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Abstract

Most stochastic shortest path problems include an assumption of independent weights
at edges. For many practical problems, however, this assumption is often violated indi-
cating an increased number of applications with stochastic graphs where edge weights
follow a distribution that has a possible correlation with weights at adjacent edges.
Real-world information in conjunction with existing dependencies in networks can
significantly contribute to the computation of the optimal solution to stochastic short-
est path problems. For example, the knowledge of a congestion arising on the current
road results in a better traveler’s choice of an alternative route. Markov dependabil-
ity models describing the correlation in the length of availability and unavailability
intervals of technical components could support optimal decisions to avoid high main-
tenance costs.

In this thesis, an innovative model class for stochastic graphs with correlated weights
at the edges is introduced. In the developed model edge weights are modeled by PH
distributions and correlations between them can be encoded using transfer matrices for
PH distributions of adjacent edge weights. Stochastic graph models including corre-
lations are important to describe many practical situations where the knowledge about
system parameters like traveling times and costs is incomplete or changes over time.

Based on PH-Graphs efficient solution methods for Stochastic Shortest Path Prob-
lems with correlations can be developed. Competing paths from origin to destination
in a PH-Graph can be interpreted as CTMDPs. Optimal solutions to different shortest
path problems can be obtained from finding an optimal policy in a CTMDP. For ex-
ample, the problem of finding the reliable shortest path to maximize the probability of
arriving on time under realistic assumptions can be efficiently treated. Formulations of
shortest path problems with correlations as well as solution methods from the CTMDP
field are presented.

We address the parameterization of PH-Graphs based on measured data from sim-
ulated systems. Fitting methods for parameterization of transfer matrices are adopted
from MAP fitting approaches. Also similarity transformations for order 2 acyclic
PHDs in composition are considered. Our experiments and examples show that corre-
lation has a significant impact on shortest paths in stochastic weighted networks and
that our solution methods are effective and usable in online decision senarios.
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Chapter

Introduction

The optimization of shortest path problems in weighted stochastic graphs has been
studied extensively and has been applied in various fields of computer science, commu-
nications, transportation systems, and engineering, to name just a few. Often weights
in a graph have been assumed to be deterministic, or independent and identically dis-
tributed random variables (see, e.g., [84, 119]). Then efficient algorithms for comput-
ing shortest paths are well known [64]. However, these assumptions are violated in
most practical problems. Typically, real-world shortest path problems are too complex
such that there is a major challenge in building an accurate model to define weights
in a stochastic graph model. For this reason it is worthwhile finding the appropriate
description of uncertainty and dependencies in weighted graph models.

When probabilistic edge weights are considered one is dealing with different ver-
sions of Stochastic Shortest Path Problems (SSPPs) [159]. Various settings and prob-
lem formulations have been considered [7, 29, 33, 34, 35, 36, 78, 82, 135, 136, 143,
145, 160, 164, 167, 174, 175]. Classically, the problem of finding optimal paths is
given when a path with the minimal expected time should be computed (see, e.g.,
[29, 71, 99]). Another variant is given when a path maximizing the probability of ar-
riving at the destination node within a given time interval should be computed (see,
e.g., [72, 77, 123]). One important issue which should be investigated is how estab-
lished stochastic modeling methods can help to incorporate more realism in SSPPs and
shed some light of how dependencies between weights can influence optimal paths.

The aspect of correlation is rarely considered when solving different SSPPs. Some
of the earliest and most noteworthy results concern the form of the optimal policy
under various assumptions about edge congestion states and risk aversion [71, 99,
172]. In transportation and traffic networks, correlations often occur due to network
disruptions, risks of accidents, construction zones on highways and city roads, natural
disasters, and congestions. For example, the regular morning congestion in rush hour
traffic is typically between 6 : 30 and 8 : 30, and long traveling times on highways
also imply long traveling times on periphery [99]. For these reasons different kind of
dependencies among edge traveling times can occur and it is known that the negligence
of these correlations can result in non-optimal solutions.

In this thesis, we propose a stochastic model class for the analysis of stochastic
graphs with dependencies, called a Phase-type Graph (PH-Graph). The new model is



based on Phase-type distributions (PHDs) [69, 133] and Markovian Arrival Processes
(MAPs) [132] and is represented by a Markov chain which describes correlated du-
rations of consecutive time intervals. When interpreting Phase-type distributed dura-
tions as weights, a PH-Graph describes a stochastic graph with correlated weights on
adjacent edges. Dependencies between adjacent edge weights can be introduced by
defining a transfer matrix which is similar to the D; matrix of a MAP. A PH-Graph
model collects PHDs for weights of all edges and transfer matrices for adjacent edges.

The main feature of PH-Graph models is that edge weights can be interpreted de-
pending on the context of the problem making a large variety of applications possible.
Nevertheless, open questions regarding their applicability in real-world problems arise.
In particular, how PH-Graphs based on PHDs and MAPs can be integrated in stochas-
tic control models for optimization in order to determine the optimal decision under
realistic conditions being considered. For example, how PH-Graphs capturing correla-
tions can be used in conjunction with real-world information to determine the optimal
policy for the route to traverse? Then, the knowledge about congestion on a highway,
vehicle accident, weather-related hazards on roads, shipments or plane routes can be
used by a decision maker to choose an optimal path.

PH-Graph is a Markovian model which can be transformed into a Continuous-Time
Markov Decision Process (CTMDP) such that the optimal paths correspond to the op-
timal policies and can computed efficiently [148]. CTMDPs are sequential decision
models which have been applied to a variety of problems in computer and commu-
nication systems, inventory and manufacturing control, nuclear plant and epidemic
management, to name just a few. They are widely used in order to improve the associ-
ated real-world system or to determine the effective way to control it. Often modeled
problem situations correspond to real-world problem situations and one is interested
in the optimal policy due to various assumptions about system parameters.

These assumptions contribute to understanding how such models could help to pro-
vide insight about optimal system behavior. Research about parameterization of CT-
MDPs using sophisticated distributions like PHDs and transfer matrices is needed to
accommodate empirical behavior of a modeled process.

As already mentioned, PH-Graphs are based on PHDs and MAPs, that are pop-
ular among researchers in the field of stochastic modeling. These are Markov pro-
cesses with an intuitive stochastic interpretation integrating the concept of phases and
events [115]. In particular, PHDs are described by Continuous-Time Markov Chains
(CTMC) with an absorbing state providing several exponentially distributed time inter-
vals, also known as stages. PHDs represent a versatile and computationally tractable
class of probability distributions which lead to an easier numerical analysis since they
make use of Markov property and efficient matrix analytic methods [115]. Their main
conversing feature is that using PHDs any non-negative distribution can be approxi-
mated arbitrary close [138]. PHDs allow one to capture empirical and stochastic be-
havior from the measured data efficiently [108, 168]. However, if one is interested in
description of correlated data MAPs should be used rather than PHDs. MAPs repre-
sent a Markovian modeling technique which is strongly connected to PHDs. They are
based on CTMCs with marked transitions such that the process generates an arrival
event when particular transitions occur. These stochastic behavior enables modeling
of autocorrelated interevent times which are represented by a fixed PHD, but there are
still many open questions when transfering these concepts to PH-Graphs. The first



CHAPTER 1. INTRODUCTION

question arising is: how can the correlation between interevent times which are dis-
tributed according to an arbitrary PHD be described? One of the ways to deal with this
challenge is to adopt the concept of D| matrix from MAPs to transfer matrices.

The mathematical representation of PHDs and MAPs is determined by an underly-
ing CTMC. Due to the non-uniqueness of the matrix representation, representations
maximizing the first joint moment that can be reached when PHD is expanded to a
MAP have been investigated in the past [41]. Nevertheless, the next question is: which
representations of different PHDs are most suitable when maximizing their correla-
tion? This thesis proposes the treatment of these questions.

Although, PHDs and MAPs are not broadly used in practical system modeling yet
their flexibility and practicability in matching empirical data to their parameters can-
not be neglected today. Parameter fitting for PHDs and MAPs is a complex non-linear
problem. Much theoretical and practical research has focused on the features of PHDs
and MAPs, their applicability in stochastic models and fitting algorithms, such that
several software solutions to generate PHDs and MAPs according to observed data
are available [38, 44, 52, 96, 108, 139, 140, 165, 166, 168]. For example, efficient
algorithms allow generation of PHDs with up to 20 phases in at most a few minutes.
Parameter fitting for MAPs is a more complex optimization problem than parameter
fitting for PHDs since also long range behavior should be considered to match param-
eters adequately. Nevertheless, the technology is mature enough and well accepted by
researchers such that the Markovian models based on PHDs and MAPs can be widely
used in applied probability.

1.1. Contribution

The main theoretical contribution of this thesis is a novel model class for weighted
stochastic graphs with correlated weights at the edges. In the developed model, edge
weights are modeled with Phase-type distributions, a versatile class of distributions
which can be used to approximate any continuous distribution. Modeling of correlated
edge weights is done by adding dependencies between the PHDs of adjacent edge
weights. The concept of a transfer matrix adopted from D; matrix from MAPs field is
introduced.

In this way we first provide modeling of graphs with stochastic edge weights which
can describe many real-world problems with uncertain and time varying parameters.
Based on PH-Graphs efficient solution methods for Stochastic Shortest Path Problems
with correlations is developed. This is done by generation of a suitable Continuous-
Time MDP and the application of established solution methods. The new PH-Graph
model, integration and adopting of methods for its parameterization is the core contri-
bution of this thesis.

The proposed parameterization algorithms of the transfer matrix are adopted from
MAP fitting approaches. Additionally, we present similarity transformations for Phase-
type distributions that can be applied to increase the range of correlation that can be
modeled by the newly developed PH-Graph model. These theoretical insights are used
in an expectation-maximization fitting algorithm to identify the most suitable initial
transfer matrix. In the two phase fitting approach, first the parameters of PH distri-
butions have to be determined. Hence, PHDs with representations which are most
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suitable for subsequent fitting of transfer matrix with maximal first joint moment can
be generated.

Around our PH-Graph model we develop a corresponding CTMDP that captures
possible correlations in order to compute the optimal policy under realistic conditions.
When a human decision maker needs to decide on which policy to follow, information
about currently realized edge weight is required to exploit the effect of correlation, as
visualized in Fig. 1.1. The developed CTMDP method returns the optimal policy for
each possible realization of the current edge weight, such that a human decision maker
can select one to execute. Thus providing a framework for decision support. Finally,
the thesis is accompanied by case studies to demonstrate the practical potential of
optimization based on PH-Graphs.

