [40]. Then the ith moment of the weight of the path is given by [40]

µ
i
(i1,...,iK) = i!πMi

(i1,...,iK) I1, (5.10)

where M(i1,...,iK) = (−Q(i1,...,iK))
−1 is the moment matrix and the initial distribution

vector π is defined in Def. 3.2.
The probability that the path weight is less or equal to w is given by [40]

F(i1,...,iK)(w) = 1−πewQ(i1 ,...,iK ) I1. (5.11)

Depending on the application context, the first moment of the path weight µ(i1,...,iK)
can be interpreted as the mean traveling time along the path or as the mean duration
of the ruin process or as the mean strength of the connection between two nodes in
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a stochastic graph. Correspondingly, F(i1,...,iK)(w) is the distribution function of the
traveling time along the path to a destination.

Note that the evaluation of the matrix exponential (see Eq. 2.9) in Eq. 5.11 can be
computationally unstable such that the method of uniformization is used here to obtain
an accurate numerical solution for the probability density function in Eq. 5.11 (see
Sec. 2.1.2).

Given the subgenerator Q(i1,...,iK) the corresponding CTMC can be transformed into
a DTMC using the uniformization method described in Sec. 2.1.2. The uniformization
rate α is selected such that α ≥max(i.x)∈ST (|Q(i1,...,iK)((i,x), (i,x))|). Then the matrix
P(i1,...,iK)=Q(i1,...,iK)/α+I is the transition probability matrix of the embedded Markov
process as described in [40]. The fundamental matrix of the absorbing DTMC is then
defined as [40]

N(i1,...,iK)=(I−P(i1,...,iK))
−1 =(I− (

Q(i1,...,iK)

α
+I))−1 =(−Q(i1,...,iK)

1
α
)−1 =M(i1,...,iK)α.

(5.12)
The probability distribution function is then given by [40]

F(i1,...,iK)(w) = 1−

(
πe−αw

∞

∑
n=0

(αw)n

n!
Pn
(i1,...,iK)

)
I1 (5.13)

such that the sum in brackets need to be truncated. Finite truncation points can be
pre-computed (cf. Eq. 2.14) to achieve the required error tolerance.

Now assume that edge weights are interpreted as traveling times. Then we are given
a vehicle traversing a path (i1, . . . , iK) from the origin vini to the destination node v f in.
The vehicle only knows the PHD of the edges along the path and the existing depen-
dencies between the edge traveling times. Every time the vehicle reaches a destination
node f in(ik) of the edge k, k ∈ {1, . . . ,K}, the realization of the PHD random variable
Xik is known. As the vehicle has passed through the subpath (i1, . . . , il) for l < K, the
realized traveling times (w1, . . . ,wl) become known to it. Then the history vector as
defined in [40]

ψ(i1,w1,...,il ,wl) = πi1

(
l−1

∏
k=1

eDik wk Hik ik+1

)
eDil wl (5.14)

gives the conditional distribution after passing the edges (i1, . . . , il−1) with weights
(w1, . . . ,wl−1) and having accumulated weight wl at edge il , i.e. it gives the distribution
among the states of PHD PHl immediately before leaving the edge il . In the case that
wl = 0, the history vector gives the conditional distribution immediately after entering
the edge il .

Again, the evaluation of the matrix exponential is required in equation 5.14. Using
the uniformization method first the transition probability matrices Pik can be evaluated
as described in [40]

Pik = Qik/αik + I with αik ≥maxx(|Dik(x,x)|).

Then the history vector can be computed as given in [40]

ψ(i1,w1,...,il ,wl) = πi1

l−1
∏

k=1

(
e−αik wk

(
∞

∑
n=0

(αik wk)
n

n! (Pik)
n
)(Hik ik+1

αik

))
·

e−αil wl

(
∞

∑
n=0

(αil wl)
n

n! (Pil )
n
)
,

(5.15)
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and should be normalized to 1 as defined in [40]

ψ̄(i1,w1,...,il ,wl) =
ψ(i1,w1,...,il ,wl)

ψ(i1,w1,...,il ,wl) I1
(5.16)

Depending on the known realized traveling times and correlations between edge
weights the vehicle can decide which edge to traverse next using the history vector
ψ(i1,w1,...,il ,wl). In particular, the conditional moments of the remaining path (il+1, . . . , iK)
can be computed analogously to Eq. 5.10 using the subgenerator as given in [40]

Q(il+1,...,iK) =



Dil Hil ,il+1 0 · · · 0

0 Dil+1 Hil+1il+2

. . .
...

...
. . .

. . .
. . . 0

...
. . . DiK−1 HiK−1iK

0 · · · · · · 0 DK


and initial vector π ′ = (ψ̄(i1,w1,...,il ,wl),0) as defined in [40]

µ
′i
(il+1,...,iK) = i!π ′Mi

(il+1,...,iK) I1, (5.17)

Example 5.2. We present a stochastic network example from [40]. A four-node PHG
is shown in Figure 5.2, it contains three paths from the origin v1 to the destination v4,
namely (i1, i2), (i3, i4), and (i5). The edge weights in the PHG are modeled by order

v1

v2

v3

v4
i5 (µ = 2.4223,σ2 = 12.569)

i1 (µ = 1.0000,σ2 = 1.7237)

i3 (µ = 2.0009,σ2 = 4.0422)

i2 (µ = 1.0000,σ2 = 1.5213)

i4 (µ = 1.4369,σ2 = 6.8150)

Figure 5.2.: The weights distribution for each edge is modeled by a PHD with expec-
tation and variance given in a tuple at the corresponding edge.

4 PHDs (πik ,Dik), k ∈ {1, . . . ,5}, in hyperexponential and hyper-Erlang representa-
tion, and are summarized below. Furthermore, weights can be interpreted as traveling
times.
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πi1 = (0.4148,0.1958,0.1851,0.2043), Di1 =


−0.657 0 0 0

0 −0.721 0 0
0 0 −3.429 0
0 0 0 −4.717

 ,

πi2 = (0.5206,0.3858,0.0936,0), Di2 =


−0.724 0 0 0

0 −3.534 0 0
0 0 −1.085 1.085
0 0 0 −1.085

 ,

πi3 = (0.4227,0.2707,0.1814,0.1252), Di3 =


−0.4745 0 0 0

0 −0.4900 0 0
0 0 −0.5230 0
0 0 0 −0.5940



πi4 = (0.3977,0.3945,0.2078,0), Di4 =


−0.3000 0 0 0

0 −4.8847 0 0
0 0 −6.8209 0
0 0 0 −8.8200

 ,

πi5 = (0.145,0.478,0.113,0.264), Di5 =


−0.385 0 0 0

0 −0.241 0 0
0 0 −5.5 0
0 0 0 −6.325



.

The weights of the path (i1, i2) ∈ Paths can be described by an acyclic absorbing
CTMC with 8 transient states with the following subgenerator

Q(i1 ,i2) =



−0.657 0 0 0 0.509 0 0.148 0
0 −0.721 0 0 0.721 0 0 0
0 0 −3.429 0 0.064 3.364 0 0
0 0 0 −4.717 0 4.717 0 0
0 0 0 0 −0.724 0 0 0
0 0 0 0 0 −3.534 0 0
0 0 0 0 0 0 −1.085 1.085
0 0 0 0 0 0 0 −1.085


and the initial distribution vector π(i1,i2) = (πi1 ,0,0,0,0).
The first moment for the weight of the path (i1, i2) is computed using the moment

matrix M(i1,i2) = (−Q(i1,i2))
−1 which results in µ1

(i1,i2)
= π(i1,i2)M(i1,i2) I1 = 1.9999.

Furthermore, we obtain the following subgenerator for the CTMC corresponding to
the weight of the path (i3, i4)

Q(i3 ,i4) =



−0.4745 0 0 0 0.18871 0.18719 0.09806 0
0 −0.49 0 0 0.19487 0.19331 0.10182 0
0 0 −0.523 0 0.208 0.20632 0.10868 0
0 0 0 −0.594 0.23623 0.23433 0.12343 0
0 0 0 0 −0.3 0 0 0
0 0 0 0 0 −4.8847 0 0
0 0 0 0 0 0 −6.8209 0
0 0 0 0 0 0 0 −8.82


with initial distribution π(i3,i4) = (πi3 ,0,0,0,0). The expected travel time for the path

(i3, i4) results in µ1
(i3,i4)

= π(i3,i4)M(i3,i4) I1 = 3.4377. Finally, the weight of the path (i5)
is described by Qi5 = Di5 such that the expected travel time equals 2.4223.

We can now compute the history vector ψ(i1,w1,i2,0) using (5.15), and (5.16). As-
sume that the traveling time on the edge i1 was w1 = 0.5. Then the vector includ-
ing the distribution immediately after entering the edge i2 results in ψ(i1,0.5,i2,0) =

πi1eDi1 0.5Hi1 i2eDi2 0, and the normalized history vector is ψ̄(i1,0.5,i2,0)=(0.5052,0.4064,
0.0884,0). The conditional weights of the remaining path through the adjacent edge i2
can be computed from an absorbing CTMC with generator matrix containing only the
generator Di2 . Then the first conditional moment results in ψ̄(i1,0.5,i2,0)Mi2 I1 = 0.9752.
We plotted the values of the first conditional moment using weights in interval [0,2]
which is visualized in Fig. 5.3.
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Figure 5.3.: The expected traveling time of the adjacent edge i2 ∈ i1• depending on the
weight of the edge i1.

5.3. Solution methods for SSPP

As already mentioned in Sec. 2.3 the optimal stationary policy u∗ and the correspond-
ing gain vector g∗ of a SSPP can be computed using value iteration, policy iteration
and linear programming which we describe from the sources [29, 27, 28, 40] and ref-
erences therein.

5.3.1. Value Iteration

Using value iteration (VI) the dynamic programming iteration given in Eq. 2.50 is
computed starting with some initial gain vector g0 as

T g(i) = min
u∈D(i)

(
ru(i) +

n

∑
j=1

Pu(i, j)g( j)

)
, for all i ∈ST ,

such that the sequence T g0, T 2g0, . . . is generated successively. In particular, the se-
quence of value representations gk = T gk−1 is computed iteratively for k = 1, where
the T operator is defined in Eq. 2.36, and the resulting optimal reward vector gk after
k-th iteration. In fact, gk = T gk−1 is computed by applying the mapping T k times to
g0, i.e. gk = T kg0.

The convergence of the value iteration to the optimal total reward vector g∗ has been
shown in [28, Proposition 2.2.2] (see Eq. 2.51). During the iteration of the dynamic
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programming algorithm the sequence of errors |gk(i)−g∗(i)| is given in the k-th itera-
tion, such that the errors are bounded as follows

|gnK(i)−g∗(i) | ≤ pKM, (5.18)

where p = maxu∈Π pu, and the reachability probability pu is defined in Eq. 2.40. Ob-
serve that n denotes in Eq. 2.40 an integer such that there is a positive probability
that the absorbing state will be reached after no more that n steps, or rather n deci-
sion epochs. K is a positive integer, and M = n · max

i∈ST , u∈D(i)
|ru(i) |. Consider now the

following error bounds

ε
min
k = min

si∈ST
(gk+1(i)−gk(i)) , ε

max
k = max

si∈ST
(gk+1(i)−gk(i)) . (5.19)

Then it holds for every state i ∈ST , iteration k and arbitrary vector g [27, Eq. 7.17]

gk+1(i)+ ε
min
k (N∗(i)−1)≤ g∗(i)≤ guk(i)≤ gk+1(i)+ ε

max
k (Nuk(i)−1), (5.20)

where the following terms occur

• uk denotes the stationary policy whose uk(i) element results in the minimum in
the k-th iteration for all i.

• N∗(i) denotes the expected number of steps before absorption starting from state
i and following the optimal policy.

• Nuk(i) denotes the expected number of steps before absorption starting from state
i and using the stationary policy uk.

In principle, the value iteration method runs for an infinite number of iterations. Thus
using the established error bounds one can decide when to stop the value iteration
method. In each value iteration gk approximates g∗ with sufficient accuracy, even
though the error bounds in Eq. 5.20 can be computed only if values N∗, Nuk can be
determined. Unfortunately, the values N∗, Nuk can be not be efficiently obtained in
general as explained in [27].

The following example demonstrates the convergence properties of the value itera-
tion method.

Example 5.3. Consider the SSPP instance in example 2.5. Since we have two admis-
sible decisions in states 1, 2, namely u1 and u2, the k-th value iteration performs the
computation of the function T as

gk(i)=T gk−1(i)= min
u1,u2

(
ru1(i)+∑

3
j=1 Pu1(i, j)gk−1( j), ru2(i)+∑

3
j=1 Pu2(i, j)gk−1( j)

)
.

Initially, k = 1 and the value iteration method is initialized with the initial cost vector
g0 = (0,0,0). Then the computation of the above equation is performed such that the
values vector g1 = T g0 is obtained

g1(1) = 0.65, g1(2) = 0.75, g1(3) = 0.
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In the next iteration k = 2 and the values vector g2 = T g1 is obtained after computation
of the above dynamic programming expression

g2(1) = 1.005, g2(2) = 1.275, g2(3) = 0.

To compute the error bounds we first evaluate

ε
min
k = min (gk(1)−gk−1(1), gk(2)−gk−1(2)) ,

ε
max
k = max (gk(1)−gk−1(1), gk(2)−gk−1(2)) ,

which results for the first two value iterations in

ε
min
1 = 0.6, ε

max
1 = 0.75,

ε
min
2 = 0.405, ε

max
2 = 0.525.

In our example all policies are proper and it is obvious that the optimal policy
dmin minimizes the expected infinite-horizon total reward for u(1) = u1 and u(2) =
u1. In that case the value N∗ = Nu1 is finite and can be computed as (I− Pu1)−1.
Analogously, Nu2 can be computed as (I−Pu2)−1. Observe that the matrices Pu1 , Pu2

are of dimension ST ×ST and describe transition probabilities for transient states

Pu1 =

[
0.3 0.3

0.25 0.5

]
, Pu2 =

[
0.4 0.4
0.3 0.5

]
.

We compute Nu1 I1 = (2.9091,3.4545)T , Nu2 I1 = (5,5)T which results in the following
error bounds

g1(1)+ ε
min
1 (Nu1(1)−1) = 0.6+0.6∗1.909 = 1.7454,

g1(1)+ ε
max
1 (Nu1(1)−1) = 0.6+0.75∗1.909 = 2.03175,

g1(2)+ ε
min
1 (Nu1(2)−1) = 0.75+0.6∗2.4545 = 2.2227,

g1(2)+ ε
max
1 (Nu1(2)−1) = 0.75+0.75∗2.4545 = 2.590875.

The results of the value iteration method with error bounds are shown in Fig 5.4.

Discounted Problems as a variant of SSPP We will now discuss the case
where the error bounds can be easily obtained as described in [27]. It corresponds to
the infinite horizon discounted problems. Particularly, any discounted infinite-horizon
MDP with discount factor γ ∈ [0,1) can be reduced to an equivalent SSPP with the
following structure.

Assume that in the original discounted MDP the state space consists of n states,
i.e. S = {1, . . . ,n}. In the corresponding SSPP the absorbing state n+1 with P(n+
1,n+ 1) = 1 is added. Additionally, there is a probability (1− γ) to get absorbed for
every state and decision pair (si,u), i , n+ 1, u ∈ D(i). The transition to the state j
occurs with the normalized probability γPu(i, j) for each transient state and decision
pair. Then in the constructed SSPP instance the assumption about existence of at least
one proper policy is satisfied.

Example 5.4. Observe the following infinite horizon discounted problem and the asso-
ciated SSPP in Fig. 5.5. One can see that the SSPP Markov chain represents a discrete
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Figure 5.4.: The progress of the value iteration method with corresponding er-
ror bounds. Value iteration converges to the optimal values g∗(1) =
1.9091, g∗(2) = 2.4545.

time phase-type distribution where all transient states have the same absorbing prob-
ability Pu(i,n+1) = 1− γ , for i ∈ST and u ∈D(i). Correspondingly, the probability
to not getting absorbed is γ .

Since the sojourn time X in a state is geometrically distributed with success proba-
bility p = 1− γ , the expected number of steps before absorption is given by
E(X) = 1

p = 1
1−γ

for any transient state. In fact, the expected value of the represented
dicrete time phase-type distribution is given by 1

1−γ
. Thus the values N∗ and Nuk can

be assumed to be 1
1−γ

.

In the discounting case the obtained expected reward after n steps is γnru(i) if de-
cision u in state i is chosen. In the associated SSPP the expected reward after n steps
in some state i also equals to γnru(i). The reason for this is that the reward ru(i) is
obtained with probability γn which is the probability of not get absorbed after n steps.
With this insights the error bounds for the discounting case are given by

gk+1(i)+ ε
min
k

(
γ

1− γ

)
≤ g∗(i)≤ guk(i)≤ gk+1(i)+ ε

max
k

(
γ

1− γ

)
. (5.21)

Minimization of the expected time till absorption Observe the case intro-
duced in [27] where expected rewards for all states have the same unit value

ru(i) = 1, for all i ∈ST , u ∈D(i). (5.22)

In infinite horizon MDPs with the above structure and under the expected total reward
criterion the aim is to minimize the expected lifetime of the induced Markov chain.
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s1

s2

s3

γ-discounted MDP

P(1, 2)

P(1, 3)

P(2, 3)

P(2, 2)

P(3, 2) P(3, 1) s1

s2

s3

s4

corresponding SSPP

γP(1, 2)

γP(1, 3)

γP(2, 3)

γP(2, 2)

γP(3, 2) γP(3, 1)

1 − γ
1 − γ1 − γ

Figure 5.5.: Transition diagramms for an γ-discounted MDP and the equivalent SSPP.

This lifetime corresponds to the expected time till reaching the absorbing state. As the
absorbing state n+1 is interpreted as the destination, the SSPP solution corresponds to
the fastest path on the average. The value g∗(i) gives the minimum expected time until
absorption starting from state i. Then the values g∗(i) for all i ∈ ST are the unique
solution of Bellman’s equation [27]

g∗(i) = min
u∈D(i)

(
1+

n

∑
j=1

Pu(i, j)g∗( j)

)
. (5.23)

Note that in discrete time case g∗(i) is the minimum expected number of steps until
absorption [27, 40].

Gauss-Seidel Value Iteration Method Gauss-Seidel version of dynamic pro-
gramming differs from the value iteration method described earlier in that the values
g(i) are no longer computed for all states i simultaneously. The method computes the
value g(i) for one state at a time using the recent values of other states. Then the se-
quence of values g(i) is generated successively starting with the first state 1. For this
the mapping F : Rn→ Rn is defined as

(Fg)(1) = min
u∈D(1)

(
ru(1)+

n

∑
j=1

Pu(1, j)g( j)

)
, (5.24)

and proceeding for states i with i = 2, . . . ,n

(Fg)(i) = min
u∈D(i)

(
ru(i) +

i−1

∑
j=1

Pu(i, j)(Fg)( j) +
n

∑
j=i

Pu(1, j)g( j)

)
. (5.25)

Here states are numbered in some predefined or problem specific order. Generally,
the order in which the values (Fg)(i) are computed has an influence on the course of
the method, e.g., on its convergence. In [23] it has been mentioned that in SSPP it is
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advantageous to start the computation with states which are directly connected to the
absorbing state and then to proceed backwards along potential shortest paths. It is less
efficient to start the computation with initial states in the forward direction.

Observe that (Fg)(i) works analogously to the T operator when computing (T g)(i)
as in Eq. 2.36. Additionally, the recently computed values (Fg)(1), . . . ,(Fg)(i−1) are
incorporated in the above formula, such that values g(1), . . . ,g(i− 1) are replaced in
one iteration. After n iterations all g(i) values are replaced by (Fg)(i). Analogously
to the value iteration method the sequence Fg0,F2g0, . . . is generated successively.
In [27] it has been shown that the Gauss-Seidel dynamic programming converges to g∗
under the same conditions that ensure the convergence of the value iteration method
for SSPP, but the essential advantage is that the Gauss-Seidel converges faster.

Asynchronous fixed point iteration Asynchronous dynamic programming is a
variant of Gauss-Seidel method where the expected rewards of states are computed
in arbitrary order as described in [27]. The algorithm selects an arbitrary state i at a
time and computes its new value gk(i) = T gk−1(i) in the k-th decision epoch. Values
for other states j, j , i, remain unchanged. Depending on the state selection rule it is
possible that the expected reward for some state may be computed several times before
the rewards for other states are computed once [23].

Using asynchronous dynamic programming the arbitrary initial reward vector g0
converges to the optimal gain vector g∗ as stated by results of Bertsekas [27]. The
convergence result holds under the condition that all states are selected infinitely often
which means that a state selection rule should never exclude some state from selection
in the future. Further conditions are the existence of at least one proper policy and that
all improper policies incur infinite expected rewards for at least one initial state [27,
23]. Similarly to Gauss-Seidel method the order in which the values are computed has
an influence on the rate of convergence.

Reduction of the set of decisions It is possible to eliminate non optimal de-
cisions from computation in the progress of the value iteration method as described
in [27, 28]. As mentioned above the optimal policy u minimizes the righthand side
of the equation g∗ = T g∗ such that the equation T g∗ = Tu g∗ holds (see Eq. 2.53). If
some u ∈D(i) exists such that

g∗(i)< ru(i) +
n

∑
j=1

Pu(i, j)g∗( j)

for some i ∈ST then the decision u is non optimal. Thus it can be eliminated from the
considered set of decisions in Eq. 2.50. Unfortunately, the optimal gain vector g∗ is
not known in advance. However, it is stated in [28] that the following inequality holds
for non optimal decision u

g(i)< ru(i) +
n

∑
j=1

Pu(i, j)g( j), (5.26)

where g(i), g(i) are the lower and upper bounds with

g(i)≤ g∗(i)≤ g(i), for all i ∈ST .
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The lower and upper bounds converge to g∗ and can be computed using error bounds
introduced in Eq. 5.20. Then Eq. 5.26 can be evaluated for all u ∈ D(i) in the course
of value iteration. The decisions satisfying Eq. 5.26 can be eliminated. After a finite
number of value iterations possibly all non optimal decisions can be eliminated since
the set of decisions is finite. Then the considered set D(i) can be reduced to optimal
decisions for the state i thus accelerating the value iteration method.

Pathological SSPP instances We now describe the case from [27, 28] where
the assumption that each improper policy results in an infinite expected total reward
for at least one initial state does not hold. In this case the mapping T has multiple fixed
points. Then the results g∗ = T g∗, limt→∞(T kg)(i) = g∗(i) for i = 1, . . . ,n are fragile
and their validity cannot be guaranteed any more.

Consider the deterministic shortest path example in Fig. 5.6 involving a cycle with
zero rewards and first described by Bertsekas [28]. Note that given an initial reward

s1 s2 s3

Policy u1 = (3, 3, 3)

s1 s2 s3

Policy u2 = (2, 1, 3)
1

2

0

0

Figure 5.6.: Instance of deterministic SSPP with cycle involving zero rewards.

vector g0, value iteration generates the sequence g1, g2, . . .. The method computes
the k-th value representation as gk = T gk−1 and returns g+ = limk→∞(T k g0). The
optimal expected reward g∗ is a fixed point of the Bellman operator T . If the required
assumptions are not satisfied it is possible that the T operator admits more than one
fixpoint. In that case the sequence g1, g2, . . . can converge to any fixed point depending
on the initial gain vector g0 [59].

In particular, the vector (0,0,0) satisfies the Bellman’s equation g = T g. Then the
improper policy u2 admits 0 expected total reward for any initial state. In contrast it is
required that every improper policy yields an infinite expected total reward for at least
one initial state which is not the case here. Similar SSPP instances can be solved by
eliminating the zero rewards state-action pairs from the MDP (see, e.g. [59]).

Another prominent example is the pure stopping problem where all rewards are 0
and the reward obtained when the stopping decision is chosen equals −1 [27, 28].
Here the stopping decision can be associated with the decision directly to go to the
absorbing state. Since in stopping problems eventual stopping in each decision epoch
is required, the smallest reward −1 should make the decision to stop in each state
favorable. It has been shown that an improper policy would never contain the decision
to stop. Though it yields finite expected reward 0 for each initial state.

5.3.2. Policy Iteration

Generally, the value iteration method yields in the limit the optimal reward function
and an optimal policy. In this section we describe an alternative approach based on
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work [148, 27, 28] which terminates in a finite number of iterations assuming that the
state space and desicion space are finite.

Concerning the fact that there are finitely many proper policies u ∈ Π the aim is to
iterate over the finite set Π. This implies that termination occurs in a finite number of
steps. The corresponding method is implemented in policy iteration (PI) which starts
with an arbitrary proper policy u0, and generates the sequence of improving policies
u1, u2, . . .. Particularly, we start with policy uk in the k-th iteration and compute the
values guk in the policy evaluation step as the solution of the linear system of equations

g(i) = ruk(i) +
n

∑
j=1

Puk(i, j)g( j), for all i ∈ST , (5.27)

in the n unknowns corresponding to the values g(i). Then the values g(i) from the
solution determine the vector guk . Observe that Eq. 5.27 can be equivalently written as
Eq. 2.56. After the value guk of a policy uk is known it can be minimized in the policy
improvement step by the computation of

uk+1(i) = argmin
u∈D(i)

(
ru(i) +

n

∑
j=1

Pu(i, j)guk( j)

)
, (5.28)

for all i = 1, . . . , n. Observe that in Eq. 5.28 the value of the k-th policy is used in
the second term. Here the policy uk+1 is improved by minimization in the dynamic
programming equation considering guk . A new stationary policy satisfies the equation
Tuk+1 guk = T guk in the T -operator notation.

In the (k+ 1)-th iteration the policy evaluation step is performed using the policy
uk+1 instead of uk. In the course of alternating policy evaluation and improvement
steps an improving sequence of policies is produced. In particular, guk+1(i) ≤ guk(i)
holds for all states i ∈ST and all iterations k [27, Prop. 7.2.2]. Furthermore the policy
improvement step in Eq. 5.28 is based on the following proposition:

Proposition 5.1. [28, Prop. 1.3.4] Let u, u′ be two stationary policies in the policy
iteration step Tu′ gu = T gu, i.e.

ru′(i) +
n

∑
j=1

Pu′(i, j)gu( j) = min
u∈D(i)

(
ru(i) +

n

∑
j=1

Pu(i, j)gu( j)

)
.

Then it holds that
gu′(i)≤ gu(i), for all i ∈ST ,

where the strict inequality arises for at least one state i if the policy u is not optimal.

Policy iteration terminates in the (k+1)-th iteration with the optimal policy uk when
guk+1(i) = guk(i) holds for all i ∈ST .

Example 5.5. Consider the SSPP instance given in Example 2.5 where we have al-
ready obtained the convergence result using value iteration in Example 5.3. Policy
iteration finds the optimal policy u∗ and the corresponding gain vector in two steps.
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Let u0 = (u2,u2) be the initial policy. In the policy evaluation step solution of the
linear system of equations (I−Pu2)−1ru2 is required. This corresponds to

gu0(1) = ru2(1)+Pu2(1,1)gu0(1)+Pu2(1,2)gu0(2)

gu0(2) = ru2(2)+Pu2(2,1)gu0(1)+Pu2(2,2)gu0(2),

where by substituting the expected rewards and transition probabilities we obtain

gu0(1) = 0.85+0.4gu0(1)+0.4gu0(2)

gu0(2) = 0.8+0.3gu0(1)+0.5gu0(2).

Solving the above system of equations for gu0(1) and gu0(2) we obtain the vector

gu0 = (4.138, 4.083).

In the policy improvement step the values u1(1), u1(2) satisfying Tu1 gu0 = T gu0 are
computed as

u1(1) = argmin
u∈D(i)

{
ru(1)+

n

∑
j=1

Pu(1, j)gu0( j)

}
= argmin

u1,u2

{ru1(1)+Pu1(1,1)gu0(1)+Pu1(1,2)gu0(2),

ru2(1)+Pu2(1,1)gu0(1)+Pu2(1,2)gu0(2)}
= argmin

u1,u2

{0.6+0.3 ·4.138+0.3 ·4.083,

0.85+0.4 ·4.138+0.4 ·4.083}
= argmin

u1,u2

(3.06,4.138) = u1,

and

u1(2) = argmin
u∈D(i)

{
ru(2)+

n

∑
j=1

Pu(2, j)gu0( j)

}
= argmin

u1,u2

{ru1(2)+Pu1(2,1)gu0(1)+Pu1(2,2)gu0(2),

ru2(2)+Pu2(2,1)gu0(1)+Pu2(2,2)gu0(2)}
= argmin

u1,u2

{0.75+0.25 ·4.138+0.5 ·4.083,

0.8+0.3 ·4.138+0.5 ·4.083}
= argmin

u1,u2

(3.82638,4.0829) = u1,

such that minimizing decisions are

u1 = (u1,u1).

In the next policy evaluation step the solution of (I−Pu1)−1ru1 has to be found, or
equivalently

gu1(1) = ru1(1)+Pu1(1,1)gu1(1)+Pu1(1,2)gu1(2)

= 0.6+0.3gu1(1)+0.3gu1(2),

gu1(2) = ru1(2)+Pu1(2,1)gu1(1)+Pu1(2,2)gu1(2)

= 0.75+0.25gu1(1)+0.5gu1(2).

97



5.3. SOLUTION METHODS FOR SSPP

The linear system of equations attains the gain vector

gu1 = (1.909,2.4545).

Performing the policy improvement step we obtain

u2(1) = argmin
u∈D(i)

{
ru(1)+

n

∑
j=1

Pu(1, j)gu1( j)

}
= argmin

u1,u2

{ru1(1)+Pu1(1,1)gu1(1)+Pu1(1,2)gu1(2),

ru2(1)+Pu2(1,1)gu1(1)+Pu2(1,2)gu1(2)}
= argmin

u1,u2

{0.6+0.3 ·1.909+0.3 ·2.4545,

0.85+0.4 ·1.909+0.4 ·2.4545}
= argmin

u1,u2

(1.909,2.5954) = u1,

and

u2(2) = argmin
u∈D(i)

{
ru(2)+

n

∑
j=1

Pu(2, j)gu1( j)

}
= argmin

u1,u2

{ru1(2)+Pu1(2,1)gu1(1)+Pu1(2,2)gu1(2),

ru2(2)+Pu2(2,1)gu1(1)+Pu2(2,2)gu1(2)}
= argmin

u1,u2

{0.75+0.25 ·1.909+0.5 ·2.4545,

0.8+0.3 ·1.909+0.5 ·2.4545}
= argmin

u1,u2

(2.4545,2.6) = u1.

The policy iteration method terminates since u2 = u1 = (u1,u1) which implies that u1
is optimal. The optimal total expected reward vector is gu1 = g∗ = (1.909,2.4545).

Modified policy iteration Observe that in the policy evaluation step (5.27) the
system of linear equations with a dimension equal to the number of states has to be
solved. If the state space is very large this step can be computationally complex,
e.g., when standard methods such as Gaussian elemination are applied [27] whose
complexity is O(n3) for an n×n input matrix. In the following we describe the method
as proposed in [27].

The system of equations (5.27), or equivalently

(I−Puk ) guk = ruk

can be approximated iteratively using a certain number of value iterations. In partic-
ular, after determining a guk -improving decision rule in the policy improvement step,
the value iteration is performed with the same policy several times.

The algorithm is initialized with an arbitrary vector g0. Then the policy u0 satisfying
Tu0g0 =T g0 is determined, i.e., the policy is obtained as u0 = argminu∈D(i) (ru +Pu g0).
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After that policy improvement step the expected rewards gu0 are determined using
value iteration with the same policy u0 for several times. The evaluated value gu0 of
policy u0 provides the vector g1 which is used in the next policy improvement step to
determine the policy u1 as described above.

Let m0,m1, . . . be a sequence of positive integers. Then the sequence of values gk+1
is generated by computation

gk+1 = (Tuk)
mk gk, (5.29)

such that the guk -improving policy uk+1 is evaluated using mk iteration steps according
to the current gain vector gk.

The sequence mk, for k = 0,1, . . ., may be chosen according to some heuristic pat-
tern, or uniformly for all policy iterations, i.e. mk =m. Note that if m= 1 we obtain the
value iteration method [28], and if m = ∞ we obtain the policy iteration algorithm with
a policy evaluation step which is solved iteratively using the classical value iteration
method. It has also been mentioned in the literature [28] that the value iteration step
involving only a single policy is less complex than evaluating T guk which considers
all policies. One can also use Gauss-Seidel iterations or any other iterative numerical
solution technique to solve Eq. 5.27 in place of evaluating Eq. 5.29.

The sequence gk+1 generated in the modified policy iteration method converges
monotonically to the optimal gain vector g∗ under the assumption that T g0 ≤ g0 unless
all policies are proper (see e.g. [148, Theorem 7.2.17], [28]).

Asynchronous policy iteration Asynchronous policy iteration is a generaliza-
tion of the policy iteration scheme where value updates and policy updates are per-
formed for predefined sets of states and can be combined in various ways as described
in [28]. The assumption Tu0g0 ≤ g0 is also required here to guarantee that the algo-
rithm yields in the limit the optimal total expected reward and an optimal stationary
policy. This can be achieved, e.g. by selecting an arbitrary initial policy u0 and then
obtaining g0 = gu0 .

Let (gk,uk) be the generated sequence for k = 0,1, . . .. Then the set of states Sk is
selected such that the new pair (gk+1,uk+1) can be determined as a value update

gk+1(i) = Tuk gk(i), for i ∈Sk, (5.30)

and gk+1 is left unchanged for the remaining states

gk+1(i) = gk(i), for i <Sk. (5.31)

In that case the policy remains unchanged, i.e. uk+1 = uk. Another way to compute
the new pair (gk+1,uk+1) is to determine the next policy

uk+1(i) = argmin
u∈D(i)

(
ru(i)+

n

∑
j=1

Pu(i, j)gk

)
, for i ∈Sk, (5.32)

and uk+1 is again left unchanged for the remaining states

uk+1(i) = uk(i), for i <Sk, (5.33)
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which is called a policy update. In that case the values of the gain vector gk+1 = gk
remain unchanged.

Now suppose that the value update follows the policy update, and the same set of
states Sk is used in both steps. Since in the policy update step in Eq. 5.32 the policy
is computed by minimization in the dynamic programming equation considering all
possible actions, the subsequent value iteration computes in fact gk+1 = T gk.

For the case where Sk = ST and mk value updates are done, Eq. 5.30 becomes
Eq. 5.29 and the method implements the modified policy iteration. If mk = 1 value
updates are done we obtain value iteration as described above. If mk =∞ value updates
are done before updating the policy, then we have policy iteration method where the
policy evaluation step is realized through value iteration.

As next method we consider the variant of asynchronous policy iteration where only
subsets of ST are used in the calculation. Then policy iteration is performed with one
of the subsets Sk at a time. Suppose that in the k-th iteration the policy improvement
in Eq. 5.32 has been performed for the states in Sk and the resulting policy uk+1 is
known. Then the policy evaluation is executed only for the states in Sk. This can be
done either using value iteration or using restricted linear programm with unknowns
corresponding to the expected total rewards for states in Sk.

It has been shown in [28], that, under the above assumption on the initial pair (g0,u0)
and additionally assuming that value update in Eq. 5.30 and policy update step in
Eq. 5.32 are executed infinitely often for all states, the algorithm converges to g∗.

5.3.3. Linear Programming

We now describe how the optimal stationary policy u∗ and the corresponding optimal
gain vector g∗ can be computed using linear programming as introduced in [148, 27,
28]. As explained above value iteration computes the vector gk(i) = T k g0(i) in the
k-th iteration such that limn→∞ T ng = g∗ for all vectors g (cf. Eq. 2.51).

In fact, dynamic programming algorithm is a system of equations with one equation
per state i

g(i)≤ min
u∈D(i)

(
ru(i) +

n

∑
j=1

Pu(i, j)g( j)

)
, (5.34)

the solution of the system of equations for i = 1, . . . ,n is the minimal total expected
reward for all states in the one-stage problem. According to the monotonicity property
of the dynamic programming [27, p. 376] we obtain gk(i)≤ gk+1(i) = T gk(i) for all k
and i. Incorporating the convergence criterion given in (2.51) it holds that

gk ≤ g∗ = T g∗,

where the inequality is satisfied elementwise for an arbitrary k. It implies that the
elements of the optimal reward vector belong to the ”largest” vector g satisfying the
inequality

g(i)≤ ru(i) +
n

∑
j=1

Pu(i, j)g( j), (5.35)

for all i∈ST and u∈D(i). Then the system of resulting inequalities depicts a polyhe-
dron in Rn the northeast corner of which represents the optimal solution corresponding
to g∗.
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Since g∗ is the ”largest” vector g the objective function of the linear programm is to
maximize the sum of its elements

∑
i∈ST

g(i),

subject to the constraints given in Eq. 5.35. The vector elements g∗(1), . . . ,g∗(n) rep-
resent the solution of the proposed linear program.

As described in [148, 27, 28] the defined linear program contains n variables and
n∗umax constraints, where umax is the maximal cardinality of the sets D(i), the dimen-
sion of this programm can be very large for large n and umax. Then special large-scale
linear programming methods (e.g., interior-point algorithms) are required to keep prac-
ticability of this approach.

Example 5.6. Consider the SSPP instance in example 2.5 which has already been
solved via value iteration and policy iteration methods. The policies u1, u2 with
u j(i) = u j for j = 1,2 and all i ∈ST , induce the Markov chains visualized in Fig. 5.7.

s1 s2

s3

Policy u1 with ru1 = (0.6, 0.75, 0)T

s1 s2

s3

Policy u2 with ru2 = (0.85, 0.8, 0)T

0.3

0.3

0.4

0.5
0.25

0.25

0.4

0.4

0.2

0.5
0.3

0.2

Figure 5.7.: Transition diagrams for policies u1, u2 in the SSPP instance.

The corresponding linear program is given by

minimize −g(1)−g(2)

subject to

g(1)≤ 0.6 + (0.3g(1) + 0.3g(2))
g(2)≤ 0.75 + (0.25g(1) + 0.5g(2))
g(1)≤ 0.85 + (0.4g(1) + 0.4g(2))
g(2)≤ 0.8 + (0.3g(1) + 0.5g(2)) ,

where the constraints are constructed according to the reward vectors ru1 , ru2 and the
visualized transition diagrams in Fig. 5.7. The optimal solution vector is

g∗ = g = (1.9091,2.4545).

101



5.4. COMPLEXITY OF SOLVING MDPS

5.4. Complexity of Solving MDPs

In the following we summarize the main computational complexity results for infinite
horizon MDPs according to a review given in [91] and references therein. Observe that
any MDP can be transformed to a linear program and solved in a weakly polynomial
time. More precisely, using linear programming MDPs can be solved in a number of
arithmetic operations polynomial in s, d, and b [117], where s = |S |, d = |D |, and
b is the maximum number of bits required to represent the input data. Then general
LP solution techniques, as e.g., Ellipsoid method or interior-point algorithm can be
applied [103, 107, 178]. However, the mentioned algorithms are often impractical for
solving MDPs [117].