Several parts of this thesis have already been published before. Basic concepts de-
scribed in Sections 2.1.3, 2.4, 2.5 appeared in [47]. The basic PH-Graph model con-
cepts in Sections 3.2, 5.1 and 5.2 have been published in [40]. Parameterization
concepts and results from Chapter 4 appeared in [47] and [40]. Results appeared in
Chapter 5 are published in [40]. The empirical work described in Section 7.1 appeared
also in [40]. Parts of theoretical results presented in Chapter 6 are in principle based

on [41].
PH distributions,
Transfer matrices, PH-graph parameterization phase
CTMDP

CTMDP algorithms optimization phase

|

optimal policies

|

real-world information . .
(e.g., history of realized values) eneeieation selection phase

single policy execution phase

Figure 1.1.: Decision support based on PH-Graph and corresponding CTMDP

1.2. Outline

The thesis consists of six chapters which are organised as follows:

e In Chapter 2 basic concepts from the field of Markov Decision Processes and
Stochastic Shortest Path Problems are summarized. We give a comprehensive
introduction to Phase-type distributions and Markovian Arrival Processes which
are of great importance throughout the thesis. Indispensable knowledge there-
fore like concepts of Markov processes and dynamic programming are also in-
cluded.
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e In Chapter 3 we develop our PH-Graph to model weighted stochastic graphs
with correlated PHD weights at the edges. We first model edge weights by
Phase-type distributions. Then we introduce a composition of two Phase-type
distributions which describes correlated weights at adjacent edges using the
transfer matrix. We add dependencies between the entry phase of the second
PHD and the exit phase of the first PHD.

e Chapter 4 presents methods to parameterize the required PHDs for edges and
transfer matrices based on measured data. We first describe several fundamental
algorithms and results in the field of fitting PHDs and MAPs. We adopted fitting
methods to parameterize transfer matrices. From several examples the fitting
quality of our algorithms can be evaluated.

e Chapter 5 gives the formulation of the PH-Graph model as Continuous-Time
Markov Decision Process. We discuss how solutions to many shortest path prob-
lems can be obtained as the computation of an optimal policy in a CTMDP. We
formulate basic shortest path problems and present the corresponding solution
algorithms from the field of CTMDPs.

e In Chapter 6 we describe similarity transformations for acyclic PHDs. We inves-
tigate which representations of both PHDs are most suitable in order to maxi-
mize the first joint moment of PHD composition. We present similarity transfor-
mation method for 2-order APHDs in order to generate a representation which
allows for fitting a transfer matrix with maximal first joint moment. When opti-
mal representations are known, parameterization of PHDs and transfer matrices
in PH-Graphs can demonstrably be simplified.

e In Chapter 7 we demonstrate the usability and effectiveness of our solution
methods by solving stochastic shortest path problems in real-world case studies.
We compute shortest paths using a vehicular traffic model under realistic as-
sumptions and analyze the computational effort using different types of graphs
approximating road networks. The second case study considers finance appli-
cation. In the third case study we analyze model from the maintenance field.
When, for example, a human decision maker needs to decide which policy to
follow, our methods provide useful results taking correlations in real-world net-
works into consideration.



Chapter

Preliminaries

2.1. Markov Processes

A Markov process {X(t)}7% is a stochastic process where X (¢) is a random variable
with parameter ¢ describing the time. The values corresponding to random variables
are called states such that the set of all possible states defines the state space .%. In
the following we consider Markov chains building the basis for Markovian Decision
Processes and Phase-type Distributions, which we consider in Sections 2.2, and 2.4.

The set T denotes the parameter space: If T = {0, 1,2,...}, then we have a discrete-
time parameter space; If 7= {7 : 0 <7 < o}, then we have a continuous time parameter
space. Thus the Markov chain can evolve either at a discrete set of time points or
continuously in time.

Markov chains have a conditional probability distribution function characterized by
the Markov property [162]:

PrOb(X(tk+1) = Xk+1 ‘X(l‘k> =Xy ,X(t1> =X1) = PrOb(X(tk+1> = Xk+1 ’X(tk) = xk),

(2.1)
forty 1 >t >t > -+ > ty. Eq. 2.1 states that given the current state x; and the time
t, the next state of the Markov process X (#¢+1) depends only on x; and on #; but not
on the past of the process.

A Markov process is called nonhomogeneous when transitions out of state X ()
depend on . When transitions out of state X (¢) do not depend on ¢, the process is called
homogeneous [162]. All Markov processes discussed in this thesis are homogeneous.

The time spent in a state is denoted as a sojourn time. In the continuous time case it is
exponentially distributed. Whereas in the discrete-time case it exhibits the geometrical
distribution. Exponential and geometrical distributions are the only distributions which
satisfy the memoryless property, i.e., the sojourn time Y spent by a Markov process in
state i is independent of how long the process has previously been in state i

Prob(Y >t+s|Y >1t)=Prob(Y >s) forallz,s >0,

such that the behavior satisfies the Markov property.
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2.1.1. Discrete-Time Markov Chains

A discrete-time Markov chain (DTMC) is a Markov process {X () };2, with discrete
infinite set of times which satisfies the Markov property from Eq. 2.1

Conditional probabilities p;;j(k) = Prob(X (tx+1) = j| X (tx) = i) are the single-step
transition probabilities. They specify the probability of making a transition from state
X, =i to state xx1 = j when time increases from k to k+ 1. In homogeneous Markov
chains these probabilities are independent of time parameter k such that the time index
k can be skipped resulting in p;; = Prob(X (txy1) = j|X(t) = i) for all k =1,2,....
Transition probabilities for all states i, j € . are collected in the transition probabili-
ties matrix P

P(i,j)=pij, 0<p;<1, Y pij=1
7

A DTMC is fully characterized by the tuple (no,ﬁ) with initial probability vector 7,
where 7 (i) gives the probability that the Markov process starts in state i, i € ..
Single-step transition probabilities may be generalized to n-step transition proba-

bilities pl(;l) = Prob(X (ty1n) = j| X (tx) = i), where pf}) = pij. pg?) can be computed
using the Chapman-Kolmogorov equations [162] resulting in a n-step transition matrix

P”. Then transient probabilities after n time steps can be obtained as
7" = 7, P, (2.2)

such that n(">(i) describes the probability with which the Markov process occupies
state i after n transitions have occured. In some cases transient probabilities converge

A

to a limiting distribution of the Markov chain. Particularly, if the limit lim,,_,., P"
(n)

exists, then the n-step transition probabilities p;;* become independent of n

7 = lim 7" = 75 lim P"
n—yoo n—oo
Then a distribution 7 is called a limiting distribution of the Markov chain. The con-
ditions under which the limiting probabilities exist are, e.g., irreducibility and aperi-
odicity of a finite Markov chain [162, 115], and ergodicity for infinite Markov chains.
A limiting distribution 7 is called a steady-state distribution if it converges to a vector
with strictly positive components with 71 = 1, independently of the initial distribution
my. Steady-state probabilities can be obtained from the system of linear equations

n=naP, nl=1, 0<nx(i)<l1. (2.3)

2.1.2. Continuous-Time Markov Chains

A continuous-time Markov chain (CTMC) is a Markov process {X(¢)}72, with con-
tinuous time parameter set T = R which satisfies the Markov property from Eq. 2.1

Transition probabilities of a continuous-time Markov process are given by p;;(t) =
Prob(X (t+s) = j|X(s) = i) in the homogeneous time case and depend on the differ-
ence ¢ between s and 7 + s and not on the actual values s and 7 +s. Values p;;(t) are
collected in a matrix P;.

State probabilities at time 7 are given by n)(j) = Prob(X(r) = j) for j € .# such
that 7 (j) = 1. Then the vector my = (x()(1),7()(2),...) is the initial probability
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vector of a Markov process. As mentioned above, the sojourn time in state i of a
CTMC is exponentially distributed with parameter A (i), 0 < A (i) < eo. Thus the times
between state transitions are exponentially distributed. Let ¥; describe the sojourn time
in state i, its distribution function is

Prob(Y; <t) =1—¢e"" >0, (2.4)

This distribution describes the time a Markov process spends in a state before making
any transition.

Now the evolution of a CTMC can be described. At any given point in time, the
process occupies one of the states, i.e., X(¢) = i. State holding time is exponentially
distributed with parameter A (i) such that after this time has elapsed the process jumps
to the next state j with probability p(i, j) = A(i, j)/A(i). Here A(i, j) gives the transi-
tion rate from i to j. Summation of all transition rates result in }'; A (i, j) = A (i) such
that A (i) is the total event rate of the state i. Therefore, the behavior of CTMC can be
described by n X n infinitesimal generator (transition rate) matrix Q

AL ifi=
Q(l’J)_{)L(i,j) ifi# . )

If a transition from i to j can occur, then it holds that A (7, j) > 0 and consequently all
non-diagonal entries of Q are non-negative, i.e. Q(i,;j) > 0. In contrast, all diagonal
elements of matrix Q are non-positive assuming that A (i) > 0, i.e., Q(i,i) < 0. It holds
that

Y.Q(i, /) =0.
J

For a CTMC we can specify the embedded process {X, },en, if only the sequence
of transitions that can occur is considered. Single-step transition probabilities are
collected in transition probability matrix P with entries P(i, j) = Prob(X(r +1) =
J|X(r) = i) which are equal to zero if i = j

s Qi)

P(i,j) = =

(i, ) ~QU.0)

All elements of matrix P satisfy 0 <P(i, j) < 1 and ¥ ;P(i, j) = 1.

Consider a homogeneous CTMC. Let 7()(i) be probability that the process is in
state i at time ¢.

, for j #i,Q(i,i) #0. (2.6)

7 (i) = Prob(X (t) = i).

These transient probabilities can be obtained by solving the system of differential equa-
tions [162]

d
Sl = mQ. 2.7)

The solution 71*) is analytically given by
7" = mye?, (2.8)
where e is the matrix exponential and is defined by the infinite series

2t2 3I3
e()t _ I-+>(21 + 5%2?47 + S%§;47 N L (2.9)
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Unfortunately, evaluation of Eq. 2.9 can be computationally unstable and difficult to
compute [55, 152, 169]. In particular, numerical methods for evaluation of the matrix
exponential can be complex and often require the optimal parameter selection [5, 6, 63,
106, 128, 144, 157]. Methods for solving linear differential equations like the Runge-
Kutta-Fehlberg method or an implicit method TR-BDF2 [80, 124, 151] can be used
but possess no stochastical context. Uniformization (also known as Jensen’s method
or the method of randomization) provides an accurate numerical solution and yields
the stochastical interpretation [101, 163]. In the following we give the description of
this method along the lines of [163].

Uniformization The method is based on Taylor series expansion for the matrix

exponential. Recall that €& = Yoo Qt

be given by

. Thus the numerical solution of Eq. 2.7 can

r(t.e

Z Q’ ) (2.10)
where r(t,€) denotes the upper truncation point such that the required error tolerance
¢ is satisfied. However, since diagonal elements of Q are negative the computation of
Eq. 2.10 can lead to rounding errors.

Next the uniformization rate o > max;(|Q(i,i)|) is determined. Then the rate of the
sojourn time distribution of all states is uniformized with o by setting Q(i,i) = —a for
all i € .. In fact, the original CTMC with non-identical transition rates is transformed
into a stochastic process in which transition epochs are generated by a Poisson process
at arate . Therefore the infinitesimal generator Q is transformed to obtain the matrix

1
P=I+— 2.11
+5,Q 2.11)

which is the transition probability matrix of embedded process of a CTMC with ele-
ments in the interval [0, 1]. Then it holds that Q = P o — I and the matrix exponential
relation becomes

—1
oL :e(Pa—Ia)z _ Pat,~lar _ Pat (Zln (OCI)"> — LPary-l e—(az) :ePate—(m)’
n!

Pot

since I" =1 forallnand e* =Y, fl—': Expanding the term e in Taylor series

Eq. 2.10 can be written as

20 i TP (@) (at)"
=~ !

(2.12)
=) o) B ar)
n=0
The expression
B(n,at)=e (*) (an)" (2.13)

n!
gives the density function of Poisson process {N; |t > 0} with rate @. The specified
Poisson process is associated with an uniformized CTMC such that 3 (n, at) describes
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the probability that exactly n transitions have occured in time interval [0,7). Each
time the Poisson process with rate @ generates a transition epoch the state transitions
are governed by the embedded DTMC. Poisson probabilities can be computed with
the method described in [76] where all computations are numerically stable and only
positive values are used.

The term ¢ (n) = myP" gives transient probabilities for the embedded DTMC, i.e.,
the i-th element of the vector ¢(n) is the probability that the embedded process is in
state i after n transitions.

The sum formula 2.12 needs to be truncated such that we obtain

r(o,e) . i
a= Y nOP’e*W)@H, (2.14)

. i!
i=I(ot,€)

where the lower truncation point /(a ¢, €) and the upper truncation point r(at, €) can be
pre-computed such that the required error tolerance € is satisfied. Numerical methods
on computation of lower and upper truncation points can be found in [162].

Stationary Distribution The steady-state distribution of a CTMC is given by a
long-run probability vector 7 such that 7(i) is the probability of being in state i when
statistical equilibrium has been reached. Under the condition that the stationary distri-
bution exists, probability 7 (i) no longer depends on time 7 for all i € .. The steady-
state distribution exists when there is a point in time at which the rate of change of
transient probability vector 7\") is zero, i.e., when %n(” =0 holds in Eq. 2.7. In a fi-
nite, irreducible, homogeneous CTMC the limit lim; e 7t(") exists and the steady-state
distribution may be determined by solving the system of linear equations [162]

TQ=0, ) zn(i)=1. (2.15)
i€y

Example 2.1. Consider a 2-state CTMC with infinitesimal generator Q and a state
transition diagram as shown in Figure 2.1. The initial distribution vector is n'0) =
(0,1). The uniformization rate can be determined as o =3 and we obtain the DTMC
shown in Figure 2.2. We computed transient probability vectors from Eq. 2.14 for some
values of t. For accuracy € = 1073 we obtain

70D = (0.2415,0.7585), ("9 =(0.6659,0.3341),
709 = (0.5963,0.4037), ©®  =(0.6666,0.3334),
1) =(0.6593,0.3407), 7 =(0.6667,0.3333).

Observe that, after a certain time t, the transient probabilities no longer change. Solv-
ing Eq. 2.15 we obtain the steady state distribution © = (0.6667,0.3333).
2.1.3. Absorbing Markov Chains

An important class of CTMCs are absorbing Markov chains since they provide the
basis for analysis of the process behavior up to the moment that it enters an ab-
sorbing state. For Markov chains there exists a broad theory on the description of
states (see [105, 162, 47] and references therein). In the following we describe the

10
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1.5 —-1.5 1.5
0=
3
(a) A state transition diagram of the CTMC. (b) The infinitesimal generator Q.

Figure 2.1.: State transition diagram and generator matrix of a CTMC

0.5 P [ ois o(.)s].
1
(a) A state transition diagram of the uniformized (b) Transition matrix P.

CTMC with uniformization rate @ = 3.

Figure 2.2.: State transition diagram and generator matrix of the uniformized CTMC

concepts of reachability, communicating, transient and absorbing states from these
sources.

Definition 2.1. A state j is called to be reachable from a state i if it holds for the
transition probability

Py = Prob(X (1 +u) = jIX (u) = i) > 0

for some t. In that case the process can move from state i to state j after some amount
of time t.

Then states i and j can communicate with each other if i is reachable from j and
vice versa [105, 47]. Now assume that some subset € of the state space contains only
communicating states. Then this subset & is called a communicating set. Additionally,
if P(i, j) = 0 for all i € ¢ and all j € .\ €, then there is no feasible transition from
% to outside states. In that case ¥ is called a closed set [105, 47].

Definition 2.2 (Def. 2.2 in [47]). If € consists of a single state i, then i is said to be
an absorbing state.

By definition it holds for the absorbing state i that P(i, j) = 0 for all j € .7\ ¥
and thus we have P(i,i) = 1. After entering an absorbing state the Markov process can
never leave it. From this point the process behavior will not change and its lifetime can
be determined. In performance models entering an absorbing state corresponds with
an occurrence of some event such that we are only interested in the process behavior
until absorption.

The states of a Markov chain can be classified according to whether and when it is
possible to return to a state after leaving it.

Definition 2.3. For a Markov process {X (t)}7 we define the following probability

fi = Prob(Eventually return to state i | X (0) = i)
= Prob(X (k) =i for some k > 1| X(0) =i).

11
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If f; = 1, then the state i is said to be recurrent. Otherwise, if f; < 1, the state i is said
fo be transient.

For a transient state i € .7 there is a positive probability of leaving it forever, and a
recurrent state i is one which will be visited infinitely often [47].

Let % denote the set of all transient states. In a Markov chain with transient sets
there is the possibility of moving to some state j from which there is no return to this
set, and it can never enter this set again once it leaves it. A transient state may be
visited again, but with some positive probability it will not [105, 47].

A Markov chain where every state is either absorbing or transient is defined as ab-
sorbing Markov chain [47]. Without loss of generality we can assume that there is a
single absorbing state n+ 1. Absorbing Markov chains have the important property
that the probability to reach an absorbing state tends to 1 independently of the initial
state, i.e., lim; . Prob(X (t) <n+1) = 0 [114, Theorem 2.4.3].

Theorem 2.1. The probability that a finite absorbing Markov chain reaches an ab-
sorbing state in k steps tends to 1 as k — oo,

We now describe the canonical matrix representation for absorbing CTMCs as given
in [47]. Let . be the finite state space of a continuous time absorbing Markov process
{X(r)}>, where a set of transient states is denoted by .#7 = {1,...,n} and a single
absorbing state is 7+ 1. States of the CTMC are ordered as shown in the following
infinitesimal generator matrix Q [47]

(2.16)

In Q the n transient states occur first following by an absorbing state n+ 1. The n x n
submatrix Dy contains only transition rates between transient states. The n x 1 vector
d; describes transitions from transient states to the single absorbing state. Since no
transitions from the absorbing state to any transient state are possible, the row vector
0 consists entirely of 0’s. The element 0 in the right lower corner defines the transition
rate out of the absorbing state n+ 1.

Subgenerator matrix Dy plays an important role in the numerical analysis of ab-
sorbing Markov chains and Phase-type distributions. In particular, the matrix Dg is
nonsingular [114, Theorem 2.4.3]. We give the definition of the fundamental matrix
according to [105].

Definition 2.4. The matrix (—Dg)~! is the fundamental matrix of an absorbing con-
tinuous time Markov chain. The entry (—Dqg) ' (i, j) gives the expected total time spent
in state j before absorption given that the initial state is i.

Example 2.2. The absorbing Markov chain with transition matrix Q in Figure 2.3 has
two transient states 1 and 2. The absorbing state 3 has no transition rates to any other
state. Regions of the matrix Q, namely Dy, d;, and 0 are marked.

12
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(3) 8 15 -33 1.8

o/
(a) The state transition diagram for the absorbing 0 0 0
CTMC.

(b) The matrix for the absorbing CTMC.

Figure 2.3.: An absorbing CTMC with two transient and one absorbing state. Hence
Dy is a 2 x 2 matrix and the vector d; is of dimension 2 x 1.

2.2. Markov Decision Processes

This section deals with continuous-time Markov Decision Processes (CTMDP) which
are closely related to continuous-time Markov chains. CTMDPs represent a class of
stochastic processes with a countable discrete state space [162] like CTMCs. The
latter forms the basis for CTMDPs which are also known as stochastic dynamic pro-
gramming, or continuous-time controlled Markov chains [148]. CTMDPs were first
introduced by Howard in [97] and have found a wide application in performance eval-
uation, e.g., in queueing systems [149], manufacturing control processes [111, 65],
e.g., inventory control [26], system biological processes, as e.g., stochastic models
for infectious diseases control [22, 176], dynamic routing processes [130, 68], and
finance [24], e.g., optimization problems in insurance [155, 156, 161].

The key idea is to use decision making by adding decisions and rewards to Marko-
vian process in order to reach an optimization goal. The resulting Markovian structure
can then be exploited in numerical analysis of the model and in generating optimizing
decisions.

In this section, we first provide the basic definitions and notations for CTMDPs. We
then proceed with an explanation of the basic processes associated with this model.
Our attention can be restricted to CTMDPs in which decisions are made when a state
has been entered and to DTMDPs in which decisions are made at transition times as
explained in [148, 24].

Continuous-time MDPs A CTMDP is a probabilistic model concerning a non-
deterministic choice with multi-periods that corresponds to dynamic decision making
in stochastic environments. In MDPs decisions are made in sequential manner such
that the results of current decisions and induced possibilities for future decisions are
considered. The graphical representation of the decision making process and of the
state evolution process is given in Fig 2.4.

CTMDPs can be defined by the tuple (¥, 2,7, %, 2) [148, 24] with the following
model components:

e A countable state space .. Each state i is associated with a set of possible
actions. Given the current state at time point f,, an action from the set of avail-
able actions in that state has to be selected. This decision is carried out by the
decision maker, controller, or agent.

13
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Decision maker

Decision epoch t,
Decision u,

Decision epoch 1
Decision u,,,;

Transition to state j
with probability 2 (l(ljl))
Current state i l Next state j

~——+— Transition reward r,," (i, j)

State holding time is The accumulated state
exponentially distributed reward is ry," (i) per time
with parameter —Q" (i, i) unit spent in state i

Figure 2.4.: Graphic representation of the decision making process, state evolution
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process, and reward process in a CTMDP.

e A countable decision space 7 := |J;c.» Z(i). Let m; be the number of different

decisions in set Z(i). Given current state i at time point #,, the admissible set of
decisions is a subset Z,(i) € 2.

A set of decision epochs 7. At each decision epoch ;, € S, or point in time
decisions are made through selecting an available action u. The set .7’ contains
non-negative real numbers. Furthermore, it is either a discrete set or a continu-
ous set, and it is either finite or infite, i.e. |##°| < oo. The set of decision epochs
determines the sequence of selected actions Y (k), k=0, ...,|.##’| — 1, where ran-
dom variable Y (k) denotes a nondeterministically selected decision u in state i,
ME.@k(i), ies.

A set of rewards #. Each time an action in state i is taken, the decision maker
obtains a certain reward r!(i) at some point in time #,. The received state reward
depends on the state i, and on the selected action u, u € 2,(i), i € ..