Since MDPs and thus also SSPPs can be reformulated as a linear program, the sim-
plex method [57] can be used to solve it. However, even though the simplex results in
exponential running times in the worst case, the method performs very well in prac-
tice [117]. It is still an open question if there exist a pivoting rule that results in poly-
nomial time simplex for solving general linear programs. Note that several pivoting
rules have been shown to result in exponential number of iterations, which may not
necessarily hold for linear programs for solving SSPPs [117]. This is due to the fact
that linear programming techniques do not exploit the special structure of SSPPs.

A significant result on the MDP complexity field was obtained in [178], where it has
been shown that the policy iteration including the simplex method with most-negative-
reduced-cost pivoting rule is a strongly polynomial time algorithm for solving MDPs
with a fixed discount rate 0 ≤ γ < 1. The author showed that the simplex method ter-
minates after at most O( sd

1−γ
log
(

s
1−γ

)
) iterations. Interestingly, strongly polynomial

time algorithms for deterministic MDPs also exist [142, 83], where a quadaratic lower
bound of deterministic problems has been shown. To the best of our knowledge, the
question if SSPPs which belong to the class of undiscounted MDPs can be solved in
strongly polynomial time still remains open.

In the following, we give a short overview of complexity results for standard MDP
methods according to [91] and references therein. The policy iteration method is the
most used iterative approach for solving MDPs [97]. The improvement step can be
performed in O(d s2). The evaluation of the current policy, i.e. computing of its value
requires inverting a s× s matrix which takes O(s2.376) operations [117].

Since PI is guaranteed to find the optimal or ε-optimal solution in a finite number
of iterations, its complexity depends on their bounds. In principle, there are ds distinct
policies in a MDP, such that greedy PI requires at most an exponential number of
iterations until convergence [148, 117]. In each iteration PI computes a set of actions
for which an improvement can be achieved, such that a subset of these switchable
actions can be determined. Greedy PI updates every state with switchable actions [74].

As stated in [117], the number of iterations depend on the sequential improvement
rule of PI. When, e.g., a policy is updated accordingly to the smallest index rule, PI
can take an exponential number of iterations to converge (see [117] and references
therein).

In [122] an upper bound of O(ds

s ) for the greedy PI is proved. Later results provide
an exponential lower bound for the greedy PI with the average reward and the total
reward criterion [74].
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For discounted MDPs with a fixed 0≤ γ < 1 a strongly polynomial time algorithm
exists [178]. It has been shown that for a fixed discount rate 0 ≤ γ < 1 the number
of iterations in the policy iteration with the most-negative-reduced-cost pivoting rule
is bounded by

(
s2(d−1)

1−γ
log
(

s2

1−γ

))
. For discounted infinite horizon MDPs the results

in [148, 117] show that the policy iteration needs at least as many iterations as the value
iteration to compute the optimal policy. However, [117] gives an example for which
the number of iterations of the value iteration is bounded by

(
1

1−γ
log( 1

1−γ
)
)

in worst
case. Concluding, policy iteration and value iteration can converge in polynomial time
for MDPs with fixed discount rate. In contrast, the complexity results for undiscounted
MDPs and thus for SSPPs state that policy iteration runs in a weakly polynomial time
under particular assumptions needed to compute the optimal policy [170, 148].

5.5. Solving of SSPP with Correlations

In this section we briefly describe solution methods adapted to SSPPs with correla-
tions. First we give a solution for finding a minimal expected shortest path between
vini and v f in. Let u be a stationary policy. Then its total expected reward is given by

gu =
∞

∑
t=0

(Pu)t I1 = Nu I1, (5.36)

where the matrix Nu is defined in Eq. 5.8. The value gu(i,x) is the expected weight
of the path from state (i,x) to the absorbing state (0,0) when decision vector u is
used. For the proper policy u the total expected reward function can be computed as
(cf. Eq. 2.54)

(I−Pu)gu = I1, (5.37)

or accordingly to Eq. 2.56 as

gu = (I−Pu)−1 I1. (5.38)

As already defined in Eq. 2.33 the minimal total expected reward starting in state (i,x)
is given by

g∗(i,x) = min
u∈Π

gu(i,x), (5.39)

and the corresponding optimal stationary policy satisfying

u∗(i,x) = arg min
u∈D(i)

(gu(i,x)) . (5.40)

The optimal stationary policy u∗ and the corresponding gain vector g∗ can be computed
using methods described in Sec. 5.3.1 - Sec. 5.3.3. In the following we first describe
the policy iteration method and then give an approach for computing an optimal policy
in dependence of the realized edge traveling times.

Policy Iteration Approach Policy iteration starts with an arbitrary proper policy
u0 which can be obtained by running a shortest path algorithm on the instance where
PHDs are substituted by their expectations and correlations are completely neglected.
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Then the sequence of improved policies u1, u2, . . . is generated such that gu1(i,x) ≥
gu2(i,x)≥ . . . for all (i,x) ∈S (see Prop. 5.1).

In the k-th policy evaluation step the reward function Tuk guk associated with a proper
policy uk is computed as given in Eq. 2.49

guk = Tuk guk = I1+Puk guk , (5.41)

such that the gain vector guk obtained is the solution of the linear system of equations
given uk (5.27)

guk(i,x) = 1 + ∑
j∈S

Puk((i,x),( j,y))guk( j,y), for all (i,x) ∈S . (5.42)

Observe that Eq. 5.42 can also be written as (see Eq. 5.37)

(I−Puk)guk = I1. (5.43)

After the value guk of the policy uk is known the policy improvement is applied to
obtain the improved policy uk+1 satisfying the equation Tuk+1 guk = T guk

uk+1(i,x) = argmin
u∈D(i)

(
1 + ∑

( j,y)∈S
Pu((i,x),( j,y))guk( j,y)

)
. (5.44)

The Algorithm 5.1 iterates between policy evaluation and policy improvement steps
until gk(i,x) = gk−1(i,x) for all (i,x) ∈S and some k.

Algorithm 5.1: Computing the optimal stationary policy u∗ and the gain vector g∗

1: Initialize matrices Pu for all u ∈P;
2: Set k = 0 and compute uk using shortest path algorithm;
3: repeat
4: Compute gain vector guk using Eq. 5.43; . policy evaluation
5: Compute policy uk+1 for all (i,x) ∈S using Eq. 5.44; . policy improvement
6: k = k+1
7: until gk(i,x) = gk−1(i,x) for all (i,x) ∈S
8: Terminate with u∗ = uk and g∗ = guk .

Observe that the value g∗(i,x) is the minimal expected number of steps until absorp-
tion starting from state (i,x). Since the absorbing state is interpreted as the destination
v f in the optimal solution u∗ corresponds to the fastest path on the average. Knowing
the values u∗ and g∗ the optimal decisions depend on the state of the CTMDP.

Let ai = (0<i, πi, 0>i) be the initial distribution vector for the initial edge i ∈ Eini

where zeros vector 0<i is of length ∑ j∈E, j<i n j, and zeros vector 0>i is of length
∑ j∈E, j>i n j. Then the minimal expected weight of the path starting from ini(i) = vini

to v f in is computed as
ξi = ai g∗. (5.45)

The optimal initial edge can be chosen as

i∗ = arg min
i∈Eini

(ξi) , (5.46)
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and the corresponding optimal minimal expected path weight is

ξ
∗ = ai∗ g∗, (5.47)

such that the value ξ ∗/α corresponds to the minimum expected time until absorption,
i.e. to the minimum expected traveling time until the destination v f in is reached.

Now assume that the history of realized values (w1, . . . ,wl) become known to the
vehicle as it traverses the path to the destination. Assume that it arrives at node f in(il).
Then the decisions of the vehicle should be based on history vectors ψ̄(i1,w1,...,il ,wl)

defined in Eq. 5.16. In particular, at node f in(il) the decision on the next edge to
traverse is based on

i∗ = argmin j∈D(il)

( nil

∑
x=1

ψ̄(i1,w1,...,il ,wl)(il,x) ·(
nil

∑
y=1

P j((il,x),(il,y))g∗(il,y)+
n j

∑
y=1

P j((il,x),( j,y))g∗( j,y)

))
.

(5.48)

Example 5.7. We consider a simple graph visualized in Fig. 5.8 where two nodes
allow choices between two outgoing edges. The weights of all edges are described by
the following 2-order hyperexponential PHD

π = (0.5,0.5), D1 =

(
−7 0
0 −0.5

)
,

which has the mean 1.0714 and the squared coefficient of variation 2.5.

vini v f in

i1
i2 i3

i4

i5

i6 i7

i8

i9 i10

Figure 5.8.: Acyclic graph for shortest path computation. Edges with correlated
weights are highlighted in dashed style.

The mean weight of every path between vini and v f in is 4.2857. The weights of
the edges along the upper path are positively correlated with correlation coefficient
ρ = 0.3. The weights of the edges i1 and i9, i2 and i10 are negatively correlated with
correlation coefficient ρ = −0.3. Furthermore, the weights of the edges i5, i6, i7, i8
are uncorrelated. The following transfer matrices H are chosen

Hρ=0.3
ik il =

(
7 0
0 0.5

)
, Hρ=−0.3

im in =

(
0 7

0.5 0

)
, Hρ=0

is it =

(
3.5 3.5
0.25 0.25

)
,
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Figure 5.9.: The PHG corresponding to the graph in Fig. 5.8.

for k = 1,2,3, l = 2,3,4, m = 1,2, n = 9,10, s = 5,6,7, and t = 6,7,8. The path
matrices are given by

Q(i1,i2,i3,i4) =



-7 0 7 0 0 0 0 0
0 -0.5 0 0.5 0 0 0 0
0 0 -7 0 7 0 0 0
0 0 0 -0.5 0 0.5 0 0
0 0 0 0 -7 0 7 0
0 0 0 0 0 -0.5 0 0.5
0 0 0 0 0 0 -7 0
0 0 0 0 0 0 0 -0.5


,

Q(i1,i9,i7,i8) =



-7 0 0 7 0 0 0 0
0 -0.5 0.5 0 0 0 0 0
0 0 -7 0 3.5 3.5 0 0
0 0 0 -0.5 0.25 0.25 0 0
0 0 0 0 -7 0 3.5 3.5
0 0 0 0 0 -0.5 0.25 0.25
0 0 0 0 0 0 -7 0
0 0 0 0 0 0 0 -0.5


,

Q(i1,i2,i10,i8) =



-7 0 7 0 0 0 0 0
0 -0.5 0 0.5 0 0 0 0
0 0 -7 0 0 7 0 0
0 0 0 -0.5 0.5 0 0 0
0 0 0 0 -7 0 3.5 3.5
0 0 0 0 0 -0.5 0.25 0.25
0 0 0 0 0 0 -7 0
0 0 0 0 0 0 0 -0.5


,

106



CHAPTER 5. SOLUTIONS TO SSPP WITH CORRELATED EDGE WEIGHTS

Q(i5,i6,i7,i8) =



-7 0 3.5 3.5 0 0 0 0
0 -0.5 0.25 0.25 0 0 0 0
0 0 -7 0 3.5 3.5 0 0
0 0 0 -0.5 0.25 0.25 0 0
0 0 0 0 -7 0 3.5 3.5
0 0 0 0 0 -0.5 0.25 0.25
0 0 0 0 0 0 -7 0
0 0 0 0 0 0 0 -0.5


.

Optimal policy The behavior of the optimal policy to minimize the mean travel
time from vini to v f in is as follows. For a short time required on the edge, the optimal
choice is the upper edge to exploit the positive correlation. In turn, if the time on
an edge becomes longer, it is better to choose the down edge to exploit the effect of
negative correlation. The initial policy is defined such that in the upper path always
the lower edge is chosen. The policy for the lower path chooses always the lower edge.

Policy Iteration Consider the following initial policy

u0(i1, 1) = i9, u0(i2, 1) = i10, u0(i3, 1) = i4,

u0(i1, 2) = i9, u0(i2, 2) = i10, u0(i3, 2) = i4,

u0(i5, 1) = i6, u0(i6, 1) = i7, u0(i7, 1) = i8,

u0(i5, 2) = i6, u0(i6, 2) = i7, u0(i7, 2) = i8,

u0(i9, 1) = i7, u0(i10, 1) = i8,

u0(i9, 2) = i7, u0(i10, 2) = i8

The weight of the policy for the uncorrelated lower path (i5, i6, i7, i8) is given by

(i5, 1) (i5, 2) (i6, 1) (i6, 2) (i7, 1) (i7, 2) (i8, 1) (i8, 2)

Vector gu0 3.357 5.2143 2.2857 4.1429 1.2143 3.071 0.1429 2

The policy u0 for the path (i1, i9, i7, i8) results in the following gain

(i1, 1) (i1, 2) (i9, 1) (i9, 2) (i7, 1) (i7, 2) (i8, 1) (i8, 2)

Vector gu0 4.2857 4.2857 2.2857 4.1429 1.2143 3.0714 0.1429 2

Finally, the policy weights of the remaining states are given by

(i2, 1) (i2, 2) (i10, 1) (i10, 2) (i3, 1) (i3, 2) (i4, 1) (i4, 2)

Vector gu0 3.2143 3.2143 1.2143 3.0714 0.2857 4 0.1429 2

In the policy improvement step the values u1(i2, 1), u1(i2, 2) satisfying
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Tu1 gu0 = T gu0 are computed as

u1(i2, 1) = argmin
u∈{i10, i3}

{
1+

ni2

∑
j=1

Pu((i2, 1), j)gu0( j)

}
= argmin

i10,i3
{1+Pi1,i2,i10,i8((i2, 1),(i10, 2))gu0(i10, 2),

1+Pi1,i2,i3,i4((i2, 1),(i3, 1))gu0(i3, 1)}
= argmin

i10,i3
{1+1 ·3.0714,1+1 ·0.2857}

= argmin
i10,i3

(4.0714,1.2857) = i3,

and

u1(i2, 2) = argmin
u∈{i10, i3}

{
1+

ni2

∑
j=1

Pu((i2, 2), j)gu0( j)

}
= argmin

i10,i3
{1+Pi1,i2,i10,i8((i2, 2),(i10, 1))gu0(i10, 1)+

Pi1,i2,i10,i8((i2, 2),(i2, 2))gu0(i2, 2),

1+Pi1,i2,i3,i4((i2, 2),(i3, 2))gu0(i3, 2)+

Pi1,i2,i3,i4((i2, 2),(i2, 2))gu0(i2, 2)}
= argmin

i10,i3
{1+0.0714 ·1.2143+0.9286 ·3.0714,

1+0.0714 ·4+0.9286 ·3.0714}
= argmin

i10,i3
(3.0715,3.2041) = i10.

Analogously, the values u1(i1, 1), u1(i1, 2) are computed as

u1(i1, 1) = argmin
u∈{i9, i2}

{
1+

ni1

∑
j=1

Pu((i1, 1), j)gu( j)

}
= argmin

i9,i2
{1+Pi1,i9,i7,i8((i1, 1),(i9, 2))gu0(i9, 2),

1+Pi1,i2,i3,i4((i1, 1),(i2, 1))gu1(i2, 1)}
= argmin

i9,i2
{1+1 ·4.1429,1+1 ·1.2857}

= argmin
i9,i2

(5.1429,2.2857) = i2,
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and

u1(i1, 2) = argmin
u∈{i9, i2}

{
1+

ni1

∑
j=1

Pu((i1, 2), j)gu( j)

}
= argmin

i9,i2
{1+Pi1,i9,i7,i8((i1, 2),(i9, 1))gu0(i9, 1)+

Pi1,i9,i7,i8((i1, 2),(i1, 2))gu0(i1, 2),

1+Pi1,i2,i3,i4((i1, 2),(i2, 2))gu1(i2, 2)+

Pi1,i2,i3,i4((i1, 2),(i1, 2))gu0(i1, 2)}
= argmin

i9,i2
{1+0.0714 ·2.2857+0.9286 ·4.2857,

1+0.0714 ·3.0715+0.9286 ·4.2857}
= argmin

i9,i2
(5.1429,5.1990) = i9,

where uniformized path matrices are given in Sec. D.1. Observe that PI algorithm
requires only 2 iterations to find the optimal policy of the instance in this example.

State-based optimal decisions One can see that the optimal decisions depend
on either the process is in the long phase 2 or in the short phase 1 of the PHD for
an edge. For a long time required on the edge i2 , the best decision is to choose the
adjacent edge i10, since the weights of i2 and i10 are negatively correlated. If the exit
phase of the PHD for the edge i2 was the long phase 2, the process switches to the
short phase 1 of the edge i10 with the full rate 0.5.

If the time required for the edge i2 becomes smaller, the optimal decision is to choose
the adjacent edge i3. The reason is that the weights of the edges i2 and i3 are positively
correlated. If the on the average shorter phase 1 was the exit phase of the PHD for
the edge i2, the process switches to the likewise on the average shorter phase 1 of the
adjacent edge i3 with the full exit rate 7.

The expected travel times to the destination node v f in and the optimal decisions of
the successor edge in dependence of the phase of the PHD are given in Table 7.2. From
Table 7.2 one can see that the optimal policy can change based on the congestion level
of the traversed edge.

History-based optimal decisions In the real system decisions should depend
on realized values and not on the phase of the PHD. We computed the history vectors
ψ̄(i2,w2,il ,0) with w2 ∈ [0,2], l ∈ {3,10}, and ψ̄(i1,w1,im,0) with w1 ∈ [0,2], m ∈ {2,9}
using formula (5.15)-(5.16). Using the history vectors the conditional weights of the
remaining paths (i10, i8), (i3, i4), (i9, i7, i8), (i2, i3, i4) can be computed using (5.17),
such that decisions depend on the previous weights and not on the state of the PHD.

Suppose that the node f in(i2) is reached, such that the realization of the weight w of
i2 is known now. We consider two cases, namely w = 0.3, and w = 1.5, which results
in the history vectors shown in Tab. 5.2.

Using (5.48) the optimal decision based on the realized time value w = 0.3 can be
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Table 5.1.: Mean travel times to the destination node v f in depending on the exit phase
of the PHD for the edge i2 and i1, and optimal decisions of successor edges.

Mean Travel Time to v f in

Exit Phase of PHD for i2 i3 i10 Optimal Successor Edge

Phase 1 0.2857 1.2143 i3
Phase 2 4.0 3.0714 i10

Exit Phase of PHD for i1 i2 i9 Optimal Successor Edge

Phase 1 0.4286 2.2857 i2
Phase 2 6.0 4.1429 i9

Table 5.2.: Realizations of weight w of the edge i2 and the corresponding history vec-
tors. Here ρi2 i3 = 0.3 and ρi2 i10 =−0.3.

Successor edge w = 0.3 w = 1.5

i3 ψ̄(i2,0.3,i3,0) = (0.6658,0.3342) ψ̄(i2,1.5,i3,0) = (0.0008,0.9992)

i10 ψ̄(i2,0.3,i10,0) = (0.3342,0.6658) ψ̄(i2,1.5,i10,0) = (0.9992,0.0008)

determined as follows

i∗ = argmin
u∈{i10, i3}

{( ψ̄(i2,0.3,i10,0)(i10, 1) ·Pi1,i2,i10,i8((i10, 1), :) ·g∗+

ψ̄(i2,0.3,i10,0)(i10, 2) ·Pi1,i2,i10,i8((i10, 2), :) ·g∗),
( ψ̄(i2,0.3,i3,0)(i3, 1) ·Pi1,i2,i3,i4((i3, 1), :) ·g∗+
ψ̄(i2,0.3,i3,0)(i3, 2) ·Pi1,i2,i3,i4((i3, 2), :) ·g∗ )}
= {2.3080, 1.0960}= i3,

and for w = 1.5

i∗ = argmin
u∈{i10, i3}

{( ψ̄(i2,1.5,i10,0)(i10, 1) ·Pi1,i2,i10,i8((i10, 1), :) ·g∗+

ψ̄(i2,1.5,i10,0)(i10, 2) ·Pi1,i2,i10,i8((i10, 2), :) ·g∗),
( ψ̄(i2,1.5,i3,0)(i3, 1) ·Pi1,i2,i3,i4((i3, 1), :) ·g∗+
ψ̄(i2,1.5,i3,0)(i3, 2) ·Pi1,i2,i3,i4((i3, 2), :) ·g∗ )}
= {1.0729, 2.9926}= i10.

Under the optimal policy, the mean traveling time from vini to v f in is 0.5714 rather
than 3.3571 which is the mean traveling time assuming independent edge weights.
The mean duration 0.5714 is the result of starting from the state (i1, 1) and following
the path (i1, i2, i3, i4). If we start from the state (i1, 2) the mean traveling time to the
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Figure 5.10.: The expected traveling time for the adjacent edges i10, and i3 depending
on the weight of the edge i2 and the correlation coefficients ρi2 i10 , and
ρi2 i3 .

destination v f in is 8 rather than 5.2143 which is the mean duration assuming indepen-
dent weights. In that case the route containing independent edge weights is the better
choice.

Effect of correlation The values of the first conditional moment of the traveling
time for the adjacent edges are shown in Fig. 5.10. Here the effect for different values
of correlation coefficients ρi2 i10 , ρi2 i3 is summarized graphically.

One can see that the highest and the lowest correlation assures the maximal de-
viation from the first conditional moment of the uncorrelated successor edge. Fur-
thermore the effect of the positive or negative correlation can be exploited for already
small correlation coefficients.

The values of the first conditional moments of the traveling time for the remaining
paths are visualized in Fig. 5.11, 5.12.

5.6. Computation of the Probability of Arriving on Time

In this section we turn to the question how the path with maximal/minimal probability
of reaching a destination within a given deadline value can be computed. The problem
results in the analysis of a CTMDP in the finite interval [0,T ] where T corresponds
to the given deadline. We first introduce the basic algorithm to compute the max-
imal/minimal accumulated reward in a CTMDP over the finite interval as proposed

111



5.6. COMPUTATION OF THE PROBABILITY OF ARRIVING ON TIME

 0

 1

 2

 3

 4

 5

 0.1  0.2  0.3  0.4  0.5  1  1.5  2

Fi
rs

t c
on

di
tio

na
l m

om
en

t

Traveling time for the edge i2

First conditional moment for traveling time of the remaining path

First conditional moment for the traveling time of the path (i10 , i8)
First conditional moment for the traveling time of the path (i3 , i4)  

Figure 5.11.: The expected traveling time for the paths (i10, i8), and (i3, i4) depending
on the weight of the edge i2.
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Figure 5.12.: The expected traveling time for the paths (i9, i7, i8), and (i2, i3, i4) de-
pending on the weight of the edge i1.

in the literature [127, 42, 49]. Then we discuss numerical approximation algorithms
which generate the optimal policy maximizing/minimizing the expected gain accumu-
lated in the finite interval. In the following we consider a maximization problem.

Now suppose that we consider a CTMDP for a PHG defined in Sec. 5.1 in the
interval [0,T ]. Recall that for the given measurable policy d the matrix Vd

r,t with 0 ≤
r≤ t ≤ T is the Markov transition matrix (see Eq. 2.18). The value at position Vd

r,t(i, j)
gives the probability that the CTMDP is at time t in state j under the condition that it
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was at time r in state i and the policy d is used in the interval [r, t]. Then the matrix Vd
r,t

can be used to obtain the distribution at time t under policy d as pd
t = πVd

0,t as given
in Eq. 2.19, where π is the initial distribution vector of the CTMDP [42, 49].

Note that the expected reward under policy d with initial distribution π in the time
interval [0,T ] is given by π gd

0,T (cf. Eq. 2.22). As given in [42, 49], gd
0,T is the gain

vector containing at position i the expected reward accumulated in the interval [0,T ] if
the CTMDP is in state i at time 0 and the policy d is used. It is computed as

gd
0,T = Vd

0,T gT +
∫ T

0
Vd

τ,T rd dτ

as given in Eq. 2.21. The vector gT is the policy-independent initial gain vector at time
T . The second term describes the accumulated gain until time T .

Let a CTMDP for a PHG have rewards r = 0. As discussed in [42] for a CTMDP
with zero rewards and non-trivial initial gain vector gT the computation of the gain
vector reduces to

gd
0,T = Vd

0,T gT , (5.49)

since the second term becomes zero. Let gT be the terminal gain vector with gT (i) = 1,
if i ∈ SA, and gT (i) = 0 for all i ∈ ST . Recall that SA = {(0,0)}, i.e. the single
absorbing state (0,0) corresponds to the destination node. Then the optimal gain vector
g∗0,T can be used to compute the maximal reachability probability. According to [42,
Lemma 1] the measurable policy d∗ maximizing the gain vector in the interval [0,T ]
in all elements is optimal when

d∗ = argmax
d∈Π

(
Vd

0,T gT in all elements
)
. (5.50)

Then g∗0,T =Vd∗
0,T gT , which is maximal in all elements. Observe that the entry g∗0,T (i) is

the maximal transient probability for reaching the absorbing state (0,0) within time T
starting from state i ∈ST . Thus for the CTMDP with described settings the maximal
transient probability is equivalent to the maximal time bounded reachability.

Corollary 1. Assume that the CTMDP for a PHG is defined using r = 0, gT (i) = 1 for
i ∈SA and 0 otherwise. Let d∗ be the optimal policy maximizing the Eq. 5.49 and g∗0,T
the corresponding gain vector. Then the maximal probability of reaching a destination
state (0,0) from the edge i ∈ Eini in the finite interval [0,T ] is given by [40]

Gi = ai g∗0,T , (5.51)

where ai = (0<i, πi, 0>i), with zeros vector 0<i of length ∑ j∈E, j<i n j, and zeros vector
0>i of length ∑ j∈E, j>i n j.

In the following we describe the basic algorithm developed by Miller [127] for the
computation of the optimal policy d∗ maximizing the expected reward over the finite
planning horizon [0,T ] and the optimal gain vector g∗0,T .

Miller’s Algorithm The algorithm developed in [127] computes d∗ maximizing the
gain vector per state for a finite interval [0,T ] with the initial terminal reward gT = 0.
Let rut be the reward vector for the CTMDP as defined in Sec. 2.2 (see Page 17), and
ui be the decision vector in [ti−1, ti).
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Theorem 5.1 (Theorem 1 and Theorem 6 of [127]). A policy d = (u0,u1, . . . ,uT ) is
optimal if it maximizes for almost all t ∈ [0,T ]

Qu gt,T + ru, (5.52)

where
− d

dt
gt,T = Qut gt,T + rut , and gT ≥ 0.

The maximization of the Eq. 5.52 is equivalent to

− d
dt

gt,T = max
u∈P

(Qu gt,T + ru) , gT ≥ 0.

There is a piecewise constant policy d ∈ Π which results in g∗0,T and maximizes the
Eq. 5.52.

Miller presents a method for choosing an optimal piecewise constant policy. The
following sets are defined for some policy d ∈ Π and the corresponding gain vector
gd

t,T at time t

F1(gd
t,T ) =

{
u ∈P | u maximizes v(1)(u)

}
,

F2(gd
t,T ) =

{
u ∈F1(gt,T ) | u maximizes −v(2)(u)

}
,

...

Fn+1(gd
t,T ) =

{
u ∈Fn(gt,T ) | u maximizes (−1)nv(n+1)(u)

}
,

where

v(1)(u) = Qu gd
t,T + ru,

v( j)(u) = Qu v( j−1) for 2≤ j ≤ n+1 with

v( j−1) = v( j−1)(u) for any u ∈F j−1.

Here the vector v(i)(u) contains the values of the i-th derivative of gt,T multiplied with
(−1)(i−1). For the given gd

t,T and the derivatives at t, the vector gd
t ′,T for t ′ < t can be

computed as [49]

gd
t ′,T = gd

t,T +
∞

∑
i=1

(t ′− t)i

i!
v(i)(u).

Assume that the vectors u are lexicographically ordered

u(1), u(2), . . . , u(n).

For each point in time t ∈ [0,T ] we consider the set of actions which maximizes the first
derivative of the vector function gt,T and thus is optimal. It is sufficient to consider only
up to the first n+1 derivatives [127]. Then the selection rule obtains the optimal policy
d∗(t) at time t as the lexicographically smallest vector u ∈Fn+1(gd

t,T ). Furthermore,
the selected d∗(t) is optimal in (t− ε, t) for some ε > 0 which is summarized in the
following Theorem.
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Theorem 5.2 (Lemma 4 of [127], Theorem 2 [42, 49]). Consider the policy d ∈ Π

defined on the interval (t ′,T ]. Let u ∈Fn+1(gd
t,T ) for t ′ < t < T . Then exists some ε

where 0 < ε < t− t ′ such that u ∈Fn+1(gd
t ′′,T ) for all t ′′ ∈ [t− ε, t].

The algorithm developed by Miller [127] for computation of the optimal piecewise
constant policy on [0,T ] maximizing the Eq. 5.52 is given in Algorithm 5.2.

Algorithm 5.2: Computing the optimal policy d∗ and the gain vector g∗0,T
1: Initialize gT , t ′ = T ;
2: Determine ut ′ from Fn+1(gt ′,T ) and gt ′,T using the selection procedure described;
3: Obtain gt,T , 0≤ t ≤ t ′, by solving

− d
dt

gt,T = Qut′ gt,T + rut′

with the previous value gt ′,T as terminal condition;
4: Set t ′′ = inf{t : ut satisfies the selection procedure in [t, t ′) based on gt,T};
5: If t ′′ ≤ 0 terminate and return the gain vector g∗0,T at t = 0 and the corresponding

optimal piecewise constant policy d∗. Else go to 2 with t ′ = t ′′.

The algorithm works in a backward manner. It starts with the initial gain vector
gT at time t ′ = T , computes the optimal policy u at t ′ and assumes that the policy is
constant in the small time interval (t, t ′]. Then the gain vector gu

t ′,T can be computed
for the whole interval and the optimal decision vector at t can be determined. The
computations are repeated until the whole interval [0,T ] is covered.

In [127] it is shown that a piecewise constant policy has a finite number of switch
points in [0,T ]. Thus steps 2-5 of the Algorithm 5.2 are executed a finite number of
times. However, step 4 is not implementable, which is used for obtaining the length of
time the decision vector is valid. Thus we present approximation algorithms to obtain
d∗ and the corresponding g∗0,T in the following.

Discretization Approach The discretization algorithm uses a fixed interval for
the length of time the optimal policy d(t ′) obtained is valid instead of computing step 4
of the Algorithm 5.2. For a fixed length of the discretization step the corresponding
DTMDP is obtained which is then used to compute the optimal policy and the optimal
gain vector. It is shown in the literature [125, 127] that for the step length going to zero
the policy converges towards the optimal policy. The algorithm computes ε-optimal
policies, where a policy d is called to be ε-optimal if ‖g∗t,T−gd

t,T‖∞≤ ε for all t ∈ [0,T ].
In the following we describe the algorithm from [127, 49, 40].

Let h > 0 be a fixed interval length. For h sufficiently small it holds that eh Qu
=

Pu
h +o(h2) such that the stochastic matrix Pu

h is defined as

Pu
h = I+h Qu, (5.53)

which is the transition matrix of the DTMC induced by the decision vector u. Given h
and for every u ∈P the matrices Pu

h define a DTMDP.
Knowing the gain vector gt,T at time t and the decision vector u holding in a fixed

interval (t − h, t] the approximation for the gain vector gt−h,T at time (t − h) can be
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obtained as
gt−h,T = Pu

h gt,T + hru +o(h). (5.54)

For sufficiently large N the discretization step can be set to h = T/N. Then dynamic
programming algorithms for DTMDPs can be applied to obtain the optimal policy and
its value for the problem with time horizon N.

Let nz be the average number of non-zero elements in Qu. Then the overall effort of

the described algorithm results in O(h−1 nz(
n
∑

i=1
mi)) [42], where mi is the cardinality

of D(i) for i ∈S .
Since the value of ε cannot be determined in the discretization approach, the dis-

cretization step length h for a predefined ε cannot be chosen. Furthermore, the value
of h is rather constant and not adaptable. In the following the uniformization based
algorithm for computing an ε-optimal policy for a predefined ε is presented.

Uniformization Approach The numerical algorithm developed in [42] computes
the ε-optimal policy in a backward manner starting from T with some predefined gT .
In the following we describe the efficient algorithm proposed in [49]. For a given gain
vector gt,T and constant decision vector u in the interval (t−δ , t] the vector gt−δ ,T can
be computed as

gt−δ ,T = eδ Qugt,T +
δ∫

τ=0
eτ Qurdτ

=

(
∞

∑
k=0

(δ Qu)k

k!

)
gt,T +

δ∫
τ=0

(
∞

∑
k=0

(τ Qu)k

k!

)
rdτ,

(5.55)

where the first term describes the accumulated reward in the interval (t,T ] and the sec-
ond term describes the accumulated reward in the interval (t−δ , t]. The Eq. 5.55 can
be solved using uniformization method as follows. Let α =maxu∈P

(
maxi∈ST (Qu(i,i))

)
,

then the stochatic matrix can be defined as in Eq. 2.11

Pu = I+
1
α

Qu,

and β (k,α t) is the probability that a Poisson process with parameter α t performs k
jumps (cf. Eq. 2.12). Let

ζ (α,δ ,K) = (1−
K

∑
l=0

β (l,αδ )).

Then the Eq. 5.55 can be computed as

gt−δ ,T =
∞

∑
k=0

(Pu)k
(

β (k,αδ )gt,T +
ζ (α,δ ,K)

α
r
)
. (5.56)

Assume now that the following bounds g
t,T
≤ g∗t,T ≤ gt,T are known. E.g. for t = T

the value of gT is initialized with 0 in Miller’s algorithm, then the bounds can be easy
obtained. The following vectors are defined

v(k) = Put v(k−1), w(k) = Put w(k−1)

v(k) = maxu∈P

(
Put v(k−1)

)
, w(k) = maxu∈P

(
Put w(k−1)

)
with v(0) = g

t,T
, v(0) = gt,T , w(0) = w(0) = r.

(5.57)
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Here the decision vector ut is the lexicographically smallest vector from Fn+1(gt,T
).

Vectors v(k), w(k) correspond to the policy using decision vector ut in time interval (t−
δ , t]. The vector sequences v(k), w(k) can be obtained using methods for computation
of optimal policy in a finite horizon DTMDP [27]. Given these vectors, decision vector
u, and bounds for gt,T the error bounds for gt−δ ,T can be computed as [49, Theorem 3]

gK
t−δ ,T

=
K
∑

k=0

(
β (k,α t)v(k)+ζ (α,δ ,k)w(k)

)
+
(

γK
t,δ

+νK
δ

)
I1≤ g∗t−δ

≤
K
∑

k=0

(
β (k,α t)v(k)+ζ (α,δ ,k)w(k)

)
+
(

γ
K
t,δ +ν

K
δ

)
I1≤ gK

t−δ ,T

(5.58)

with

γK
t,δ

= ε1(K,αδ ) maxi∈S
(
v(K)(i)

)
, γ

K
t,δ = ε1(K,αδ ) maxi∈S

(
v(K)(i)

)
νK

δ
= ε1(K,αδ ) maxi∈S

(
w(K)(i)

)
, ν

K
δ
= ε1(K,αδ ) maxi∈S

(
w(K)(i)

)
ε1(K,αδ ) = ζ (α,δ ,K), ε2(K,αδ ) =

(
δζ (α,δ ,K)− K+1

α
ζ (α,δ ,K +1)

)
.

The sums of Poisson probabilities can be truncated resulting in the following bounds
for every δ > 0

K
∑

k=0
β (k,αδ )v(k)+ γ

K
t,δ ≥

∞

∑
k=0

β (k,αδ )v(k),
K
∑

k=0
ζ (k,αδ )w(k)+ν

K
δ
≥

∞

∑
k=0

ζ (k,αδ )w(k),

which can be computed using the precomputed vectors v(1), . . . ,v(K), v(1), . . . ,v(K),
w(1), . . . ,w(K), w(1), . . . ,w(K). Using g

t,T
and gt,T for the computation of gK

t−δ ,T
, gK

t−δ ,T

it holds that ‖gt,T −g
t,T
‖ ≤ ‖gK

t−δ ,T −gK
t−δ ,T

‖.
To ensure that ‖g0,T −g0,T‖∞ ≤ ε for a given ε the error at time t should be at range

of ε(T − t)/T which can be reached by an appropriate choice of δ [49]. Let εtrunc be
the error due to the truncation point of the Poisson probabilities and εsucc be the error
due to the computation of the vector at time t which determines the reward gained in
(t,T ] such that

εtrunc(t,δ ,K) = γ
K
t,δ − γ

K
t,δ

+ν
K
δ
−ν

K
δ
∈ O(δ K+1). (5.59)

Now let u∗l be the decision vector chosen by the selection procedure at time of the
l-th transition in the interval [t − δ , t]. Then the difference between vectors v(k) and
(∏k

l=1 Pu∗l ) g
t

determines the following error

εsucc(t,δ ,K) =

∥∥∥∥∥ K

∑
k=0

(
v(k)−

(
∏

k
l=1 Pu∗l

))
e−αδ (αδ )k

k!

∥∥∥∥∥
∞

. (5.60)

Consider that gT = g
T
= gT = 0 in the initial step such that the local error εT = 0. For

a step length δ the local error is in (O)(δ 2) and theoretically the global error goes to 0
as δ → 0. Then it holds that [42]

ε(t,δ ,K)= εtrunc(t,δ ,K)+εsucc(t,δ ,K)≤ ε(t,δ ,K+1)= εtrunc(t,δ ,K+1)+εsucc(t,δ ,K+1)
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With these considerations we can define the algorithm 5.3 for computing g0,T , g0,T

and the ε-optimal policy d with the corresponding gain vector of at least g0,T such
that g0,T ≤ g∗0,T ≤ g0,T and ‖g0,T −g0,T‖∞ ≤ ε for the given precision ε [49, 42]. The
algorithm requires g

T
, gT , w, Kmax, ε as an input.