The transition reward is denoted by r4(i, j), r(i,j) = 0 for i =k, rii(i,j) =0
for Q“(i,j) =0, (i, j), r*(i) < eo. It is received when transition from state i to
state j occurs. This reward is also referred as impulse reward.

Since r4(i, j), ri(i) can take positive and negative values, it could be also inter-
preted as an incurred costs, or as an income.

A set of transition rates 2 = {Q"(i, j)|i,j € ,u € Z(i)}, Q“(i,j) >0, for i+
Jj» £;Q"(i,j) = 0. Furthermore, we denote A (i) = —Q"(i,i). The decision
u chosen in some state i determines the transition probability distribution for
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the next state. Then infinitesimal generator Q“ prescribes transition rates for
successor states.

Process Evolution We denote the corresponding stochastic state evolution pro-
cess as {X(¢) }72, and the corresponding stochastic decision process as {Y (1) };2, [148].
The initial state of the CTMDP at the time #, can be determined according to the
initial distribution vector 7. Then the evolution of a system can be decribed as fol-
lows [127, 148, 81].

Assume that the system is observed to be in state i, i € .% at some point in time
t > 0. Then the decision maker knows a set of available decisions, and selects an action
u € Z,(i). The process stays an exponentially distributed time in state i, i.e., the sojourn
time in state i is exponentially distributed with parameter —Q*(i,i) = Y.; Q“(i, j) [81].

Afterwards the decision maker obtains a transition reward, and system state changes
to a different state j. If we consider the system on the time interval [¢,z + Ar), At > 0,
then the received reward per transition is ri*(i, j) [127]. If the system is in state i at
time ¢, the probability that the system is in state j at time ¢ + Az given that decision
u is always made in the interval [f,7 + Af) when the system is in state i is given by
Q“(i,j) +o(At).

While the process stays an exponentially distributed time in a state, the decision
maker accumulates state reward (i) per time unit in state i. In principle, the model
allows for a reward received at random or predefined point in time prior to next deci-
sion epoch, or for a reward collected continuously in some interval, or a combination
of both as described in [148].

Policies To optimize some performance criteria of a CTMDP decision rules and
policies are needed. Assume that at some point in time # information about admissible
decisions (i) is available. A decision rule prescribes a decision that has to be chosen
from this set. Formally, the decision rule is a mapping u, : . — & such that u,(i) €
2,(i), i.e. u, contains decision rules for all states at some point in time 7 [148].

The policy can be defined as a sequence of decison rules d = (up,uy,...,ur_) for
T < . The policy defines a decision rule for all states to be used at each decision
epoch ¢ [148]. Formally, let &7 = X__, 2(i) and the vector u € & describes decision
rules for all states. Then, a piecewise constant deterministic policy d is a function
d:[0,....,T] —» 2 [127, 42].

It is assumed that the policy d is a measurable function where measurable should be
understood as Lebesque measurable [127]. Let IT denote the set of piecewise constant
deterministic policies.

For a stationary deterministic policy it holds for elements in the sequence d =
(ug,uy,...,ur_) that u; = u for Vi € {0,...,T — 1}. The same decision rule given
by u is used at each decision epoch [42]. Let I1sp be the set of stationary deterministic
policies. It holds that ITgp C IT [148].

We call a measurable policy d piecewise constant if there exists some finite index
mwith0 =1y <t <...<ty_1 <ty =T such that u, = u, forz,¢ € [t;,;+1) where
0 <i < m[127]. Note that in the case of a stationary policy the index m = 1.

For any u € 7 the infinitesimal generator matrix Q" is known whose (i, j)-th ele-
ment is given by QU() (i, J). Analogously, received rewards per transition are described

15
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through r" whose i-th component is given by r*(!) (i). Here transition rates and rewards
depend on the selected decision and on the current state. Once decision # has been
chosen the system operates as an induced CTMC [148].

For Markov policies [148] it holds that the selected decision depends on the system’s
past only through the current state. Similarly, since CTMDPs are generalizations of
Markov chains, transition rates and rewards depend on the system’s past only through
the current state and the selected decision in that state [148]. Additionally, determin-
istic policies have the property that decisions are chosen with certainty.

Recall that at each decision epoch the decision maker has the required information
about system’s state and allowed decisions in that state. When the set of decision
epochs is discrete, decisions are made at discrete points in time. When the set of
decision epochs .7 is continuous, decisions could be made either continuously or
randomly, e.g., at decision epochs correponding to occurrence of some events. Our
description can be restricted to CTMDPs in which decisions are made at transition
times [148, 24].

Time Horizon Infinite horizon problems are given when the set of decision epochs
¢ is infinite. The model including an infinite horizon often occurs as an approxima-
tion of model with finite horizon, e.g., when the problem under study has finite but
very large horizon, random horizon, or when horizon is fixed but random steps are
used in the solution method [24].

Finite horizon CTMDP problems are given when the set of decision epochs .7 =
{0,...,T} is finite [24]. Then decisions are not made at the final decision epoch de-
noted by 7, instead the final decision is made at the previous decision epoch. In that
case the reward at the last decision epoch 7 is only the function of state.

One can also deal with the case when the considered time horizon is an inter-
val [148], it is then denoted as .7’ = [0,T] with T < c. In the following we define
the CTMDP model [24].

Definition 2.5. A CTMDP is given by the tuple (., 2, ,%#,2), where . is a state
space, 9 is a decision space, F€ is a set of decision epochs, Z is a set of rewards, and
2 is a set of transition rates for all possible state-decision combinations. For a finite
horizon F the terminal reward is a mapping rgin : % — R, rfin(i) giving the reward
at final decision epoch T. If F is an infinite set, there is no terminal reward.

Now suppose that we consider a system in a finite time interval [0,T]. As already
defined in the literature [127, 42], let Q be a set of all step functions on [0, T] into .7,
and let . be the o-algebra of the sets in the space Q induced by sets {® € Q| w(r) =
s;} forallr € [0,T], i € .7. Applying a measurable policy d on the system results in a
sample path w describing states of the system at time ¢, t < T. CTMC of the system is
then generated by the probability space (Q,.7,P3) [42].

For almost all r € {0,...,T} with 0 < r <t < T a matrix V‘EJ is defined [127, 42]
such that the (i, j)-th element is defined as P&{@(r) = s;, o(t) = s;} /P{ o (r) = 5},
for a sample path @ €  when policy d is used.

The element VY, (i, j) contains the conditional probability that the induced CTMC
is in state j at time point ¢ given that CTMC is in state i at time point r and the policy
d is used in interval [r,7] [42]. Along the lines of Miller [127] the following condition

16



CHAPTER 2. PRELIMINARIES

holds
V8 =1+ QU (r —r) +o(r — 1), (2.17)

such that the matrix V‘,i,t is shown to be defined by solutions of the differential equations

d
aV;{, =v4,Qi, (2.18)
where the initial condition is Vg, = I. Transient probabilities p? of the CTMDP with
initial probability distribution vector 7 at time 0 can be obtained by computing

p = V5, and pf! = pVy,. (2.19)

Note that for a fixed policy d we obtain a stochastic process {X(¢),Y (¢)}-, which
defines a gain process {G(t)}, [42]. G(t) describes the accumulated reward in the
finite time interval [0,¢), ¢+ < T. Let vector ggT contain the values of accumulated
reward in the time interval [r,T]. Each time the process stays in state i and decision u
is chosen the gain process changes with a rate r*(i).

Optimality Criterion Accordingly to a nondeterministic choice of decision and
induced transition rates the sequence of rewards obtained in an CTMDP is stochastic.
Since the aim of a CTMDP model is to control the system in such a way that some pre-
defined optimization function is either maximized or minimized, the rewards are used
to evaluate the selected decisions. In particular, different policies could be compared
using the decision criteria, e.g., the expected total reward [98]. In the following basic
decision criteria existing in MDP theory [98, 81] are described.

Let r'™ be the reward vector for decision vector u, taken at time #, such that r (i)
is the expected reward gained by staying one time unit in state i . Furthermore, let
gr be the vector containing rewards gained at final decision epoch T'. For the fotal
reward criterion in finite horizons [98, 42], the expected reward accumulated in the
time interval [0, T'] should be computed. The accumulated reward for some fixed policy
d can be obtained as

T
g'r =Virgr+ / Ve, ridr, (2.20)
t

such that the second term describes the accumulated gain until time 7'.

In particular, matrix V(rl.T contains in position (i, j) the conditional probability that
CTMDP is in state j at time 7" when it has been in state i at time 7 and the policy d
is used in the interval [t,T]. The vector r® is determined by d(7) = u; which is the
corresponding decision vector at time T € [t,T]. Then u.(i) contains decisions if the
system is in state 7 at time 7, and the vector r" (i) contains the corresponding expected
rewards.

In particular, the vector ggT contains at position i the expected reward accumulated
in the time interval [¢, T] if the CTMDP is in state i at time ¢ and the policy d has been
used. Vector g4 is denoted as the gain vector. The gain per state of policy d is defined
as [42, 49]

T
g6 =Vorer+ /O v, ridr. (2.21)
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The expected reward which is also called the gain of policy d with initial probability
distribution 7 is given by [42, 39]

G'=ng);. (2.22)

For the time averaged reward criterion [98, 42] one is commonly interested in an
average reward accumulated per time unit in a long run. The gain vector is given by

1 T
gl = T (V;{TgT + /, v, rd dr> , for T > 1. (2.23)

For the accumulated reward to absorption criterion [42] the absorbing states corre-
spond to events of interest in the system, i.e. states satisfying certain properties. Then
the gain vector describes the accumulated expected reward till absorption. Let 4 € .
be a set of absorbing states, i.e. states satisfying some properties of interest. Let the
vector rg contain zero rewards for absorbing states i € .#4 and rg( J) is determined by

r’+(j) otherwise. Then the gain vector is given by [42]

T
ol = Vi g+ / vi rddr, (2.24)
t

where the second term determines the accumulated expected reward until time 7' on
the state space .7\ .#4. The vector g7 is the reward vector of the final decision epoch
T. gr is independent of the policy, and its initialization depends on the underlying
computational problem as described in [42].

In the case of infinite horizons MDPs we consider the system on the interval [0, o).
Possible result measures for the system are the accumuluted average reward, the ac-
cumulated reward to absorption, or the discounted reward. For the average reward
criterion [98] the gain vector at time 0 is given by

1 T
gl = Jim ( /0 Ve rd dr) . (2.25)

For the accumulated reward to absorption criterion [98, 42] the state space .7 is defined
in a similar way to the above criterion for finite horizons.

Optimal values and policies Since the gain vector contains at position i the ac-
cumulated reward of the system under certain policy d € IT, the objective is to choose
a measurable policy which minimizes (maximizes) the gain vector in all components
and this policy is called the optimal policy [127]. We define [127, 42]

g7 = inf (gr), g = sup (g'7) (2.26)
€Il dell
as the extreme (optimal) values for the gain vector ggT, 0<t<T. Apolicy is called

optimal if it results in minimal (maximal) extreme values [127, 42]

dmax

d"" = arg (}nf (ggT) ) = arg sup (ggT) . (2.27)
eIl dell

The policies d™", d"* need not be unique. Often the &-optimal policies are consid-
min/max

ered, where it holds for an €-optimal policy d that ’gt.T — ggT’ < e. The prob-
lem of computing the minimum (maximum) accumulated average reward with infinite
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horizon and the problem of computing the minimum (maximum) long-run average
reward with finite horizon admit stationary optimal policies as described in [28] — op-
timal policies can be computed using dynamic programming [28, 148]. The minimum
(maximum) total reward problem admits piecewise constant optimal policies, which is
proved in [127].

DTMDPs After discussing continuous-time MDPs we will give a precise defini-
tion of discrete-time MDPs (DTMDP) where time is also divided into periods or
stages [148, 24], such that time steps are assumed to be equal. If time horizon 7
is infinite, there is no terminal reward.

Definition 2.6. [24] A DTMDP is given by the tuple (., 9, %', 2'), where . is a
state space, 9 is a decision space, F is a set of decision epochs with 7 ={0,...,T},
T < oo, %' is a set of rewards, and 2' is a set of transition probabilities for all possible
state-decision combinations.

The value given by r;”(i) is a one-stage reward at decision epoch n if the current
state is i and decision u is chosen. At next decision epoch n+ 1 the system state is de-
termined according to probability distribution given by 2’. Set .2’ contains stochastic
transition kernels P such that entry P*(i, j) gives the probability that a next state at
time n+ 1 is j if the current state is i and decision u is taken at time n [24].

DTMDPs are of fundamental interest in the analysis of CTMDPs. Since CTMDPs
have to be solved numerically, a possible solution can be also obtained by considering
an embedded state process which can be determined by converting a CTMDP model
using uniformization [148].

Similarly to the continuous-time case, the basic criteria are the total reward, and the
average reward criterion for problems with infinite horizon [148, 28]. For the expected
total reward criterion on infinite horizons the gain vector at time O for the given initial
state i is given by

1 T
dr _ 1: ; .
g0 (i) = lim -~ Eq, (;)r (Xt>> JdeTlie s, (2.28)

where the limit defining the total reward g§ (i) exists [28].
If we consider the system on the finite interval [0, 7], the total expected reward is
given by [28]

T-1
g5(i) = Eq, (gr + ) (X,)) dellie.”, (2.29)
t=0

where vector gr is the initial gain vector at time 7. g7 is independent of policy d €
IT and is added to the accumulated reward of the first T stages. The author in [28]
proposes the dynamic programming approach to determine optimal value and policy
for the above criterion. In particular, the optimal gain vector for a given initial state i
is the solution of the following equation

g (i) = max [ r'"(i) + Z P'(i,j) gy (j) | ,Vie 7. (2.30)
ue (i) jes

19



2.2. MARKOV DECISION PROCESSES

Observe that infinite horizont CTMDPs can be numerically analyzed in several
ways [148]. One possible solution is to transform CTMDP into DTMDP and Poisson
process through a uniformization method. Afterwards, e.g., algorithms for computa-
tion of optimal policy and its value can be applied to the resulting DTMDP such that
Poisson process need not to be considered. The uniformization method for CTMC:s is
described in Sec. 2.1.2.

Example 2.3. In this example we consider the stochastic job scheduling problem
(sJSP) presented in [37]. The authors considered two problems, namely minimizing
the expected makespan and minimizing the expected flow time. Therefore the schedul-
ing problem is given by a finite set of tasks with exponentially distributed service time
on more than one identical processors.

Main results developed in [37] show, that policy d with a longest expected time first
strategy (LEPT) is makespan optimal, i.e. it minimizes the expected completion time of
the sJSP. Policy with a shortest expected processing time first strategy (SEPT) is flow
time optimal.

We present the CTMDP model formalized in [131]. Let J = {1,...,n} be a set of
jobs. A state space . =2’ x 2’ is given by tuples (R,W), such that R describes a set
of jobs already assigned to processors, W describing a set of unfinished jobs waiting
for a processor. For each job i € J (i) describes a rate of the exponentially distributed
processing time. All processing times are independent and exponentially distributed.

Decision epochs are determined by completion times of jobs. Each time a job i
finishes a scheduling decision which job to schedule next is made. Formally, a decision
u€ 2((R,W)) defines the preemptive schedule and a set u(i) determines the tasks to
be assigned to a processor. When job i finishes and decision u has been chosen, a next
state is (R',W') with R' = u(i) and W = RUW \ {i} U{u(i)}.

For decision u € P((R,W)) the transition rate matrix Q" is defined as

if job i finishes
otherwise.

Q“((R,W), (R, W) = { g(i)

Consider now the instance with m = 2 identical processors and 4 jobs with (1) =
3, u(2) =2, u(3) =5, u(4) =17. Fig. 2.5 shows the CTMDP with initial state (R =
{2,4},W = {1,3}). In the case when job 2 finishes first, job 4 is preempted and jobs

R=1{2,4}, W={L3}

u2) u4)

[R={L3,W={4}] [R={L2}, W=

u() u(3) u() u2)

[R=13.4)] [R=1{14)] [R=12,3}] [R={(1,3}]

Figure 2.5.: CTMDP for the sJSP instance.

1, 3 are assigned to processors. In the case when job 4 finishes first, jobs 1,2 are
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assigned next. Note that jobs with a smallest rate, i.e. with a longest mean time are
assigned first. For the visualized scheduling decision uy waiting jobs are jobs with
a highest rate which corresponds to the scheduling policy with the smallest expected
makespan.

2.3. Stochastic Shortest Path Problems

In this section we describe the stochastic shortest path problem (SSPP) which is the
most studied problem in random graphs. It is a stochastic version of the deterministic
shortest path problem.

Assume that a graph with n nodes, edge weights, and a certain destination node d
is given. The edge (i, j) is defined when for a node i the successor node j is selected.
A path ¢ = ((i,)), (j,k),...,(l,d)) is defined as a sequence of edges that connect one
node with another. Let ¢,(i,d) define the sum of edge weights for a path ¢ starting in
i and ending in d. Then starting at some node i we are interested in a successor node
Jj for each node, such that the shortest path formed by a sequence of successor nodes
satisfies [148, 28]

argminc,(i,d).
Vg

In a SSPP the edge weights are given by random variables and are represented by
rewards. Often nodes of the graph are represented by states. For some node i the
possible successor nodes define edges such that the choice of the successor edge is
associated with an admissible decision in the current state. This implies that transitions
between nodes are random, such that some control over their probability distributions
is allowed in a SSPP.

The problem is to find a policy which minimizes the expected cost of reaching
a given target state, such that the stochastic shortest path has the minimal expected
length. The SSPP are undiscounted MDPs with an absorbing, cost-free terminal state
corresponding to the destination d. Based on this formulation the SSPP can be solved
using standard MDP methods, as shown in [29, 28].

The deterministic version of the dynamic program is given when the selected deci-
sion determines the successor state with certainty, i.e. when the associated probability
distribution assigns probability 1 to the successor state. The graphic representation
of the deterministic dynamic program formulation for a SSPP instance is shown in
Fig. 2.6. The aim is to compute the optimal policy which leads to the destination node
with probability 1 and results in minimal expected total reward [148, 28].

2.3.1. Literature Overview

The huge application area of stochastic shortest path problems includes online stochas-
tic route planning [136, 135], robot navigation [160], minimum and maximum reach-
ability times [59, 42] to name a few. There are some prominent treatments in the
literature, e.g., Andreatta and Romeo [7] introduced the version of /-SSPP (indepen-
dent edge weights) where random edges can be either active or inactive in deterministic
graphs with stochastic topology. The decision maker knows the system state contain-
ing information about active and inactive edges which enables him to make a decision
to reroute each time the system state corresponding to a node in a graph is reached.
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Figure 2.6.: Example of the deterministic SSPP. The destination node is s5. All ac-
tions are deterministic since they lead to an unique successor state with
probability 1.

The I-SSPP problem was subsequently studied in [145]. The authors also considered
the joint probability distribution of random variables describing edge weights which
presumes dependent random variables. The problem under this model is called R-
SSPP. In this variant the edge weights are learned as the decision maker traverses the
graph such that the realizations of random variables describing edge weights after-
wards remain constant and known by it. However, the proposed R-SSPP algorithm
based on a dynamic programming approach has exponential run time in the number of
realizations of the network. The algorithm for I-SSPP is exponential in the number of
edges in the graph. The authors also show that the recognition version of the R-SSPP
is NP-complete, and that the I-SSPP is #P-hard, and can be computed in polynomial
space [145, Theorem 3,4].

In [29] the authors obtained optimality results for the problem where at each node
the probability distribution over all possible successor nodes is available. The problem
with negative edge weights has been treated under some important assumptions. Then
it has been shown that the optimal cost vector is the unique solution of Bellman’s
equation and that the policy iteration approach computes an optimal stationary policy
starting from arbitrary policy. Further real-time dynamic programming approach based
on Markov decision theory was proposed in [33]. For further complexity results and
heuristic algorithms we refer to [143, 145, 136, 135, 175].

In [34] the authors treated the bus network problem in order to compute an optimal
plan within a city minimizing the expected traveling time. The formulation of the bus
network problem included a time-dependent Markov decision process where the deci-
sions in each state are whether or not to take a bus when it arrives. The model has then
been extended in [35] such that stochastic state transitions as well as stochastic, time-
dependent action durations were added to the CTMDP. For further time-dependent
versions of SSPP we refer to the literature [82, 78, 174].

In the field of robotics, SSPP often builds a basis for mobile robot navigation.
In [160] the authors developed partially observable MDPs for autonomous office nav-
igation. The system state contains information about environment topology, distance,
sensor and actuator data. This enables one to estimate the position of a robot from the
Markov model and the decision maker chooses the decision about navigation with re-
spect to temporary uncertainty in position and sensor data. The Markov model, where
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it is assumed that the location of the robot is always known but the state of an edge can
change as the robot traverses the graph, was proposed in [36]. We refer to the literature
for further treatments using partially observable MDPs [160, 167].

2.3.2. SSPP Definition

In this section we first provide basic definitions and notations for the stochastic version
of the shortest path problem. Then we proceed with a description of basic solution
methods and relevant approaches on the field.

Definition 2.7. [59] A SSPP can be described as an infinite horizon discrete-time
MDP (&, 9,7, %', 2'"), where it holds for the state space . = S U.Ss. A set
1 ={1,...,n} contains transient states which are associated with n graph nodes.
A set ) contains absorbing states. For a single destination problem, the set .y
contains a single absorbing state n+ 1 corresponding to the destination node in the
graph.

The considered graph is deterministic in the sense that only edge weights are de-
scribed by random variables but the edges themselves are certain. In the SSPP the
discount factor ¥ = 1 and absorbing states are reward free.

In each state i the set of admissible decisions Z(i) is associated with a set of pos-
sible successor nodes of the node i. When the decision u is selected at some time the
transition probabilities P*(i, j) for possible successor states j are specified.