Algorithm 5.3: Computing the optimal policy d∗ and the bounding vectors for g∗0,T
1: Initialize i = 0, t = T ;
2: set stop = f alse, K = 1, v(0) = g

T
, v(0) = gT , w(0) = w(0) = r

3: select ut from Fn+1(gt,T ), if i = 0 set c0 = ut

4: repeat
5: compute v(K), v(K), w(K), w(K) using Eq. 5.57
6: find δ = max

(
argmaxδ ′∈[0,t]

(
εtrunc(t,δ ′,K)≤ wδ ′

T−t0
ε

)
,min(δmin, t− t0)

)
7: compute εtrunc(t,δ ′,K) and εsucc(t,δ ,K) using Eq. 5.59, Eq. 5.60
8: if εtrunc(t,δ ′,K)+ εsucc(t,δ ,K)> T−t+δ

T−t0
ε then

9: reduce δ until
10: εtrunc(t,δ ′,K) + εsucc(t,δ ,K)≤ T−t+δ

T−t0
ε

11: or δ = min(δmin, t− t0) and set stop = true
12: K = K +1
13: until stop or K = Kmax +1
14: compute g

t−δ ,T
from v(k), w(k), and gt−δ ,T from v(k), w(k), k = 0, . . . ,K using

Eq. 5.58
15: if ut = ci then ci+1 = ut , tt = t−δ and i = i+1
16: if t− t0 = δ then terminate else go to 2 with t = t−δ

The uniformization algorithm is much more efficient than the discretization tech-

nique. The overall effort per time step is O(K nz(
n
∑

i=1
mi)). There are practical instances

where the difference between the number of required iterations is a factor of 1000 [42].

Computing the Probability of Arriving on Time Using approximation tech-
niques for computing the optimal policy d and the optimal gain vector g0,T we can
formulate the algorithm for finding a path in a PHG that maximizes the probability of
reaching a destination v f in in the interval [0,T ] as proposed in [40].

The backward induction algorithm 5.4 is based on the discretization approach de-
scribed earlier. The algorithm operates on the SSPP CTMDP with r = 0, gT (i,x) = 1
for (i,x) ∈SA and gT (i,x) = 0 otherwise. Given the discretization step length h the
matrices Pu

h can be computed using Eq. 5.53 for all u ∈P and are used as an input.
For sufficiently large N the discretization step h is obtained as given in step (1).

The obtained stochastic matrices Pu
h for all u ∈P determine the DTMDP. Then the

modified policy iteration algorithm can be applied for solving finite-horizon discrete-
time MDP (cf. Sec. 5.3.2).

Since the discretization step h is fixed we obtain DTMDP on [0,N], N < ∞. Then
an optimal policy ui in the interval (ti−1, ti] is assumed to be constant and is computed
at decision epoch i ∈ {0, . . . ,N} of the DTMDP. Given the initial gain vector gT and
the optimal decision vector u holding in the interval (t− h, t] the gain vector is then
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Algorithm 5.4: Computing the ε-optimal policy d and the gain vector gd
0,T

1: Initialize h = T
N , t = N, gut = gT

2: for t = t−1 downto 1 do
3: determine new policy ut satisfying Tut gut+1 = T gut+1 using Eq. 5.28 as

ut(i,x) = arg max
u∈D(i)

(
∑

( j,y)∈S
Pu

h((i,x),( j,y))gut+1( j,y)

)

4: compute the gain vector using Eq. 5.54 as

gut = Put
h gut+1

5: terminate with d = (u0, u1, . . . ,uN) and gd
0,T = gu0

computed in step (4). The procedure is repeated until gain vector gui for each decision
epoch i ∈ {0, . . . ,N} is computed. Note that the value of ε and the value of h for some
predefined precision ε cannot be determined in Algorithm 5.4.

Knowing the ε-optimal policy d maximizing the expected reward over the finite
interval [0,T ] and the gain vector gd

0,T the maximal probability to reach the destination
(0,0) from the edge i can be computed for each i ∈ Eini using (5.51). Then the path
from vini maximizing the probability to arrive at v f in with a weight≤ T can be obtained
from d. Its initial edge is selected according to

i∗ = arg max
i∈Eini

(Gi) . (5.61)

The maximal probability to reach v f in in the interval [0,T ] can be obtained as

G∗ = ai∗ gd
0,T . (5.62)

Using the discretization approach implemented in Algorithm 5.4 the decisions in the
real system can be made based on history vectors ψ(i1,w1,...,il ,wl) defined in Eq. 5.14.
Then the weights wk have to be multiples of the discretization step length h. Assume
that the realized weight of the edge k is given by wk = tk h for tk ∈ N and t = ∑

l
k=1 tk.

Considering the whole history of realizations (w1, . . . ,wl) the optimal decision at time
t ·h can be approximated using vector gut . Note that the value gut (i,x) is the maximal
probability of reaching the absorbing state (0,0) in the interval [t,N] starting from state
(i,x).

Assume that the vehicle arrives at node f in(il). The decision on the next edge to
traverse is based on

i∗ = argmax j∈D(il)

( nil

∑
x=1

ψ̄(i1,w1,...,il ,wl)(il,x) ·(
nil

∑
y=1

P j((il,x),(il,y))gut (il,y)+
n j

∑
y=1

P j((il,x),( j,y))gut ( j,y)

))
.

(5.63)
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vini v f in

i1
i2 i3

i4

i5

i6 i7

i8

i9 i10

Figure 5.13.: A small acyclic graph. Edges with correlated weights are highlighted in
dashed style.
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Figure 5.14.: The probabilities of arriving at the destination node v f in with a path
weight of less or equal to w.

Example 5.8. We consider the simple graph from example 5.7 visualized in Figure 5.13.

The probability to reach the destination v f in in a given time depends on the path.
Note that the weights of all edges are described by order 2 hyperexponential PHDs
with mean 1 and a squared coefficient of variation 2.5.

The upper path (i1, i2, i3, i4) contains edges with positively correlated edge weights
where the correlation coefficient is ρ = 0.3. The lower path (i5, i6, i7, i8) contains
edges with uncorrelated weights. The weights of the edges i1, i9, and i2, i10 are nega-
tively correlated.

We computed the maximal probability to reach the node v f in with at most T time
units, for T = 2, . . . ,20, using the discretization based algorithm 5.4. We use h =
T/N for relatively large N = 3000 and solve the resulting DTMDP for a finite time
horizon of N steps. The computed approximation results are summarized graphically
in Fig. 5.14.
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It can be seen that the more reliable route, e.g. (i5, i6, i7, i8) results in a lower prob-
ability of meeting a deadline for small time horizons. Hence, if one starts just before a
deadline, the most correlated route offers a higher probability of avoiding lateness. In
this case, the path containing edges with correlated weights should be preferred to the
path containing edges with uncorrelated or negatively correlated weights.

On the other hand, the more reliable route (i5, i6, i7, i8) results in a higher proba-
bility of meeting a deadline for relatively long time horizons, e.g. T > 5.

The optimal policy behaves as follows: For a long time horizon, the best decision
is the more reliable route (i5, i6, i7, i8). If the time horizon becomes smaller, then the
best decision is the route with positively correlated weights (i1, i2, i3, i4).

Empirical Comparison of Uniformization and Discretization Methods We
compute probabilities of arriving on time for subroutes (i2, i3, i4), (i2, i10, i8) in differ-
ent time intervals using the uniformization 5.3 and the discretization approach 5.4.
The corresponding PHG is visualized in Figure 5.15.

1πi2 (1)

2πi2 (2)

1

2

1

2

1

2

1

2

i8

i10

i10

i3
i3

i4
i4

Figure 5.15.: The PHG corresponding to subroutes (i2, i3, i4), (i2, i10, i8) in Fig. 5.13.

Results obtained for interval length T = 1 Table 5.3 includes bounds for the
probability of arriving on time. We summarized results gained by policies computed
with uniformization method. For that we present approximation results computed with
discretization approach.

We assume that the CTMDP has initial probability distribution (0.5, 0.5). The edge
weights along the route (i2, i3, i4) are correlated, i.e., ρi2 i3 = 0.3 and ρi3 i4 = 0.3. On
the contrary, route (i2, i10, i8) contains uncorrelated edge weights, i.e., ρi2 i10 = 0 and
ρi10 i8 = 0. Observe that the transient probability is higher for the correlated policy
(i2, i3, i4) than for the uncorrelated policy (i2, i10, i8).

The number of iterations in the uniformization algorithm is set adaptively according
to the value ε . To compare the results the discretization step h is set in such a way
that the discretization algorithm computes the same number of iterations as in the
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Table 5.3.: Probability bounds and approximate probabilities for the routes (i2, i3, i4)
and (i2, i10, i8) in the small graph example presented in Fig. 5.15. The
interval lenght is 1. The initial probability is (0.5, 0.5).

Subpath (i2, i3, i4) with ρ = 0.3
Uniformization Discretization

ε # Iter. Bounds for G∗ Approximation for G∗

1.0e+0 10 4.4061 85e−01 5.3913 93e−01 4.8051 64e−01

1.0e−1 18 4.8829 01e−01 4.9589 44e−01 4.8636 47e−01

1.0e−3 32 4.9232 07e−01 4.9242 07e−01 4.8915 34e−01

1.0e−5 56 4.9237 52e−01 4.9237 61e−01 4.9058 14e−01

1.0e−10 180 4.9237 57e−01 4.9237 57e−01 4.9183 03e−01

1.0e−14 99867 4.9238 53e−01 4.9238 55e−01 4.9237 47e−01

Subpath (i2, i10, i8) with ρ = 0

1.0e+0 10 2.2189 88e−01 3.2041 96e−01 2.3968 47e−01

1.0e−1 18 2.5766 47e−01 2.6520 73e−01 2.4930 98e−01

1.0e−3 30 2.6092 17e−01 2.6101 97e−01 2.5401 91e−01

1.0e−5 56 2.6096 75e−01 2.6096 84e−01 2.5726 18e−01

1.0e−10 180 2.6096 79e−01 2.6096 79e−01 2.5981 89e−01

1.0e−14 99867 2.6098 85e−01 2.6098 88e−01 2.6096 59e−01

uniformization algorithm. In all cases, the discretization step h allows for obtaining
stochastic matrices Pu

h .
The results of the uniformization are more accurate than those of the discretization

approach. From [127] we know that discretization approach converges towards the
optimal gain vector for h→ 0. However, discretization method is much slower than
uniformization, its runtime difference is a factor of 1000. Let λmax be the maximal exit
rate in matrix Qu for some decision vector u. As estimated in [42], the discretiza-
tion method requires n ≈ λmaxT/ε iterations to reach a global accuracy of ε . In the
small graph example, for λmax = 7, T = 1 and ε = 0.00001, uniformization needs only
56 iterations. By contrast, discretization needs about 180000 iterations to obtain a
comparable result 4.92375214e−01.

Results obtained for interval length T = 3 Table 5.4 shows the results for the
probability gained by both policies computed with uniformization and discretization
in the interval [0,3]. The initial probability distribution is (0.5, 0.5).

For T = 3 and ε = 0.001, even 3000 iterations of discretization method are required
to reach a comparable value 5.95513742e− 01 which is computed with only 100 it-
erations of the uniformization. As already mentioned in [42], uniformization is much
more efficient.
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Table 5.4.: Probability bounds and approximate probabilities for the routes (i2, i3, i4)
and (i2, i10, i8) in the small graph example shown in Fig. 5.15. The interval
length is 3. The initial probability distribution is (0.5, 0.5).

Subpath (i2, i3, i4) with ρ = 0.3
Uniformization Discretization

ε # Iter. Bounds for G∗ Approximation for G∗

1.0e+0 39 5.3896 15e−01 6.2728 62e−01 5.9078 09e−01

1.0e−1 58 5.8952 88e−01 5.9877 11e−01 5.9234 47e−01

1.0e−3 106 5.9551 08e−01 5.9560 96e−01 5.9380 46e−01

1.0e−5 179 5.9557 58e−01 5.9557 68e−01 5.9452 61e−01

1.0e−10 600 5.9557 64e−01 5.9557 64e−01 5.9526 28e−01

1.0e−14 299844 5.9557 63e−01 5.9557 65e−01 5.9557 58e−01

Subpath (i2, i10, i8) with ρ = 0

1.0e+0 38 5.2582 22e−01 6.1790 76e−01 5.7327 97e−01
1.0e−1 57 5.7742 46e−01 5.8680 89e−01 5.7671 09e−01
1.0e−3 104 5.8344 25e−01 5.8354 20e−01 5.7979 35e−01
1.0e−5 177 5.8350 75e−01 5.8350 85e−01 5.8132 87e−01
1.0e−10 590 5.8350 82e−01 5.8350 82e−01 5.8285 53e−01
1.0e−14 299844 5.8350 81e−01 5.8350 83e−01 5.8350 69e−01

Results obtained for interval length T = 6 Table 5.5 shows the results for the
probability gained by both policies computed with uniformization and discretization
in the larger interval [0,6]. It holds that π = (0.5, 0.5).

For the larger interval T = 6 and ε = 0.001, uniformization needs 219 iterations,
whereas discretization needs about 4300 iterations to obtain a comparable result
7.8832 67e− 01. We summarize the results obtained with an accuracy of ε = 0.001
in Fig. 5.16. The discretization step h is set in such a way that discretization runs the
same number of iterations as uniformization.
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Table 5.5.: Probability bounds and approximate probabilities for the routes (i2, i3, i4)
and (i2, i10, i8) in the small graph example shown in Fig. 5.15. The interval
lenght is 6 and π = (0.5, 0.5).

Subpath (i2, i3, i4) with ρ = 0.3
Uniformization Discretization

ε # Iter. Bounds for G∗ Approximation for G∗

1.0e+0 85 7.1468 65e−01 8.0800 19e−01 7.8442 81e−01

1.0e−1 120 7.8072 64e−01 7.9031 66e−01 7.8559 28e−01

1.0e−3 219 7.8832 52e−01 7.8842 42e−01 7.8686 69e−01

1.0e−5 374 7.8840 41e−01 7.8840 51e−01 7.8750 51e−01

1.0e−10 1260 7.8840 49e−01 7.8840 49e−01 7.8813 81e−01

1.0e−14 599852 7.8841 05e−01 7.8841 06e−01 7.8840 43e−01

Subpath (i2, i10, i8) with ρ = 0

1.0e+0 80 7.7619 63e−01 8.6297 47e−01 8.4245 42e−01

1.0e−1 117 8.3880 91e−01 8.4839 74e−01 8.4376 63e−01

1.0e−3 210 8.4648 99e−01 8.4658 76e−01 8.4501 35e−01

1.0e−5 359 8.4656 88e−01 8.4656 98e−01 8.4566 11e−01

1.0e−10 1219 8.4656 96e−01 8.4656 96e−01 8.4630 25e−01

1.0e−14 599852 8.4657 50e−01 8.4657 51e−01 8.4656 91e−01
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Figure 5.16.: Bounds and approximations for transient probabilities computed with the
uniformization and discretizaton approach.
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Figure 5.17.: Transient probabilities of arriving at the node v f in(i3) and v f in(i10) with
a path weight of less or equal to 3.

Conditional probability of arriving on time In the real system, decisions have
to depend on history vector ψ̄(i1,w1,...,il ,wl) and the remaining time to the deadline. We
computed history vectors ψ̄(i2,w2,il ,0) for subroutes (i2, i3), (i2, i10), where w2 ∈ [0,2],
l = 3, 10. Then the probabilities of passing the adjacent edges i3, i10 in the time
interval [0,3] are computed with discretization approach. The results are shown in
Figure 5.17. Observe that ψ̄(i2,w2,i3,0)≈ (0, 1) for w2≥ 1, since ψ̄(i2,w2,i10,0) = (0.5, 0.5)
for all w2 ∈ [0,2]. We analyzed the subroutes (i2, i3), (i2, i10) for different correlation
coefficients and different deadlines using history vectors ψ̄(i2,w2,il ,0), w2 ∈ [0,2]. The
resulting probabilities of arriving on time are summarized graphically below.
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Figure 5.18.: Transient probabilities for T = 3 depending on the realized weight of
edge i2 and correlation coefficient of the adjacent edge ik.
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Figure 5.19.: Transient probabilities for T = 4 depending on the realized weight of
edge i2 and correlation coefficient of the adjacent edge ik.
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Figure 5.20.: Transient probabilities for T = 5 depending on the realized weight of
edge i2 and correlation coefficient of the adjacent edge ik.

5.7. Model Checking Algorithms

Model checking for CTMDPs is a well established technique to verify quantitative
properties of systems where some external control is available. Various performance
properties such as performability, availability in a given time interval, dependability,
interval and reward bounded reachability can be proved or disproved [18, 16, 42].

For example, consider the scheduling problem with a fixed number of jobs with
exponentially distributed completion times and identical machines [18]. Computation
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of the optimal policy maximizing the probability of meeting a time deadline can be
reduced to the interval bounded reachability probability in a CTMDP [18]. Consider a
fault-tolerant multiprocessor system with exponentially distributed times to failure and
repair times. Availability of the system in the time interval [0,T ] using single repair
unit with preemptive priorities can be analyzed. Computation of state-dependent repair
priorities corresponds to the computation of the optimal policy maximizing availability
which is the problem of maximizing the accumulated reward of a CTMDP in a finite
interval [0,T ] [42].

We first introduce the Continuous Stochastic Logic (CSL) which is a formal method
for system verification providing specification of performance measures of interest for
CTMCs. Model checking problems of CSL can be interpreted in terms of decision
problems in CTMDPs. The authors in [20] proposed an extention of CSL over CT-
MDPs and introduced an approach exploiting computational methods from CTMDP
field to prove or disprove CSL formulae. According to the results from [42], model
checking of CSL formulae can be linked to the computation of an optimal gain vector
in CTMDPs. Since our PH-Graph model can be easily converted to a CTMDP with
constant rewards, paths in a PH-Graph describe CTMCs. Thus the PH-Graph model is
exactly the one for which the model checking of CSL formulae can be applied. We first
introduce the logic CSL and then describe the model checking algorithm for CTMDPs
based on work in [16, 17, 42].

5.7.1. Continuous Stochastic Logic

The logic CSL is a stochastic extension of Computational Tree Logic (CTL) [21]. It
is widely used to specify and evaluate quantitative properties of systems as logical
formulae over CTMCs [12, 17, 16, 19]. Basically, the syntax of CSL contains state-
and path-formulae. Let r be a reward vector for a CTMDP and AP be a set of atomic
propositions. J and T are intervals onR≥0, where interval T specifies some time-bound
and interval J specifies some reward-bound. Let p be a probability andZ a comparison
operator from the set {≤,≥,<,>}. The syntax of CSL can be defined as [16, 42]

State-formulae

Φ ::= a | ¬Φ |Φ∨Φ | SJ(Φ) | PJ(φ) |CT
J (Φ) | It

J(Φ),

Path-formulae
φ ::= ΦUT

Ψ | XT
Φ,

where Φ and Ψ are state formulae. State-formulae are interpreted over the states of
a CTMDP. The model checking problem for a state-formula Φ is to determine the set
of states Sat(Φ) satisfying Φ. Formally, a state i ∈S and CSL formula Φ belongs to
the relation |= which is denoted by i |= Φ if Φ is true in state i. The relation |= is the
so-called satisfaction relation (see, e.g., [16] for details). Usually, a CTMDP satisfies
a CSL state-formula Φ if the initial state fulfills it. We denote by r|Sat(Φ) the vector
elements belonging to states satisfying some formula Φ as defined in [42].

Furthermore, the following holds for CSL formulae:

• We have that φ |= ΦUT Ψ iff ∃t ′ ∈ [0,T ] with ω(t ′) |= Ψ∧∀0 ≥ t ≤ t ′ holds
ω(t) |=Φ, where ω ∈Ω is a sample path when policy d∈Π is used (see Page 16
in Sec. 2.2).
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• The path-formula φ |= XT Φ is fulfilled iff ∃t ′ ∈ [0,T ] with ω(t ′) |= Φ∧∀t < t ′

holds ω(t) = ω(0). φ |= XT Φ means that the next state is reached and satisfies
the state-formula Φ [16].

• PJ(φ) defines the probabilistic operator. CTL state-formula PZp(φ) states that
the probability of the paths satisfying the path-formula φ obeys the bound given
by Z p [16]. E.g., P≤0.5(ΦU [t,T ] Ψ) states that the probability of reaching a Ψ-
state along Φ-states within t ′ ∈ [t,T ] time units meets the bound ≤ 0.5. The for-
mula P≤0.9(trueU [t,T ] Ψ) states that the probabilty of reaching a Ψ-state within
t ′ ∈ [t,T ] time units meets a bound ≤ 0.9. In this case PJ(φ) is called a reacha-
bility probability (see [20, 42] and references therein). Formally, it holds that

i |= PJ(φ) iff Prob(ω ∈Ω,ω(0) = i |ω |= φ) ∈ J

for all policies d ∈ Π, where ω is a sample path when policy d is used. The
above probability is also denoted as Probd

i [42].

If optimal values and optimal policies in a CTMDP are considered, the following
extreme reachability probabilities for Ψ-states can be defined [42]

Probmin
i (ΦUT

Ψ) = inf
d∈Π

Probd
i (ΦUT

Ψ)

and
Probmax

i (ΦUT
Ψ) = sup

d∈Π

Probd
i (ΦUT

Ψ).

These probabilities correspond to the optimal values, i.e., values of the optimal
policies d ∈ Π according to the probabilistic operator PJ(ΦUT Ψ). The policy
d∈Π is optimal if it leads to optimal values Probd

i (ΦUT Ψ)=Probmin
i (ΦUT Ψ)

or Probd
i (ΦUT Ψ) = Probmax

i (ΦUT Ψ). Furthermore, the formula PJ(ΦUT Ψ)
is valid in state i iff Probmin

i (ΦUT Ψ) ≥ infJ (or Probmax
i (ΦUT Ψ) ≥ supJ) as

given in [42].

• SJ(Φ) refers to the steady-state behavior of an underlying Markov process. For a
reward structure of constant reward rate 1, S is called a steady-state probability
operator with the same interpretation as in CSL for CTMCs [16, 42]. In CSL
for CTMCs the state-formula SZp(Φ) is fulfilled in the set of states if the steady-
state probability for these states obeys the bound given by Z p [16].

For CTMDPs the formula SJ(Φ) specifies that the long-run average reward in
Sat(Φ)-states is in interval J. Formally, we have

i |= SJ(Φ) iff lim
T→∞

1
T

gd
0,T (i) ∈ J

for all policies d ∈ Π. Considering the optimal reward values for the long-run
average reward the minimal value can be defined as

Rewmin
i (SΦ) = inf

d∈Π
( lim

T→∞

1
T

gd
0,T |Sat(Φ)(i)),

and the maximum value as

Rewmax
i (SΦ) = sup

d∈Π

( lim
T→∞

1
T

gd
0,T |Sat(Φ)(i)).
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• CT
J (Φ) specifies that the reward gained during the interval [0,T ] meets the bound

defined by J. Formally, it holds that

i |=C[t,T ]
J (Φ) iff Vd

0,t(i, :) ·gd
t,T |Sat(Φ) ∈ J,

Here the gain vector gd
t,T is defined in (2.21) with the terminal gain vector gT = 0.

Recall that for the given measurable policy d the matrix Vd
r,t with 0≤ r ≤ t ≤ T

is the Markov transition matrix defined in (2.17). The Vd
0,t(i, :) denotes the row

corresponding to the state i. It gives the distribution at time t starting with state
i and following the policy d in the interval [0, t]. The value at position Vd

r,t(i, j)
gives the probability that the CTMDP is at time t in state j under the condition
that it was at time r in state i and the policy d is used in the interval [r, t]. The
matrix Vd

r,t can be used to obtain the distribution at time t under policy d as
pd

t = πVd
0,t Eq. 2.19.

Optimal values are defined as

Rewmin
i (C[t,T ]

Φ) = inf
d∈Π

(Vd
0,t(i, :) ·gd

t,T |Sat(Φ)),

or
Rewmax

i (C[t,T ]
Φ) = sup

d∈Π

(Vd
0,t(i, :) ·gd

t,T |Sat(Φ)).

• It
J(Φ) refers to the instantaneous reward gained at time t. If Φ is valid in state

i then the instantaneous reward at time t in Sat(Φ)-states is in the interval J.
Formally, it holds that

i |= It
J(Φ) iff Vd

0,t(i, :) · r|Sat(Φ) ∈ J.

Optimal values are defined as

Rewmin
i (It

Φ) = inf
d∈Π

(Vd
0,t(i, :) · r|Sat(Φ)),

or
Rewmax

i (It
Φ) = sup

d∈Π

(Vd
0,t(i, :) · r|Sat(Φ)).

5.7.2. Algorithms

Model checking of probabilistic and reward properties requires the computation of
optimal values and optimal policies for a given CTMDP. For instance, the optimal
value Probmin/max

i (ΦUT Ψ) should be determined to prove whether state i satisfies
state-formula PJ(ΦUT Ψ). In this section we describe model checking algorithms and
specific reward structures to decide whether i ∈S fulfills some CSL formula Φ.

In order to model check a given CTMDP one should determine the optimal gain
vector g∗0,T defined in (2.21). Recall that the expected reward under policy d with
initial distribution π in the time interval [0,T ] is given by π gd

0,T (cf. Eq. 2.22). gd
0,T is

the gain vector containing at position i the expected reward accumulated in the interval
[0,T ] if the CTMDP is in state i at time 0 and policy d ∈Π is used. It is computed

gd
0,T = Vd

0,T gT +
∫ T

0
Vd

τ,T rd dτ
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as given in Eq. 2.21. The vector gT is the policy-independent initial gain vector at time
T . The second term describes the accumulated gain until time T .

The terminal gain vector gT is initialized differently to verify various model check-
ing properties for a given CTMDP. In the following we consider maximization prob-
lems. Then the optimal gain vector g∗0,T corresponds to the maximal gain that can be
accumulated in the interval [0,T ] when the optimal policy is used (cf. Eq. 2.26 and
Eq. 2.27). According to [42, Eq. 3] the measurable policy d∗ maximizing the gain
vector in the interval [0,T ] in all elements is optimal when (cf. Eq. 5.50)

d∗ = argmax
d∈Π

(
Vd

0,T gT +
∫ T

0
Vd

0,tr
d dt in all elements

)
, (5.64)

A solution to the above problem has been proposed by B.L. Miller in [127] where an
algorithm for the computation of the optimal policy d∗ maximizing the expected re-
ward over the finite planning horizon [0,T ] and the corresponding optimal gain vector
g∗0,T has been developed (cf. Alg.5.2 in Sec. 5.6). Numerical solution techniques de-
scribed in Sec. 5.6 can be applied to approximate the optimal gain vector or to compute
lower and upper bounds for it.

Maximal probability for timed reachability We consider the computation of
the supd∈Π Probd

i (ΦUT Ψ). Generally, the computation of Probd
i (ΦUT Ψ) can be

reduced to the computation of a transient probability. According to the method de-
scribed in [16], a CTMDP is transformed to a CTMDP where states satisfying ¬Φ∨Ψ

are made absorbing. This is due to the fact that once some state satisfying formula Ψ

along a Φ-path has been reached, the behavior afterwards is not relevant [42]. In that
case the CSL path-formula ΦU Ψ is satisfied. Now the optimal gain vector g∗0,T can be
used to compute the maximal reachability probability. The reward vector is set to zero
vector, i.e., r = 0, and the terminal gain vector is initialized as follows

gT (i) =
{

1 if i ∈ Sat(Ψ)
0 otherwise

(5.65)

It holds that gT (i) = 1 for all absorbing states i ∈SA which are also called goal states
and gT (i) = 0 for all i ∈ST .

According to [42, Lemma 1] the optimal policy d∗ maximizing the gain vector in the
interval [0,T ] in all elements can be obtained using algorithms 5.3, 5.4 with described
settings. E.g., we can compute the optimal policy d∗ using the discretization based
algorithm 7.1 with r = 0, gT as in (5.65) and time horizon [0,T ] [42]. The algorithm
computes the approximation of the optimal gain vector g∗0,T .

Since states satisfying ¬Φ∨Ψ are made absorbing, the maximal transient probabil-
ity is equal to the maximal time bounded reachability [16, 42]. Then it holds for the
maximal reachability probability Probmax

i (ΦUT Ψ) = g∗0,T (i).
In fact, the PHG problem of computing the maximal probability of arriving on time

corresponds to the problem of computing the maximal probability for timed reach-
ability. Then the discretization based algorithm 7.1 can be applied to determine the
path maximizing probability of reaching a destination node in the interval [0,T ] (see
Sec. 5.6).
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Interval maximal probability for timed reachability Here we describe how
the interval bounded reachability probability can be solved by computation of the op-
timal gain vector g∗t,T for the given interval. We consider now the computation of
the supd∈Π Probd

i (ΦU [t,T ] Ψ) along the lines of [42]. Let t > 0 and T ≥ 0. First, the
optimal gain vector g∗t,T accumulated in the interval [t,T ] can be computed with the
method described above. In particular, the maximal probability Probmax

i (ΦU [t,T ] Ψ)
is determined for the CTMDP where states satisfying ¬Φ∨Ψ are made absorbing.
For example, the optimal policy at time t d∗t,T can be obtained using the discretization
based algorithm 7.1. Then this policy should be extended in the interval [0, t) which
results in the following maximization problem [42, Eq. 6]

g∗0,T = max
d∈Π

(
Vd

0,tg
∗
t,T
)
.

Secondly, the CTMDP is transformed to an instance where states satisfying ¬Φ are
made absorbing. Since the computed gain vector g∗t,T is now used as terminal gain
vector, the vector elements corresponding to states satisfying ¬Φ should be set to zero.
It holds that

g′T (i) =
{

g∗t,T (i) if i ∈ Sat(Φ)

0 otherwise.
(5.66)

Then, the uniformization-based algorithm 5.3 or discretization-based algorithm 7.1
with r = 0, g′T as in (5.66) and time horizon [0, t] can be used to obtain the optimal
policy d∗0,t extending the policy d∗t,T . The resulting gain vector g∗0,t can be used to
verify the desired property as Probmax

i (ΦU [t,T ] Ψ) = g∗0,t(i) [42].

Cumulative reward We consider the computation of the Rewmax
i (C[0,T ]Φ) for a

given CTMDP. Using uniformization-based algorithm 5.3 one can compute bounds for
the optimal value of reward gained during the interval [0,T ]. Using the discretization-
based approach one can approximate the optimal gain vector g∗0,T as given in Alg. 7.1.
The terminal gain vector should be initially set to zero, i.e., gT = 0.

The optimal policy d∗ results from, e.g., the discretization based approach 7.1 with
r|Sat(Φ), gT = 0 and time horizon [0,T ] [42]. The algorithm computes an approxima-
tion of the optimal gain vector g∗0,T |Sat(Φ). Then the optimal cumulative reward for a
given state i can be obtained as Rewmax

i (C[0,T ]Φ) = g∗0,T (i).

Interval cumulative reward Now the computation of the optimal interval cumu-
lative reward Rewmax

i (C[t,T ]Φ) can be described based on [42]. Let t > 0 and T ≥ 0.
For the maximal interval cumulative reward Rewmax

i (C[t,T ]Φ) computation of cumu-
lative rewards and reachability probability should be combined. First, the optimal
cumulative reward value is computed for the interval [t,T ]. For example, one can use
discretization algorithm 7.1 with r|Sat(Φ), gT = 0 and time horizon [t,T ]. The optimal
gain vector g∗t,T |Sat(Φ) is returned by the algorithm which is the maximal gain accumu-
lated in the interval [t,T ].

Now the vector g∗t,T |Sat(Φ) can be used to compute the maximal reachability proba-
bility. An extension of the policy in the interval [0, t) can be defined as the computation
of policy d∗ (cf. Eq. 5.50) corresponding to

g∗0,t = max
d∈Π

(
Vd

0,tg
∗
t,T |Sat(Φ)

)
.
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The terminal gain vector is set to g∗t,T |Sat(Φ) and the maximal reachability can be com-
puted using the discretization algorithm with r = 0, gT = g∗t,T |Sat(Φ) and time horizon
[0,T ].

Instantaneous reward We consider the computation of the Rewmax
i (ItΦ) for a

given CTMDP which is the maximal instantaneous reward gained at time t as given
in [42]. The terminal gain vector is set to the reward vector r|Sat(Φ). Then the dis-
cretization algorithm 7.1 is called with r = 0, gT = r|Sat(Φ) and time horizon [0, t]. The
optimal instantaneous reward for a given state i is then Rewmax

i (ItΦ) = g∗0,t(i) [42].

Example 5.9. We consider a graph visualized in Fig. 5.21 to compute the maximal
reachability probability for the node v f in. The corresponding PH-Graph is shown in
Fig. 5.22 where decisions are highlighted in red, black, and blue. The parameterization
of the PHG is briefly described in Example 5.7.

vini v f in

i1
i2 i3

i4

i5

i6 i7

i8

i9 i10

Figure 5.21.: Acyclic graph for shortest path computation. Edges with correlated
weights are highlighted in dashed style.
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Figure 5.22.: The PHG corresponding to the acyclic graph in Fig. 5.21.

The mean weight of every path between vini and v f in is 4.2857. We consider a single
atomic proposition (0,0) which holds only in the goal state (0,0) (the state (0,0) is
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absorbing). The weights of all edges are described by the 2-order hyperexponential
PHD.

To examine the maximal reachability probability for the state (0,0) we first analyze
the formula Φ = PJ(♦

[0,T ] (0,0)) for state (i1,1). Let true = a∨¬a and ♦[0,T ](Φ) =
trueU [0,T ] Φ as given in [17, 42]. The CSL formula can be verified by computing
supd∈Π Probd

(i1,1)
(trueU [0,T ] (0,0)) = Probmax

(i1,1)
(♦[0,T ] (0,0)) which corresponds to the

optimal value g∗0,T (i1,1).
The decision that maximizes the probability to reach (0,0) in the time interval [0,T ]

depends on the phase of the PHD describing the edge weight. We verified the formula
P≥0.5(♦

[0,T ] (0,0)) for states (i1,1), (i1,2) and (i5,1), (i5,2) and different values of T .
Tables 5.6-5.9 contain the results and efforts for computing the maximal reachability

probabilities for T = 1.5, 3.5 and 5.5 using the uniformization based algorithm 5.3.
We analyze Φ1 = P≥0.5(♦

[0,1.5] (0,0)) for state (i1,1) and Φ2 = P≥0.5(♦
[0,3.5] (0,0))

for state (i1,2). From Table 5.6 one can see that Probmax
(i1,1)

(♦[0,1.5] (0,0))= g∗0,1.5(i1,1)=
9.9285e−01 for ε = 1.0e−5, which meets the specified probability bound. Thus we
verify (i1,1) |= Φ1. From Table 5.7 one can also see that Probmax

(i1,2)
(♦[0,3.5] (0,0)) =

g∗0,3.5(i1,2) = 3.5703e−01 for ε = 1.0e−5, implying that (i1,2) 6|= Φ2.

5.8. Summary

In this chapter, we have brought together results on general solution methods for SSPP
with recent results on solutions for SSPP including correlations. First, we show how
the PHG model can be mapped to a CTMDP in order to find the optimal policy in
stochastic graph with dependent weights on edges. We investigated two route planning
problems under uncertainty where optimal policies depend on correlations.

The first problem is the computation of a path with a minimal expected weight. The
second problem is finding a path maximizing the probability of arriving on time, i.e.,
having a weight below some threshold. The last problem corresponds to the com-
putation of optimal policy and the corresponding reward value in the finite horizon
CTMDP.

We show that standard methods from SSPPs and finite horizon CTMDPs can be
applied to obtain optimal policies and corresponding reward values. However, existing
approaches should be adapted such that optimal solutions depend on realized weights
on edges and not on states of the CTMDP. The obtained results provide evidence that
considering correlations results in much more realistic solutions on stochastic graphs
with dependent weights on adjacent edges.

As shown by some examples, depending on the weight of the previous edge, the
decision to choose a correlated adjacent edge could result in a shorter path weight
than the choice of an uncorrelated adjacent edge. But if the previous edge has a large
weight, choosing an uncorrelated adjacent edge could result in a much better path than
the choice of a correlated edge. Thus approaches considering uncertain parameters
and correlations gain relevance in most practical situations, e.g., in route planning
problems with congestions when information about realized traveling times becomes
available.
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Table 5.6.: Bounds for the probability of reaching (0,0) in [0,T ], i.e.,
Probmax

(i1,1)
(♦[0,T ] (0,0)).

(i1,1). Time bounded reachability probability

Interval [0,T ] ε lower bound upper bound # Iter

T = 1.5 1.0e−4 9.9284e−01 9.9285e−01 67
T = 1.5 1.0e−5 9.9285e−01 9.9285e−01 86
T = 1.5 1.0e−9 9.9285e−01 9.9285e−01 226

T = 3.5 1.0e−4 9.9998e−01 9.9999e−01 165
T = 3.5 1.0e−5 9.9999e−01 9.9999e−01 210
T = 3.5 1.0e−9 9.9999e−01 9.9999e−01 567

T = 5.5 1.0e−4 9.9999e−01 1.0000e+00 268
T = 5.5 1.0e−5 9.9999e−01 1.0e+00 347
T = 5.5 1.0e−9 1.0e+00 1.0e+00 920

Table 5.7.: Bounds for the probability of reaching (0,0) in [0,T ], i.e.,
Probmax

(i1,2)
(♦[0,T ] (0,0)).

(i1,2). Time bounded reachability probability

Interval [0,T ] ε lower bound upper bound # Iter

T = 1.5 1.0e−4 7.8866e−02 7.8876e−02 66
T = 1.5 1.0e−5 7.8869e−02 7.8870e−02 86
T = 1.5 1.0e−9 7.8869e−02 7.8869e−02 225

T = 3.5 1.0e−4 3.5702e−01 3.5703e−01 160
T = 3.5 1.0e−5 3.5703e−01 3.5703e−01 209
T = 3.5 1.0e−9 3.5703e−01 3.5703e−01 559

T = 5.5 1.0e−4 6.1716e−01 6.1717e−01 259
T = 5.5 1.0e−5 6.1716e−01 6.1716e−01 347
T = 5.5 1.0e−9 6.1716e−01 6.1716e−01 899
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Table 5.8.: Bounds for the probability of reaching (0,0) in [0,T ], i.e.,
Probmax

(i5,1)
(♦[0,T ] (0,0)).

(i5,1). Time bounded reachability probability

Interval [0,T ] ε lower bound upper bound # Iter

T = 1.5 1.0e−4 3.2903e−01 3.2904e−01 66
T = 1.5 1.0e−5 3.2903e−01 3.2904e−01 86
T = 1.5 1.0e−9 3.2904e−01 3.2904e−01 224

T = 3.5 1.0e−4 6.2705e−01 6.2706e−01 160
T = 3.5 1.0e−5 6.2706e−01 6.2706e−01 209
T = 3.5 1.0e−9 6.2706e−01 6.2706e−01 558

T = 5.5 1.0e−4 8.0768e−01 8.0769e−01 259
T = 5.5 1.0e−5 8.0769e−01 8.0769e−01 337
T = 5.5 1.0e−9 8.0769e−01 8.0769e−01 898

Table 5.9.: Bounds for the probability of reaching (0,0) in [0,T ], i.e.,
Probmax

(i5,2)
(♦[0,T ] (0,0)).