In particular, P* is a substochastic || X |.#7| matrix, where P"(i, j) gives the
probability Prob(X (t+1) = j| X (t) = i,u; = u), fori, j € S, andu € Z(i). If we are
dealing with a single destination problem, it holds that Prob(X(t+1) =n+1|X(¢) =
n+1) =1 for all ¢. In the following we assume that .74 = {n+1}.

Additionally, /(i) are the costs of the system if the current state is i and decision u
is chosen. The destination state has the zero costs #(n+ 1) = 0 for all policies.

In the analysis of SSPP models one deals with averaging of rewards per stage over
all possible successor states [28]. Thus the expected reward per stage for state i using
decision u € 2(i) is defined as follows

(i)=Y, PG /)™()) (2.31)
jes
The SSPP is the computation of the minimum expected total reward of reaching
the absorbing state n+ 1 in the defined DTMDP when the decision maker applies the
policy that reaches n 4 1 with probability 1 [28, 29, 59]. However, the existence of
such policies is not guaranteed and will be discussed in detail in Sec. 2.3.3.

The total expected reward for policy d = (ug,uy,...), d € I, starting in state i is
given by [27]

N—1
gl()=lim E| Y r™¥D)(x())|x(0)=i|. (2.32)
t=0

N—o

Note that the stationary policy is given by d = (u,u,...), d € IT (cf. Sec 2.2). In the
following we simplify the notation for d by denoting u as a stationary policy and the
corresponding gain function as g".
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The minimal total expected reward starting in state i is defined by [28, 29]
g*(i) = ming" (i), (2.33)
ucll

such that it contains minimum of g"(i) for all admissible policies u € I1. Given sta-
tionary policy u the transition probability matrix P" of dimension |7 | X |-#7| can be
defined as
P (i, j) = P*O(i, j), (2.34)
which is substochastic since the absorbing state is not considered.
We first introduce mappings 7, : R* — R" and T : R" — R” defined in [27, 28] by

Tug(i) =r"() + Y P*(i,/)g()), (2.35)
JEST

Tg(i) = min <r”(i) + ) P“(i,j)g(j)>, (2.36)
ue (i) ier

for any function g : . — R. The operator T;, maps g to the vector 7, g. The 7, g is the
reward function associated with the policy u for the one-period problem.

For any function g : . — R the operators Ty, T can be given in vector notation form
as

8= [g(1)> - ag(n)]Ta
Tug = [Tug(1)7 ] Tug(n)]r I
Tg=[Tg(1),....Tgn)",
= [PO(), )]
The operator T, g in Eq. 2.35 associated with a stationary policy u can be written in

vector matrix notation
Tug =r"+P'g. (2.37)

The reward function of an arbitrary policy d = (ug,uy,...), d € I1, and N describing
the time horizon length, can be written as [28]

N-1
d__ 1 . B d(O) 11 1y) ;| d([)
g’ = lim sup Ty, Ty, - - - Tuy_, 0 = lim sup | r** + pY...p%-Ir , (2.38)
Neyoo ofug N-1 Neyoo 1:21

which results in the following equation for a stationary policy u

N—1
g" = lim sup (7y)" 0 = lim sup ) (P")'r". (2.39)
t=0

N—oo N—oo

2.3.3. Proper and improper policies

According to the definition of the SSPP involving a policy that reaches the absorbing
state n+ 1 with probability 1 we introduce the concept for such a policies along the
lines of Bertsekas [28]. Intuitively, if an admissible policy d € IT reaches the state
n—+ 1 with probability 1, then in the induced absorbing Markov chain there is a path
connecting each state i with the absorbing state n 4 1 and containing non-zero transi-
tion probabilities along this path.
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Definition 2.8. [29, 28, Definition 2.1.1] A stationary policy u is proper if it reaches
the absorbing state with positive probability after at most n stages. That is

Pl = m%xProb(X(n) #n+1|X(0)=iu) <1, (2.40)
[ASa s

such that Y, (P*)' is finite. Otherwise the stationary policy W is said to be improper.
t=0

It has been shown in [28] that if the proper policy u is used the following holds
Prob(X(t) #n+1|X(0) =i,u) < (p“)d <1, 2.41)

for i € .7, which is the maximal probability of not reaching the absorbing state n + 1
after ¢ stages. It follows from Eq. 2.41 that the absorbing state will be reached with
probability 1 [28], i.e. lim, ., (P*)" = 0. In particular, if the proper policy u is used,
the associated total gain is finite, i.e. the expected total reward in the ¢-th decision
epoch is bounded by [28]

(p™)Lr) - max | 0 (7)), (2.42)

iGKVT

such that the expected total reward starting in state i is finite

T—1
g'(i) < lim 20 (p") ) max | O (0) || < o (2.43)

In [28] the authors introduce the following two important assumptions for the dynamic
programming theory according to the SSPP.

1. The existence of at least one proper policy is required.

2. Each improper policy u results in an infinite expected total reward for at least
one initial state, such that some component of the sum Z?]: _01 (PY)' r" diverges to
coas N — oo,

These assumptions are satisfied in, e.g., the deterministic versions of SSPP shown
in Fig. 2.7. Here at least one proper policy exists if there is a path connecting every
initial node i with the destination node (n+ 1) [29]. For example the policy u; shown
in Fig. 2.7 is proper because the resulting paths connect each node with the destination
4.

A policy is improper if there exists some initial state i, such that the path starting in
i doesn’t lead to the destination state. The same holds if the path starting in i contains
infinitely cycles of positive length. In that case the costs incurred for an initial state i
are infinite.

Example 2.4. The policy wy shown in Fig. 2.7 is improper since the second assump-
tion does not hold. The policy minimizing Eq. 2.39 will always choose the decision
w(3') = 2 since r"(3') = 0. The decision rule uy(3") = 2 results in expected total
reward g% (1) = 1 for the initial state 1'. Though the proper policy with decision rule
u,(3') = 4 would result in value 2 for the expected total reward starting in 1.
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Policy uj Policy uy

Figure 2.7.: Two instances of deterministic SSPP. The destination node is 4, and 4’
respectively. All actions are deterministic since they lead with probability
1 to the unique successor state. The rewards are depicted on edges.

If all policies terminate inevitably in the destination node n+ 1 the two assumptions
are also satisfied. Furthermore if it holds for all rewards (i) > 0, then the second
assumption is satisfied [28].

Observe that the first assumption about the existence of at least one proper policy
in fact states that the destination node will be reached with probability 1 in a finite
number of steps. The length of the time horizon depends on the policy and thus is
random [27].

We can conclude from the above assumptions that a proper policy is given when
paths starting in initial states reach a destination with probability 1, such that the cor-
responding total reward is equal to the path length. An important property of a proper
policy u is that the attained rewards g"(i) starting in state i, for i = 1,...,n, are the
unique solution of Bellman’s equation [27, 28, 148]

g' (i) =r"O(i)+ Y PG, /) g (). i=1,...,n, (2.44)
JEST

such that the gain vector g" with components g"(i) is the unique fixed point of the
mapping 7Ty.

In turn, the optimal total expected rewards g*(i) starting in state i, i = 1,...,n, are
the unique solution of Bellman’s equation (see [27, Proposition 7.2.1(b)])

g'(i)= min (r()+ Y P'(,j)g"(j) |,i=1,...,n, (2.45)
uce (i) e

where the optimal reward vector g* containing components g*(i) is the unique fixed

point of the mapping 7.

2.3.4. Dynamic programming algorithm

In this section we discuss the dynamic programming method and the Bellman’s opti-
mality equation which holds for the expected total reward minimization in SSPP under
the above assumptions. In the following we propose the main results from the dynamic
programming theory for SSPP developed in [29, 28].
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First, let gy be the 1 x n vector of zeros such that gy(i) = 0 for all i € .#7. The map-
ping T* denotes the function which results from applying the mapping 7 in Eq. 2.36
to the function 7!

(T"g0) (1) = (T (T"""g0)) (1), (2.46)
such that if we start with (7%g) (i) = go(i), the optimal reward T*gy (i) for the k-stage
problem can be obtained. In particular, T*gy(i) is the minimal expected total reward
for reaching an absorbing state n + 1 starting from the initial state i in the k-stage
problem.

Similarly, the mapping T;¥ is given by

(Tugo) (i) = (Tu (Ty™'g0)) (i), (2.47)
describing the rewards corresponding to a stationary policy u for reaching an absorbing
state n+ 1 starting from the initial state i in the k-stage problem.

Applying the mapping Ty, to the function (7~ !g) for a stationary policy u can be
resolved inductively by

k—1
(Tyg) = (P")'g+ Y (PY)"r"
n=0
To illustrate the case where k = 2, first observe for k£ = 1 that
Tug =r"+ Puga
and
(Tyg) = Tu(Tug) = Tu(r" +P"g) = r" + P"(r" + P'g) = r" + P'r" + (P")’r"

Example 2.5. Let us consider a SSPP instance with /7 = {1,2}, .4 = {3}, and the
set of admissible decisions P (i) = {uy,up} for all i € 1. The transition probability

Figure 2.8.: State transition graph including admissible decisions u;, up and the in-
duced transition probabilities.

matrices corresponding to the decisions uy, uy and rewards are given below

03 03 04 04 04 02
P =025 05 025[,P2=03 05 02|,r=(0.6,0.750)7,r =(0.85,0.8,0)".
0o 0 1 0 0 1

The function T can be now computed for the states 1,2, 3 as
Tg(i) = mm(”' D+ Y PG ) g() () + Y P ) g ))
When the initial expected reward vector is defined as gy = (0,0,0), we obtain
Tg()(l) = 0.6, Tg0(2) = 0.75, Tg()(?)) =0.
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Convergency results Let again gy = 0. Observe that for every stationary policy
u its infinite horizon reward is the limit of the k-period reward associated with u as
k — oo [28, Corollary 1.2.1.1]

g' = lim (Tim). (248)

Observe that Eq. 2.44 states that the gain vector g* corresponding to policy u is the
unique solution of the Bellman’s equation. Equivalently the gain vector g" is the solu-
tion of the equation

g'=T,g"=r"+P"g". (2.49)

The dynamic programming iteration computes the values

gi+1(i) = min (r“(i)+ Y P”(i,j)gk(j)) Ji=1,...n, (2.50)

ue (i) e

such that the sequence of generated values converges to g*(i). Then the optimal infinite
horizon total expected reward is equal to the limit of the optimal k-period expected
reward [28, Corollary 1.2.1]

g’ = lim (T" go) : (2.51)

Thus if we start with (7°g) (i) = go(i) and iterate the dynamic programming algorithm
infinitely often, we compute in the limit the optimal reward g*.

Eq. 2.50 can be transformed to dynamic programming for finite horizon by reversing
the time index. The initial reward function gy equals to the terminal reward function. If
we consider the k-decision epoch problem, then the value g (i) represents the optimal
reward starting from state i and obtaining terminal reward gy at the end of k-th decision
epoch.

Observe that the optimal gain vector g* satisfies the Bellman’s equation [28, Propo-
sition 1.2.2]

gt =Tg" (2.52)

which is equivalent to Eq. 2.45. In fact, the Bellman’s equation can be expressed as
the dynamic programming algorithm taken to its limit as k — oo.