(i5,2). Time bounded reachability probability

Interval [0,T ] ε lower bound upper bound # Iter

T = 1.5 1.0e−4 1.1133e−01 1.1134e−01 66
T = 1.5 1.0e−5 1.1133e−01 1.1133e−01 86
T = 1.5 1.0e−9 1.1133e−01 1.1133e−01 224

T = 3.5 1.0e−4 3.78240e−01 3.78249e−01 160
T = 3.5 1.0e−5 3.7824e−01 3.7824e−01 209
T = 3.5 1.0e−9 3.7824e−01 3.7824e−01 558

T = 5.5 1.0e−4 6.1500e−01 6.1501e−01 259
T = 5.5 1.0e−5 6.1501e−01 6.1501e−01 337
T = 5.5 1.0e−9 6.1501e−01 6.1501e−01 898
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Chapter 6
Transformation of 2-order APHDs for Correlation

Fitting

In this chapter, we propose transformation results for PHDs in composition. As intro-
duced in Chap. 3 a PHD composition is used for correlation modeling of edge weights
in a stochastic graph. Our aim is to find the matrix representation of two PHDs in
composition allowing for the maximal first order joint moment.

In stochastic modeling, PHDs and MAPs have emerged as versatile tools which can
be used to approximate any continuous distribution and to model empirical behavior
of real world processes. Fitting algorithms allow one to estimate parameters of PHD
and MAP matrix representations from observations of a real or a simulated system.

Although a wider spectrum of fitting algorithms exists, parameter fitting for PHDs
and MAPs remains a challenging task. The reasons for this are non-unique represen-
tations of PHDs, redundancy of the matrix representation, trade-off between accuracy
and number of parameters, and complexity of resulting nonlinear optimization prob-
lems [165, 93, 96]. Thus fitting algorithms often work on specific representations such
as canonical forms or Hyper-Erlang, and hyperexponential forms [93, 168].

In Chapter 4 we presented the fitting approach for transfer matrix Hi j. First, two
PHDs with representation (πi,Di) and (π j,D j) were fitted. Then the parameters of
the transfer matrix Hi j are determined in order to model the correlation between two
PHDs in composition. This means that both matrix representations of PHDs have a
non-negligible influence when fitting transfer matrix Hi j. Parameters of both PHDs
determine constraints that should be met by Hi j, thus fixing the range of possible
values and possibly limiting the range of achievable correlation of PHD composition.

Similarity transformations compute an equivalent representation of (π,D0) without
altering the distribution. Numerous works on transformations in order to maximize the
first joint moment when expanding PHD to a MAP exist [45, 44, 96, 126, 41]. In this
chapter, we show which representations are best suitable in order to maximize the first
joint moment of PHD composition.
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6.1. Similarity Transformation

In this section we present the transformation approach for APHDs described in [45, 44]
which generates an equivalent APHD without alternating the distribution function. The
transformation can be used, e.g. to increase the number of exit states. The modified
representation can have a positive impact on the range of achievable correlation when
expanding a PHD to a MAP. Since a higher number of exit states allows for more
variability of entries in the matrix D1, transformations can be helpful in finding of
matrix D1 maximizing the first joint moment, higher order joint moments and lag-k
autocorrelations. The main idea of the algorithm is to invert Cumani-steps developed
in [56]. Cumani-steps transform PHD representation into series canonical form (cf.
Fig. 2.18 in Sec. 2.4.2).

Although transformation steps modify a PHD representation, they still return the
acyclic PHD. Each single transformation step is applied to two states i and j with
i < j, transition rate Q(i, j)> 0, and λ (i)≤ λ ( j). Note that each PHD can be always
transformed in a PHD where the last condition is satisfied [56, 166]. The modified
parameters are π(i), π( j), incoming and outgoing transitions of i, and outgoing tran-
sitions of j such that πδ and Dδ

0 denote vector and matrix after transformation with
parameter δ (cf. Eq. 6.3, Eq. 6.4).

First, the transformation parameter δ should be selected from the following interval[
max

(
−π(i), min

l> j,D0( j,l)>0

(
−π(i)D0(i, l)

D0( j, l)

)
,−π(i)d1(i)

d1( j)

)
, (6.1)

min
(

π( j), min
k<i,D0(k,i)>0

(
π(i)D0(k, j)

D0(k, i)

)
,
π(i)D0(i, j)
λ ( j)−λ (i)

)]
, (6.2)

which guarantees that the modified values remain non-negative. If λ (i) = λ ( j), then
the third term in the minimum evaluates to ∞ and is not used. If d1(i) = 0, then the
third term evaluates to −∞ and is also not used.

For δ > 0 new initial probabilities and transition rates are computed according to
the following rules

π
δ (k) =


π(i)+δ for k = i
π( j)−δ for k = j
π(k) otherwise

(6.3)

D0(k, l)δ =



D0(i, j) π(i)
π(i)+δ

− (λ ( j)−λ (i))δ
π(i)+δ

for k = i and l = j

D0(i, l)
π(i)

π(i)+δ
for k = i and l > i∧ l < j

D0(i, l)
π(i)

π(i)+δ
+D0( j, l) δ

π(i)+δ
for k = i and l > j

D0(k, i)
π(i)+δ

π(i) for k < i and l = i
D0(k, j)−D0(k, i) δ

π(i) for k < i and l = j
D0(k, l) otherwise

(6.4)

Proofs of validity for transformation steps are given in [45]. Note that diagonal ele-
ments of D0 are not modified by the transformation. The exit vector is transformed
according to

dδ
1 (i) =

π(i)d1(i)+δd1( j)
π(i)+δ

= d1(i)+δ
d1( j)−d1(i)

π(i)+δ
, (6.5)
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such that other elements of d1 remain unchanged.

6.2. Transformation of 2-order APHDs

The PHG model incorporates composition of two PHDs for modelling edge weights
and correlations between them. To optimize the PHD composition fitting procedure it
is important to know what is the best representation of both PHDs for the subsequent
transfer matrix fitting step. In particular, we consider which representations of two
PHDs in composition allow for modeling of a transfer matrix with maximal first joint
moment and present transformations to obtain the favorable representations.

Let ((πi,Di), (π j,D j), Hi j) be a PHD composition (see Def. 3.1). We consider
order 2 APHDs since only little insights are available about which representation for
PHDs of order n > 2 allows for the largest flexibily according to correlation fitting.
In [41] an exact result for 2-order APHD is presented. In fact, the hyperexponential
representation is optimal among all possible representations that can be reached using
the similarity transformation described in Sec. 6.1. Our aim is to use the technique
from [41] to obtain the best representations of 2-order PHDs in composition.

In the following we first examine what is the best representation of PHD PH j in
composition in dependence of the representation of PHi. Then we study what is the
best representation of predecessor PHD PHi in dependence of the representation of
PH j. This implies that one representation is fixed, such that the transformation is
applied to only one PHD. Therefore, the representation of the fixed PHD remains
unchanged.

Our analysis results in four cases which are presented below. First we fix the repre-
sentation of PHD PHi to hyperexponential or canonical form and examine what is the
best representation of the successor PHD PH j. Then we fix the representation of PH j

in the composition to hyperexponential or canonical form and examine what is the best
representation of the predecessor PHD PHi.

6.2.1. The first case

The first case is given when the representation of PHD PHi in composition is fixed to
hyperexponential form. Then we are interested in the best suitable representation of the
successor PHD PH j in order to maximize the first joint moment of their composition.
We assume that the hyperexponential APHD PHi is given by

c = (c,1− c) , Di =

(
−µ1 0

0 −µ2

)
, (6.6)

where −Di(1,1) = µ1 is the transition rate of state 1, and −Di(2,2) = µ2 is the transi-
tion rate of state 2. Assume µ2 ≥ µ1 (if it is not the case, we apply the transformation
from [41]).

The second APHD PH j has representation

π = (π,1−π) , D j =

(
−λ1 λ1,2

0 −λ2

)
=

(
−1 λ1,2
0 −λ2

)
(6.7)

, where−D j(1,1) = λ1 is the transition rate of state 1, −D j(2,2) = λ2 is the transition
rate of state 2, and D j(1,2) = λ1,2 is the transition rate of state 1 to state 2.
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Consider the following inequalities

0≤ π ≤ 1,λ1,2 ≤ 1,λ2 ≥ 1, (6.8)

such that λ2 ≥ λ1, and λ1 has been scaled to 1. In the following we denote states of
PHi as k′, and states of PH j as k for some k ∈S .

The transformation of the APHD (π j,D j) in the 2-state case (6.7) is according to

π
δ =

(
π

δ ,1−π
δ

)
= (π +δ ,1−π−δ ) , λ

δ
1,2 =

πλ1,2

π +δ
− (λ2−1)δ

π +δ
(6.9)

where δ -bounds are given by the interval

δ ∈
[

max
(
−π,−π(1−λ1,2)

λ2

)
,min

(
1−π,

πλ1,2

λ2−1

)]
. (6.10)

Note that only the element D j(1,2) is transformed. The boundaries of the interval 6.10
are denoted as δ− and δ+. The first joint moment of PHi and PH j is given by

µ1,1 = cMiMiHi jM j I1 (6.11)

where M=(−Di)
−1, and M j = (−D j)

−1.

Theorem 6.1. Let ((πi,Di), (π j,D j), Hi j) be a composition of PHi and PH j as de-
fined in (3.1). If the PHD with representation (π j,D j) is transformed into canonical
form (see Def. 2.11), then this representation results in the maximal first joint moment
µ∗1,1, given that PHD (πi,Di) is in hyperexponential form.

Theorem 6.1 states that series canonical form is the best suitable representation of
PH j for maximizing the first joint moment, given that PHi is in hyperexponential form.
Note that the transformation into a canonical representation can be performed using
similarity transformations (6.3)-(6.4). Thus it is important to know which transforma-
tion parameter δ should be chosen. The result of Theorem 6.1 states that the parameter
δ should be decreased to increase µ1,1. When δ is set to the minimum, i.e., to δ−, then
the parameter λ1,2 is equal to 1 = λ1 which corresponds to series canonical form of
PHδ−

j .

Proof. Observe that first joint moment µ1,1 in Eq. 6.11 can be represented in terms of
all possible paths in PHi following all possible paths in PH j. Let aδ

k,l be the probability
that APHD PH j starts in the state k and l is the last state before absorption. It holds
that

aδ
1,1 = π

δ (1−λ
δ
1,2), aδ

1,2 = π
δ
λ

δ
1,2, aδ

2,2 = 1−π
δ and aδ

2,1 = 0, (6.12)

since PHD PH j is acyclic, i.e. it is not possible to go to the state 1 if the process starts
in state 2 [41]. We use νk,l originally defined in [41] which denotes the mean duration,
if the process starts in state k and state l is the last state before absorption of PH j. It
holds that

ν1,1 =
1
λ1

= 1,ν1,2 = 1+
1
λ2

, and ν2,2 =
1
λ2

. (6.13)
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For transfer matrix Hi j it holds that Hi j I1 = −Di I1. Probability bk originally defined
in [41] gives the probability that PH j starts in state 1 after k was the last state before
absorption in PHi. The transfer matrix Hi j can be written as

Hi j =

(
µ1 0
0 µ2

)(
b1 1−b1
b2 1−b2

)
=

(
b1µ1 (1−b1)µ1
b2µ2 (1−b2)µ2

)
,

which satisfies the above condition Hi j I1 = −Di I1, since 0 ≤ bk ≤ 1. Furthermore, the
condition cMHi j = π should be satisfied to keep the initial distribution of the PH j

invariant. To ensure this and taking into account that cM = ( c
µ1

1−c
µ2

) the following has
to hold

cb1 +(1− c)b2 = π
δ , and c(1−b1)+(1− c)(1−b2) = (1−π

δ ).

In the case that b1 = 0, the probability b2 = π+δ

(1−c) . To ensure that 0 ≤ b2 ≤ 1, b2

should be set to min(1, π+δ

(1−c)) in that case. E.g., if π is set to the maximum value, the
term can become larger than 1 for c , 1,c > 0.

In the case that b1 = 1, the probability b2 =
π+δ−c
(1−c) for c ≤ π , c , 1, and thus b2 =

max(0, π+δ−c
(1−c) ). The probability b2 can be chosen from the interval[

max(0,
π +δ − c
(1− c)

),min(1,
π +δ

(1− c)
)

]
, (6.14)

and the probabilty b1 can be expressed in terms of b2 as b1 =
(π+δ )−(1−c)b2

c .

1′c

2′1− c

µ1

µ2

1π

21−π

λ1,2

(1−λ1,2)

λ2

b1µ1

(1−b1)µ1

b2µ2

(1−b2)µ2

(a) A graphical representation of the APHDs
(c,Di), (π,D j).

(1) < 1′ 1 >
(2) < 1′ 1 2 >
(3) < 1′ 2 >
(4) < 2′ 1 >
(5) < 2′ 1 2 >
(6) < 2′ 2 >

(b) Possible elementary series for both APHDs.

Figure 6.1.: Symbolic representation of two APHDs in composition for correlation
fitting.

Now consider all possible paths in composition of two APHDs as visualized in
Fig. 6.1, where < k l . . . > is a sequence of states along the acyclic path from an initial
state of PHi to the absorbing state of PH j. The probability of each series is com-
puted as the product of the transition rates along the corresponding path and the initial
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probability of the entry state of the path. The mixture of mean durations of all series
determines the first joint moment of the distribution of time till absorption for underly-
ing process, where each series is weighted proportionally to its probability. We obtain
the following results for the series listed in Fig. 6.1(b)

b1c 1
µ1

aδ
1,1ν1,1 for the series (1),

b1c 1
µ1

aδ
1,2ν1,2 for the series (2),

(1−b1)c 1
µ1

aδ
2,2ν2,2 for the series (3),

b2(1− c) 1
µ2

aδ
1,1ν1,1 for the series (4),

b2(1− c) 1
µ2

aδ
1,2ν1,2 for the series (5),

(1−b2)(1− c) 1
µ2

aδ
2,2ν2,2 for the series (6).

Remark 1. The first joint moment of PHi and PH j in composition can be maximized
if the probability of starting in an on average longest phase of PH j is maximized when
the process PHi escaped from the on average longest phase.

Similarly, in the case that PHi escaped from the shortest phase on average the prob-
ability of starting in an on average shortest phase of PH j should be maximized to
increase the first joint moment.

Using the notations for elementary series the first joint moment can be written as

µ1,1(δ ) = b1cµ
−1
1 (aδ

1,1ν1,1 +aδ
1,2ν1,2)/πδ+

b2(1− c)µ−1
2 (aδ

1,1ν1,1 +aδ
1,2ν1,2)/πδ+

(1−b1)cµ
−1
1 λ

−1
2 +(1−b2)(1− c)µ−1

2 λ
−1
2 .

After substituting the values given in (6.12), (6.13), we obtain

µ1,1(δ ) = b1cµ
−1
1

(
(π +δ )(1−λ δ

1,2)+(π +δ )λ δ
1,2(1+λ

−1
2 )
)
/πδ+

b2(1− c)µ−1
2

(
(π +δ )(1−λ δ

1,2)+(π +δ )λ δ
1,2(1+λ

−1
2 )
)
/πδ+

(1−b1)cµ
−1
1 λ

−1
2 +(1−b2)(1− c)µ−1

2 λ
−1
2 .

We denote the terms in the sum as x1, x2, x3, and x4. For the third term we obtain

x3 =
(

1− (π+δ )−(1−c)b2
c

)
cµ
−1
1 λ

−1
2

= c
µ1λ2
− (π+δ )−(1−c)b2

µ1λ2

= c−π−δ

µ1λ2
+ b2(1−c)

µ1λ2
.

For the fourth term we obtain

x4 = (1−b2)(1− c)µ−1
2 λ

−1
2

= (1−c)
µ2λ2
− b2(1−c)

µ2λ2
.

The sum of the x3 and x4 results in

x3 + x4 =
1
λ2

(
µ1− c(µ1−µ2)−µ2(π +δ )

µ1µ2

)
+b2

(
(1− c)

λ2

[
1
µ1
− 1

µ2

])
.
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Now consider the term (π +δ )(1−λ δ
1,2)+(π +δ )λ δ

1,2(1+λ
−1
2 ), which is denoted as

x5

x5 = (π +δ )
(

1−λ δ
1,2 +λ δ

1,2(1+λ
−1
2 )
)

= (π +δ )

(
1−λ δ

1,2 +λ δ
1,2 +

λ δ
1,2

λ2

)
= (π +δ )

(
1+ (πλ1,2−δ (λ2−1))

(π+δ )λ2

)
= π +δ +

(π+δ )(πλ1,2−δ (λ2−1))
(π+δ )λ2

= π +δ +
(πλ1,2−δ (λ2−1))

λ2

=
πλ1,2−δλ2+δλ2+δ+πλ2

λ2

=
π(λ1,2+λ2)+δ

λ2
.

Using b1 =
(π+δ )−(1−c)b2

c , the sum of x1 and x2 can be rewritten as

x1 + x2 = b1cx5
(π+δ )µ1

+ b2(1−c)x5
(π+δ )µ2

= ((π+δ )−(1−c)b2)x5
(π+δ )µ1

+ b2(1−c)x5
(π+δ )µ2

= (π+δ )x5
(π+δ )µ1

− b2(1−c)x5
(π+δ )µ1

+ b2(1−c)x5
(π+δ )µ2

=
π(λ1,2+λ2)+δ

λ2µ1
−b2

[
(1−c)x5
(π+δ ) (

1
µ1
− 1

µ2
)
]

=
π(λ1,2+λ2)+δ

λ2µ1
−b2

[
(1−c)x5(µ2−µ1)

(π+δ )µ1µ2

]
=

π(λ1,2+λ2)+δ

λ2µ1
−b2

[
1

(π+δ )
(π(λ1,2+λ2)+δ )(1−c)(µ2−µ1)

λ2µ1µ2

]
We denote the term (1− c)(µ2−µ1) as y1 and resolve the subtrahend

b2

[
1

(π+δ )
(π(λ1,2+λ2)+δ )(1−c)(µ2−µ1)

λ2µ1µ2

]
=

b2

[
1

(π+δ )
(π(λ1,2+λ2)y1+δy1

λ2µ1µ2

]
=

b2

[
1

(π+δ )
π(λ1,2+λ2)y1

λ2µ1µ2
+ δ

(π+δ )
y1

λ2µ1µ2

]
Now the expression for the first joint moment results in

µ1,1(δ ) = 1
λ2

(
µ1−c(µ1−µ2)−µ2(π+δ )

µ1µ2

)
+b2

(
(1−c)

λ2

[
1
µ1
− 1

µ2

])
+

π(λ1,2+λ2)+δ

λ2µ1
−b2

[
1

(π+δ )
π(λ1,2+λ2)y1

λ2µ1µ2
+ δ

(π+δ )
y1

λ2µ1µ2

]
= 1

λ2

(
µ1−c(µ1−µ2)−µ2(π+δ )

µ1µ2

)
+

π(λ1,2+λ2)+δ

λ2µ1
+

b2

[
y1

λ2µ1µ2
− 1

(π+δ )
π(λ1,2+λ2)y1

λ2µ1µ2
− δ

(π+δ )
y1

λ2µ1µ2

]
.

The first two terms can be simplified to

1
λ2

(
µ1−c(µ1−µ2)−µ2(π+δ )

µ1µ2

)
+

π(λ1,2+λ2)+δ

λ2µ1
=

µ1−c(µ1−µ2)−µ2(π+δ )+π(λ1,2+λ2)µ2+δ µ2
λ2µ1µ2

=
µ1−c(µ1−µ2)−µ2π−µ2δ+π(λ1,2+λ2)µ2+δ µ2

λ2µ1µ2

=
µ1−c(µ1−µ2)−µ2π+π(λ1,2+λ2)µ2

λ2µ1µ2
,

such that the numerator is denoted by y2. Then the expression for the first joint moment
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can be rewritten as

µ1,1(δ ) =
y2+b2(y1− 1

(π+δ )π(λ1,2+λ2)y1− δ

(π+δ ) y1)

λ2µ1µ2

=
y2+y1b2(1− 1

(π+δ )π(λ1,2+λ2)− δ

(π+δ ) )

λ2µ1µ2
,

y1 = (1− c)(µ2−µ1),
y2 = µ1− c(µ1−µ2)−µ2π +π(λ1,2 +λ2)µ2.

(6.15)

Note that the probability b2 can be chosen from the interval
[
max(0, π+δ−c

(1−c) ),min(1, π+δ

(1−c))
]
.

In the case that b2 = 0, the APHD PH j has no flexibily in maximizing the first joint
moment. The same holds if c = 1 such that the value of y1 = 0. Furthermore, if we
consider the case with λ2 = λ1 = 1 then the maximal achievable correlation is always
equal to 0, i.e. the APHD PH j represents an exponential distribution with rate 1. Thus,
this case is not relevant such that λ2 , λ1 can be assumed. It also holds that in cases
where c = 1, (1− c) = 1, π = 1 or (1−π) = 1 the maximal achievable correlation is
0, because one of the given PHDs is an exponential distribution.

The terms y1, y2, and λ1µ1µ2 are positive (y1 > 0 for c , 1) and do not depend
on varying parameters δ or b2. The following holds for the term appearing in the
expression for µ1,1(δ )(

1− 1
(π +δ )

π(λ1,2 +λ2)−
δ

(π +δ )

)
=

π +δ −π(λ1,2 +λ2)−δ

(π +δ )
< 0.

The denominator is always positive. For minimal δ =−π(1−λ1,2)
λ2

we obtain the term

π +δ = π− π(1−λ1,2)

λ2
=

π(λ2−1+λ1,2)

λ2
,

which is positive because λ2 > 0, π > 0, and (λ2−1+λ1,2)> 0, since we assume λ2 >
1, and λ1,2≤ 1. Furthermore, the numerator π−π(λ1,2+λ2)< 0, since (λ1,2+λ2)> 1
because λ2 > 1.

Let y3(δ ) = y1

(
1− 1

(π+δ )π(λ1,2 +λ2)− δ

(π+δ )

)
, Since y3(δ ) < 0, the probability

b2 should be as small as possible to maximize the first joint moment µ1,1(δ ).
We now consider the minimal b2 for varying δ , i.e., b2(δ ) =

π+δ−c
(1−c) > 0, c , 1,

c < π , and where b1 = 1 since b2 is fixed. The derivative with respect to δ equals

∂db2(δ )

∂δ
=

1
(1− c)

> 0.

The term depending on δ in the numerator of µ1,1(δ ) is y3(δ ). Its derivative equals

∂y3(δ )
∂δ

= ∂

∂δ

(
y1− 1

(π+δ )π(λ1,2 +λ2)y1− δ

(π+δ )y1

)
=

π(λ1,2+λ2)y1
(π+δ )2 − y1π

(π+δ )2

=
πy1(λ1,2+λ2−1)

(π+δ )2 ≥ 0

with ∂y1
∂δ

= ∂

∂δ
((1− c)(µ2−µ1)) = 0,

∂

(
1

(π+δ )π(λ1,2+λ2)y1

)
∂δ

= ∂

∂δ

(
π(λ1,2+λ2)y1

π+δ

)
=−π(λ1,2+λ2)y1

(π+δ )2 ,

∂

∂δ

(
δy1

π+δ

)
= y1(π+δ )−δy1

(π+δ )2 = y1π

(π+δ )2 .
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Then

∂ µ1,1(δ )
∂δ

= ∂

∂δ

(
y2+b2(δ )y3(δ )

λ1µ1µ2

)
=

(µ2−µ1)(−c(πλ1,2+πλ2−π))

(π+δ )2(λ2µ1µ2)2

=
(µ2−µ1)(−cπ(λ1,2+λ2−1))

(π+δ )2(λ2µ1µ2)2

with ∂

∂δ
(y2 +b2(δ )y3(δ )) =

∂

∂δ
y2 +

∂

∂δ
(b2(δ )y3(δ ))

= 0+ 1
(1−c)y3(δ )+b2(δ )

(
πy1(λ1,2+λ2−1)

(π+δ )2

)
= 1

(1−c)

(
y1− 1

(π+δ )π(λ1,2 +λ2)y1− δ

(π+δ )y1

)
+
(

π+δ−c
(1−c)

)(
πy1(λ1,2+λ2−1)

(π+δ )2

)
= 1

(1−c)y1

(
1− 1

(π+δ )π(λ1,2 +λ2)− δ

(π+δ )

)
+
(

π+δ−c
(1−c)

)(
y1π(λ1,2+λ2−1)

(π+δ )2

)
= 1

(1−c)(1− c)(µ2−µ1)
(

1− 1
(π+δ )π(λ1,2 +λ2)− δ

(π+δ )

)
+(

π+δ−c
(1−c)

)(
(1−c)(µ2−µ1)π(λ1,2+λ2−1)

(π+δ )2

)
= (µ2−µ1)

(
1− 1

(π+δ )π(λ1,2 +λ2)− δ

(π+δ )

)
+

(π +δ − c)
(
(µ2−µ1)π(λ1,2+λ2−1)

(π+δ )2

)
=

(π+δ )(µ2−µ1)−(µ2−µ1)π(λ1,2+λ2)−(µ2−µ1)δ
(π+δ ) +(π +δ − c)

(
(µ2−µ1)π(λ1,2+λ2−1)

(π+δ )2

)
=

(µ2−µ1)(π+δ−π(λ1,2+λ2)−δ )
(π+δ ) +(π +δ − c)

(
(µ2−µ1)π(λ1,2+λ2−1)

(π+δ )2

)
=

(µ2−µ1)(π−π(λ1,2+λ2))
(π+δ ) +

(
(π+δ−c)(µ2−µ1)π(λ1,2+λ2−1)

(π+δ )2

)
=

(π+δ )(µ2−µ1)(π−π(λ1,2+λ2))+(π+δ−c)(µ2−µ1)π(λ1,2+λ2−1)
(π+δ )2

=
(µ2−µ1)((π+δ )(π−πλ1,2−πλ2)+(π+δ )(πλ1,2+πλ2−π)−c(πλ1,2+πλ2−π))

(π+δ )2

=
(µ2−µ1)(−c(πλ1,2+πλ2−π))

(π+δ )2

The value of the derivative (µ2−µ1)(−cπ(λ1,2+λ2−1))
(π+δ )2(λ2µ1µ2)2 is negative, as can be shown. The

denominator is always positive such that we only have to consider the expression in
the numerator (µ2− µ1)(−cπ(λ1,2 + λ2− 1)). Since λ2 > λ1, and λ1 = 1 holds per
assumption, the expression π(λ1,2 +λ2−1) is always positive. The case with µ2 = µ1
is similar to the case with λ2 = λ1, such that the first APHD represents the exponential
distribution. In that case no correlation can be modeled and the case with µ2 = µ1
is not interesting. Thus we consider only the case with µ2 > µ1 such that the term
(µ2− µ1) is positive and the value of the derivative is negative such that δ should be
decreased to increase µ1,1(δ ). We set δ =−π(1−λ1,2)

λ2
, then

λ1,2 =
πλ1,2
(π+δ ) −

(λ2−1)δ
(π+δ )

=
πλ1,2

π−
π(1−λ1,2)

λ2

−
(λ2−1)(−

π(1−λ1,2)
λ2

)

π−
π(1−λ1,2)

λ2

=
πλ1,2λ2

π(λ2−1+λ1,2)
− (λ2−1)(−π+πλ1,2)

π(λ2−1+λ1,2)

=
πλ1,2λ2

π(λ2−1+λ1,2)
− (−λ2π+πλ1,2λ2+π−πλ1,2)

π(λ2−1+λ1,2)

=
πλ1,2λ2

π(λ2−1+λ1,2)
− π(−λ2+λ1,2λ2+1−λ1,2)

π(λ2−1+λ1,2)

=
λ1,2λ2

(λ2−1+λ1,2)
− (−λ2+λ1,2λ2+1−λ1,2)

(λ2−1+λ1,2)

=
λ1,2λ2+λ2−λ1,2λ2−1+λ1,2

(λ2−1+λ1,2)
=

λ2−1+λ1,2
(λ2−1+λ1,2)

= 1 = λ1,
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which implies the canonical representation of the successor PHD PH j. Note that if δ

is set to −π , then the value of λ δ
1,2 becomes infinite. �

Example 6.1. We consider following two APHDs in composition. PHD PHi has the
representation

c = (0.01,0.99) , Di =

(
−0.0196 0

0 −0.22

)
,

and PHD PH j has the representation

π = (0.99,0.01) , D j =

(
−1.0 0

0 −5.0

)
.

It results that

µ1,1 = 4.9738, ρ = 4.5205e−04, Hi j =

(
0.0196 0

0.21778 0.00222

)
.

Furthermore we obtain δ− =−0.198, and δ+ = 0. Setting δ ∗ to δ−

π
δ ∗ = (0.792,0.208) , (D j)

δ ∗ =

(
−1.0 1.0

0 −5.0

)
,

with µ
δ ∗
1,1 = 5.0668, ρ

δ ∗ = 0.011753, Hδ ∗
i j =

(
0.0196 0
0.17378 0.04622

)
.

Example 6.2. Now consider two APHDs in composition with representations

c = (0.01,0.99) , Di =

(
−1.1529 0

0 −12.941

)
,

and

π = (0.01,0.99) , D j =

(
−1.0 0

0 −5.0

)
,

with µ1,1 = 0.023974, ρ = 0.18892, Hi j =

(
1.15290 0

0 12.941

)
.

We obtain δ− =−0.002, and δ+ = 0. Setting δ ∗ to δ−

π
δ ∗ = (0.008,0.992) , (D j)

δ ∗ =

(
−1.0 1.0

0 −5.0

)
,

with µ
δ ∗
1,1 = 0.023974, ρ

δ ∗ = 0.18892, Hδ ∗
i j =

(
0.92232 0.23058

0 12.94100

)
.

Example 6.3. Consider the following APHDs in composition

c = (0.4,0.6) , Di =

(
−1.1529 0

0 −12.941

)
,

and

π = (0.45,0.55) , D j =

(
−1.0 0.44444

0 −5.0

)
,
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with µ1,1 = 0.39050, ρ = 0.27798, Hi j =

(
1.1529 0
1.07842 11.86258

)
.

We obtain the following δ bounds δ− = −0.05, and δ+ = 0.05, such that setting δ ∗

to δ− the transformation computes

π
δ ∗ = (0.4,0.6) , (D j)

δ ∗ =

(
−1.0 1.0

0 −5.0

)
,

with µ
δ ∗
1,1 = 0.42561, ρ

δ ∗ = 0.34115, Hδ ∗
i j =

(
1.1529 0

0 12.941

)
.

6.2.2. The second case

In the second case the representation of PHD PHi in the composition is fixed to series
canonical form. Again we are interested in the best suitable representation of PH j in
composition in order to maximize the first joint moment µ1,1. Let PHD PHi be acyclic,
its canonical representation is given by

c = (c,1− c) , Di =

(
−1 1
0 −µ2

)
,

where −Di(1,1) = µ1 is the transition rate of state 1, and −Di(2,2) = µ2 is the transi-
tion rate of state 2. The transition rate µ1 has been scaled to 1, and we assume µ2 ≥ µ1,
i.e. µ2 ≥ 1 (if it is not the case, we apply the transformation from [41]).

The second APHD PH j has the representation given in Eq. 6.7 with assumptions
stated in Eq. 6.8.

Since the representation of PHi is in series canonical form, the corresponding Markov
process has only one exit state. Thus no flexibility can be achieved applying the trans-
formation to the successor PHD PH j in composition. The result from theorem 6.2 is
not surprising. It states that there is no suitable representation of PH j for maximizing
the first joint moment, if the representation of PHi is in series canonical form.

Theorem 6.2. Let ((πi,Di), (π j,D j), Hi j) be a composition of PHi and PH j as defined
in (3.1). The PHD PHi in series canonical representation enables no flexibily in max-
imizing the first joint moment. In that case the representation of PH j has no influence
on the range of achievable correlation, such that the transformation parameter δ can
be chosen arbitrary.

The formal proof of the above theorem can be found in C.1.

Example 6.4. Consider the two APHDs in composition

c = (0.36436,0.63564) , Di =

(
−1 1

0.00000 −11.22474

)
,

and

π = (0.45,0.55) , D j =

(
−1.0 0.44

0 −5.0

)
,

with µ1,1 = 0.27189, ρ = 0, Hi j =

(
0 0

5.05113 6.17361

)
.
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We obtain the following δ bounds δ− =−0.0504, and δ+ = 0.0495. Setting δ to δ+

the transformation method generates an hyperexponential representation of PH j

π
δ+

= (0.4995,0.5005) , (D j)
δ+

=

(
−1.0 0

0 −5.0

)
,

with µ
δ+

1,1 = 0.27189, ρ
δ+

= 0, Hδ+

i j =

(
0 0

5.60676 5.61798

)
.

Setting δ to δ− the transformation generates canonical representation of PH j

π
δ− = (0.3996,0.6004) , (D j)

δ− =

(
−1.0 1.0

0 −5.0

)
,

with µ
δ−
1,1 = 0.27189, ρ

δ ∗ = 0, Hδ−
i j =

(
0 0

4.48541 6.73933

)
.

Example 6.5. Now we have the two following APHDs in composition

c = (0.094118,0.905882) , Di =

(
−1 1

0.00000 −8.5

)
,

and

π = (0.7,0.3) , D j =

(
−1.0 0.8

0 −1.5

)
,

with µ1,1 = 0.26965, ρ = 0, Hi j =

(
0 0

5.95 2.55

)
.

We obtain the following δ bounds δ− = −0.093333, and δ+ = 0.3. Setting δ to δ+

the we obtain the following representation of PH j

π
δ+

= (1,0) , (D j)
δ+

=

(
−1.0 0.41

0 −1.5

)
,

with µ
δ+

1,1 = 0.26965, ρ
δ+

= 0, Hδ+

i j =

(
0 0

8.5 0

)
.

Setting δ to δ− the transformation method generates canonical representation of PH j

π
δ− = (0.60667,0.39333) , (D j)

δ− =

(
−1.0 1

0 −1.5

)
,

with µ
δ−
1,1 = 0.26965, ρ

δ− = 0, Hδ−
i j =

(
0 0

5.15667 3.34333

)
.

If we set δ = 0.1 we obtain

π
δ = (0.80000,0.20000) , (D j)

δ =

(
−1.0 0.63750

0 −1.5

)
,

with µ
δ
1,1 = 0.26965, ρ

δ = 0, Hδ
i j =

(
0 0

6.8 1.7

)
.
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6.2.3. The third case

Now we are interesting in the optimal representation of PHD PHi in composition in
order to maximize the first joint moment, when the representation of PHD PH j is fixed.
The third case is given when PH j is in hyperexponential representation

π = (π,1−π) , D j =

(
−1 0
0 −λ2

)
,

where −D j(1,1) = λ1 is the transition rate of state 1, −D j(2,2) = λ2 is the transition
rate of state 2, and D j(1,2) = 0. We assume λ2 > 1, such that λ1 has been scaled to 1,
and λ2 , λ1.

The PHD PHi is acyclic and has the representation

c = (c,1− c) , Di =

(
−µ1 µ1,2

0 −µ2

)
=

(
−1 µ1,2
0 −µ2

)
where −Di(1,1) = µ1 is the transition rate of state 1, −Di(2,2) = µ2 is the transition
rate of state 2, and Di(1,2) = µ1,2 is the transition rate from state 1 to state 2. There
are the following inequalities

0≤ c≤ 1,µ1,2 ≤ 1,µ2 ≥ 1,

such that µ2 ≥ µ1, and µ1 has been also scaled to 1.
The transformation of APHD with representation (c,Di) in the 2-state case (6.7) is

according to

cδ =
(

cδ ,1− cδ

)
= (c+δ ,1− c−δ ) , µ

δ
1,2 =

cµ1,2

c+δ
− (µ2−1)δ

c+δ
(6.16)

where δ -bounds are given by the interval

δ ∈
[

max
(
−c,−c(1−µ1,2)

µ2

)
,min

(
1− c,

cµ1,2

µ2−1

)]
. (6.17)

Theorem 6.3. Let ((πi,Di), (π j,D j), Hi j) be a composition of PHi and PH j as defined
in (3.1). If the representation of PHi can be transformed into hyperexponential form,
then this representation results in the maximal first joint moment µ∗1,1, given that the
representation PHD PH j is in hyperexponential form.

Theorem 6.3 states that the best suitable representation of PHi for maximizing the
first joint moment is the hyperexponential form, when PH j of composition is in hy-
perexponential form. The proof given in C.1 provides insights which transformation
parameter δ should be chosen to achieve the optimal representation. The results show
that the transformation parameter δ should be increased to increase µ1,1. When δ is set
to the maximum, i.e., to δ+, then the parameter µ1,2 is equal to zero which corresponds
to the hyperexponential representation of the transformed PHδ+

i .

Example 6.6. We consider the following APHDs in composition. PH j has the repre-
sentation

π = (0.4,0.6) , D j =

(
−1.0 0

0 −12.0

)
.
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and PHi has the representation

c = (0.4,0.6) , Di =

(
−1 0.4
0 −3

)
,

The maximal first joint moment for these APHDs is

µ1,1 = 0.35421, ρ = 0.096044, Hi j =

(
0.6 0

0.63158 2.36842

)
.

Furthermore we obtain δ− =−0.08, and δ+ = 0.08. Setting δ ∗ to δ+

cδ ∗ = (0.48,0.52) , (Di)
δ ∗ =

(
−1.0 0

0 −3.0

)
,

with µ
δ ∗
1,1 = 0.42111, ρ

δ ∗ = 0.20276, Hδ ∗
i j =

(
0.83333 0.16667

0 3

)
.

Example 6.7. Now let PH j of composition

π = (0.8,0.2) , D j =

(
−1.0 0

0 −5.0

)
.

and PHi has the representation

c = (0.7,0.3) , Di =

(
−1 0.8
0 −1.5

)
,

The maximal first joint moment for the APHDs

µ1,1 = 1.0981, ρ = 0.026281, Hi j =

(
0 0.2

1.39535 0.10465

)
.

Furthermore we obtain δ− = −0.093333, and δ+ = 0.3. Here the PHi cannot be
transformed into hyperexponential representation. Setting δ ∗ to δ+ the first joint mo-
ment can be maximized. Then the representation of PHδ ∗

i is

cδ ∗ = (1,0) , (Di)
δ ∗ =

(
−1.0 0.41

0 −1.5

)
,

with µ
δ ∗
1,1 = 1.1133, ρ

δ ∗ = 0.040360, Hδ ∗
i j =

(
0.39 0.2
1.5 0

)
.

6.2.4. The fourth case

In the last case we fix the representation of PH j in composition to series canonical
form 2.19(b). We examine what is the optimal representation of PHD PHi in order to
maximize the first joint moment of the composition containing PHi and PH j.