The stationary policy u is optimal if u(i) results in the minimum in the righthand
side of the Bellman’s equation 2.52 for each i € .. Thus it holds that

Tg" =T,g", (2.53)

where Tyg is defined in Eq. 2.49.
For the stationary policy u the total expected reward function can be computed as

(I-P")g" =r", (2.54)

which follows from the fact that the equation g" = 7,,g" results in a system of n linear
equations with n unknowns i = 1,...,n, each corresponding to the vector component

g"()

&) =) + Y P )2 (). 2.55)
j=1
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Furthermore the Eq. 2.54 can be equivalently written as
g = (I-P%) 'Y, (2.56)

Note, that the matrix P" is substochastic since it is restricted to transient states. We
now have to show that the matrix (I —P") is invertible. Consider the homogeneous
equation (I—P")x =0, i.e. x = P"x. Taking the power of (P")" it admits that x =
(P")"x. Observe that lim,_,..(P")" = 0, i.e. the absorption occurs with probability 1.
Then lim,,_,..(P")"x = 0, so x = 0. In this case the equation (I — P")x = 0 has only
the trivial solution x = 0, which is the necessary and sufficient condition for the matrix
(I—P") to be invertible (cf. [105, Theorem 3.2.1]).

The optimal stationary policy u* and the corresponding gain vector g* can be com-
puted using value iteration, policy iteration and linear programming which we briefly
describe in Chap. 5.

2.4. Phase-Type Distributions

Markov chains introduced in Sec. 2.1 characterize probability distributions based on
the exponential distribution. This phase-type distributions (PHDs) are more complex
than the exponential distribution, and can be described by the time until absorption
in a CTMC. The roots of PHDs open on to the method of stages first introduced by
Erlang where time intervals should be modeled as a random number of exponentially
distributed phases [115]. In the following we describe the concept of PHDs, basic
definitions, and their classification based on work [47].

Continuous-time Phase type distributions The PHDs belong to matrix ana-
lytic probabilistic models where the distribution of a PHD random variable is defined
using a matrix Dy and initial distribution vector 7. The pdf, cdf, moments and variance
are also defined in terms of the matrix and initial vector. In this section we concentrate
on continuous time PHD and give the basic definitions from the sources [132, 47].

Before we introduce the definition of a PHD, let . be the state space of the con-
tinuous time absorbing Markov process {X(¢)}7%, with n transient states contained
in the transient set .7 = {1,...,n} and one absorbing state n + 1 contained the set
Z A= {n -+ 1}.

A phase-type distribution is defined as the distribution of the lifetime X, i.e., the
time to enter an absorbing state from the set of transient states .7 of an absorbing
continuous time Markov process {X(¢)}72, [47]. The background absorbing CTMC
{X(t)}22, has an initial probability vector 7 and the infinitesimal generator Q given
in Eq. 2.16. The intensity matrix Q contains the matrix Dy describing transition in-
tensities between transient states, which are also called phases. Then a PHD with n
transient states is said to have order n [47]. The rows of the intensity matrix Q sum to
zero [47]

Dol +d; =0. (2.57)

In the following let 1 and 0 be the vectors of an appropriate dimension. In [47] the
following inequalities are givens

Dy (i,i) <0, Do(i,j) >0 fori# j, di(i) >0and Y Do(i,j) <O0. (2.58)
JEST
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Observe that the underlying absorbing Markov chain has the initial distribution vec-
tor [, w(n+1)] with t1+7m(n+1) = 1. wis a 1 x n vector and gives the probabilities
to start in any transient state. 7w(n+ 1) is the initial probability for the absorbing state
n+ 1 [47]. In the following we assume that 7(n+1) = 0.

In the underlying absorbing Markov process, the sojourn time of each phase i, 1 <
i < n, is exponentially distributed with parameter A (i) = —Dy(i,i) as explained in
Eq. 2.4. Consequently, the parameters of the involved exponential distributions can be
obtained from the diagonal elements of the subintensity Dg [47]

J#i
The exit vector d; gives the exit rates. The column vector can be determined as [47]
d; (i) = A(i) = Y_Do(i, ). (2.60)
Jj#i
The random variable X describing the time before absorption is of phase-type with

representation (77,Dp), which is a sufficient representation since the exit vector d; and
m(n+ 1) can be obtained from it [47].

Example 2.6. Consider a PHD with the subgenerator Dg given in Figure 2.9(b). For
this PHD it holds that all states are entry states, i.e., ©(i) # 0 for i € /7. Furthermore,
it is possible to escape from every transient state i.

;ﬁ@g6
-1 044 0.56
10.44 .@ Do—[ 0 -5 ],dl—[ 5 }
f@/s r=[41 1]
2 2

(a) A state transition diagram of a PHD. (b) The infinitesimal subgenerator matrix Dy,
the exit-rate vector d; and the initial probabil-
ities 7w of the PHD.

Figure 2.9.: Symbolic representation of the PHD of Example 2.6.

Distribution and Moments In this paragraph we give the basic analytic properties
of PHDs from [47]. The random variable X is PH distributed with representation
(,Dp). Then the underlying Markov process {X (1)}, has the intensity matrix Q
given in Eq. 2.16. The distribution function of the random variable X is defined as

F(x)=1-—nmeP1forx>0 (2.61)
and its density function is given by
f(x) = mePo*d, for x > 0, (2.62)

where the vectors 7 and d; are strictly positive such that the value of the density
mePo*d; equals or is greater than 0 [115]. Observe that the matrix exponential e®** in
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Eq. 2.61 is defined by the standard series expansion [114]
1
P =Yo7 (Po0)', (2.63)

where it analogously holds that eQ = ¥~ : (Q1)*.

Let us consider the behavior of the underlying Markov process {X(¢)}7%,. Analyz-
ing Markov chains one is often interested in transient probabilities. Consider the transi-
tion probability matrix P, defined in [47]. The entry P, (i, j) = Prob(X (t) = j| X(0) =)
gives the probability of being in state j at time #, given that the initial phase is i [47].
These probabilities can be obtained using the matrix exponential [47]

Dot 1 _ Dotl
Qr _ e e
Q=" . , (2.64)
as
7" =gP, = we?, (2.65)

where (") (i) gives the probability that the Markov process {X (¢)}:%, is in phase i at
time ¢. -

In Def. 2.4 we give the definition of fundamental matrix (—Dy)~!. Since the entry
-D, ! (i,J) gives the expected total time spent in phase j before absorption, given that
the initial phase is #, the moments of the PHD can be expressed in terms of the moment
matrix M = —D; I Particularly, the i-th moment of a PHD is defined as [47]

W = E[X'] = ilaM'1. (2.66)

A further important property of PHDs is that continuous PHDs are dense in the class
of distributions on R>¢ (see [47] and references therein). In turn, discrete time PHDs
are dense in the class of distributions on N. Furthermore, Erlang distributions with n
phases can approximate deterministic distributions as n — co. All this makes the PHDs
a flexible and versatile stochastic tool, as e.g., any distribution with a strictly positive
density in (0, ) can be approximated arbitrarily close by a PHD [138].

State Probabilities Absorbing State Probability

State | —
1 State 2 ==-meees o 1

09 - 1 09
08 -
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08 |-
07 |- 07
06 |- 06
05 & ost /
04 ',"'

03t}

State Probabilitics

03 1

Absorbing state probability

o1

Figure 2.10.: Transient probabilities for states 1, 2, and absorbing state 3.

Example 2.7. Consider the 2-order PHD given in example 2.6. The transient proba-
bilities are plotted in Fig. 2.10. The pdf and cdf are visualized in Fig. 2.11.
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probability density function cumulative distribution function

distribution

Figure 2.11.: The pdf and cfd of PHD defined in Example 2.6.

2.4.1. Acyclic Phase-Type Distributions

Acyclic PHDs represent the largest subclass of PHDs for which canonical representa-
tions exist. We represent the PHDs belonging to this subclass along the lines of [47].

The PHD (7, D) can be represented as an acyclic phase-type distribution (APHD),
if the transition rate matrix Dy can be transformed into an upper (or lower) triangu-
lar matrix by symmetric permutations of rows and columns. As described in [47],
the matrix representation (7,Dg) has (n”> 4 n)/2 parameters for the matrix and n — 1
parameters for the initial vector.

Note that if the matrix Dy is of an upper triangular form, phase i can only be con-
nected with phase j if j > i. Then no cycles along the paths from initial to the absorbing
state can occur. We now give an overview of some relevant PHD subclasses.

Exponential and Erlang Distributions Originally, PHDs were introduced in
the method of stages, where random time intervals are modeled as an aggregate of
exponentially distributed time intervals. Thus we consider the class of exponential and
Erlang distributions first.

The exponential distribution is characterized by its rate parameter A. The corre-
sponding PHD has only one single state and initial distribution & = [1] as shown in
Figures 2.12(a), 2.12(b) from [47].

- A A
1 202) Q= (2.67)
\/ 0 O
(a) An exponential distribution with parameter (b) The infinitesimal subgenerator Dy.

A, and 2 being an absorbing state.

Figure 2.12.: Markovian representation of the exponential distribution as given in [47].

A. K. Erlang introduced in [69] the representation of distributions as a sum of n
exponential phases with the same intensity A. Let X; be n mutually independent, expo-
nentially distributed random variables with parameter A > 0, 1 < i < n. The random
variable Y for their sum can be defined as Y =} ;-;<, X;. Then it has an Erlang distri-
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bution denoted by E(n,4), and its density is given by [47]

flx)= (n)_tnl)'x"le“ for x > 0. (2.68)

The distribution function is defined by [47]

n—1 i
Fx)=1-Y (’li’f)e—“ for x > 0. (2.69)
i=0 :

The i-th moment of the Erlang distributed random variable Y is given by [47]

. (m+i—1D1
ElY|=——-+——. 2.70
Thus, the mean of Y is E[Y] = ¢ and the variance equals VAR[Y]| = - [47].
For the initial distribution vector it holds that # = [1,0,...,0]. The underlying
Markov process is visualized in Figure 2.13 [47].

A A A P -4 A 0 0
7 )
1 — O - LA 0 A ... 0 0
Do=1| ... ... "~ .
0o o0 ... -4 A
0 0O ... 0 -2
(a) A graphic representation of the Erlang(n,A) - (2.7_1)
PHD. (b) The infinitesimal subgenerator Dy.

Figure 2.13.: Erlang representation of a PHD from [47].

The Markov process starts in phase 1 and traverses through the successive states
until it reaches the absorbing state n+- 1. Thus, the time to absorption described by Y is
the summation of all holding times which are identically exponentially distributed with
parameter A. The Erlang distribution E(n,A) has a squared coefficient of variation of
C? = n~! which is less than one for n > 1. Distributions with a coefficient of variation
greater than one can be modeled as finite mixtures of exponential distributions.

The Erlang distribution can be used as an approximation for a deterministic distribu-
tion. Particularly, n = oo phases are required to represent a deterministic distribution.
In practice, smaller number of phases can also be used, e.g. a PHD of order 10 is of-
ten manageable and can be good enough. For example, deterministic distribution with
mean time A can be approximated by the Erlang(n, 1) PHD. In this case the coefficient
of variation is close to zero.