Let PHD PH j in composition be given by

π = (π,1−π) , D j =

(
−1 1
0 −λ2

)
,
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where −D j(1,1) = λ1 is the transition rate of state 1, −D j(2,2) = λ2 is the transition
rate of state 2, and D j(1,2) = 1. Here we assume λ2 > 1, such that λ1 has been scaled
to 1, and λ2 , λ1, λ1,2 = λ1.

The representation of PHi in composition is

c = (c,1− c) , Di =

(
−µ1 µ1,2

0 −µ2

)
=

(
−1 µ1,2
0 −µ2

)
,

where −Di(1,1) = µ1 is the transition rate of state 1, −Di(2,2) = µ2 is the transition
rate of state 2, and Di(1,2) = µ1,2 is the transition rate from state 1 to state 2. There
are the following inequalities

0≤ c≤ 1,µ1,2 ≤ 1,µ2 ≥ 1,

such that µ2 ≥ µ1, and µ1 has been scaled to 1. The transformation is performed
according to steps (6.16)-(6.17).

Theorem 6.4. Let ((πi,Di), (π j,D j), Hi j) be a composition of PHDs PHi and PH j as
defined in (3.1). If the representation of PHi can be transformed into hyperexponential
form, then this representation results in the maximal first joint moment µ∗1,1, given that
PHD PH j is in series canonical form.

Theorem 6.4 states that the best suitable representation of PHi for maximizing the
first joint moment is hyperexponential form such that we obtain the same result as
stated in Theorem 6.3. When PHD PH j is in series canonical form the transformation
parameter δ should be increased to increase µ∗1,1. setting δ to its maximum value,
parameter µ1,2 becomes 0 which corresponds to hyperexponential form of transformed
PHδ+

i . The proof is given in C.1.

Example 6.8. We consider following PHDs in composition. PHD PH j in series canon-
ical form

π = (0.4,0.6) , D j =

(
−1.0 1.0

0 −8.5

)
.

and PHi has the representation

c = (0.4,0.6) , Di =

(
−1 0.4
0 −3

)
,

The maximal first joint moment for PHDs in composition is

µ1,1 = 0.25015, ρ = 0.10086, Hi j =

(
0.6 0

0.63158 2.36842

)
.

Furthermore we obtain δ− =−0.08, and δ+ = 0.08. Setting δ ∗ to δ+

cδ ∗ = (0.48,0.52) , (Di)
δ ∗ =

(
−1.0 0

0 −3.0

)
,

with µ
δ ∗
1,1 = 0.32314, ρ

δ ∗ = 0.21292, Hδ ∗
i j =

(
0.83333 0.16667

0 3

)
.
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Example 6.9. In the second example the representation of PH j is in series canonical
form

π = (0.440.56) , D j =

(
−1.0 1.0

0 −12.347

)
.

and PHi is given by

c = (0.7,0.3) , Di =

(
−1 0.8
0 −1.5

)
,

The maximal first joint moment for PHDs in composition is

µ1,1 = 0.68297, ρ = 0.020710, Hi j =

(
0 0.2

0.76744 0.73256

)
.

Furthermore we obtain δ− =−0.09333, and δ+ = 0.3. Here the PHi cannot be trans-
formed into hyperexponential representation. Setting δ ∗ to δ+ the first joint moment
can be maximized. Then the representation of the PHδ ∗

i is

cδ ∗ = (1,0) , (Di)
δ ∗ =

(
−1.0 0.41

0 −1.5

)
,

with µ
δ ∗
1,1 = 0.81646, ρ

δ ∗ = 0.16191, Hδ ∗
i j =

(
0.03 0.56
1.5 0

)
.

6.2.5. Geometric Interpretation of the Transformation

In this section we present a geometrical interpretation of PHD with representation
(π,D0), of its hyperexponential and canonical forms according to [89, 61, 147]. Again,
we consider the 2-order case. Furthermore, we interpret our transformation results (6.2)
in context of PHD polytops and study the following problem: Given that both PHDs
in composition ((πi,Di), (π j,D j), Hi j) are in hyperexponential representation, what
is the optimal initial probability distribution π∗ of PHD PH j which maximizes the first
joint moment of PHD composition; where is π∗ positioned in the PHD polytop?

First, if matrix representations Di, D j of both hyperexponential PHDs are fitted
separately, it is important to know the initial distribution π∗ of PH j with the maximal
or minimal first joint moment that can be reached by PHD composition. Secondly,
using the knowledge about the position of the optimal π∗ in the PHD polytop, we can
show that the transformation of PHD PH j using δ ∗ = δ− decreases the distance to the
optimal π∗ in the PHD polytop.

We consider both APHDs with representations given in (6.6) - (6.7), and (6.8),
where PHi is fixed to hyperexponential form. Observe that matrix representations
Di, D j in composition are in triangular form since both PHDs are acyclic.

We consider a polytope formed by PH j which is the subject of the transformation
into the series canonical form in Sec. 6.2.1. In the following π denotes an arbitrary
initial distribution vector, and D0 an arbitrary PHD subgenerator.

Definition 6.1. For PHD subgenerator matrix D0, the set PHD(D0) collects all PHDs
which can be represented by a tuple (π,D0), such that π is any stochastic-vector1

PHD(D0) = {(π,D0) | 0≤ π(i)≤ 1, i = 1, . . . ,n, π I1 = 1}.
1We assume that the point mass at zero, i.e. the probability of starting in absorbing state is 0. In this

case we have π(n+1) = 0, and the time to absorption is strictly positive random variable.
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Moreover, for matrix D0 let {D0(i, i), i = 1, . . . ,n} be the eigenvalues of the sub-
generator D0, i.e., for a triangular subgenerator matrix its eigenvalues are given by its
diagonal elements.

Let ui be the i-th unit vector of Rn, i.e. the vector of size n and the i-th element
being one and all other elements being zero. Given a set of n vectors {x1, x2, . . . , xn},
the convex set conv({x1, x2, . . . , xn}) is defined as {x = a1x1+a2x2+ · · ·+anxn, a1+
a2 + · · ·+an = 1, 0≥ ai ≥ 1, i ∈ {1, . . . ,n}} as mentioned in [89, 147].

For a finite n, the convex set conv({x1, x2, . . . , xn}) is denoted as a polytope. In
particular, the polytope conv({u1,u2, . . . ,un}) defined as {u = a1u1 + a2u2 + · · ·+
anun, a1+a2+ · · ·+an = 1, 0≥ ai ≥ 1, i ∈ {1, . . . ,n}} denotes the probability vector
polytope, as described in [89, 147]. The affine set a f f ({u1,u2, . . . ,un}) contains all
vectors with a unit sum, and particularly all stochastic vectors [89].

Hyperexponential Representations In [147] it is pointed out that every eigen-
vector vi of n×n matrix D0 corresponding to the real eigenvalue D0(i, i) with a nonzero
sum is associated with an exponential distribution with parameter −D0(i, i). We have
vi D0 =−D0(i, i)vi with vi I1 , 0. If the vector vi is normalized to have a unit sum, one
can show that v̂i eD0 t I1= eD0(i,i) t , for t ≥ 0 and v̂i =

vi
vi I1 . Thus the vector vi represents an

exponential PHD with the corresponding subgenerator matrix D(i)
0 = (D0(i, i)) [147].

Since we have n eigenvectors vi, i = 1, . . . , n, each of them represents i-th expo-
nential distribution with rate λ (i) (see Eq. 2.59). The normalized eigenvectors v̂i are
contained in the affine set a f f ({u1,u2, . . . ,un}) such that geometrical and stochastic
interpretation can be related here as stated in [89].

In particular, the polytope conv({v̂1, v̂2, . . . , v̂n}) corresponds to a diagonal matrix
Ddiag

0 , i.e. the matrix with elements D0(i, i), i = 1, . . . ,n, on the diagonal and all other
elements are zero. In fact, one can use the similarity transformation with a matrix B
with row vectors v̂i, i = 1, . . . ,n, such that BD0 = Ddiag

0 B [47].
If a matrix B with the above property exists, then PHD (π,D0) has hyperexponential

representation (β ,Ddiag
0 ). Particularly, π ∈ conv({v̂1, v̂2, . . . , v̂n}) such that π is an

affine combination of {v̂1, v̂2, . . . , v̂n}, i.e. π = β (1)v̂1 + β (2)v̂2 + . . .+ β (n)v̂n as
given in [137].

Example 6.10. We now visualize the geometrical concepts from the literature [137,
89, 147]. Let (π,D0) be a 3-order APHD with the following parameters

π = (0.5,0.25,0.25) , D0 =

 −4.5 0.5 0.2
0 −3 1
0 0 −0.5

 . (6.18)

In Figure 6.2(a), an example of the polytope of D0 in a 3-dimensional coordinate
system is plotted. Points in the coordinate system represent possible initial probability
vectors as discussed in [61, 147]. For example, the point at the origin 0 = (0,0,0)
represents the PHD with representation (0,D0) such that the probability of starting in
the absorbing state is 1.

The points u1, u2, and u3 correspond to PHDs (u1,D0), (u2,D0), and (u3,D0),
respectively. E.g., the PHD with representation (u3,D0) is the exponential distribution
since u3 = (0,0,1), hence the PHD can be characterized by the rate parameter λ (3) =
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(a) The polytope corresponding to APHD with
subgenerator D0. Vector π is visualized on the
face of the polytope.
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(b) The extention of polytope PHD(D0) to
polytope corresponding to the subgenerator
Ddiag

0 .

Figure 6.2.: Graphical representation of the polytope corresponding to subgenerator
matrix D0 and of the polytope corresponding to diagonal subgenerator
matrix Ddiag

0 based on [61, 147].

0.5 such that only the third phase is visited before absorption. In contrast, the less
trivial PHD with representation (u2,D0) decribes a PHD where the second transient
phase is entered with probability 1, and where either the sequence of transient phases
< 2, 3 > is traversed, or the absorption occurs directly from the second phase with
rate 2.

Given a set of vectors {0,u1,u2,u3} from the three-dimensional real vector space,
the visualized polytope is the convex hull of the zero vector 0 and the unit vectors in
R3, i.e. it is the convex hull of the corresponding extreme points. Each element
π ∈ conv({0, u1, u2, u3}) is denoted as a convex combination of the vectors 0, u1, u2, u3.

Then π represents a valid probability distribution vector of PHD with subgenerator
matrix D0 and the point mass at zero≥ 0. In contrast, the face of the polytope which is
given by the plane u1u2u3 contains initial probability vectors with point mass at zero
π(n+1) = 0 [147]. Note, that line segments joining each of two PHDs also belong to
the convex set.

Suppose now that {v1,v2,v3} are eigenvectors of D0 given in Eq. 6.18 correspond-
ing to three distinct real eigenvalues denoted as −λ (1),−λ (2),−λ (3). We assume
that λ (1)> λ (2)> λ (3). Then we obtain

v1 = (0.9482,−0.3161,0.0316) for the eigenvalue −4.5,
v2 = (0,0.9285,−0.3714) for the eigenvalue−3,
v3 = (0,0,1) for the eigenvalue −0.5.

The normalized vectors result in

v̂1 = (1.4287,−0.4763,0.0476),
v̂2 = (0,1.6667,−0.6667),
v̂3 = (0,0,1).

Each eigenvector vi, i = 1,2,3, corresponds to an exponential distribution with the
corresponding rate λ (1) = 4.5, λ (2) = 3, and λ (3) = 0.5 respectively. The polytope
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for the diagonal matrix Ddiag
0 is the convex hull of zero vector 0 and normalized eigen-

vectors v̂i, i = 1, . . . ,3 [147]. We obtain the following representation for the diagonal
matrix

Ddiag
0 =

 −0.5 0 0
0 −3 0
0 0 −4.5

 . (6.19)

The corresponding polytope is visualized in Fig. 6.2(b).
The authors in [89, 137] stated that if the intersection of the probability vector

polytop conv({u1, u2, u3}) and conv({v̂1, v̂2, v̂3}) is not empty, then the PHD with
representation (π,D0) has a hyperexponential representation (π

′
,Ddiag

0 ) for some ini-
tial probability vector π

′
. In general, the intersection set contains all PHDs which

have representations using D0 and Ddiag
0 [147].

In our example, the PHD defined in Eq. 6.18 has hyperexponential representation
(β ,Ddiag

0 ). The following holds for the initial distribution vector

π = (0.5,0.25,0.25) = 0.35 v̂1 +0.25 v̂3 +0.4 v̂3.

Thus the vector β = (0.4,0.25,0.35) together with subgenerator matrix Ddiag
0 defines

the corresponding hyperexponential PHD. In Figure 6.2(b), the polytope conv({v̂1, v̂2, v̂3})
together with point β is visualized. It is in two-dimensional affine space
a f f ({u1,u2,u3}) as has been presented in the example in [89]. Particularly, the inter-
section of both polytopes is given by 0u2u3 similarly to the example presented in [147].

Canonical Representations In [61] it was shown how the polytope PHD(Ddiag
0 )

can be expanded to a polytope containing linear combinations of eigenvectors v̂i, i =
1, . . . ,n. The authors first denoted V as the n-dimensional real vector space generated
by vectors v̂i for n-order PHD. Then {v̂1, v̂2, . . . , v̂n} is the basis of V . The subset
of V containing vectors which represent probability distributions is denoted by Cn.
Furthermore, it holds for the eigenvalues that λ (1)> λ (2)> λ (3).

The important result from [61] is that for i, j ∈ {1, . . . , n}, i < j, the function
av̂i +(1− a)v̂ j, for λ ( j)

(λ ( j)−λ (i)) ≤ a ≤ 1, is also a probability distribution function and
thus belongs to the set Cn (see Lemma 2 in [61]). Based on this result we obtain the
polytope conv({f1...i,1≤ i≤ 3}) in the three-dimensional case as follows

f1 = v̂1,

f12 = λ (2)
λ (2)−λ (1) v̂1 +

λ (1)
λ (1)−λ (2) v̂2,

f123 = λ (2)λ (3)
(λ (2)−λ (1))(λ (3)−λ (1)) v̂1 +

λ (1)λ (3)
(λ (1)−λ (2))(λ (3)−λ (2)) v̂2 +

λ (1)λ (2)
(λ (1)−λ (3))(λ (2)−λ (3)) v̂3,

as additionally explained in [89]. In general, the following formula can be used to
construct the generalized Erlang distribution functions fi j considering two exponential
PHDs

fi j =
λ ( j)

λ ( j)−λ (i)
v̂i +

λ (i)
λ (i)−λ ( j)

v̂ j, (6.20)

for i, j ∈ {1,2,3} with i < j and thus λ (i) > λ ( j). Then each vector fi j represents
hypoexponential PHD, i.e., it is the convolution of two exponential PHDs with rates
λ (i) and λ ( j), respectively.
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Example 6.11. For example 6.10, we obtain the following vectors forming the set C3:

f1 = v1 = (1.4287,−0.4763,0.0476),

f12 = 3
3−4.5(1.4287,−0.4763,0.0476)+ 4.5

4.5−3(0,1.6667,−0.6667)

= (−2.8574,5.9527,−2.0953)

f13 = 0.5
0.5−4.5(1.4287,−0.4763,0.0476)+ 4.5

4.5−0.5(0,0,1)

= (−0.1786,0.0595,1.1191),

f23 = 0.5
0.5−3(0,1.6667,−0.6667)+ 3

3−0.5(0,0,1) = (0,−0.3333,1.3333),

f123 = 3·0.5
(3−4.5)(0.5−4.5)(1.4287,−0.4763,0.0476)+ 4.5·0.5

(4.5−3)(0.5−3)(0,1.6667,−0.6667)

+ 4.5·3
(4.5−0.5)(3−0.5)(0,0,1) = (0.3572,−1.1191,1.7619).

The computed vectors and polytopes PHD(Ddiag
0 ), PHD(Dcan

0 ) are visualized in Fig. 6.3
based on [61, 89].

y

x

z

0
u2

u3

u1

v̂3

v̂2

v̂1

f1

f13

f12

f23

f123

C3

v̂3

γ

Figure 6.3.: Graphical representation of the convex set C3 from [61, 89]. The polytopes
PHD(Ddiag

0 ), PHD(Dcan
0 ) are highlighted in green and red, respectively.

In fact, the Lemma from [61] states that the line segment joining exponential distri-
butions given by v̂i, i = 1, . . . ,n is part of the convex set Cn. In particular, all convex
combinations of two eigenvectors v̂i, v̂ j, i, j ∈ {1, . . . ,n} are also probability distribu-
tions representing the convex mixture of corresponding exponential distributions and
are positioned at line segments between vectors v̂i, v̂ j. Furthermore, these line seg-
ments can be extended to obtain more probability vectors in Cn which, e.g. can be
associated with canonical PHDs. An interesting fact is, that vectors f1, f12, and f123
are extremal points of the convex set C3. E.g., the line segment joining the exponential
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PHD f1 and the hypoexponential PHD f12 contains PHDs which can be obtained as a
random combination of these two PHDs.

Using vectors {f1, f12, f123} the polytope conv({v̂1, v̂2, v̂3}) can be extended to the
polytope conv({f1, f12, f123}). Furthermore, the polytope conv({v̂1, v̂2, v̂3}) is the
subset of the polytope conv({f1, f12, f123}), which is the convex hull of the zero vector
0 and the vectors f1, f12, f123 [147]. It has been stated in [61] that conv({f1, f12, f123})
contains PHDs which have bi-diagonal representation of order 3 or smaller. Thus, for
all probability distribution vectors π ∈ conv({f1, f12, f123}) PHD (π,D0) has ordered
Coxian representation which is also known as series canonical form [56], Eq. 2.19(b).
Note that the ordered Coxian representation is given by APHD matrix in bi-diagonal
form with rates λ (1)≥ λ (2)≥ . . .λ (n)> 0.

Example 6.12. For examples 6.10 and 6.11 let the subgenerator of APHD in series
canonical form be given by

Dcan
0 =

 −0.5 0.5 0
0 −3 3
0 0 −4.5

 ,

where three eigenvalues are given by corresponding diagonal elements, i.e., −0.5, −3
and −4.5, respectively. The original APHD is given in Eq. 6.18. If π = γ(1)f123 +
γ(2)f12 + γ(3)f1 with γ(1)+ γ(2)+ γ(3) = 1, γ(i) ≥ 0, then (γ,Dcan

0 ) represents the
same distribution as given by (6.18), where γ is the initial distribution vector with the
i-th element γ(i). We obtain

(0.5,0.25,0.25) = 0.56111 f1 +0.14259 f12 +0.29630 f123,

which results in the initial distribution vector γ = (0.29630,0.14259,0.56111) for se-
ries canonical form of the considered APHD. The point given by γ is visualized in
Fig. 6.3. We refer to [61] for the compelete construction of the set C3 and parameteri-
zation of the curve delimiting the region outside the polytope conv({f1, f12, f123}).

Geometric Results for 2-Phase Case We now proceed with polytope construc-
tion in two-dimensional case. Since the presented transformations in Sec. 6.2.1-6.2.4
operate on 2-order APHDs, we should consider the corresponding polytopes.

Example 6.13. We assume that PHDs in composition are both in hyperexponential
representation. Let PHD PHi be parameterized as following

c = (0.01,0.99) , Di =

(
−1 0
0 −11.22449

)
, (6.21)

with µ1 = 1, µ2 = 11.22449. Let PHD PH j in composition have the representation

π = (0.99,0.01) , D j =

(
−1 0
0 −5

)
, (6.22)

where λ (1) = 1, λ (2) = 5, c = 0.01, and π = 0.99. The polytope conv({u1, u2})
corresponding to PHD subgenerator D j is visualized in Fig. 6.4 where it is highlighted
in blue.
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Figure 6.4.: Graphical representation of polytopes PHD(D j) and PHD(Dcan
j ) for 2-

order PHDs. The extreme points and the position of initial distribution
vector π = (0.99,0.01) are highlighted in red and blue.

To expand the polytope conv({u1, u2}) we first compute eigenvectors v̂2 = (0,1)
corresponding to the eigenvalue −λ (2) = −5, and v̂1 = (1,0) corresponding to the
eigenvalue −λ (1) =−1.

Next we need to expand the polytope conv({v̂1, v̂2}) to cover more vectors which
are probability functions and which are associated with APHDs in canonical form. To
obtain the polytope conv({f1, f12}) we compute

f1 = v̂2 = (0,1),

f12 = 1
1−5 v̂2 +

5
5−1 v̂1 =−0.25 · (0,1)+1.25 · (1,0) = (1.25,−0.25).

It is easy to see that f1... j I1 = 1 for j = 1,2. Then the polytope corresponding to the
APHD subgenerator in series canonical form is visualized in Fig. 6.4 where it is high-
lighted in red.

The polytope PHD(Dcan
j ) is formed by 0f1f12, the corresponding subgenerator is

given below

γ = (0.792,0.208) , Dcan
j =

(
−1 1
0 −5

)
,

such that π = (0.99,0.01) is affine combination of {v̂1, v̂2}, i.e.
π = γ(1)f12+γ(2)f1 = (0.99,−0.198)+(0,0.208) = (0.99,0.01) for γ(1)+γ(2) = 1.
PHD PH j in canonical form (γ,Dcan

j ) is represented in Fig. 6.4 by the point γ .

The interesting question is now: Given that both PHDs in composition are in hy-
perexponential representation, what is the optimal initial probability distribution π∗ of
PHD PH j in composition maximizing the first joint moment, and where is it positioned
in the polytope?

It should be clear, that finding π∗ only gives insights about it’s positioning in the
polytope. In fact, the PHD with representation (π∗,D j) is not equal to PH j with repre-
sentation (π,D j). Furthermore, PHD (π∗,D j) strongly depends on parameters of the
first PHD (c,Di) in composition.
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In other words, we are looking for π∗ maximizing the achievable correlation of PHD
composition containing (c,Di) and (π∗,D j) such that

π
∗ = arg max

π∈PHD(D j)
(ρ ((c,Di),(π,D j))). (6.23)

Corollary 2. If PHD PH j in composition is transformed into series canonical form 2.19(b)
and π∗ = c, then this representation results in the maximal correlation, given that first
PHD PHi in composition is in hyperexponential representation.

The proof of Corollary 2 can be found in App.C.1

Example 6.14. In Figure 6.5 we plotted the correlation function for our numerical
example given in (6.21)-(6.22).
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Figure 6.5.: The correlation functions ρ1(π), ρ2(π) defined in proof C.1.

The following corollary of Theorem 6.1 states that transformation of PH j in compo-
sition using δ ∗ = δ− decreases the distance to the optimal point π∗ in the correspond-
ing polytope.

Corollary 3. Transformation of PHD PH j into series canonical form decreases the
distance to the optimal point π∗ in the polytope conv({v̂1, v̂2}).

Proof. First note that euclidian distance for two points x and y is defined as

d(x,y) =

√
n

∑
i=1

(xi−yi)2, (6.24)

i.e, it is the length of line segment connecting these points.
Considering the euclidian distance between point π representing PH j in hyperexpo-

nential form and point representing the optimal probability distribution π∗ we obtain

d(π,π∗) =
√

(π− c)2 +(1−π−1+ c)2 =
√

(π− c)2 +(c−π)2

=
√

2(π2 + c2−2πc).
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The following holds for point γ which represents PH j in series canonical form

γ = (πδ ,1−π
δ ),

such that πδ = π + δ = π − π(1−λ12)
λ2

= π(λ2−1+λ12)
λ2

, for δ = −π(1−λ12)
λ2

as shown in

Sec. 6.2.1. In the following we denote the term (λ2−1+λ12)
λ2

as q such that πδ = πq.
The distance between the point γ and the optimal point π∗

d(γ,π∗) =
√
(πq− c)2 +(1−πq−1+ c)2 =

√
(πq− c)2 +(c−πq)2

=
√

(πq)2−2πqc+ c2 + c2−2πqc+(πq)2

=
√

2((πq)2 + c2−2πqc).

Now it can be shown that the following relation holds

d(γ,π∗)≤ d(π,π∗).

Observe that for PH j in hyperexponential form it holds that λ12 = 0. Then q= (λ2−1)
λ2

<
1 holds. Now consider the following relation√

2((πq)2−2πqc+ c2) ≤
√

2(π2−2πc+ c2)
⇔ (πq)2−2πqc+ c2 ≤ π2−2πc+ c2

⇔ (πq)2−2πqc ≤ π2−2πc
⇔ πq(πq−2c) ≤ π(π−2c)
⇔ πq2−2qc ≤ π−2c
⇔ q(πq−2c) ≤ π−2c,

where by multiplying π with some number q< 1 we obtain πq< π . Hence, d(γ,π∗)≤
d(π,π∗) such that transformation of PH j in composition in series canonical form in-
creases the correlation of the given composition. �

6.3. Summary

In this chapter we presented a similarity transformation approach for 2-order PHDs
in composition in order to generate a representation which is best suitable for fitting
a transfer matrix with maximal first joint moment. When optimal representations are
known, parameter estimation for both PHDs in composition and transfer matrices can
be simplified. If only hyperexponential and canonical representations are considered
the reduction of fitting complexity can be achieved by reducing the number of free pa-
rameters in the matrix representations. A further advantage is that for the case with two
phases transfer matrices allowing for the maximal first joint moment can be generated
directly.

When the representation of first PHD PHi in composition is fixed, the bounds for
the maximal achievable correlation can be specified. The maximal first joint moment
µ∗1,1 of the composition can be achieved when successor PH j is transformed into series
canonical form, given that PHi is in hyperexponential representation. This case corre-
sponds to the upper bound of the maximal achievable correlation of a composition.

A lower bound for the achievable correlation is given when the representation of
PHD PHi is fixed to series canonical form. Unfortunately, the canonical form which is
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often used in fitting algorithms is not suitable for PHD PHi to model correlation of the
composition. A PHD in canonical form has only one exit state which severely restricts
possible entries and values in transfer matrix Hi j, such that no flexibility for Hi j is
available.

If the representation of successor PHD PH j is fixed, then the following bounds for
the maximal achievable correlation of composition are given. The upper bound for the
maximal first joint moment µ∗1,1 of composition is given when PHD PHi can be trans-
formed into a hyperexponential representation, given that PH j is in series canonical
form.

If PH j is in hyperexponential representation, then the optimal first joint moment
µ∗1,1 is reached by PHi in hyperexponential form. Obviously, the lower bound for the
achievable correlation of composition is given when PHD PHi is in canonical repre-
sentation, given that the representation of PH j is fixed.

In contrast, no results for PHDs in composition with an arbitrary number of phases
are known. The optimal representation for n-order PHDs in composition in order to
maximize the first joint moment remains subject to future research. In cases where
the transformation does not result in an adequate first joint moment, e.g., if a PHD
cannot be transformed into hyperexponential representation, the state space expansion
technique described in [41] can be applied.

By adding additional states it is possible to find a representation allowing larger
flexibility. We tried the expansion technique for hyperexponential PHDs where two
additional states are added; first, an arbitrary phase is selected and represented by two
states using Cumani’s substitution step (see Fig. 2.18); then, the second state from
Cumani’s expansion is cloned. The third state then appears with probability λ

µ
, and the

second cloned state appears with probability 0.
Our results indicate that following factors have impact on the maximal achievable

correlation of expanded PHDs in composition: (1) the choice of the parameter µ in
Cumani’s substitution step, (2) the choice of the state which has to be expanded. Fur-
thermore, it is unclear how many states are required to reach the maximal achievable
correlation for both PHDs. All these questions remain for future investigations.
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Chapter 7
Applications and Experiments

To demonstrate the potential of PH-Graph-based optimization in practice, we present
several applications in this chapter. As already mentioned before, PHGs can be used
to model various practical problems like finding shortest routes on streets for vehi-
cles under congestions or natural disasters, rerouting of airlines and freight flows to
avoid weather delays, routing in computer networks, reliability analysis of systems,
and analysis of stochastic graphs. In many cases, correlation might be an important as-
pect, e.g., in large-scale applications correlated travel times on adjacent edges should
not be neglected. In the first case study, we delve deeply in PHG-based modeling and
optimization for finding shortest routes on streets, the application area where PHGs
have a big potential. We use an available vehicle mobile trace for parameterization.
The resulting PHG depicts vehicular traffic network with typical congestions often oc-
curing in practice. At the same time, we increase the number of phases of involved
PHDs in order to analyse its impact on achievable correlation and likelihood value.
However, this relationship has not been studied closely for PH-Graphs and there might
be traces for which increasing the PHD order can improve the quality of results.

Then, we extend PH-Graph model using bilateral PHDs to cover PHDs with support
on the whole line (−∞,∞). Then we show how analysis methods can be adapted for bi-
lateral PHDs, and how PHGs with negative edge weights can be useful in computation
of optimal investment policies for financial markets. Numerical investigation of solu-
tion methods for large PHG models are performed. The example from maintenance
field is also introduced.

7.1. Shortest Path Computation

In this section we present a real world example from [40] for the shortest path com-
putation based on simulation data. We used the synthetic vehicle mobility trace which
collects a realistic simulation data of 24-hour car traffic in about 400 km2 region of the
city of Cologne, in Germany [2, 171]. The dataset captures microscopic and macro-
scopic dynamics of car movement patterns on realistic road data. The proposed vehicle
trace has been generated using data available from TAPASCologne project [1] using
different software tools, e.g. the microscopic road traffic simulation package SUMO
and OpenStreetMap road information.
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Figure 7.1.: Map of the modeled
roads [2, 1].
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A(µ = 5.29,σ2 = 96.03)

C (µ = 42.27,σ2 = 595.8)

B(µ = 55.97,σ2 = 3134.5)

D(µ = 13.98,σ2 = 32.6)

E (µ = 8.26,σ2 = 455.5)F (µ = 13.03,σ2 = 61.86)

G(µ = 9.94,σ2 = 101.2)

Figure 7.2.: The PHG corresponding to the mod-
eled road area from [40].

High level of detail results from the real-world data collected by the German Federal
Statistical Office, such that the information about vehicle driver behavior, time and
location patterns could be exploited.

Each entry of the trace contains the simulation time, the identifying number of a
vehicle, its xy-position on the plane and its speed in meters per second. Furthermore,
we consider the car traffic trace for some main streets of the city Cologne, namely the
Niehler Strasse, Neusser Strasse, and the Innere Kanalstrasse at the time 6 am to 8 am
(see Fig. 7.1). During this time interval congestions on the roads often occur.

We filter the dataset [2] and extract the information about traveling times of vehicles
passed through the road area mentioned, i.e. vehicles first passed through the Innere
Kanalstrasse and then the Neusser Strasse. Similarly the traveling times for the ve-
hicles first passed through the Innere Kanalstrasse and then the Niehler Strasse have
been extracted. Then, in PHG the weights of edges correspond to the derived traveling
times of vehicles. Figure 7.2 shows two paths from initial node 1 to the destination
node 4.

PHG parameterization The PHG from [40] visualized in Fig. 7.2 has the set of
edges E = {A,B,C,D,E,F,G}. Let PHDJ = (π(J),D(J)

0 ) be the PH distribution of the
random variable X (J) describing the weight of the edge J for J ∈ E .

There are two paths from the initial node 1 to the destination 4, namely p1 =
(A,C, E, F, G) and p2 = (A, B, D). There is a positive correlation between traveling
times along the Innere Kanalstrasse and the traveling times along the Neusser Strasse.
Thus, if the Innere Kanalstrasse is congested, the Neusser Strasse is also congested.
For this reason the weight of the edge A is correlated with the weight of the adjacent
edge B.
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Figure 7.3.: Log-likelihood values for PHDJs of order i, i = 1, . . . ,20, and J ∈
{A,B,C,D,E,F,G}.

We fitted the traveling time data from the trace to PHDs of order i, i = 1, . . . ,20,
using the software g f it [168]. Figure 7.3 shows the values of the log-likelihood func-
tion according to the traces. Additionally, the impact of the fitted PHD order on the
achievable correlation coefficient ρAB between PHDA and PHDB is shown in Tab. 7.1.
For the reasons explained in [40] the vehicle mobility traces can be fitted adequately

by PHDs with already 6 phases. Here the fitting tool g f it has been used to generate
PHDs. The software produces PHDs in hyperexponential representation which is best
suited for the subsequent correlation fitting [41] (see also Chap. 6).

One can see that increasing number of phases results in the rise in log-likelihood
value curves as represented in Figure 7.3. For the given mobility traces already 6

PHD order ρAB

2 1.3643e−05
3 0.027237
4 0.18756
5 0.18758
6 0.19576
9 0.19577
11 0.19726
13 0.19751
15 0.19754

Table 7.1.: Impact of the PHD order on the correlation for the PHDA (π(A),D(A)
0 ) and

the PHDB (π(B),D(B)
0 ) as given in [40].
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phases are sufficient, i.e. further increasing of PHD order would result in insignificant
rise of the log-likelihood values.

The same holds for the achievable correlation coefficient of the PHDA and PHDB.
Increasing number of phases results in a higher correlation coefficient. However, it is
an open issue how the maximal achievable correlation coefficient and the PHD order
coincide (the interested reader is referred to [41]). In this example, we choose PHDs
of order 6 since the highest increase of the reachable coefficient of correlation takes
place from the order nJ = 6 as shown in Table 7.1. The representation of the fitted
PHDs and transfer matrices can be found in Sec D.3. Fitting of the transfer matrices
has been performed according to the joint moments method (4.45).

Computation of the minimal expected traveling time We considered the
graph instance shown in Fig. 7.2 where PHDs are substituted by their expectations
and correlations between edge weights are completely neglected. Then, the initial
proper policy results in u0 = (A, B, D) with the weight of 75.2639. The weight of the
alternative policy u1 = (A,C, E, F, G) is 78.8236.

Assume that the vehicle arrives at the node f in(A) = 2. To arrive at the destination
node 4 the vehicle has two competing options for the next possible edge to traverse.
These are the edges B ∈ A• and C ∈ A•. The decisions of the vehicle should be based
on the time required to pass edge A if correlated traveling times on adjacent edges
should be considered.

In the following we consider the policy iteration approach to minimize the expected
time until arriving at the destination node 4. For a long time required on the edge A,
the optimal choice is the upper adjacent edge C, since traveling times on edges A and C
are not correlated whereas traveling times on edges A and B are positively correlated.

In turn, if the time on the edge A becomes shorter, it is better to choose the edge B to
exploit the effect of positive correlation. More precisely, from a phase where remaining
time before absorption is shorter than the average, the optimal policy chooses edge B.
In the case where the process is in a phase where remaining time till absorption is
longer than the average, the optimal decision is the successor edge C.

Table 7.2.: Expected travel times from initial node vini = 1 to the destination node
v f in = 4 depending on the exit phase of the PHDA (π(A),D(A)

0 ), and optimal
decisions of successor edges as given in [40].

Mean Travel Time to v f in = 4

Exit Phase of the PHDA Succ. B Succ. C Optimal Successor Edge

Phase 1 157.4980 118.6390 C
Phase 2 109.9351 74.6470 C
Phase 3 105.3878 70.0997 C
Phase 4 47.0699 71.2365 B
Phase 5 44.7962 68.9628 B
Phase 6 28.7180 68.9628 B
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Phase-based optimal decisions We computed the optimal policy u∗ and the
corresponding weight vector g∗ via policy iteration. The expected traveling times to
the destination node 4 and the optimal choice of the successor edge depending on the
phase of the PHDA are given in Table 7.2.

The entries in Table 7.2 demonstrate that the optimal policy can change based on the
congestion level of the traversed predecessor edge A. It can be seen that the optimal
decision is edge C, if the exit phase of the PHDA is one of the phases where the
remaining time till absorption is on average longer, e.g., the phase 1. For a long time
required on the edge A the probability to escape from a phase where the remaining
time till absorption is on average longer is higher than the probability to escape from
the phase where the remaining time till absorption is on average faster.

Consequently, the probability to enter a phase of the successor PHDB where the
remaining time before absorption is on average longer is higher than the probability
to enter a phase with the on average faster remaining time before absorption. This
behavior is modeled by the correlation matrix Hρ=0.19576

AB (see Sec. D.3 for detail).
Thus the case of the on average longer time required to pass the successor edge B is
more likely to occur.

Assume now that the exit phase of the PHDA has the remaining time before absorp-
tion which is on average faster, e.g. the phase 6. Since PHDA and PHDB are positively
correlated, the probability to enter a phase of PHDB where the remaining time before
absorption is on average faster is higher than the probability to enter a phase where the
remaining time before absorption is on average longer. Hence, the small time value
required to traverse the edge B is more likely to occur.

History-based optimal decisions Of course, the decisions resulting from the
PI algorithm and presented in Table 7.2 depend on phases of the PHDA which are not
part of the real system. Assume that the history of realized values w1, . . . ,wl become
known to the vehicle as it traverses the selected route. Then the decisions of the vehicle
have to depend on the history vectors ψ̄(i1,w1,...,il ,wl) computed with (5.15)-(5.16).

We computed vectors ψ̄(A,w,iJ ,0) with w ∈ [0.1,80], J ∈ {B,C}. The values of the
first conditional moment of the traveling time for the adjacent edges are summarized
in Figure 7.4. Results are computed for PHDs with 4,6,11, and 15 phases.

Figure 7.4 shows the expected traveling times at the adjacent edges B and C depend-
ing on the traveling time of the predecessor edge A. The time at C is not affected by
the traveling time at A since both weights are independent. The positive correlation
between the weights at the edges A and B results in a positive slope of the expected
traveling time at B. It can be seen that the curves for the PHDs of different orders
slightly differ. However, the difference occurs mainly for small traveling times at the
edge A. For larger values the curves are almost identical for all numbers of phases
shown in the graph.

Using the history vectors ψ̄(i1,w1,...,iL,wl) the conditional weights of the remaining
paths from the node f in(A) = 2 to the destination node v f in = 4 can be computed. The
best subsequent edge after passing the initial edge A can then be computed with (5.48),
such that the optimal decision depends on the previous weight of the edge A and not
on the state of the PHD.

The values of the first conditional moment for the remaining traveling time are
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Figure 7.5.: The expected traveling time for the remaining paths (B,D) and (C,E,F,G)
depending on the realized time at the edge A.

shown in Figure 7.5. Again it can be seen that curves for the PHDs of different or-
ders differ slightly for small traveling times at the edge A and are very similar for
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larger traveling times at A.
Figure 7.5 not only shows the effect of positive correlation for relatively small

weights of the edge A but the effect of the PHD order and thus the maximal achieved
correlation is visualized.

One can see that the minimum of the expected traveling time for the remaining route
(B,D) is reached using the PHD of order 15 with the highest correlation
ρAB = 0.19754.

In the case of large weights for the edge A the PHDs with a higher correlation again
result in curves which have a large slope, such that the effect of correlation becomes
more visible. As shown in Figure 7.5 the effect is most obvious for the largest PHDs
with 15 states but is also significant for the smaller PHDs, e.g., with 4 phases.

Maximizing probability of arriving on time In this example we determine the
path maximizing the probability of reaching the destination v f in = 4 within a given
deadline value w as explained in [40]. We analyzed the corresponding CTMDP in the
time interval [0,w] for deadline w ∈ [20,200]. In particular, we used the discretization
approach described in 5.6 with relatively small discretization step h = w/N, for N =
3000. The computed results are shown in Figure 7.6 for models with PHDs of different
orders.

In the examples weights at all edges are described by PHDs of a common order.
Here the positive correlation has an effect of a higher probability for the path p2 =
(A, B, D) to meet a short deadline but in a slightly smaller probability to meet a long
deadline. E.g. for the model using PHDs of order 15 with the highest correlation, the
probability of meeting a deadline decreases already for values w > 70.
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Figure 7.6.: The probabilities of arriving at the destination v f in = 4 with a path weight
less or equal to w ∈ [20,200].
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But if one starts just before a deadline, the most uncertain route offers a higher
probability of avoiding lateness. In this case, the correlated path containing B should
be preferred to the more reliable path containing edge C. From Figure 7.6 it can be
seen that there is only a small difference between the results of the examples using
PHDs of different orders.

The probabilities of meeting various deadlines via the path (B,D) and (C,E,F,G)
are analyzed based on realized values at edge A and remaining time to deadline. His-
tory vectors ψ̄(A,wA,iJ ,0) with wA ∈ [0,30], J ∈ {B,C} have been evaluated. Results are
summarized graphically in Figure 7.7 from [40].
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Figure 7.7.: Probabilities of arriving on time for different deadlines depending on the
realized traveling time at the edge A from [40].
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. . .

. . .

Figure 7.8.: Acyclic grid graph for shortest path computation.

It can be seen that for a short traveling time at A the correlated path (B, D) should
be chosen by a vehicle. As the deadline increases, the traveling time at A for which it
is preferable to choose the path (B, D) rather than (C, E, F, G) becomes smaller and
smaller. The reason for this behavior is the relatively large variance of the traveling
time of edge B.

Furthermore, one can see that for a long time at A the uncorrelated and more reliable
path (C, E, F, G) offers a higher probability of arriving on time for deadline values
w = 50,80,120. One can observe that behavior even for small weights at A, but for
larger weights at A the effect intensifies. In that case one should prefer the path via C,
since traveling times at A and B are positively correlated.

It can also be seen that the probabilities computed using PHDs of order 4 with the
lowest correlation are rather conservative. Since the results computed using PHDs of
higher order, e.g., order 15 which results in the highest correlation, are more sensitive
in respect to traveling time at A and time horizon.

7.2. Numerical investigation

Computational times of the proposed algorithms have to be moderate, if the algorithms
should be used in real-time applications. Then, the algorithms should be able to meet
timing requirements of different real-time applications which is typically in the order
of several seconds to several minutes. In order to investigate the effort of the short-
est path computation we first generated three stochastic graph instances with different
number of states. Then we ran the algorithms to analyze the computational effort
needed to obtain the optimal policy and the optimal gain vector. All of the computa-
tions were carried out on a PC with a 3.6 GHz Octa-Core processor and 16 GB main
memory. The shortest path algorithms are implemented in matlab and C.

The grid graph The first example graph shown in Fig. 7.8 is a two-dimensional
grid graph containing paths on N vertices. An initial node is on the top left corner and
the final node is on the bottom right corner. Upper nodes allow choices between two
outgoing edges. Lower nodes have only one outgoing edge. The grid graph with N
nodes has N

2 + 2(N− 1) edges and paths with N
2 edges. The weights of the edges are

modeled by the following PHD

π = (0.5,0.5), D1 =

(
−7 0
0 −0.5

)
.

Similarly to the experimental setup described in [40] transfer matrices are generated
from a convex linear combination of the transfer matrix for the maximal and minimal
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Figure 7.9.: Computational effort to compute the optimal policy in the grid graph.

correlation between adjacent edges. The following transfer matrices H result in the
maximal correlation and minimal correlation (ρmax = 0.3 and ρmin = 0, respectively).

Hρmax=0.3 =

(
7 0
0 0.5

)
, Hρmin=0 =

(
3.5 3.5
0.25 0.25

)
.

For every pair of adjacent edges weights for the convex combination are selected ran-
domly resulting in random transfer matrices. We used PHDs with 2, 6 and 10 phases to
describe the distribution for the edge weights. Using PHDs of order ni for the weights
of the edges, the resulting CTMDP has ni · (5N

2 −2) states.
To obtain the optimal policy minimizing the expected path length we inserted up

to 10000 edges. However, for the acyclic grid graph computation times are moder-
ate even for large CTMDP with 100000 states. Computing times resulting from the
Algorithm 5.1 are expressed in seconds and are shown in Fig. 7.9.

The policy iteration method implemented in the Algorithm 5.1 iterates between pol-
icy evaluation and policy improvement step. In each iteration during the policy eval-
uation step a system of linear equations has to be solved. The effort of computing a
solution for larger systems of linear equations quickly increases since solving a lin-
ear system requires computational time cubic in the number of states, e.g., if direct
methods like LU-decomposition are used [40]. Experiments indicate that the number
of iterations which policy iteration requires to determine the optimal solution does not
depend on the number of states and policies. In this example, policy iteration requires
less than 10 iterations to find the optimal shortest path.

We considered policy iteration using LU-decomposition and GMRES as iterative
method for solving the relevant system of linear equations. Particularly, we applied
matlab implementation of GMRES with an ILU0 preconditioner [153, 40]. Both meth-
ods are very fast for the equations occurring from the acyclic PH-Graph. If the PH-
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Figure 7.10.: Computational effort to compute the optimal policy maximizing the
probability of reaching the destination state in less than the expected trav-
eling time in the grid graph.

Graph is acyclic the matrix of linear equations has the properties of a sparse matrix
(band diagonal matrix). In that case, the solution obtained using LU-decomposition
methods (forward and back substitution) can be performed much faster than in the
general case, and the whole solution vector can be determined very concisely [79, 104,
150]. In graphs with many cycles optimal policies can be determined very efficienly,
although resulting in a higher computational effort as in the acyclic case.

The second problem under investigation is the computation of the maximal prob-
ability of arriving on time. The optimal policy and the maximal probability can be
determined using the discretization algorithm 5.4 and the uniformization approach 5.3
which is much more efficient than the discretization technique. Furthermore the results
computed by uniformization are much more accurate than those of the discretization
approach. The main drawback of discretization is that the length of the discretization
step in order to reach some predefined accuracy ε cannot be determined.

In the discretization algorithm, discrete time steps are used and the effort depends
linearly on the inverse of the length of the discretization step [40]. Often discretization
needs much more iterations than uniformization to reach the required accuracy. Since
there are practical instances where the difference between the number of required iter-
ations is a factor of 1000 [42], we computed the results using the uniformization 5.3.
The computational effort of the uniformization depends on the number of states of the
CTMDP, the required accuracy, time bound and the number of phases of the PHD.

The required time to compute the optimal policy maximizing the probability of ar-
riving on time in the grid graph is shown in Figures 7.10, 7.11. For the larger number
of states in the CTMDP more computational effort is required since the expected path
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Figure 7.11.: Computational effort to compute the optimal policy maximizing the
probability of reaching the destination state in less than the time bound
larger than the expected traveling time in the grid graph.

weight increases. Generally, the transient analysis of finite horizon CTMDPs requires
more computational time than the computation of the expected weight in infinite CT-
MDPs [40].

The level network As next example we considered the graph shown in Fig. 7.12
with N levels containing three nodes at each level. The initial node is the leftmost
node in the graph, and the final node is the rightmost node. Each node except the final
node has three outgoing edges. The weights of the edges and the transfer matrices are
modeled as described above using PHDs of order 2, 6 and 10. We analyzed the compu-
tational effort of the Algorithm 5.1 for the graph with a growing number of levels. The
required time to compute the optimal solution is shown in Fig. 7.13. Again, one can
see that for the acyclic graph example the optimal policies can be computed efficiently,
even if the policy iteration has to deal with an exponential number of policies.

We analyzed the computational effort required to compute the optimal policy maxi-
mizing the probability of arriving on time in the level graph with an increasing number

. . .

. . .

. . .

. . .

. . .

. . .

Figure 7.12.: Acyclic level graph for shortest path computation.
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Figure 7.13.: Computational effort to compute shortest paths in the level graph shown
in Fig. 7.12 with a growing number of levels.

of levels. The results in Fig. 7.14 show the effort for PHDs of order 2, 6 and 10 de-
scribing the weights of the edges and for different choices of ε . One can see that for
the larger number of states in the CTMDP more effort is required. The reason is that
for a larger number of states in the CTMDP the number of levels in the graph and also
the expected time to reach the destination node increases.

The quadtree model In [67] D. Eisenstat proposed a novel model of random road
networks based on quadtrees. The specified generic model has the properties of pla-
nar and multiscale-disperse graphs still remaining realistic enough to model real road
networks (see Fig. 7.15). Further features like simplicity, realistic variations in density
of road graphs, self-similarity, avoidance of unrealistic abundance of intersections are
also presented [67, 102].

The quadtree model is embedded in the plane. In order to resemble real road net-
works, initial square is divided into n squares of equal size. The procedure is repeated
recursively by selecting some squares and subdividing them according to some cho-
sen parameters [67, 102], e.g., distribution of road intersections and amount of sprawl.
Each division of a square inserts additional roads and intersections as lines correspond
to roads and line-crossings correspond to intersections [102].

Figure 7.16 (a) shows a road network resulting from subdiving two of four squares
twice. A network resulting in further subdiving of six squares is shown in Figure 7.16 (b).
The initial node is the leftmost top node, and the final node is the rightmost bottom
node in the graph. Edges are directed from top to bottom and from left to right. We
assume that each road is modeled by an edge and has unit capacity. In the quadtree
shown in Figure 7.16 (a) each path from the initial node to the destination node con-
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Figure 7.14.: Computational times required to compute the optimal policy in the level
network maximizing the probability of reaching the destination within a
time interval limited by the expected traveling time and within a larger
time interval.
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Figure 7.15.: The roads of San Joaquin County, California and the quadtree model
represented in [67].

(a) (b)

Figure 7.16.: Versions of our quadtree models for road placement. Line color and
thickness correspond to higher speed limits and traffic capacities.

tains 16 edges. In the quadtree shown in Figure 7.16 (b) each path from the initial node
to the final node has 32 edges.

It is also possible to specify speeds or capacities for roads based on the depth of each
edge in the quadtree model. In [102] it is assumed that roads are classified according to
their capacities and speed limits. These are highways, high roads, minor and peripheral
roads. In the context of urban shortest path computation the hierarchy of roads plays
an important role. Often the driver starts his route in some peripheral street, e.g.,
corresponding to his home location. Then the driver moves to minor roads which are
usually faster and larger. Reaching the fastest road the driver covers it until he again
has to change to some secondary and peripheral roads. The quadtree model allow for
hierarchichal structures of urban shortest paths.

In order to represent the described structure of real journeys we assign lower speed
limits to the roads with a lower depth and higher speed limits to the roads with a higher
depth on the quadtree. For our purposes, the weights of the edges on the quadtree are
classified according to the first moment of the PHD representing the mean traveling
time on the edge.
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Figure 7.17.: Computational effort to compute the optimal policies in the quadtrees
shown in Fig 7.16.

Weights of edges with the lower depth of the quadtree are modeled by PHDs with
the first moment µ1 = 5.35 and µ1 = 7. Weights of edges with a higher depth on the
quadtree are modeled by PHDs with the first moment µ1 = 1 and µ1 = 3.75. The
transfer matrices are generated randomly as described in the above example. The
computational effort of the Algorithm 5.1 to minimize the expected traveling time
from the initial node to the destination node is analyzed for the two slightly different
quadtrees shown in Fig. 7.16. The required computational times to determine the
optimal solution is shown in Fig 7.17.

Furthermore, we analyzed the computational effort for the problem of maximizing
the probability of reaching the final destination node within the time bound [0,T ]. We
computed results for the time bound limited by the expected traveling time and for the
time bound at least twice as large as the expected traveling time. Fig. 7.18 show the
computational time of uniformization for PHDs of order 2, 6 and 10 describing the
weights of the edges in the quadtrees. For this small example the computational times
of uniformization are very fast. The results show that the optimal policies in quadtrees
with paths containing up to 32 edges can be analyzed within 10 s.

The quadtree model can be used to generate road networks with desired topologi-
cal features. Both quadtrees shown in Fig. 7.16 specify a typical road network with
different speeds and capacities. In this small example, the optimal policies could be
determined very quickly. The obtained results of our experiments show that the devel-
oped methods allow one to analyze shortest paths in fairly large graph instances. Large
state spaces and large policy spaces can be handled in a moderate time, often requir-
ing a time of a few minutes to compute the optimal policies for different shortest path
problems. In particular, small road networks can be analyzed very quickly indicating
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Figure 7.18.: Computational times required to compute the optimal policy maximizing
the probability of reaching the destination within a time interval limited
by the expected traveling time and within a larger time interval.
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that the PHG methods can be well applied in online navigation scenarios in cities.

7.3. PH-Graphs including negative edge weights

Bilateral PHDs have support on (−∞, ∞) and can be efficiently applied to PH-Graphs,
such that negative edge weights can be incorporated into the model.

Currently, there are several open research questions on the field of BPH distribu-
tions (see [4], [95] and references therein). For instance, trace-based fitting methods
for BPHDs with continuity behavior at zero. However, the existing moment based fit-
ting method determines the parameters of acyclic BPHD using the first three moments
under the assumption that there is no probability mass at zero [95]. The authors pre-
sented closed form solutions for ABPH(n−, n+), bounds for the first three moments,
and a fitting procedure using the first three moments of the original distribution.

Here ABPH(n−, n+) denotes an acyclic BPH distribution, where n− is the number
of phases with negative rate and n+ is the number of phases with positive rate. For
example, using the approach in [95] we can determine the parameters α , λ−, and λ+

of ABPH(1, 1) given µ1, µ2, µ3, where α is the mixing probability and λ−, λ+ ≥ 0
(see Sec. 2.4.3).

Interestingly, a single negative phase already permits the whole flexibility for the
first three moments in case of ABPH(n−, n+) with n− ≥ 1 and a positive first moment
as shown in [95].

Note that n transient states are partitioned as ST = S1∪S2, where S1 is a set of
positive phases and S2 is a set of negative phases. The Markov modulated reward
process B = {B(t) : t ≥ 0} gives the total accumulated reward of the Markov process
{X(t)}∞

t≥0 in the time interval [0, t) [95]. During the sojourn time of the underlying
Markov process in positive phase i the accumulated reward increases with rate ci > 0.
Analogously, during the sojourn time of the Markov process in negative phase the
accumulated reward decreases with rate c j > 0.

In the following we adapt analysis methods for PH-Graphs with ABPH distributed
edge weights. We consider ABPH distributions with support on the entire line (−∞, ∞)
with no probability mass at zero. Furthermore the BPH distributions considered are
constructed as the mixture of a positive and a negative PHD (see Fig. 2.20).

As mentioned in Sec. 2.4.3 a BPH has the representation (π,D0,C∗) where C∗
is a nonsingular diagonal matrix with reward rates. Let the subgenerator path ma-
trix Q(i1,...,iK) containing BPH subgenerator matrices D0 on its diagonal as defined in
Eq. 3.17. Then the ith moment of the weight of the path is given by

µ
i
(i1,...,iK) = i!π

(
M(i1,...,iK) C∗(i1,...,iK)

)i
I1, (7.1)

with C∗(i1,...,iK) = I∗, where I∗ is a diagonal matrix containing I∗(i, i) = 1 for a positive
phase i ∈ S1 and I∗( j, j) = −1 for a negative phase j ∈ S2. Matrix C∗(i1,...,iK) is of
dimension ∑

K
k=1 nik ×∑

K
k=1 nik , i.e. it contains rates for all phases of BPHDs corre-

sponding to the edges along the path. Moment matrix M(i1,...,iK) = (−Q(i1,...,iK))
−1 and

the initial distribution vector π are defined in Def. 3.2.
Furthermore let P(i1,...,iK) = Q(i1,...,iK)/α + I be the transition probability matrix of

the corresponding embedded Markov process. According to Eq. 5.12 the fundamental
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matrix of the absorbing DTMC is computed as N(i1,...,iK) = (I− P(i1,...,iK))
−1. The

fundamental matrix of the absorbing DTMC incorporating BPHDs is then computed
as (cf. Eq. 5.12)

N(i1,...,iK) = M(i1,...,iK)C
∗
(i1,...,iK)α. (7.2)

To compute the history vector ψ for accumulated weights along the subpath (i1, . . . , il)
the absolute values of realizations (|w1|, . . . , |wl|) should be considered. We obtain the
history vector as (cf. Eq. 5.14)

ψ(i1,|w1|,...,il ,|wl) = πi1

(
l−1

∏
k=1

eDik |wk|Hik ik+1

)
eDil |wl |. (7.3)

In particular, the conditional moments of the remaining path (il+1, . . . , iK) can be com-
puted as

µ
i
(il+1,...,iK) = i!π ′

(
M(il+1,...,iK)C

∗
(il+1,...,iK)

)i
I1, (7.4)

where π ′ = (ψ̄(i1,|w1|,...,il ,|wl |),0), ψ̄(i1,|w1|,...,il ,|wl |) is the normalized history vector de-
fined in (5.16). Moment matrix M(il+1,...,iK) of the remaining path (il+1, . . . , iK) is com-
puted using the subgenerator

Q(il+1,...,iK) =



Dil Hil ,il+1 0 · · · 0

0 Dil+1 Hil+1il+2

. . .
...

...
. . .

. . .
. . . 0

...
. . . DiK−1 HiK−1iK

0 · · · · · · 0 DK


as M(il+1,...,iK) =

(
−Q(il+1,...,iK)

)−1.
The total expected reward function for the proper policy u is obtained as (cf. Eq. 5.36,

Eq. 5.38)
gu = (I−Pu)−1 ru = (I−Pu)−1 C∗ I1, (7.5)

such that Eq. 7.5 is used in policy evaluation step 4 of the PI algorithm 5.1 rather than
Eq. 5.43.

In the kth policy improvement step the improved policy uk+1 satisfying the equation
Tuk+1 guk = T guk is obtained as (see Eq. 2.36 and Eq. 5.44)

uk+1(i,x) = argmin
u∈D(i)

(
r(i,x) + ∑

( j,y)∈S
Pu((i,x),( j,y))guk( j,y)

)
, (7.6)

where r = C∗ I1. With these ingredients standard methods for solving MDPs can be
applied to solve SSPP resulting from PH-Graph model with BPHDs.

Example 7.1. We consider the graph instance visualized in Fig. 7.19. The weights of
all edges are described by the following ABPH(1, 1)

π = (0.5,0.5), D1 =

(
−7 0
0 −0.5

)
, C∗ =

(
−1 0
0 1

)
,
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vini v f in

i1
i2 i3

i4

i6

i5

Figure 7.19.: Instance of the acyclic graph for shortest path computation. Edges with
correlated weights are highlighted in dashed style.

which is the convex mixture of two PHDs. The parameter of the negative part is λ− =
7, of the positive part is λ+ = 0.5 and π is the mixing probability vector. The first
moment of ABPH is given by

µ
1 = (−1)π(1)

1
λ−

+π(2)
1

λ+
=−0.0714+1 = 0.9286.

The mean weight of every path p ∈ Paths from vini to v f in is 3.7143. The weights of
the edges along the upper path are positively correlated with correlation coefficient
ρ = 0.3. The weights of the edges along the lower path (i1, i2, i5), i6 are uncorrelated.
The following transfer matrices H result in mentioned correlation coefficients ρ = 0.3
and ρ = 0

Hρ=0.3
ik il =

(
7 0
0 0.5

)
, Hρ=0

is it =

(
3.5 3.5

0.25 0.25

)
,

for k = 1,2,3, l = 2,3,4, s= 2,5, and t = 5,6. Furthermore, we have two path matrices

Q(i1,i2,i3,i4) =



-7 0 7 0 0 0 0 0
0 -0.5 0 0.5 0 0 0 0
0 0 -7 0 7 0 0 0
0 0 0 -0.5 0 0.5 0 0
0 0 0 0 -7 0 7 0
0 0 0 0 0 -0.5 0 0.5
0 0 0 0 0 0 -7 0
0 0 0 0 0 0 0 -0.5


,

Q(i1,i2,i5,i6) =



-7 0 7 0 0 0 0 0
0 -0.5 0 0.5 0 0 0 0
0 0 -7 0 3.5 3.5 0 0
0 0 0 -0.5 0.25 0.25 0 0
0 0 0 0 -7 0 3.5 3.5
0 0 0 0 0 -0.5 0.25 0.25
0 0 0 0 0 0 -7 0
0 0 0 0 0 0 0 -0.5


,

and reward matrix

C∗(i1,i2,ik,il) =


C∗ 0 0 0
0 C∗ 0 0
0 0 C∗ 0
0 0 0 C∗

 ,
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for k = 3, 5, l = 4, 6 where 0 is a 2×2 matrix with zeros.

Conditional moment computation Suppose now that the realization of weight
w of the edge i2 is known to the process. We consider the cases with w = −0.2 and
w = 1. The computed history vectors are presented in Tab. 7.3. Fig. 7.20 shows values

Table 7.3.: Realizations of weight w of the edge i2 and the corresponding history vec-
tors. Here ρi2 i3 = 0.3 and ρi2 i5 = 0.

Successor edge w =−0.2 w = 1

i3 ψ̄(i2, 0.2, i3, 0) = (0.7924, 0.2076) ψ̄(i2, 1, i3, 0) = (0.0206, 0.9794)

i5 ψ̄(i2, 0.2, i5, 0) = (0.5, 0.5) ψ̄(i2, 1, i5, 0) = (0.5, 0.5)

of the first conditional moment for the remaining paths (i3, i4), (i5, i6).
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Figure 7.20.: The expected weight of the paths (i3, i4), and (i5, i6) depending on the
absolute value of the weight of i2.

Policy iteration Given the set of transition rates from subgenerators Q(i1,i2,i3,i4) and
Q(i1,i2,i5,i6) we transform the CTMPD into DTMDP using uniformization rate α = 7.
The expected rewards have the following values

ru(i,x) =
{
−1 for (i, 1) ∈ST , u ∈D(i),
1 for (i, 2) ∈ST , u ∈D(i).
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The policy for the path with correlated edge weights (i1, i2, i3, i4) results in the
following gain vector

(i1, 1) (i1, 2) (i2, 1) (i2, 2) (i3, 1) (i3, 2) (i4, 1) (i4, 2)

gu0(ik,x) −0.5714 8 −0.4286 6 −0.2857 4 −0.1429 2

The weight of the policy for the uncorrelated lower path (i1, i2, i5, i6) is given by
the following gain vector

(i1, 1) (i1, 2) (i2, 1) (i2, 2) (i5, 1) (i5, 2) (i6, 1) (i6, 2)

gu0(ik,x) 1.5714 5.8571 1.7143 3.8571 0.7857 2.9286 −0.1429 2

In the policy improvement step the values u1(i2, 1), u1(i2, 2) satisfying Tu1 gu0 =
T gu0 are computed as

u1(i2, 1) = argmin
u∈{i3, i5}

{
−1+

ni2+ni3

∑
j=1

Pu((i2, 1), j)gu0( j)

}
= argmin

i3,i5
{−1+Pi1,i2,i3,i4((i2, 1),(i3, 1))gu0(i3, 1),

−1+Pi1,i2,i5,i6((i2, 1),(i5, 1))gu0(i5, 1)+

Pi1,i2,i5,i6((i2, 1),(i5, 2))gu0(i5, 2)}
= argmin

i3,i5
{−1+1 · (−0.2857),−1+0.5 ·0.7857+0.5 ·2.9286}

= argmin
i3,i5

(−1.2857, 0.85715) = i3,

and

u1(i2, 2) = argmin
u∈{i3, i5}

{
1+

ni2+ni3

∑
j=1

Pu((i2, 2), j)gu0( j)

}
= argmin

i3,i5
{1+Pi1,i2,i3,i4((i2, 2),(i3, 2))gu0(i3, 2)+

Pi1,i2,i3,i4((i2, 2),(i2, 2))gu0(i2, 2),

1+Pi1,i2,i5,i6((i2, 2),(i5, 1))gu0(i5, 1)+

Pi1,i2,i5,i6((i2, 2),(i5, 2))gu0(i5, 2)+

Pi1,i2,i5,i6((i2, 2),(i2, 2))gu0(i2, 2)}
= argmin

i3,i5
{1+0.0714 ·4+0.9286 ·6,

1+0.0357 ·0.7857+0.0357 ·2.9286+0.9286 ·3.8571}
= argmin

i3,i5
(6.8572, 3.7143) = i5,

where uniformized path matrices are given in Sec. D.2.

7.3.1. Financial Optimization under Uncertainty

This section is devoted to investment decision-making under uncertainty. In most
practical situations, the knowledge about financial market parameters like investment
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costs, taxes, stock prices, technical progress, political situations, technical or natural
catastrophes, is incomplete or changes over time. Thus it is necessary to study how to
plan investments in the uncertain financial market environment in order to maximize
the gain.

An agent has to invest all his money into financial markets, e.g., an initial capital
is invested in the risky assets and the riskless bonds. The problem is to allocate the
money over available investments to maximize the total amount of money at the end
of the time interval T . Suppose that his capital at time t consists only of the gains and
losses which are accumulated over the time interval [0,T ] by trading into the assets.
The aim is to maximize the expected value of his wealth at the end of time horizon T .

Let Tk and Xk for k = 1,2, . . . be random variables, where Tk describes the size of
the kth loss (e.g., investment costs), and Xk giving the size of the kth income. Further-
more, let the gain process {G(t)}T

t≥0 describing the wealth process (see also processes
described in [13, 14, 15]). In most realistic situations, the {Tk}T

k=1 and {Xk}T
k=1 are not

necessarily independent random variables, i.e., the random variables Tk and Xk could
be possibly correlated for any k = 1,2, . . .. Thus, PHGs can be well used for modeling
the wealth process and optimization of the investment strategy.

Let J(t) be the environmental Markov process with the partitioned state space S =
S1 ∪S2 as also described in [13, 15]. Let c(i) be the reward rate assigned to the
phase i ∈S . During the sojourn of J(t) in phase i ∈S1 the reward increases at rate
c(i). During the sojourn of J(t) in phase i ∈S2 the reward process decreases at rate
c(i), i.e., the rate c(i) is negative for i ∈S2 such that costs can be treated as negative
income.

In the following we assume that c(i) = c for all phases i ∈S . Let the kth loss Tk
occur for k = 1,2, . . .. Then the corresponding costs are paid out over a time interval of
length Tk/c at rate c. In particular, let the uniform reward rate c = 1 be assigned to all
i ∈S and let τi be the sojourn time in phase i. Then the accumulated reward during
the sojourn in phase i is cτi such that the loss of size Tk can be modeled by a BPHD.
A sample path of the Markov process is shown in Fig. 7.21.

t

J(t)

S1

S2

τ1 τ2 τ3 τ4 t

G(t)

τ1 τ2 τ3 τ4

Figure 7.21.: Evolution of the environmental Markov process J(t) and the associated
wealth (reward) process G(t) over time as visualized in [13, 15].

PHG for the investment model As mentioned above correlations between the
random variables {Tk}T

k=1 and {Xk}T
k=1 cannot be neglected to decide how the agent
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should invest in order to maximize his expected reward at the end of time horizon T ?
Let (

(πk−1,Dk−1) ,(πk,Dk) ,H(k−1) k
)

(7.7)

be the PHD composition in a PHG. Let PHk−1 be of order nk−1, and PHk be of order
nk. Here PHk−1 is the PHD of the random variable Tk−1 giving the (k−1)th loss size,
i.e., amount of money which is lost after investment in a risky asset. The PHD PHk is
the distribution of the subsequent gain size Xk, i.e., amount of money which is gained
after investment in the risky asset (see Tab. 7.4). The transfer matrix H(k−1) k describes
possible correlation between the k−1th loss size and the subsequent kth gain size.

Table 7.4.: Interpretation of the PHD composition (7.7) in investment problem

Variable Representation Meaning

Tk−1 PHk−1 (πk−1,Dk−1) costs/loss

Xk PHk (πk,Dk) income/profit

During the time period described by Tk−1 the accumulated reward decreases at rate
c = 1. During the time period described by Xk the accumulated reward increases at rate
c = 1. The PHD composition describes the sum of PH distributed random variables
Tk−1+Xk which corresponds to the random surplus after the investment in a risky asset.

Accordingly, the PHD composition ((πk,Dk), ,(πk+1,Dk+1) ,Hk (k+1)) describes the
distribution of a pair (Xk, Tk+1). In that way the transfer matrix Hk (k+1) describes
possible dependence between the kth gain size and the subsequent (k+1)th loss size.

Formally, in a given PHG edge weights are ABPH. The state space is partitioned as
ST =S1∪S2, where S1 is a set of positive phases corresponding to PHDs describing
gains Xk, and S2 is a set of negative phases corresponding to BPHDs describing costs
or loss sizes Tks.

Now an investment policy based on correlation between costs und incomes can be
determined. The corresponding CTMDP contains a single absorbing state (i f in,0)
describing the end of investment activity. Then algorithms for solving CTMDPs can
be applied to solve the investment problem resulting from the PHG described above.

In particular, a finite horizon CTMDP with maximum cumulative reward criteria is
considered. The maximal cumulative reward is interpreted as maximal surplus after
the investment in risky assets.

Maximization of cumulative reward requires fixing the initial gain vector to the zero
vector, i.e., gT = 0. Then value iteration based on discretization approach can be
applied to obtain the optimal policy which is piecewise constant [49, 42]. As described
in Sec. 5.6, for sufficiently small discretization step h > 0 it holds that
eh Qu

= Pu
h +o(h2), and the stochastic matrix Pu

h is defined as

Pu
h = I+h Qu,

which is the transition matrix of the DTMC induced by the decision vector u. Given
an appropriate h and for every policy u the matrices Pu

h define a DTMDP. Knowing the
gain vector gt,T at time t and the decision vector u holding in a fixed interval (t−h, t]
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vini

1. investment 2. investment end of investment

v f in

T1 X2

T3 X4

T5 X6

Figure 7.22.: The investor PHG for optimization of cumulative reward. Edges with
correlated weights are highlighted in dashed style.

the approximation for the gain vector gt−h,T at time (t−h) can be obtained as

gt−h,T = Pu
h gt,T + hru +o(h).

For a finite horizon PHG the optimal policy maximizing the cumulative reward g0,T
can be determined using dynamic programming as shown in Algorithm 7.1.

Algorithm 7.1: Finite horizon dynamic programming for optimization of cumula-
tive reward

1: Initialize h = T
N , t = N and gut = (0, . . . ,0)

2: for t = N−1 downto 0 do
3: for each (i,x) ∈S determine new policy ut as

ut(i,x) ∈ arg max
u∈D(i)

(
hru(i,x)+ ∑

( j,y)∈S
Pu

h((i,x),( j,y))gut+1( j,y)

)

4: compute the gain vector as

gut = hr+Put
h gut+1

5: terminate with d = (u0, u1, . . . ,uN) and gd
0,T = gu0

The cumulative reward using policy d can be obtained as πgd
0,T , where π is an

initial distribution vector. The value gut (i,x) is the optimal expected cumulative reward
starting from state (i,x) at time t, for (i,x) ∈S . The algorithm operates on CTMDP
with r = C∗ I1. The matrices Pu can be computed as described above for all u ∈P and
are used as an input.

Example 7.2. Suppose an agent has to invest his money in the risky assets over the
time interval [0,T ]. After his first investment in the risky asset he can choose between
two available investments (denoted as two possible paths T3 X4 and T5 X6). This choice
is visualized in a PHG given in Fig. 7.22.

Modeling. The weights of all edges corresponding to costs and losses are described
by a following 2-order hyperexponential PHD
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πc = (0.5,0.5), Dc =

(
−7 0
0 −0.5

)
,

which has the mean 1.0714 and the squared coefficient of variation 2.5.
The weights of edges corresponding to an income/profit are given by a 2-order

hyperexponential PHD

πp = (0.5,0.5), Dp =

(
−3.5 0

0 −0.25

)
,

with the mean 2.1429 and the squared coefficient of variation 2.5.
The node corresponding to the second investment in Fig. 7.22 allows a choice be-

tween two outgoing edges. Thus, the investor has a choice between two risky assets.
Furthermore, the size of income X2 and the size of loss T3 are positively correlated

whereas the size of income X2 and the size of subsequent loss T5 are uncorrelated. The
transfer matrices are given as

Hρ=0.3
i, j =

(
7 0
0 0.5

)
, Hρ=0

5,6 =

(
3.5 3.5
0.25 0.25

)
,

for (i, j) ∈ {(1,2),(3,4)}, and

Hρ=0.3
2,3 =

(
3.5 0
0 0.25

)
, Hρ=0

2,5 =

(
1.725 1.725
0.125 0.125

)
.

The corresponding path matrices are modeled as

QT1, X2, T3, X4 =



-7 0 7 0 0 0 0 0 0
0 -0.5 0 0.5 0 0 0 0 0
0 0 -3.5 0 3.5 0 0 0 0
0 0 0 -0.25 0 0.25 0 0 0
0 0 0 0 -7 0 7 0 0
0 0 0 0 0 -0.5 0 0.5 0
0 0 0 0 0 0 -3.5 0 3.5
0 0 0 0 0 0 0 -0.250.25
0 0 0 0 0 0 0 0 0


,

and

QT1, X2, T5, X6 =



-7 0 7 0 0 0 0 0 0
0 -0.5 0 0.5 0 0 0 0 0
0 0 -3.5 0 1.725 1.725 0 0 0
0 0 0 -0.25 0.125 0.125 0 0 0
0 0 0 0 -7 0 3.5 3.5 0
0 0 0 0 0 -0.5 0.25 0.25 0
0 0 0 0 0 0 -3.5 0 3.5
0 0 0 0 0 0 0 -0.25 0.25
0 0 0 0 0 0 0 0 0


,

where PHDs are highlighted in red and transfer matrices are highlighted in gray. The
reward vector equals

r = (−1,−1, 1, 1,−1,−1, 1, 1, 0) .
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Optimization The PHG described can be analyzed using dynamic programming ap-
proach for different time horizons. Fig. 7.23 shows different values of cumulative re-
wards computed with Alg. 7.1.
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Figure 7.23.: Cumulative reward values of two investment policies T1 X2 T3 X4,
T1 X2 T5 X6 and different time horizons.

After passing the edges T1, X2 the weights wT1 , wX2 become known to the investor
such that he knows which income and costs are incurred. The path matrices describing
remaining investment are

QT3, X4 =


−7 0 7 0 0
0 −0.5 0 0.5 0
0 0 −3.5 0 3.5
0 0 0 −0.25 0.25
0 0 0 0 0

 ,

QT5, X6 =


−7 0 3.5 3.5 0
0 −0.5 0.25 0.25 0
0 0 −3.5 0 3.5
0 0 0 −0.25 0.25
0 0 0 0 0

 .

Arriving at node f in(X2) there are two competing options for the next possible in-
vestment, i.e., there are two possible edges to visit from f in(X2), namely T3 and T5.
In any case, the investor’s objective is to select the next edge to traverse such that the
expected reward until arriving at the destination node v f in is maximized. If he takes
correlated costs on adjacent edges into consideration, the optimal policy has to be
determined depending on the realized income wX2 of the edge X2.
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Figure 7.24.: The expected cumulative reward of subpaths T3 X4 and T5 X6 depending
on the realized income at the edge X2.

We computed vectors ψ̃X2, w, iJ , 0 with w ∈ [0.1, 3] and possible successor edges J ∈
{T3, T5}. Fig. 7.24 shows the values of the conditional expected cumulative reward for
two different investment policies depending on the weight at the edge X2.

Here, the weight of the remaining path T5 X6 is not affected by the income at X2 since
weights of edges X2 and T5 are independent PHDs. The positive correlation between
the weights at the edges X2 and T3 results in a positive slope of the expected reward
for the remaining path T3 X4. Thus, the investor should decide which strategy to follow
in dependence of the realized income at X2 in order to maximize his wealth.

7.4. PH-Graphs in Maintenance

We present here the analysis of maintenance models to show the practical applicability
and efficiency of the proposed algorithms.

7.4.1. A Maintenance Model of the Power Module in Wind Turbines

This section describes a simple PH-Graph model to analyze maintenance costs of wind
turbine components. In the final stage of an electronical component’s life cycle the
component may become difficult to repair and beyond economical repair. This is often
due to the equipment design, e.g., failures can be caused by material corrosion and
high ambient temperature. Often components can then no longer be manufactured or
repaired leading to a higher exchange rate [146]. As an example reliability critical
components in wind turbines can be mentioned, namely insulated-gate bipolar transis-
tors (IGBTs). IGBTs technology is often used in high-power, high-frequency applica-
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tions, e.g., in the power electronic module of wind turbines [85] and solar applications.
Significant failure rates of power electronics in wind turbines are often mentioned in
the literature [173, 66]. Failures caused by defective IGBTs can be corrected by the
replacement of the component. But there is a point in time when the whole power
module in the wind turbine should be replaced rather than repaired again.

In [146] the problem of controlling the inventory of electrical parts is considered.
The authors stated that consumer electronic products prices often decrease signifi-
cantly over time while their repair costs increase or remain at the same level. In this
case an optimal policy is to replace the failed component with a new one at some point
in time rather than to repair it.

In Markov modeling for dependability, PHDs have been applied to describe the du-
ration of availability and unavailability intervals of components [134, 70, 46]. Then,
e.g., distribution of the time to system failure can be easily computed. The Markov
model presented in [46] incorporates PHDs from measured availability data using data
from the failure trace archive (FTA) [110, 100]. The mentioned model also describes
correlation in the length of availability or unavailability intervals which is a consid-
erable aspect, since correlation of consecutive lengths of availability or unavailability
intervals can often be observed [46].

The trace archive FTA contains large amounts of failure traces of distributed systems
in a standard format. The failure data can be prepared in order to obtain time intervals
in which a component is available. Then time intervals in which a component is not
available (e.g., due to a failure, repair or maintenance) can also be computed [46]. To
analyze dependability of wind turbine components we build a PH-Graph using four
different traces from the FTA which have been already used in [46] for parameter
fitting. The obtained PHDs for different traces are available online [3] such that they
can be directly embedded into the PH-Graph model. See [46] and references therein
for detailed information about FTA traces and computed PH distributions.

In particular, we use the following PH distributions to describe consecutive avail-
ability and unavailability intervals.

• PHD PH(a1) describing the distribution of the length of the first availability in-
terval

π
(a1) = (0.197, 0.1296, 0.1801, 0.4932) ,

D(a1)
0 =


−0.0013 0 0 0

0 −0.0181 0 0
0 0 −0.2034 0
0 0 0 −1.5266

 ,

• PHD PH(u1) describing the distribution of the length of the first unvailability
interval

π
(u1) = (0.0329, 0.1471, 0.1879, 0.6320) ,

D(u1)
0 =


−0.0010 0 0 0

0 −0.0085 0 0
0 0 −0.1194 0
0 0 0 −2.2045

 ,

189



7.4. PH-GRAPHS IN MAINTENANCE

• PHD PH(a2) describing the distribution of the length of the second availability
interval

π
(a2) = (0.1212, 0.5197, 0.2305, 0.1285) ,

D(a2)
0 =


−0.006 0 0 0

0 −0.0439 0 0
0 0 −0.6452 0
0 0 0 −7.9133

 ,

• PHD PH(u2) describing the distribution of the length of the second unavailability
interval

π
(u2) = (0.0352, 0.1085, 0.1211, 0.7350) ,

D(u2)
0 =


−0.0059 0 0 0

0 −0.0809 0 0
0 0 −1.3065 0
0 0 0 −17.6514

 ,

• PHD PH(a3) describing the distribution of the length of the third availability
interval

π
(a3) = (0.0803, 0.3100, 0.3364, 0.2731) ,

D(a3)
0 =


−0.0086 0 0 0

0 −0.0773 0 0
0 0 −0.8790 0
0 0 0 −4.1413

 ,

• PHD PH(u3) describing the distribution of the length of the third unavailability
interval

π
(u3) = (0.0151, 0.1323, 0.3724, 0.48) ,

D(u3)
0 =


−0.0034 0 0 0

0 −0.2657 0 0
0 0 −2.2640 0
0 0 0 −2.2648

 ,

• PHD PH(a4) describing the distribution of the length of the fourth availability
interval

π
(a4) = (0.0840, 0.2220, 0.2112, 0.4826) ,

D(a4)
0 =


−0.0022 0 0 0

0 −0.0128 0 0
0 0 −0.1004 0
0 0 0 −0.5388

 ,

• PHD PH(u4) describing the distribution of the length of the fourth unavailability
interval
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π
(u4) = (0.0024, 0.2448, 0.7527, 0) ,

D(u4)
0 =


−0.0025 0 0 0

0 −0.156 0 0
0 0 −3.7614 3.7614
0 0 0 −3.7614

 .

• and finally PHD PH(ex) describes the length of the interval required for an ex-
change of the component

π
(ex) = (1.0, 0, 0, 0) ,

D(ex)
0 =


−2 2 0 0
0 −2 2 0
0 0 −2 2
0 0 0 −2

 .

Table 7.5.: First moment and coefficient of variation for the fitted PHDs from [46].

PHD E[PH] C2

PH(a1) (π(a1),D(a1)
0 ) 159.4849 8.1455

PH(u1) (π(u1),D(u1)
0 ) 49.6136 23.6101

PH(a2) (π(a2),D(a2)
0 ) 32.406 5.9202

PH(u2) (π(u2),D(u2)
0 ) 7.4135 36.021

PH(a3) (π(a3),D(a3)
0 ) 13.7283 10.913

PH(u3) (π(u3),D(u3)
0 ) 5.3171 91.3286

PH(a4) (π(a4),D(a4)
0 ) 59.2509 10.036

PH(u4) (π(u4),D(u4)
0 ) 2.9446 92.12

PH(ex) (π(ex),D(ex)
0 ) 2 0.25

Parameter estimation for the given PHDs describing the length of availability or un-
availability intervals has been performed using the freely available software gfit [168].
Table 7.5 contains for all PH distributions first moment and squared coefficient of vari-
ation. Note that squared coefficient of variation is used to express the variance of the
PHD random variable relative to its mean value [47].

Modeling Availability and Unavailability Paths with PH-Graphs The above
PHDs can be used to model lengths of availability or unavailability of a component as
described in [46]. If a component is initially available the following Markov chain
can be used to consider availability analysis, e.g., to compute transient and stationary
availability

Q =

(
D(a) d(a)

1 π(u)

d(u)
1 π(a) D(u)

)
. (7.8)
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However when correlation of durations of availability and unavailability intervals is
added, the Markov process (7.8) can be written as [46].

Q =

(
D(a) H(a,u)

H(u,a) D(u)

)
, (7.9)

where transfer matrices H(a,u), H(u,a) describe the correlation between availability and
unavailability intervals. Similarly to the model described in [46] we consider the time-
dependent correlation between availability and unavailability durations of a component
in our model. It is argued for instance that certain local sources for failures may result
in sequences of consecutive failures. Additionally, long available intervals of compo-
nents with low failure rates alternate with time interval where many components are
failed and should be maintained/repaired [46].

For the modeling of availability and unavailability interval lengths during a compo-
nent’s lifecycle (e.g., according to a bathtub curve), several availability and unavail-
ability intervals can be considered. Usually the duration of consecutive availability and
unavailability intervals differs (see Tab. 7.5). We assume that during an unavailability
interval the power module component is maintained and repair costs are incurred.

Then, let τ(i,x) be the sojourn time in phase (i,x) of PHD describing the length of
unavailability interval. During the sojourn of the process in phase (i,x) ∈ ST the
reward increases at rate c(i,x) = 1, i.e., c τ(i,x) is the accumulated reward during the
time τ(i,x) representing the incurred costs.

In order to model costs required for an exchange of the component we use impulse
(instanteneous) rewards. Let Su ∈Rn,n be the reward matrix with element Su((i,x),( j,y))
giving reward of a transition from state (i,x) into state ( j,y). We assume that
Su((i,x),( j,y))< ∞ and Su((i,x),( j,y)) = 0 for i = j or Qu((i,x),( j,y)) = 0.
Let su be the impulse reward vector with elements

su(i,x) = ∑(( j,y)∈S )
Su(i,x)((i,x),( j,y)) ·Qu(i,x)((i,x),( j,y)). (7.10)

However, given reward rates ru and impulse rewards su, we can define cumulative
reward rates rcu as

rcu(i,x) = ru(i,x) + su(i,x). (7.11)

For the properties under consideration, this reward structure allows us to represent
costs incurred when the component is exchanged and costs accumulated in the un-
availability interval (i.e., during component’s repair interval).

Policies In the following we define the PH-Graph for the maintenance example and
give a description of its paths. The maintenance PH-Graph is shown in Figure 7.25.
Paths include discrete availability and unavailability intervals. We consider paths with
a fixed number of availability intervals which are required to cover some production
cycle. In our example, the number of availability intervals is set to 6. A component can
be either exchanged or repaired when failures caused by end of life wear-out occur. In
our example, the end of the component’s lifecycle includes 3 availability intervals.

Depending on incurred repair costs, an optimal policy is to replace the failed com-
ponent with a new one after some availability interval rather than to repair it. The
above path of the PH-Graph in Fig. 7.25 corresponds to the policy R where repair is
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Figure 7.25.: PH-Graph corresponding to maintenance policies. avi and uvi describe
the ith availability and unavailability interval, respectively. Edges with
correlated length of availability and unavailability intervals are high-
lighted in the same style. The length of edges av4 and uv4 on the lower
path are uncorrelated. The length of edges av3 and exchange are also
uncorrelated.

always performed, but the whole power component is never exchanged. Its generator
matrix can be defined as

QR =



D(a1) H(a1,u1) 0 . . . . . . . . . 0
0 D(u1) d(u1)

1 π(a2) . . . . . . . . . 0
0 . . . D(a2) H(a2,u2) . . . . . . 0
0 . . . . . . D(u2) d(u2)

1 π(a3) . . . 0
0 . . . . . . D(a3) H(a3,u3) . . . 0
... . . . . . . . . . . . . . . .

...

0 . . . . . . . . . . . . D(a4) d(a4)
1

0 . . . . . . . . . . . . . . . 0


, (7.12)

where the mean duration of availability intervals decreases after each repair. Here,
composition of PHDs ((π(a3),D(a3)

0 ),(π(u3),D(u3)
0 ),H(a3,u3)) describes the distribution

of correlated durations of availability interval a3 and unavailability interval u3. The
corresponding Markov chain has the following generator matrix

Q(a3,u3) =

(
D(a3)

0 H(a3,u3)

0 D(u3)
0

)
.

Transfer matrices for different availability and unavailability intervals are given in
Sec. D.4. The PHD composition of consecutive unavailability and availability intervals
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is given by the generator matrix

Q(u3,a3) =

(
D(u3)

0 d(u3)
1 π(a3)

0 D(a3)

)
,

such that lengths of consecutive unavailability and availability intervals are indepen-
dently distributed. In fact, the Markov process presented in (7.8), (7.12) is enrolled
using different PHDs for durations of availability and unavailability intervals. Then,
the path matrix (7.12) can be rewritten as

QR =



Q(a1,u1) D(a1,u1)
1 0 . . . . . . . . . 0

0 Q(a2,u2) D(a2,u2)
1 0 . . . . . . 0

0 . . . Q(a3,u3) D(a3,u3)
1 0 . . . 0

0 . . . . . . Q(a3,u3) D(a3,u3)
1 0 0

0 . . . . . . . . . Q(a3,u3) D(a3,u3)
1 0

0 . . . . . . . . . . . . D(a4) d(a4)
1

0 . . . . . . . . . . . . . . . 0


, (7.13)

where matrices D(ai,ui)
1 are defined as follows

D(ai,ui)
1 =

(
0

d(ui)
1 π(ai+1)

)
,

where d(ui)
1 is the exit vector of the PHD describing an unavailability interval ui and

π(ai+1) is the initial distribution of the subsequent availability interval on the path.
The number of availability and unavailability intervals described by PH(a3) and

PH(u3) can be parameterized in order to model higher failure rates at the end of the
component’s lifecycle. We use three consecutive availability and unavailability inter-
vals given by PH(a3), PH(u3) which are highlighted in blue in (7.13). It holds that
πR = (π(a1), 0).

However, the tendency is that towards the end of component’s lifecycle, exchange of
the whole module should be an option to be considered. In the case when an exchange
of the component is performed after the first availability interval av(1)3 in Fig. 7.25,
policy E1 can be defined by the following path matrix

QE1 =



Q(a1,u1) D(a1,u1)
1 0 . . . . . . . . . 0

0 Q(a2,u2) D(a2,u2)
1 0 . . . . . . 0

0 . . . Q(a3,ex) D(a1,ex)
1 0 . . . 0

0 . . . . . . Q(a4,u4) D(a4,u4)
1 0 0

0 . . . . . . . . . Q(a4,u4) D(a4,u4)
1 0

0 . . . . . . . . . . . . D(a4) d(a4)
1

0 . . . . . . . . . . . . . . . 0


. (7.14)

In the case when the exchange of the component is performed after the second avail-
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ability interval av(2)3 in Fig. 7.25, policy E2 is given by the following path matrix

QE2 =



Q(a1,u1) D(a1,u1)
1 0 . . . . . . . . . 0

0 Q(a2,u2) D(a2,u2)
1 0 . . . . . . 0

0 . . . Q(a3,u3) D(a3,u3)
1 0 . . . 0

0 . . . . . . Q(a3,ex) D(a3,ex)
1 0 0

0 . . . . . . . . . Q(a4,u4) D(a4,u4)
1 0

0 . . . . . . . . . . . . D(a4) d(a4)
1

0 . . . . . . . . . . . . . . . 0


. (7.15)

Finally, when the exchange of the component is performed after the third availability
interval av(3)3 in Fig. 7.25, policy E3 is defined by the matrix

QE3 =



Q(a1,u1) D(a1,u1)
1 0 . . . . . . . . . 0

0 Q(a2,u2) D(a2,u2)
1 0 . . . . . . 0

0 . . . Q(a3,u3) D(a3,u3)
1 . . . . . . 0

0 . . . . . . Q(a3,u3) D(a3,u3)
1 . . . 0

0 . . . . . . . . . Q(a3,ex) D(a3,ex)
1 0

0 . . . . . . . . . . . . D(a4) d(a4)
1

0 . . . . . . . . . . . . . . . 0


. (7.16)

Analyzing Costs for Maintenance of the Component Maintenance PH-Graph
given by (7.13)- (7.16) defines a CTMDP. We analyze the induced final horizon CT-
MDP under minimal cumulative reward criteria. The minimal cumulative reward is
interpreted as minimal incurred maintenance costs at the end of life of the power mod-
ule. The maintenance costs are made up of repair costs and component exchange costs.

Minimization of cumulative reward can be computed using the t dynamic program-
ming approach (see Alg. 7.1) where the initial gain vector is fixed to zero vector, i.e.,
gT = 0. The reward vector equals to r = (1,1,1,1) for PHDs describing the length of
unavailability intervals, and r = (0,0,0,0) otherwise. Impulse rewards are defined as

Sexchange((a3,x),(ex,y)) = 55,

for all phases x ∈ ST of PH(a3) and all y ∈ ST of PH(ex). Transfer matrix H(a3,ex)

defines transition rates from PH(a3) to PH(ex)

H(a3,ex) =


0.008663 0 0 0
0.077378 0 0 0
0.879091 0 0 0
4.141319 0 0 0

 ,

such that cumulative reward rates are obtained as (55 ·H(a3,ex) I1), which results in
vector rcexchange = (0.4765,4.2558,48.35,227.7726) giving cumulative rewards for
phases (a3,x) ∈ST of PH(a3). Cumulative reward vectors rcR, rcE1 , rcE2 and rcE3 for
policies defined by (7.13)- (7.16) are given in Sec. D.4.

We analyze the model in the interval (0,1000] and obtain approximations of cumu-
lative reward values with Alg. 7.1 using cumulative reward vectors rcR, rcE1 , rcE2 and
rcE3 as an input.
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First, we observe the policy R defined in (7.13). It corresponds to the path

av1, uv1, . . . , av(1)3 , uv(1)3 , . . . , av(3)3 , uv(3)3 ,av4,

where repair is always performed but the whole power component is never replaced
(see the above path in Fig. 7.25). In contrast, the maintenance policy E1 defined
in (7.14) describes the exchange of the whole component after the first availabil-
ity interval av(1)3 . It corresponds to the following path containing exchange edge in
Fig. (7.25)

av1, uv1, . . . , av(1)3 , exchange, av4, uv4, . . . ,av4.

The policies R and E1 result in the following gain vectors:

(av(1)3 , 1) (av(1)3 , 2) (av(1)3 , 3) (av(1)3 , 4)

gR
0,T (av(1)3 ,xi) 65.0437 11.5348 10.8388 10.8404

gE1
0,T (av(1)3 ,xi) 60.4728 60.5774 60.6075 60.6979

The maintenance policy E2 defined by (7.14) where the exchange of the whole com-
ponent is performed after the second availability interval av(2)3 corresponds to the fol-
lowing path in Fig. (7.25)

av1, uv1, . . . , av(1)3 , uv(1)3 , av(2)3 , exchange, av4, uv4, . . . ,av4.

Analysis of policies R and E2 in the interval (0,1000] results in the following gain
vectors:

(av(2)3 , 1) (av(2)3 , 2) (av(2)3 , 3) (av(2)3 , 4)

gR
0,T (av(2)3 ,xi) 60.2203 6.3648 5.6563 5.6570

gE2
0,T (av(2)3 ,xi) 57.7639 57.8163 57.8418 57.9318

And finally, the policy E3 with generator defined in (7.16) describes the behavior
where the exchange of the whole component is performed as late as possible. It corre-
sponds to the path

av1, uv1, . . . , av(1)3 , uv(1)3 , av(2)3 , uv(2)3 , av(3)3 exchange,av4

in Fig. (7.25). One can compare gain vectors of the policies R and E3.

(av(3)3 , 1) (av(3)3 , 2) (av(3)3 , 3) (av(3)3 , 4)

gR
0,T (av(3)3 ,xi) 54.13 1.1613 0.4416 0.4415

gE3
0,T (av(3)3 ,xi) 54.9907 55.0021 55.0242 55.1140

One can see that in state (av(3)3 , 1) of the PHD for the third availability interval the
optimal decision is to repair the component.

State dependent decisions When the effect of correlation should be explored,
one can compute the optimal maintenance decision depending on the exit phase of the
distribution PH(av3). We summarize results on optimal policies in the interval (0,900]
in Tables. 7.6, 7.7, 7.8.

196



CHAPTER 7. APPLICATIONS AND EXPERIMENTS

Table 7.6.: Expected cumulative rewards for policies R and E1.

Accumulated reward in (0,900]

Phase of the PH(av3) Succ. uv(1)3 Succ. exchange Optimal Successor Edge

Phase 1 63.4126 60.3607 exchange

Phase 2 11.3101 60.502 uv(1)3 /repair

Phase 3 10.6234 60.534 uv(1)3 /repair

Phase 4 10.6256 60.6245 uv(1)3 /repair

Table 7.7.: Expected cumulative rewards for policies R and E2.

Accumulated reward in (0,900]

Phase of the PH(av3) Succ. uv(2)3 Succ. exchange Optimal Successor Edge

Phase 1 58.8 57.7071 exchange

Phase 2 6.2574 57.7834 uv(2)3 /repair

Phase 3 5.5535 57.8098 uv(2)3 /repair

Phase 4 5.5545 57.9 uv(2)3 /repair

Table 7.8.: Expected cumulative rewards for policies R and E3.

Accumulated reward in (0,900]

Phase of the PH(av3) Succ. uv(3)3 Succ. exchange Optimal Successor Edge

Phase 1 54.13 54.9776 uv(3)3 /repair

Phase 2 1.1613 55.0021 uv(3)3 /repair

Phase 3 0.4416 55.0242 uv(3)3 /repair

Phase 4 0.4415 55.114 uv(3)3 /repair
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One can see that for a short duration of the availability interval av(1)3 it is better to
repair the component, i.e., to choose the successor edge uv(1)3 . But for a long dura-
tion of the availability interval av(1)3 , the best decision is to choose the adjacent edge
exchange, i.e., to exchange the whole module. Since lengths of availability and un-
availability intervals are positively correlated, duration of the adjacent unavailability
interval uv(1)3 is affected by long duration of the predecessor av(1)3 .

Assume now that the exit phase of PH(av3) is a long phase, i.e., a phase where the
remaining time till absorption is longer than the average of the PHD PH(av3). We
can see that from a long phase, higher repair costs at the successor edge uv(1)3 are
incurred in (0,900]. Thus, the positive correlation between interval lengths results in a
positive slope of the expected cumulative reward at the adjacent edge uv(1)3 . Whereas
the expected cumulative reward at the adjacent edge exchange remains not affected by
the duration at av(1)3 , since both edge weights are independent.

Observe that from a long phase of interval av(3)3 , the optimal choice is edge uv(3)3 .
Since results are computed backwards the effect of positive correlation cumulates for
edges av(1)3 , av(2)3 . In particular, long duration of interval av(1)3 has an affect on du-
rations of intervals uv(1)3 , av(2)3 , uv(2)3 , av(3)3 and uv(3)3 . Thus, costs accumulated in
end-of-life wear-out period depend on duration of availability interval av(1)3 .

Cumulative rewards for all maintenance policies are analyzed for time bound T =
100, . . . ,1500. Results for long and short phases 2 of the PHD for availability interval
av(i)3 , i = 1, 2, 3 are summarized graphically in Figure 7.26. The positive correlation
results in a smaller cumulative reward for the policy R (always repair) for a short time
bound T but in a slightly higher cumulative reward for a longer time bound T .

In contrast, we analyze the maintenance PH-Graph where durations of availability
interval av3 and unavailability interval uv3 are independent. The results are summa-
rized in Figure 7.27. When the effect of correlation is neglected, the optimal policy is
always to repair the component.

2A long phase is a phase where the remaining time till absorption is longer than the average of the
PHD PH(av3), i.e., it is the first phase with mean sojourn time 1

λ (1) =
1

0.008663 = 115.4. A short phase is
a phase where the remaining time till absorption is shorter than the average. The fourth phase is a short
phase with mean sojourn time is 1

λ (4) =
1

4.1413 = 0.2414.
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Figure 7.26.: Cumulative rewards depending on the phase of PHD for availability in-
terval av(i)3 , for i = 1, 2, 3 and T = 0, . . . ,1500.
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Figure 7.27.: Cumulative rewards depending on the phase of PHD for availability in-
terval av(i)3 , for i = 1, 2, 3 and T = 0, . . . ,1500. Durations of availability
and unavailability intervals are independent.
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History-based optimal decisions In the real system maintenance decisions can-
not depend on the phase, they have to depend on history vectors ψ̄(av1,w1,...,avl ,wl) com-
puted with (5.15)-(5.16). Using history vectors ψ̄(av1,w1,...,avl ,wl) conditional cumulative
rewards can be computed such that the optimal decision depends on the realized length
of availability interval and not on the phase of the PHD PH(av3).

We analyze the cumulative rewards via adjacent edges uv3 and exchange depending
on the realized length of availability interval av3 for various time bounds. We compute
vectors ψ̄(av3,w,inext ,0) with w ∈ [0.1,300], next ∈ {uv3,exchange}. The values of cumu-
lative reward for policies repair and exchange are summarized in Figures 7.28, 7.29.

Here, the reward of decision exchange is not affected by the realized length of avail-
ability interval av3. But the positive correlation between the lengths of availability and
unavailability intervals av3 and uv3 results in a positive slope of the accumulated re-
ward in unavailability interval uv3. In Fig. 7.29 one can see that for larger time bounds
and long durations of availability interval av3 the optimal decision is to exchange the
whole component because of high repair costs.
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Figure 7.28.: Cumulative rewards depending on the realized length of availability in-
terval av3 for the time bound T = 500 and discretization parameter
h = 0.001.
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Figure 7.29.: Cumulative rewards depending on the realized length of availability in-
terval av3 for the time bound T = 1200 and discretization parameter
h = 0.001.

7.5. Summary

In this Chapter, we first studied two practical problems of route planning under uncer-
tainty with dependent weights on adjacent edges, namely computing the path with a
minimal expected length and finding the path that maximizes the probability to reach
the destination node within a specified time interval. We constructed a PH-Graph us-
ing measurements resulting from SUMO vehicular traffic simulation with the aim to
obtain a realistic model for roads of the city of Cologne. We showed in the realistic
example that depending on the currently realized traveling times, choosing a correlated
adjacent edge results in a much better expected path weight of the route than the choice
of an uncorrelated adjacent edge.

We investigated how increasing the PHD order could refine results obtained with
an EM algorithm and enhance the achievable correlation. Slightly better results could
be obtained for larger PH-Graphs that use PH distributions of orders 6, . . . ,20. For
a given vehicle mobility trace, already 6 phases are sufficient to obtain meaningful
results. Further increasing of the number of phases would result in an insignificant
rise of the log-likelihood values and correlation coefficient. Therefore, already small
PHDs with less that 10 phases can be applied in real applications. We refer to [40]
where extensive complexity results are presented. It can be summarized, that PH-
Graph models can be parameterized and analyzed sufficiently efficient which indicates
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their practical applicability, e.g., in a drivers decision support system.
We also show that for weighted graphs with negative weights, solution approaches

can be used to compute optimal path weight and probability. We developed a simple
investment model to show that PH-Graphs with negative weights can be well applied
in financial optimization. In our third example, we showed that PH-Graphs can be
applied in dependability analysis. We developed two PH-Graph models which describe
correlation in the length of availability and unavailability intervals and can be used
to analyze maintenance costs in dependence of duration of availability interval of a
component.
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Chapter 8
Conclusions

In this work we have proposed a new model class for stochastic weighted graphs with
correlated weights based on PHDs, MAPs and CTMDPs. These famous stochastic
approaches were combined together to model correlated weights on adjacent edges and
to compute optimal solutions in applications where correlation is a prominent aspect.

PHDs and MAPs have a great potential in describing real processes. In particular,
PHDs allow one to approximate even multimodal distributions closely. We use PHDs
to model general distributions of the weights in a stochastic graph. When PHDs are
extended to describe correlated inter-event times, the resulting model is called a MAP
which is a very flexible and general class of stochastic processes. We used the concept
of marked transitions indicating events in a MAP to introduce correlations between
PHDs for weights of adjacent edges. The newly developed graph model is called a PH-
Graph and can be used for optimization of systems including correlations, e.g., finding
shortest paths on roads with congestion effects or investment analysis of uncertain
financial markets containing components with correlated costs and incomes.

We proved that the parameters of the new PH-Graph model can be determined with
well established and adopted methods. Still parameter fitting remains a complex opti-
mization problem, we have shown that adopted fitting methods often give good results
with acceptable computational effort. For acyclic PHDs of order 2 we investigated
different transformations and representations in order to increase the possible range of
correlation that PHDs for weights can capture. We proved which representations result
in the maximal first joint moment for a subsequent transfer matrix fitting step.

We have also shown how PH-Graph can be mapped to a CTMDP to solve SSPP with
correlations using standard methods from the CTMDP field. Our goal was to provide
the combination of PHDs and transfer matrices with CTMDPs that helps to apply
their great modeling potential in optimization and decision support. Our extensive
numerical experiments indicate that the effect of correlation between weights should
not be neglected. Optimal solutions of stochastic shortest path problems depend on
correlated weights of adjacent edges. For example, when congestions occur choosing
an uncorrelated adjacent edge can result in a much better route than the choice of a
correlated adjacent edge.
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8.1. Future work

In the following we present interesting future directions and several methodological
questions. To describe many practical situations where knowledge about graph weights
changes over time, time-dependent weights could be considered. This would result in
inhomogeneous CTMDPs. Similar extensions should be possible for PHGs with dis-
counted weights as well. We would also like to explore how mean-variance optimiza-
tion methods can be adopted for SSPPs with correlations. In this case the decision
maker is interested in both the mean and the variance of the path weight.

Another promising research field is to consider a multi-objective MDP problem.
In Chapter 5, we developed solution methods for two problems of route planning in
weighted graphs with dependent edge weights, namely computing a path with mini-
mal expected weight and computing a path maximizing probability of arriving on time.
One can be interested in optimizing these two objectives simultaneously which results
in a multi-objective view of decision making. First, a weight vector w can be intro-
duced to express the relative importance of each objective. Then, standard methods
from MDP field can be extended to find the optimal policy of linearly weighted prob-
lem. However, often a weight vector w is not known apriori. Thus, methods for com-
puting the set of optimal solutions for all possible weights for linearly weighted prob-
lem should be developed by adopting known methods from multi-objective MDPs.

It is known that PHDs even of high order can be generated within a few seconds such
that PHGs can be parameterized in an acceptable time. Furthermore, the computation
of an optimal policies for fairly large state spaces can be performed in a moderate
time. However, it should be investigated whether large networks possibly containing
cycles can be efficiently handled. Further reserach is needed to determine how the
performance of the approach will scale with large network size. Successful efforts
in this direction could contribute to the application of PH-Graphs in vehicle route
guidance systems.

Another direction worth pursuing is investigation of similarity transformation meth-
ods for acyclic PHDs with an arbitrary number of states in order to increase the pos-
sible range of correlation that PHDs for weights of adjacent edges can capture. When
a PHD cannot be transformed into the hyperexponential representation and in cases
where the transformations do not result in a sufficiently large correlation, the optimal
representation of PHDs should be determined.

Another interesting question is if a PHD composition of high order can be approx-
imated by a PHD composition of a lower order. Generally, the problem of finding a
smaller order representations is one of the most interesting and challenging theoretical
questions on the field of PHDs, also because the PHD representation is not unique.
Successful analytical and numerical work in this direction could treat the problem of
state-space explosion when modeling PH-graphs for huge stochastic graphs with up to
a billion edges and result in approximation methods.
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Appendix A
Acronyms

A.1. Acronyms

APHD Acyclic Phase-Type Distribution

BMAP Batch Markovian Arrival Process

BS Basic Series of an APH

cdf cumulative distribution function

CTMC Continuous Time Markov Chain

CTMDP Continuous Time Markov Decision Process

DTMDP Discrete Time Markov Decision Process

EM Expectation Maximization

HErD Hyper-Erlang Distribution

IPP Interrupted Poisson Process

LP Linear Program

MAP Markovian Arrival Process

MDP Markov Decision Process

ME Matrix Exponential

ML Maximum-Likelihood

MMPP Markov Modulated Poisson Process

NNLS Non-Negative Least Squares approach

pdf probability distribution function

PH Phase-Type
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PHD Phase-Type Distribution

PI Policy Iteration

QN Queueing Network

VI Value Iteration
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Appendix B
Notations

B.1. Markov Chains

α A uniformization constant

APHD(n) APHD of order n

β (n,αt) Density function of the Poisson process with rate α

Bi number of times a PHD starts in phase i

D0 Matrix of transition rates between transient states of an absorbing CTMC

D1 Matrix of transition rates generating an event of a MAP

d1 Vector of transition rates from transient states to the single absorbing
state n+1 of an absorbing CTMC, i.e., exit vector of a PHD

E[X ] Expectation of random variable X

eQ t Matrix exponential

fi Probability eventually return to state i given that the process started in
state i

I Identity matrix

M = −D−1
0 moment matrix of a PHD or MAP, i.e., fundamental matrix of

an absorbing CTMC

n Order of a PHD or MAP

{Nt | t ≥ 0} Poisson process with rate α

π0 Initial probability distribution vector. π0(i) gives the probability that the
Markov process starts in state i

π Steady-state probability distribution vector
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π(n) Transient probabilities after n time steps in a DTMC. π(n)(i) gives the
probability with which the Markov process occupies state i after n
transitions have occured

π(t) Transient probabilities of a homogeneous CTMC. π(t)(i) gives the prob-
ability that a CTMC is in state i at time t

pi j Single-step transition probability, i.e. pi j = Prob(X(tk+1) = j |X(tk) = i)
for all k = 1,2, . . .

p(n)i j n-step transition probability

P̂ Transition probability matrix of the discrete-time Markov chain

P̃ Transition probability matrix of an embedded Markov chain of a continuous-
time Markov process

Pt = eQ t , transition probability matrix with components pi j(t)=Prob(X(t)=
j |X(0) = i)

P = I+ 1
α

Q, matrix of the discrete-time Markov chain used for uniformiza-
tion

Q Infinitesimal generator matrix of a Continuous-Time Markov chain

S State space of a Markov chain

ST Set of transient states of an absorbing CTMC

SA Set of absorbing states of an absorbing CTMC

VAR[Y ] Variance of random variable Y

{X(t)}∞
t≥0 Markov process

Zi Total time spent in phase i of a PHD before generating an event

B.2. Markov Decision Processes

D(i) Set of available decisions in state i

D D :=
⋃

i∈S D(i)

d Policy d = (u0,u1, . . . ,uT−1), T ≤ ∞. Stationary policy d uses decision
rule u every period

d∗ Optimal policy

G(t) Random variable representing accumulated reward in the time interval
[0, t)

Gd = π gd
0,T . The gain of the policy d for the expected total reward criterion
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gd
t,T Gain vector containing values of accumulated expected rewards in the

time interval [t,T ] in a finite horizon CTMDP

gd
0,T Gain vector containing values of accumulated expected rewards in the

time interval [0,T ] in a finite horizon CTMDP

gd
0 Gain vector at time 0 for infinite horizons average reward criterion, and

accumulated reward to absorption criterion

gd
t,T (i) Expected total reward under policy d from time t onward, if the CTMDP

is in state i at time t

gT Vector containing values of rewards at the final decision epoch T in a
finite horizon CTMDP

gmin
t,T Infimum of gd

t,T over all policies

gmax
t,T Supremum of gd

t,T over all policies

g∗t,T Optimal gain vector

H Set of decision epochs

i A state i

λ (i) Continuous time rate of the state i. λ (i) =−Qu(i, i)

P Set of decision rules for all states. P = n
i=1 D(i)

pd
t Transient probability distribution vector under policy d at time t

π Initial probability distribution vector at time 0

Q Set of transition rates

Qu Transition rate matrix of the CTMDP when decision u is chosen

Qu Transition rate matrix of the CTMDP where (i, j)-th element is given by
Qu(i)

Qu(i, j) Transition rate when action u is chosen in state i and the next state is j in
the CTMDP

R Set of rewards

ru(i) Stationary version of ru
n(i)

ru(i, j) Stationary version of ru
n(i, j)

ru
n(i) A state reward. A value of accumulated reward per time unit if system is

in state i at decision epoch tn and action u is chosen.

ru
n(i, j) A transition reward. A value of one period reward if system is in state

i at decision epoch tn, action u is chosen, and the state at decision
epoch tn+1 is j.
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r f in(i) Terminal reward in state i in a finite horizon problem

rut Reward vector for the decision vector ut taken at time t

rut (i) Expected value of reward gained by staying one time unit in state i for
the decision vector ut taken at time t

rd Vector determined by elements d(τ) = uτ which is the decision vector at
time τ ∈ [t,T ]

rd
A Vector containing zero rewards for absorbing states i ∈ SA and ruτ (i)

otherwise

S Set of states

t A decision epoch. tn is the nth decision epoch

τ(i) A sojourn time in state i

u An action

u Decision rule

u(i) Action chosen by decision rule u in state i

ut(i) Action chosen by decision rule ut if system is in state i at time t

ut Decision rule at decision epoch t

Vd
r,t(i, j) Conditional probability that CTMC is in state j at time point t given that

the CTMC is in state i at time point r and policy d is used in the
interval [r, t]

ω Sample path of the state process

Ω Set of all sample paths of CTMDP

X(t) Random variable representing state of system at time t

Y (t) Random variable representing action selected at time t

0 Matrix or vector where every entry is 0

I1 Vector where every entry is 1

zT Transpose of a vector z
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B.3. STOCHASTIC SHORTEST PATH PROBLEMS

B.3. Stochastic Shortest Path Problems

γ Discount factor

gu The total expected reward vector for policy u

guk The total expected reward vector for policy u in the k-th policy iteration

g∗ The minimal total expected reward vector

gk The total expected reward after k-th iteration. E.g., gk = T k g0, or
gk = T gk−1

Pu Transition probability matrix under stationary policy u where
Pu(i, j) = Pu(i)(i, j)

ru(i) Expected value of one period reward for state i when decision u ∈ D(i)
is chosen

T g Optimal reward function for one period problem

Tu g Reward function associated with the stationary policy u for one period
problem

T k T k g = T (T k−1 g). The composition of the mapping T with itself k times

u Stationary policy. u stays for a stationary policy d = (u,u, . . .), d ∈Π.
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Appendix C
Proofs

C.1. Transformation of 2-order APHDs

Proof of Theorem 6.2. We express the first joint moment µ1,1 in Eq. 6.11 in terms of
all possible paths in the PHi following all possible paths in the PH j Let aδ

i, j be the
probability that the second APHD PH j starts in the state i and j is the last state before
absorption. Similarly to Eq. 6.12 it holds that

aδ
1,1 = π

δ (1−λ
δ
1,2), aδ

1,2 = π
δ
λ

δ
1,2, aδ

2,2 = 1−π
δ and aδ

2,1 = 0, (C.1)

Remark that νi, j is the mean duration if the process PH j starts in state i and state j is
the last state before absorption of the PH j. As given in Eq. 6.13 we have

ν1,1 =
1
λ1

= 1,ν1,2 = 1+
1
λ2

, and ν2,2 =
1
λ2

. (C.2)

The transfer matrix Hi j can be written as

Hi j =

(
0 0
0 µ2

)(
b1 1−b1
b2 1−b2

)
=

(
0 0

b2µ2 (1−b2)µ2

)
,

which satisfies the condition Hi j I1 = −Di I1, since no absorption from the state 1′ can

occur. We obtain cM =
(

c, 1
µ2

)
. The condition cMHi j = π should be satisfied to keep

the initial distribution of the PH j invariant. We obtain

(c
1
µ2

) ·
(

0 0
b2µ2 (1−b2)µ2

)
= (π (1−π)),

such that the following has to hold

b2 = π
δ , and 1−b2 = 1−π

δ ,

where bi gives the probability that the PH j starts in state 1 after i′ was the last state
before absorption in the PHi. Since PHi is in series canonical form it cannot get ab-
sorbed directly from state 1′, thus resulting in b1 = 0. Thus PHi enables no flexibily
for reaching a larger first joint moment. In that case the representation of the PH j has
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1′c

2′1− c

1

µ2

1π

21−π

λ1,2

(1−λ1,2)

λ2
b2µ2

(1−b2)µ2

(a) A graphical representation of the APHDs
(c,Di), (π,D j).

(1) < s′1 s′2s1 >
(2) < s′1 s′2 s2 >
(3) < s′1 s′2 s1 s2 >
(4) < s′2 s1 >
(5) < s′2 s1 s2 >
(6) < s′2 s2 >

(b) Possible elementary series for both APHDs.

Figure C.1.: Symbolic representation of the two APHDs in composition for correlation
fitting.

no influence on the range of the correlation, i.e., the transformation parameter δ can
be arbitrary chosen having no influence on the first joint moment. It can also be shown
that the value of derivative of µ1,1(δ ) with respect to δ is zero.

Figure C.1 visualizes all possible paths in the composition of two given APHDs.
Note that the probability of each elementary series can be determined as the product of
the initial probability of the series and the transition rates along the elementary series.
Then the first joint moment can be computed as the mixture of mean durations of all
elementary series which are weighted proportionally to its probability. The weighted
mean durations of the series listed in Fig. 6.1(b) are listed below

b2 c(1+ 1
µ2
)aδ

1,1 ν1,1 for the series (1),
(1−b2)c(1+ 1

µ2
)aδ

2,2ν1,2 for the series (2),
b2 c(1+ 1

µ2
)aδ

1,2ν1,2 for the series (3),
b2 (1− c) 1

µ2
aδ

1,1ν1,1 for the series (4),
b2 (1− c) 1

µ2
aδ

1,2 ν1,2 for the series (5),
(1−b2)(1− c) 1

µ2
aδ

2,2ν2,2 for the series (6).

Using the notations for elementary series the first joint moment can be written as

µ1,1(δ ) = b2 c
(

1+ 1
µ2

) (
aδ

1,1ν1,1 +aδ
1,2ν1,2

)
/πδ+

b2 (1− c) 1
µ2

(
aδ

1,1ν1,1 +aδ
1,2ν1,2

)
/πδ+

(1−b2)c
(

1+ 1
µ2

)
ν2,2 +(1−b2)(1− c) 1

µ2
ν2,2.

After substituting the values given in (C.1), (6.13), we obtain

µ1,1(δ ) = b2 c(1+ 1
µ2
)((π +δ )(1−λ δ

1,2)
1
λ1
+(π +δ )λ δ

1,2 (1+
1
λ2
))/πδ+

b2 (1− c) 1
µ2
((π +δ )(1−λ δ

1,2)
1
λ1
+(π +δ )λ δ

1,2 (1+
1
λ2
))/πδ+

(1−b2)c(1+ 1
µ2
) 1

λ2
+(1−b2)(1− c) 1

µ2

1
λ2
.
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The terms in the above sum are now denoted as x1, x2, x3, and x4. The sum of the x3
and x4 results in

x3+x4 =(1−b2)
1
λ2

(
c
(µ2 +1)

µ2
+

1
µ2

)
=(1−b2)

(cµ2 +1)
λ2µ2

=
(cµ2 +1)

λ2µ2
−b2

(cµ2 +1)
λ2µ2

.

The term in the brackets of x1 and x2 is denoted as x5. It results in

x5 = ((π +δ )(1−λ δ
1,2)

1
λ1
+(π +δ )λ δ

1,2 (1+
1
λ2
))

= (π +δ )(1−λ δ
1,2)+(π +δ )λ δ

1,2 (1+
1
λ2
)

= πλ1,2− (λ2−1)δ +
πλ1,2−(λ2−1)δ

λ2
+π +δ −πλ1,2 +δ (λ2−1)

=
πλ1,2−(λ2−1)δ+πλ2+δλ2

λ2

=
π(λ1,2+λ2)+δ

λ2
.

The sum of the x1 and x2 results in

x1 + x2 =
b2(1−c) 1

µ2
x5

π+δ
+

b2c (µ2+1)
µ2

x5

π+δ

= 1
(π+δ )µ2

[b2x5(1− c+ c(µ2 +1))]

= b2

[
(1+cµ2)
(π+δ )µ2

x5

]
= b2

[
(1+cµ2)
(π+δ )µ2

(π(λ1,2+λ2)+δ )
λ2

]
= b2

[
1

(π+δ )
(π(λ2+λ1,2))y1

λ2µ2
+ δ

(π+δ )
y1

λ2µ2

]
,

where y1 = (1+ cµ2). With this notations µ1,1(δ ) can be written as

µ1,1(δ ) = y2 +b2

[
1

(π+δ )
(π(λ2+λ1,2))y1

λ2µ2
+ δ

(π+δ )
y1

λ2µ2
− y2

]
= y2 +b2y2

[
1

(π+δ )(π(λ2 +λ1,2))+
δ

(π+δ ) −1
]

y1 = (1+ cµ2)

y2 = cµ2+1
λ2µ2

= y1
λ2µ2

.

We now denote the term in the brackets as y3(δ ) such that

y3(δ ) = y2

[
1

(π+δ )(π(λ2 +λ1,2))+
δ

(π+δ ) −1
]

= y2

[
π(λ2+λ1,2)+δ−(π+δ )

(π+δ )

]
= y2

[
π(λ1,2+λ2−1)

(π+δ )

]
,

which is ≥ 0, since (π + δ ) > 0, π > 0, λ2 > 1 and (λ1,2 + λ2) > 1. Observe that
if we consider the case with λ2 = λ1 = 1, then the maximal reachable correlation is
always equal to 0 because the PH j represents the exponential distribution with rate 1.
Thus, such a case is not interesting and we assume λ2 , λ1, i.e. λ2 > 1. Note that the
probability b2 equals to π +δ , such that its derivative equals

∂b2(δ )

∂δ
= 1.
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Now consider the derivative of y3(δ )

∂y3(δ )
∂δ

= ∂

∂δ

(
1

(π+δ )(π(λ2 +λ1,2))y2 +
δ

(π+δ )y2− y2

)
=−π(λ1,2+λ2)y2

(π+δ )2 + y2π

(π+δ )2

=− y2π(λ1,2+λ2−1)
(π+δ )2 < 0

with ∂y2
∂δ

= ∂

∂δ
( cµ2+1

λ2µ2
) = 0,

∂

∂δ
( 1
(π+δ )π(λ1,2 +λ2)y2) =−π(λ1,2+λ2)y2

(π+δ )2 ,

∂

∂δ

(
δy2

π+δ

)
= y2(π+δ )−δy2

(π+δ )2 = y2π

(π+δ )2 .

Then the derivative of µ1,1(δ ) equals

∂ µ1,1(δ )
∂δ

= ∂

∂δ
(y2 +b2(δ )y3(δ ))

= ∂

∂δ
y2 +

∂

∂δ
(b2(δ )y3(δ ))

= 0+ y3(δ )+b2(δ )(− y2π(λ1,2+λ2−1)
(π+δ )2 )

= y2

(
1

(π+δ )(π(λ2 +λ1,2))+
δ

(π+δ ) −1
)
− (y2π(λ1,2+λ2−1))

(π+δ )

= y2
(π+δ ) (π(λ2 +λ1,2)+δ − (π +δ )−π(λ1,2 +λ2−1)) = 0.

�

Proof of Theorem 6.3. We write the first joint moment µ1,1 from Eq. 6.11 in terms of
all possible paths in the PHi following all possible paths in the PH j. Let aδ

i, j be the
probability that the second APHD PH j starts in the state i and j is the last state before
absorption. Since PH j is in hyperexponential form, it holds that

a1,1 = π, a1,2 = 0, a2,2 = 1−π and a2,1 = 0, (C.3)

Let dδ
i, j be the probability that the first APHD PHi starts in the state i′ and j′ is the last

state before absorption. It holds that

dδ
1,1 = cδ (1−µ

δ
1,2), dδ

1,2 = cδ
µ

δ
1,2, dδ

2,2 = 1− cδ and dδ
2,1 = 0, (C.4)

We use νi, j originally defined in [41] which denotes the mean duration if the process
starts in state i and state j is the last state before absorption of the PH j. It holds that

ν1,1 =
1
λ1

= 1, and ν2,2 =
1
λ2

. (C.5)

Analogously we define ei, j as the mean duration if the process starts in state i′ and state
j′ is the last state before absorption of the PHi. Then we obtain

e1,1 =
1
µ1

= 1,e1,2 = 1+
1
µ2

, and e2,2 =
1
µ2

. (C.6)

For the transfer matrix Hi j it must hold that Hi j I1 =−Di I1. The probability bi gives the
probability that the PH j starts in state 1 after i′ was the last state before absorption in
the PHi. The transfer matrix Hi j can be written as

Hi j =

(
b1(1−µ1,2) (1−b1)(1−µ1,2)

b2µ2 (1−b2)µ2

)
. (C.7)
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Furthermore the condition cMHi j = π should be satisfied to keep the initial distri-
bution of the PH j invariant. For c(−Di)

−1 = cM we obtain

(c 1− c) ·

(
1 µ1,2

µ2

0 1
µ2

)
= (c

(c(µ1,2−1)+1)
µ2

),

then the following has to hold

(c
(c(µ1,2−1)+1)

µ2
) ·
(

b1(1−µ1,2) (1−b1)(1−µ1,2)
b2µ2 (1−b2)µ2

)
= (π (1−π)).

In particular the following relation has to hold,

cb1(1−µ1,2)+b2(c(µ1,2−1)+1) = π,

such that

b2 =
π− cb1(1−µ1,2)

cµ1,2− c+1
.

In the case that b1 = 0, the probability b2 =
π

cµ1,2−c+1 . To ensure that 0 ≤ b2 ≤ 1, the
probability b2 should be set to min(1, π

cµ1,2−c+1).

In the case that b1 = 1 the probability b2 =
π−cb1(1−µ1,2)

cµ1,2−c+1 and should be set to

max(0, π−cb1(1−µ1,2)
cµ1,2−c+1 ). The probability b2 can be chosen from the interval

[
max(0,

π− c(1−µ1,2)

cµ1,2− c+1
),min(1,

π

cµ1,2− c+1
)

]
, (C.8)

and the probabilty b1 can be expressed in terms of b2 as b1 =
π−b2(cµ1,2−c+1)

c(1−µ1,2)
.

The composition of the APHDs where the PH j is fixed to the hyperexponential
representation is visualized in Fig. C.2. We compute the following mean durations for
the elementary series listed in Fig. C.2(b)

dδ
1,1 e1,1 b1

1
λ1

for the series (1),
dδ

1,2 e1,2 b2
1
λ1

for the series (2),
dδ

1,2 e1,2 (1−b2)
1
λ2

for the series (3),
dδ

1,1 e1,1 (1−b1)
1
λ2

for the series (4),
dδ

2,2 e2,2 b2
1
λ1

for the series (5),
dδ

2,2 e2,2 (1−b2)
1
λ2

for the series (6).

With these notations for the elementary series the first joint moment can be expressed
as

µ1,1(δ ) = b2
1
λ1

(dδ
1,2 e1,2 +dδ

2,2 e2,2)+

(1−b2)
1
λ2

(dδ
1,2 e1,2 +dδ

2,2 e2,2)+

(1−b1)
1
λ2

dδ
1,1 e1,1 +b1

1
λ1

dδ
1,1 e1,1.
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1′c

2′1− c

1−µ1,2

µ1,2

µ2

1π

21−π

1

λ2

b1(1−µ1,2)

(1−b1)(1−µ1,2)

b2µ2

(1−b2)µ2

(a) A graphical representation of the APHDs
(c,Di), (π,D j).

(1) < s′1 s1 >
(2) < s′1 s′2 s1 >
(3) < s′1 s′2 s2 >
(4) < s′1 s2 >
(5) < s′2 s1 >
(6) < s′2 s2 >

(b) Possible elementary series for both APHDs.

Figure C.2.: Symbolic representation of the two given APHDs in composition for cor-
relation fitting.

After substituting the values given in (C.3), (C.4), (C.5), (C.6), we obtain

µ1,1(δ ) = b2

(
(c+δ )(

cµ1,2
(c+δ ) −

(µ2−1)δ
(c+δ ) )(1+ 1

µ2
)+(1− c−δ ) 1

µ2

)
+

(1−b2)
1
λ2

(
(c+δ )(

cµ1,2
(c+δ ) −

(µ2−1)δ
(c+δ ) )(1+ 1

µ2
)+(1− c−δ ) 1

µ2

)
+

(1−b1)
1
λ2
(c+δ )

(
1− (

cµ1,2
(c+δ ) −

(µ2−1)δ
(c+δ ) )

)
+

b1 (c+δ )
(

1− (
cµ1,2
(c+δ ) −

(µ2−1)δ
(c+δ ) )

)
.

We denote the terms in the sum as x1, x2, x3, and x4. We first simplify the following
term

x5 = (c+δ )
(

1− (
cµ1,2
(c+δ ) −

(µ2−1)δ
(c+δ ) )

)
= c(1−µ1,2)+δ µ2.

It results for the sum of terms x3 and x4

x3 + x4 = (1−b1)
1
λ2

x5 +b1x5 =
1
λ2

x5− 1
λ2

b1x5 +b1x5

=
c(1−µ1,2)+δ µ2

λ2
+b1(1− 1

λ2
)(c(1−µ1,2)+δ µ2).

We now express the probability b1(δ ) in terms of b2

b1(δ ) =
π−b2(cδ µδ

1,2−cδ+1)

cδ (1−µδ
1,2)

=
π−b2(c(1−µ1,2)−δ µ2+1)

c(1−µ1,2)+δ µ2
.

Using this notations the sum x3 + x4 can be further simplified

x3 + x4 =
c(1−µ1,2)+δ µ2

λ2
+
(

λ2−1
λ2

)
b1(c(1−µ1,2)+δ µ2)

=
c(1−µ1,2)+δ µ2

λ2
+π

(
λ2−1

λ2

)
−
(

λ2−1
λ2

)
b2(c(µ1,2−1)−δ µ2 +1).
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Then
x7 =

c(1−µ1,2)+δ µ2
λ2

+π

(
λ2−1

λ2

)
=

c−cµ1,2+δ µ2+πλ2−π

λ2
.

We compute now the term

x6 =
(
(c+δ )(

cµ1,2
(c+δ ) −

(µ2−1)δ
(c+δ ) )(1+ 1

µ2
)+(1− c−δ ) 1

µ2

)
= (cµ1,2−δ µ2 +δ )(1+ 1

µ2
)+(1− c−δ ) 1

µ2

= cµ1,2 +
1
µ2
[cµ1,2 +1− c]−δ µ2.

It results for the sum of terms x1 and x2

x1 + x2 = b2x6 +(1−b2)
1
λ2

x6

= 1
λ2

x6 +
(

λ2−1
λ2

)
b2x6,

where we denote the first term in the sum as x8

x8 =
x6

λ2
=

cµ1,2 +
1
µ2
[cµ1,2 +1− c]−δ µ2

λ2
.

Then the sum of x7 and x8 results in

x7 + x8 =
c−cµ1,2+δ µ2+πλ2−π

λ2
+

cµ1,2+
1

µ2
[cµ1,2+1−c]−δ µ2

λ2

=
c+πλ2−π+ 1

µ2
cµ1,2+

1
µ2
− c

µ2
λ2

=
cµ2+cµ1,2−c+1

λ2µ2
+ π(λ2−1)

λ2
.

Now consider the remaining terms from the sums x1 + x2 and x3 + x4(
λ2−1

λ2

)
b2x6−

(
λ2−1

λ2

)
b2(c(µ1,2−1)−δ µ2 +1)(

λ2−1
λ2

)
b2(x6− (c(µ1,2−1)−δ µ2 +1)),

such that

x6− (c(µ1,2−1)−δ µ2 +1) =

cµ1,2 +
1
µ2
[cµ1,2 +1− c]−δ µ2− c(µ1,2−1)+δ µ2−1 =

µ2(c−1)+cµ1,2+1−c
µ2

Now the expression for the first joint moment can be rewritten as

µ1,1(δ ) = y2+(λ2−1)b2y3
λ2µ2

,

y2 = cµ2 + cµ1,2− c+1+πµ2(λ2−1),
y3 = µ2(c−1)+ cµ1,2 +1− c.

The probability b2 can take values from the interval given in Eq. 6.14. However, b2
depends on δ such that the boundaries for b2(δ ) result in[

max
(

0,
π− c(1−µ1,2)−δ µ2

c(µ1,2−1)−δ µ2 +1

)
,min

(
1,

π

c(µ1,2−1)−δ µ2 +1

)]
. (C.9)
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Now consider that if y3 > 0 b2 should be as large as possible to maximize µ1,1(δ ), and
if y3 < 0 b2 should be as small as possible to maximize µ1,1(δ ). On the other hand, if
y3 = 0 then the first joint moment µ1,1(δ ) cannot be optimized, i.e. µ1,1(δ ) =

y2
λ2µ2

.

Note that y3 > 0 for c > µ2−1
µ2−1+µ1,2

, y3 < 0 for c < µ2−1
µ2−1+µ1,2

, and y3 = 0 for c =
µ2−1

µ2−1+µ1,2
. Thus we should consider first two cases.

In Case 1 we have c < µ2−1
µ2−1+µ1,2

. Then y3 < 0 and b2(δ ) should be set to minimum,

i.e. b2(δ ) =
π−c(1−µ1,2)−δ µ2
c(µ1,2−1)−δ µ2+1 , and b1 = 1. The derivative with respect to δ equals

∂b2(δ )

∂δ
=

µ2(π−1)
(−δ µ2 + c(µ1,2−1)+1)2 < 0.

The denominator is always positive, and the numerator is negative since we assume
π < 1 in the two-phase case. The derivative of the µ1,1(δ ) with respect to δ is

∂ µ1,1(δ )
∂δ

= [y2+y3(λ2−1)b2(δ )]
′

λ2µ2

= y3(λ2−1)
λ2µ2

db2(δ )
dδ

= y3(λ2−1)
λ2µ2

µ2(π−1)
(−δ µ2+c(µ1,2−1)+1)2 > 0.

The second term is negative as shown above, and the y3 is negative by assumption. In
the first case, i.e. as long as c < µ2−1

µ2−1+µ1,2
the derivative with respect to δ is positive

such that δ should be increased to increase µ1,1(δ ). We set δ to the maximum value
such that δ =

cµ1,2
µ2−1 . The transformation then results in

µδ
1,2 =

cµ1,2
(c+δ ) −

(µ2−1)δ
(c+δ )

=
cµ1,2

(c+
cµ1,2
µ2−1 )
−

(µ2−1)
cµ1,2
µ2−1

(c+
cµ1,2
µ2−1 )

= 0,

which corresponds to the hyperexponential representation of the PHi where the maxi-
mal value for µ1,1 can be reached.

The Case 2 is given when c > µ2−1
µ2−1+µ1,2

. Then y3 > 0, and the probability b2 should
be set to maximum to maximize the first joint moment. So we set
b2 =

π

c(µ1,2−1)−δ µ2+1 . The derivative with respect to δ equals

∂b2(δ )

∂δ
=

µ2π

(−δ µ2 + c(µ1,2−1)+1)2 > 0,

since the denominator is always positive. The derivative of the µ1,1(δ ) with respect to
δ is then

∂ µ1,1(δ )
∂δ

= [y2+y3(λ2−1)b2(δ )]
′

λ2µ2

= y3(λ2−1)
λ2µ2

db2(δ )
dδ

= y3(λ2−1)
λ2µ2

µ2π

(−δ µ2+c(µ1,2−1)+1)2 > 0,

which is positive since y3 > 0 by assumption. In that case δ should again be set to the
maximum value to maximize µ1,1 which implies the hyperexponential representation
of the PHi.
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Observe that in the second case the probability b2 is selected from
min

(
1, π

c(µ1,2−1)−δ µ2+1

)
. If π

c(µ1,2−1)−δ µ2+1 > 1, the probability b2 = 1, which implies
that the derivative of µ1,1(δ ) is zero. �

Proof of Theorem 6.4. Again we write the first joint moment µ1,1 from Eq. 6.11 in
terms of all possible paths in the PHi following all possible paths in the PH j. The prob-
abilities dδ

i, j are given by Eq. C.4. The mean durations are defined as in Eq. C.6,and Eq. C.5.
The transfer matrix is given by Eq. C.7 such that the bounds for probability b2 are given
by Eq. C.8. The elementary series of the composition where the second APHD is fixed
to canonical form are visualized in Fig. C.3.

1′c

2′1− c

1−µ1,2

µ1,2

µ2

1π

21−π

1

λ2

b1(1−µ1,2)

(1−b1)(1−µ1,2)

b2µ2

(1−b2)µ2

(a) A graphical representation of the APHDs
(c,Di), (π,D j).

(1) < s′1 s1 s2 >
(2) < s′2 s1 s2 >
(3) < s′1 s′2 s1 s2 >
(4) < s′1 s′2 s2 >
(5) < s′1 s2 >
(6) < s′2 s2 >

(b) Possible elementary series for the composi-
tion of two given APHDs.

Figure C.3.: Symbolic representation of the two given APHDs in composition for cor-
relation fitting.

We compute the following mean durations for the elementary series listed in Fig. C.3(b)

dδ
1,1 e1,1 b1 (1+ 1

λ2
) for the series (1),

dδ
2,2 e2,2 b2 (1+ 1

λ2
) for the series (2),

dδ
1,2 e1,2 b2 (1+ 1

λ2
) for the series (3),

dδ
1,2 e1,2 (1−b2)

1
λ2

for the series (4),
dδ

1,1 e1,1 (1−b1)
1
λ2

for the series (5),
dδ

2,2 e2,2 (1−b2)
1
λ2

for the series (6).

With these notations for the elementary series the first joint moment can be expressed
as

µ1,1(δ ) = b2 (dδ
2,2 e2,2 ν1,2 +dδ

1,2 e1,2 ν1,2)+

(1−b2) (dδ
1,2 e1,2 ν2,2 +dδ

2,2 e2,2 ν2,2)+

(1−b1) dδ
1,1 e1,1 ν2,2 +b1 dδ

1,1 e1,1 ν1,2.
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We substitute values given in (C.3), (C.4), (C.5), (C.6), and obtain

µ1,1(δ ) = b2(1+ 1
λ2
)
(
(c+δ )(

cµ1,2
(c+δ ) −

(µ2−1)δ
(c+δ ) )(1+ 1

µ2
)+(1− c−δ ) 1

µ2

)
+

(1−b2)
1
λ2

(
(c+δ )(

cµ1,2
(c+δ ) −

(µ2−1)δ
(c+δ ) )(1+ 1

µ2
)+(1− c−δ ) 1

µ2

)
+

(1−b1)
1
λ2
(c+δ )

(
1− (

cµ1,2
(c+δ ) −

(µ2−1)δ
(c+δ ) )

)
+

b1 (1+ 1
λ2
) (c+δ )

(
1− (

cµ1,2
(c+δ ) −

(µ2−1)δ
(c+δ ) )

)
.

First the term x5 = c(1−µ1,2)+δ µ2 and can be adopted from the Sec. 6.2.4. Then we
simplify the following term

x6 =
(
(c+δ )(

cµ1,2
(c+δ ) −

(µ2−1)δ
(c+δ ) )(1+ 1

µ2
)+(1− c−δ ) 1

µ2

)
= cµ1,2 +

1
µ2
[cµ1,2 +1− c]−δ µ2.

Then the sum of terms x1 and x2 results in

x1 + x2 = b2(1+ 1
λ2
)x6 +(1−b2)

1
λ2

x6

= b2x6 +b2x6
1
λ2
+ 1

λ2
x6−b2x6

1
λ2

= b2x6 +
1
λ2

x6.

The sum of x3 and x4 results in

x3 + x4 = x5
λ2
+b1x5

=
(c(1−µ1,2)+δ µ2)

λ2
+

π−b2(c(1−µ1,2)−δ µ2+1)
c(1−µ1,2)+δ µ2

(c(1−µ1,2)+δ µ2)

=
(c(1−µ1,2)+δ µ2)

λ2
+π−b2(c(1−µ1,2)−δ µ2 +1).

Then we adopt x8 =
x6
λ2

from the Sec. 6.2.4 and resolve

y1 = x8 +
(c(1−µ1,2)+δ µ2)

λ2
+π

=
cµ2+cµ1,2−c+1

λ2µ2
+π.

We also adopt the following substraction from the proof in Sec. 6.2.4

y2 = x6− (c(µ1,2−1)−δ µ2 +1) =
µ2(c−1)+cµ1,2+1−c

µ2
.

Using these notation the first joint moment can be written as

µ1,1(δ ) = y1 +b2 ∗ y2

The probability b2 depends on the transformation parameter δ and can take values
from the interval in Eq. C.9. Now consider that if y2 < 0 then b2 should be as small
as possible to maximize µ1,1(δ ), and if y2 > 0 then b2 should be as large as possible
to maximize µ1,1(δ ). The case y2 = 0 allows no flexibility in maximizing µ1,1(δ ) and
thus is not interesting. We consider the first two cases in detail.

In Case 1 we have y2 =
µ2(c−1)+cµ1,2+1−c

µ2
< 0 and b2(δ ) is set to its minimum value

π−c(1−µ1,2)−δ µ2
c(µ1,2−1)−δ µ2+1 . Its derivative with respect to δ equals

∂b2(δ )

∂δ
=

µ2(π−1)
(−δ µ2 + c(µ1,2−1)+1)2 < 0.

222



APPENDIX C. PROOFS

The derivative of the µ1,1(δ ) with respect to δ is

∂ µ1,1(δ )
∂δ

= µ2(π−1)
(−δ µ2+c(µ1,2−1)+1)2

µ2(c−1)+cµ1,2+1−c
µ2

> 0.

The first term is negative as shown above, and the y2 is negative by assumption, such
that the derivative with respect to δ is positive and δ should be increased to increase
µ1,1(δ ). We set δ to the maximum value such that δ =

cµ1,2
µ2−1 which implies µδ

1,2 =
0 as has been shown in Sec. 6.2.4. This result corresponds to the hyperexponential
representation of the PHi.

In Case 2 it holds that y2 =
µ2(c−1)+cµ1,2+1−c

µ2
> 0 such that b2(δ ) is set to its maxi-

mum value π

c(µ1,2−1)−δ µ2+1 . The derivative with respect to δ equals

∂b2(δ )

∂δ
=

µ2π

(−δ µ2 + c(µ1,2−1)+1)2 > 0,

The derivative of the µ1,1(δ ) with respect to δ is

∂ µ1,1(δ )
∂δ

= µ2π

(−δ µ2+c(µ1,2−1)+1)2
µ2(c−1)+cµ1,2+1−c

µ2
> 0,

such that δ should be increased to increase µ1,1(δ ). This result also corresponds to the
hyperexponential representation of the PHi. �

Proof of Corollary 2. The correlation function is given by

ρ(π) =
µ1,1−E[X ]E[Y ]√

Var[X ]Var[Y ]
,

where X is the APHD (c,DA
0 ) random variable, and Y is the APHD (π,DB

0 ) random
variable. Furthermore Var[X ] = E[X2]− (E[X ])2, Var[Y ] = E[Y 2]− (E[Y ])2. The first
joint moment µ1,1 is given in Eq. 6.11. We first introduce the vector matrix represen-
tation of the correlation function. We distinguish two cases for the first joint moment.

If (π− c)> 0, i.e. π > c, the value of the probability b2 from Eq. 6.14 is set to the
π−c
1−c . In that case we obtain from Eq. 6.15

µ1,1 =
µ1− c(µ1−µ2)−µ2π +πλ2µ2 +(µ2−µ1)(1−λ2)(π− c)

λ2µ1µ2
(C.10)

In the case if (π− c)≤ 0, i.e. if π ≤ c the first joint moment from Eq. 6.15 results in

µ1,1 =
µ1− c(µ1−µ2)−µ2π +πλ2µ2

λ2µ1µ2
(C.11)

Note that if π = c in the first case the formula given in Eq. C.10 equals Eq. C.11. Using
the formula in Eq. C.10 above we obtain the correlation function

ρ1(π) =
µ1−c(µ1−µ2)−µ2π+πλ2µ2+(µ2−µ1)(1−λ2)(π−c)

λ2µ1µ2
−
(

c
µ1

+ 1−c
µ2

)(
π+ 1−π

λ2

)
√(

2c
µ2

1
+ 2(1−c)

µ2
2
−
(

c
µ1

+ 1−c
µ2

)2
)
·
(

2π+ 2(1−π)

λ2
2
−
(

π+ 1−π

λ2

)2
)

=
1−c(1−µ2)−µ2π+πλ2µ2+(µ2−1)(1−λ2)(π−c)

λ2µ2
−
(

c+ 1−c
µ2

)(
π+ 1−π

λ2

)
√(

2c+ 2(1−c)
µ2

2
−
(

c+ 1−c
µ2

)2
)
·
(

2π+ 2(1−π)

λ2
2
−
(

π+ 1−π

λ2

)2
)

(C.12)
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for the first case. In the case (π− c)≤ 0, the formula for the correlation results in

ρ2(π) =
µ1−c(µ1−µ2)−µ2π+πλ2µ2

λ2µ1µ2
−
(

c
µ1

+ 1−c
µ2

)(
π+ 1−π

λ2

)
√(

2c
µ2

1
+ 2(1−c)

µ2
2
−
(

c
µ1

+ 1−c
µ2

)2
)
·
(

2π+ 2(1−π)

λ2
2
−
(

π+ 1−π

λ2

)2
)

=
1−c(1−µ2)−µ2π+πλ2µ2

λ2µ2
−
(

c+ 1−c
µ2

)(
π+ 1−π

λ2

)
√(

2c+ 2(1−c)
µ2

2
−
(

c+ 1−c
µ2

)2
)
·
(

2π+ 2(1−π)

λ2
2
−
(

π+ 1−π

λ2

)2
) .

(C.13)

We first examine the behavior of the ρ1(π) given in Eq. C.12. Using maple we com-
pute its derivative with respect to π and obtain the extreme point

π =
λ2−λ 2

2 −1
λ2−1

< 0, (C.14)

which is negative, since the numerator is negative. The obtained extreme point is
outside the defined range [0, . . . ,1] for π . Furthermore, the value of the first derivative
is negative, and the value of the second derivative is negative for the obtained π in
Eq. C.14, which indicates the local maxima in that point. However, the value given
by Eq. C.14 is negative and thus an invalid probability value. In the range [0, . . . ,1] for
π the function has no local extrema. Thus we consider points on the boundaries of the
domain, i.e. in the intervall [c, . . . ,1]. In particular, for π = 1 we obtain

ρ1(1) =
1−c(1−µ2)−µ2+µ2λ2+(µ2−1)(1−λ2)(1−c)

λ2µ2
−c− 1−c

µ2√
2c+ 2(1−c)

µ2
2
−(c+ 1−c

µ2
)2

=
1−c+cµ2−µ2+µ2λ2−1−µ2λ2+cλ2µ2−cµ2+µ2−cλ2+c+λ2

λ2µ2
−c− 1−c

µ2√
2c+ 2(1−c)

µ2
2
−(c+ 1−c

µ2
)2

=
1−c+cµ2−µ2+µ2λ2−1−µ2λ2+cλ2µ2−cµ2+µ2−cλ2+c+λ2−cλ2µ2−λ2+cλ2

λ2µ2√
2c+ 2(1−c)

µ2
2
−(c+ 1−c

µ2
)2

=
0

λ2µ2√
2c+ 2(1−c)

µ2
2
−(c+ 1−c

µ2
)2
= 0.

Since the function is strictly decreasing, the leftmost point π = c should be optimal.
For the boundary π = c the function results in

ρ1(c) =
1−c(1−µ2)−cµ2+cλ2µ2

λ2µ2
−
(

c+ 1−c
µ2

)(
c+ 1−c

λ2

)
√(

2c+ 2(1−c)
µ2

2
−(c+ 1−c

µ2
)2
)(

2c+ 2(1−c)
λ2

2
−(c+ 1−c

λ2
)2
)

=
− c(−1−λ2µ2+cλ2µ2−cµ2+µ2−cλ2+c+λ2)

λ2µ2√(
2c+ 2(1−c)

µ2
2
−(c+ 1−c

µ2
)2
)(

2c+ 2(1−c)
λ2

2
−(c+ 1−c

λ2
)2
) ,

(C.15)

where the denominator is always positive. Thus we only have to consider the numera-
tor

− c(−1−λ2µ2+cλ2µ2−cµ2+µ2−cλ2+c+λ2)
λ2µ2

= − c(−1−λ2µ2+λ2+µ2+c(1+λ2µ2−λ2−µ2))
λ2µ2

.

We assumed λ2,µ2 > 1 which implies that the first part in the brackets of the numerator
(−1−λ2µ2 +λ2 +µ2)< 0 since −1−λ2µ2 <−λ2−µ2. As next we denote the part
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in the brackets (1+λ2µ2−λ2−µ2) as x. Here x > 0 since 1+λ2µ2 > λ2 +µ2 which
holds by assumption λ2,µ2 > 1. Now we obtain the term (−x+ cx) as the part in
the brackets of the numerator, which is negative for c ∈ [0, . . . ,1]. The product in the
numerator consists of two negative values such that the result is positive which implies
that ρ1(c)> 0 and in particular ρ1(c)> ρ1(1).

In the second case we consider the function ρ2(π) given in Eq. C.13 where π ∈
[0, . . . ,c]. The first derivative with respect to π is positive. Using maple we obtained
the local extrema

π =− 1
λ2(λ2−1)

,

which is outside the permissible range for 0≤ π ≤ 1. We again consider the function
behavior on the boundaries of the interval [0, . . . ,c]. For π = 0 we obtain

ρ2(0) =
1−c(1−µ2)

λ2µ2
−

c+ 1−c
µ2

λ2√√√√ 2c+ 2(1−c)
µ2

2
−(c+ 1−c

µ2
)2

λ2
2

=
1−c+cµ2−cµ2−1+c

λ2µ2√√√√ 2c+ 2(1−c)
µ2

2
−(c+ 1−c

µ2
)2

λ2
2

= 0√√√√ 2c+ 2(1−c)
µ2

2
−(c+ 1−c

µ2
)2

λ2
2

= 0.

For the rightmost point π = c we obtain

ρ2(c) =
1−c(1−µ2)−cµ2+cλ2µ2

λ2µ2
−
(

c+ 1−c
µ2

)(
c+ 1−c

λ2

)
√(

2c+ 2(1−c)
µ2

2
−(c+ 1−c

µ2
)2
)(

2c+ 2(1−c)
λ2

2
−(c+ 1−c

λ2
)2
)

=
− c(−1−λ2µ2+cλ2µ2−cµ2+µ2−cλ2+c+λ2)

λ2µ2√(
2c+ 2(1−c)

µ2
2
−(c+ 1−c

µ2
)2
)(

2c+ 2(1−c)
λ2

2
−(c+ 1−c

λ2
)2
) ,

which equals the formula given in Eq. C.15. As shown above ρ2(c)> 0 and in partic-
ular ρ2(c) > ρ2(0). Thus the behavior is as follows: as long as π ≤ c the correlation
function is increasing and reaches its optimum at point π = c, then the correlation
function is decreasing for π > c, and π ≤ 1. �
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Appendix D
Examples

D.1. Example 5.7

Uniformized path matrices are

P(i1,i2,i3,i4) =



0 0 1 0 0 0 0 0
0 0.9286 0 0.0714 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0.9286 0 0.0714 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0.9286 0 0.0714
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.9286


,

P(i1,i9,i7,i8)=



0 0 0 1 0 0 0 0
0 0.9286 0.0714 0 0 0 0 0
0 0 0 0 0.5 0.5 0 0
0 0 0 0.9286 0.0357 0.0357 0 0
0 0 0 0 0 0 0.5 0.5
0 0 0 0 0 0.9286 0.0357 0.0357
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.9286


,

P(i1,i2,i10,i8) =



0 0 1 0 0 0 0 0
0 0.9286 0 0.0714 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0.9286 0.0714 0 0 0
0 0 0 0 0 0 0.5 0.5
0 0 0 0 0 0.9286 0.0357 0.0357
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.9286


,
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P(i5,i6,i7,i8)=



0 0 0.5 0.5 0 0 0 0
0 0.9286 0.0357 0.0357 0 0 0 0
0 0 0 0 0.5 0.5 0 0
0 0 0 0.9286 0.0357 0.0357 0 0
0 0 0 0 0 0 0.5 0.5
0 0 0 0 0 0.9286 0.0357 0.0357
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.9286


.

D.2. Example 7.1

Uniformized path matrices are

P(i1,i2,i3,i4) =



0 0 1 0 0 0 0 0
0 0.9286 0 0.0714 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0.9286 0 0.0714 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0.9286 0 0.0714
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.9286


,

P(i1,i2,i5,i6) =



0 0 1 0 0 0 0 0
0 0.9286 0 0.0714 0 0 0 0
0 0 0 0 0.5 0.5 0 0
0 0 0 0.9286 0.0357 0.0357 0 0
0 0 0 0 0 0 0.5 0.5
0 0 0 0 0 0.9286 0.0357 0.0357
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.9286


,

D.3. Example 7.1

We computed the following PHDs of order 6 according to the vehicle mobility traces
of the edges A through G [40]:

π
(A) = (0.01614,0.49193,0,0.24597,0,0.24597) ,

D(A)
0 =


−0.01968 0 0 0 0 0

0 −0.21991 0.21991 0 0 0
0 0 −0.43981 0 0 0
0 0 0 −0.43981 0.43981 0
0 0 0 0 −0.87962 0
0 0 0 0 0 −0.87962

 .

π
(B) = (0.47669,0.14445,0.18822,0.09532,0,0.09532) ,

D(B)
0 =


−0.01786 0.01786 0 0 0 0

0 −0.07680 0.07680 0 0 0
0 0 −0.07680 0.03840 0 0.03840
0 0 0 −0.09377 0.09377 0
0 0 0 0 −0.18755 0
0 0 0 0 0 −0.18755

 .

227



D.4. EXAMPLE ??

π
(C) = (0.99999,0,0,3.98773e−06,0,0) ,

D(C)
0 =


−0.07095 0.07095 0 0 0 0

0 −0.07095 0.07095 0 0 0
0 0 −0.07095 0 0 0
0 0 0 −0.18958 0.18958 0
0 0 0 0 −0.18958 0.189581
0 0 0 0 0 −0.18958

 .

π
(D) = (1,0,0,0,0,0) ,

D(D)
0 =


−0.42893 0.42893 0 0 0 0

0 −0.42893 0.42893 0 0 0
0 0 −0.42893 0.42893 0 0
0 0 0 −0.42893 0.42893 0
0 0 0 0 −0.42893 0.42893
0 0 0 0 0 −0.42893

 ,

π
(E) = (0.09701,0.90298,0,0,0,0) ,

D(E)
0 =


−0.01951 0 0 0 0 0

0 −1.37078 1.37078 0 0 0
0 0 −1.37078 1.37078 0 0
0 0 0 −1.37078 1.37078 0
0 0 0 0 −1.37078 1.37078
0 0 0 0 0 −1.37078

 ,

π
(F) = (0.16103,0.83897,0,0,0) ,

D(F)
0 =


−0.46405 0 0 0 0 0

0 −0.33057 0.33057 0 0 0
0 0 −0.33057 0.33057 0 0
0 0 0 −0.33057 0.33057 0
0 0 0 0 −0.33057 0.33057
0 0 0 0 0 −0.33057

 ,

π
(G) = (0.00263,0.99737,0,0,0,0) ,

D(G)
0 =


−0.00768 0 0 0 0 0

0 −0.51913 0.51913 0 0 0
0 0 −0.51913 0.51913 0 0
0 0 0 −0.51913 0.51913 0
0 0 0 0 −0.51913 0.51913
0 0 0 0 0 −0.51913

 .

The coefficient of correlation between edge A and B equals ρ̂AB = 0.264. The fitted
PHD transfer matrix equals

Hρ=0.19576
AB =


0.01968 0 0 0 0 0

0 0 0 0 0 0
0.41176 0.02805 0 0 0 0

0 0 0 0 0 0
0 0.40437 0.47526 0 0 0
0 0 0.19786 0.34088 0 0.34088

 .

D.4. Example 7.4

We used the following transfer matrices:

• Hρ=0.26
(a1,u1) with correlation coefficient ρ = 0.26

Hρ=0.26
(a1,u1) =


0.000217810219561 0.000973611453869 0.000112273502867 0

0 0 0.018090925759206 0
0 0 0.046714481120500 0.156683568269293
0 0 0 1.526626942773592

 ,
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• Hρ=0.26
(a2,u2) with correlation coefficient ρ = 0.26

Hρ=0.26
(a2,u2) =


0.001745101910775 0.004259515065754 0 0

0 0.001902532607753 0.010233796461206 0.031774814060866
0 0 0 0.645219046820841
0 0 0 7.913323811792491

 ,

• Hρ=0.2
(a3,u3) with correlation coefficient ρ = 0.2

Hρ=0.2
(a3,u3) =


0.001633334243295 0.007029882074461 0 0

0 0.016766724831434 0.060611402238600 0
0 0 0.338607657522560 0.540483989071130
0 0 0 4.141319680378356

 .

Cumulative reward vectors for all policies defined by (7.13)- (7.16) can be given as

rcR = (0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0),

rcE1 =(0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0.4764,4.2558,48.35,227.7726,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0),

rcE2 =(0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0.4765,4.2558,48.35,227.7726,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0),

rcE3 =(0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0.4765,4.2558,48.35,227.7726,0,0,0,0,0,0,0,0,0).
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