Hypo-exponential and hyperexponential distributions The hypo-exponential
distribution is a generalized Erlang distribution. Let F;(-) be the exponential distribu-
tion as described in [47] with

F(x)=1 —e D forx>0,1<i<n.
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The density function for the rate A (i) is given by [47]
fi(x) = A(i)e *@% for x > 0.

The hypo-exponential distribution is defined by the number of stages n and the set of
parameters A (i). Its density function is defined as [47]

flx)= ; (I_H#L(]’)l(_%) filx) forx>0,A(i) £ A(j) fori# j.  (2.72)

For the initial distribution vector it holds that ¥ = [1,0,...,0]. The graphical repre-
sentation is given in Fig. 2.14(a) and 2.14(b) from [47].

A1) A1) 0 0
A(1) l(Z)/l(n—? A(n) 0 -1(2) .. 0 0
1 —( )— )—» — Do
0_ . e e
0 0 e =A(n=1) A(n—1)
0 0 0 —A(n)
(a) Markovian representation of the hypo- (2,73)
exponential  distribution. In particular (b) The infinitesimal subgenerator Dy.
A(1),...,A(n) are not necessarily identi-
cal.

Figure 2.14.: The hypo-exponential distribution as given in [47].

The hyperexponential distribution is defined as a convex mixture of n exponential
distributions [47]. Its graphical representation is given in Figure 2.15 from [47]. The
density function is defined as [47]

fx) =Y 2()A)e D for x > 0. (2.74)

-

1

1

The distribution function is defined as [47]

F(x)=Y n(i)(1—e*0%) forx > 0. (2.75)

-

i=1

The first moment is defined as E[X| =Y7 % and its variance is given by [47]

2
- (i) n (i)

VAR X| =2 o LACN 2.76)

X 5 A6)? (,Z{ (z))

For the squared coefficient of variation it holds [47]
n  w(i)
E[YZ] i=1 ()2

2 o 26

“- (E[Y])? ! 2( ;1_1%)2 1 (2.78)
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n(l) —
(1) —2(1) 0 0 0
di (2~ 0 —AQ2) .. 0 0
") — )
M DO: e e ..' e e
: d
m(n) 4)®/1(n) 0 0 e —A(n—1) 0
0 0 0 —A(n)
. . 2.77)
(a) A graphic representation of the hyperexpo- (b) The infinitesimal subgenerator Dy.

nential distribution.

Figure 2.15.: The hyperexponential distribution as given in [47].

(1) Hdﬂb@m’ﬂb\m

: 7
e A R
7(m) Hdﬁ& =5 Alm) Q= 2 (2.79)
0 0 ... Qu
(a) A graphic representation of the HErD. (b) The infinitesimal generator Q.

Figure 2.16.: Symbolic representation of the HErD from [47].

Hyper-Erlang distribution A hyper-Erlang distribution denoted as HErD [73], is
a mixture of m mutually independent Erlang distributions weighted with the initial
probabilities 7(1),...,mw(m), where Y/, w(i) = 1 [47]. Its graphical representation is
given in Figure 2.16 from [47].

2.4.2. Series Canonical Representation

Cumani developed in [56] canonical representations for PHDs which provide the im-
portant advantage of having only 2n — 1 free parameters in contrast to APHDs with
(n? +n)/2 for the matrix Dy and n — 1 parameters for the initial distribution vector
(cf. Sect. 2.4.1). To achieve a minimal representation, the APHD should be considered
as a stochastic mixture of all possible paths from initial states to the absorbing state.
In the following we describe the concepts as given in [56, 47]. We first introduce the
concept of elementary series.

Definition 2.9. [47] Let n be the order of the considered APHD. An elementary series
of order m < n is defined as the following series

ES =< l(il)l(iz) . ..A,(l'm) >,

where i1,iy,...,im—1,im iS a sequence of states along the acyclic path from an initial
state i1 to the absorbing state i,, = n+ 1.

As described in [47] it holds that Do (ix,ix+1) # 0 fork =1,2,...,m, A(i,,) = 0 and
the rate between two states i, ix+ is given by A (ix). The maximal number of possible
elementary series in a n-order APHD is given by 2" — 1 [47].
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7(1)20 —> D—G—0B)—@

n(2)#0 — (4)

7(3)#0 — @—®
—®@

Figure 2.17.: An acyclic 3-phase PHD and its elementary series.

Example 2.8. Figure 2.17 represents a 3-order APHD with its elementary series.

Let A and u be two rates of exponential distribution with A < . Then the following
equality holds [56, 47]
A A
Sy
s+A s+u (s+A)(s+u)

(2.80)

In Eq. 2.80 % € (0, 1] is the probability for the path until absorption containing only a

phase with the transition rate u, as described in [47]. Then, the probability (1 — %) is
used to describe the path until absorption containing two phases with intensities A and
u [47]. Since it holds that A < u, the two successive phases are given in ascending
order of the transition rates.

1-4 —orol
A u>A

(2) -0

Figure 2.18.: Substitution step for the exponential distribution with rate A using rate
U > A as visualized in [47].

Using Eq. 2.80 an elementary series for some phase with transition rate A can be
substituted by a mixture of two elementary series, one containing a phase with tran-
sition rate it > A, and the other containing both phases with the rates A and p. This
substitution is illustrated in Figure 2.18 from [47]. It is known that each ES has a hypo-
exponential representation (2.73). The cdf of an elementary series has the Laplace
transform [47]

F(s)= A(i1)A (i) - Alim—1) I A (2.81)

s HAGR)) . (S A1) s ior (s+A(i)

As described in [47] elementary series build the basis of the minimal APHD repre-
sentation since its cdf can be represented by the mixture of the cdfs of its elementary
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series. Then each ES is weighted proportionally to its probability, which is given by
the product of transition intensities along the ES path and the initial probability of the
first state of the ES [47]. For m states iy,iz,...,i, from the j-th elementary series ES;
of an APHD, the probability of the elementary series is defined by [47]

o = n(iy) Dy (i1,i2) Doliz,i3) Do(im—1,im)  di(im)
! —Do(i1,i1) =Do(iz,i2) ~ —Do(im—1,im—1) —=Do(imsim)

(2.82)

Observe from Eq. 2.81 that each of the exponential distributions in the convolution
can in principle be reordered [147]. Thus one is interesting in a basic representation,
also called a basic series, which is in hypo-exponential representation with increasing
rates. By repeated use of the substitution in Eq. 2.80 the elementary series can be
transformed to a mixture of basic series [47].

Definition 2.10. [47] Let 0 < A(1) < A(2) <... < A(n) be n positive real numbers
in ascending order. Then the basic series (BS) is defined as the following series

BS; =< A(i)... A(n—1)A(n) >,

where each tuple of i, . .. ,n transient states determines the acyclic path till absorption.
ﬂ(l)ﬁ%ul) A1) A1) 0 0
7(2) —O 0 -2 2@
) .

m(n) H? An=1) “An=1)  A(n—1)
g Ae) 0 ~A(n)
)

(a) The series canonical form, in par- (b) The infinitesimal subgenerator Dy.

ticular 0<A(l)<A(2)<...<
A(n—1) < A(n).

Figure 2.19.: PHD in series canonical form as defined in [47].

Definition 2.11. [47] The subgenerator in Figure 2.19 from [47] defines a series
canonical form. A mixture of basic series of an APHD with transition intensities in
ascending order, i.e. A(i) < A(i+1) < ... < A(n), defines an APHD.

The series canonical form is one of the minimal representations. It has 2n — 1 de-
grees of freedom: n transition rates and n — 1 initial probabilities.
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In the series canonical form the rates are ordered ascendingly such that transitions
are only possible from phase i to the successor phase i + 1. Furthermore the process
can escape only from the last phase n. Thus we need only n transition parameters
for the matrix Dy. All transient states may be entry states satisfying (i) > 0, for all
i=1,...,n. Since the absorbing state cannot be entered initially, we need only n — 1
initial probabilities.

Example 2.9. Consider the following APHD

-1 038 0.2
Do—[ 0 _1'5],d1—[1.5},7r =[06 04].

To obtain the series canonical form the transition from phase 1 to the absorbing
state should be eliminated. In particular, the ES| =< 0.8 1.5 > occurs with prob-
ability 0.6%8 = 0.48, the ES, =< 0.2 > occurs with probability 0.6%% = 0.12, and
the ES3 =< 1.5 > occurs with probability 0.4% = 0.4. If we apply the substituting
step to the ESy with A = 1 and u = 1.5, we obtain two series, namely < 1.5 > with

probability % = % = 0.66, and the series < 1 1.5 > with complementary probability

1— % = 0.33. Since the original series ES, occurs with probability 0.12, the probabil-
ity of < 1.5 > is given by 0.12-0.66 = 0.08, and the probability of < 1 1.5 > is given
by 0.12-0.33 = 0.04.

Now observe that all basic series are determined and the resulting distribution in
series canonical form is given below.

Dgan:[_ol _15],d§“":[105],nm” —[052 048 .

The probability of the ES| =<1 1.5 > is completed to 0.48 +0.04 = 0.52, and the
probability of ES, =< 1.5 > is given by 0.4+ 0.08 = 0.48.

2.4.3. Bilateral Phase-type Distributions

The extension of PHD to bilateral phase type distribution (BPHD) on the entire line
(—o0,00) was first introduced in the work of Ahn and Ramaswami [4]. In the earlier
work of Shanthikumar [158] a class of bilateral PHDs was defined where positive and
negative parts of a BPHD random variable can be represented as a mixture of sums
of iid exponentially distributed random variables. These mixtures of sums could also
be infinite since infinite state space Markov chains were incorporated. It has been
shown that the class of BPHDs is closed under convolution and mixtures involving
consideration of the infinite Markov chains. However, in [4] only finite state space
Markov chains were considered. In the following we describe the concepts from [158,
4, 95].

Assume that a partitioning of n transient states is given by .7 = .1 U.%. Now
we can introduce the Markov modulated reward process B = {B(t) : t > 0}. During
the sojourn time of the underlying Markov process in the state i € .#] the accumulated
reward increases with rate ¢; > 0. Analogously, during the sojourn time of the Markov
process in the state j € ., the accumulated reward decreases with rate ¢; > 0. The
reward function B(¢) describes the total accumulated reward of the Markov process
{X(#)}7% in the time interval (0,7), i.e. over the finite horizon.
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Consider that B(0) = 0 and once the absorbing state is reached no further changes
occur to the reward B(X), where X is the absorbing time of the underlying Markov
process. We first introduce the diagonal reward matrices

Ci =diag(ci,i € A1), Cp=diag(cj,j€ ), C"=diag(Ci,—Cp). (2.83)

Note that diag(c;,i € .) represents the matrix with elements ¢;, i € .% on the di-
agonal. The diag(A;,A;) represents the matrix with the matrix A; on the diagonal
following by the matrix A, on the diagonal.

Definition 2.12. The total accumulated reward till absorption Y = B(X) is a bilateral
phase-type distributed random variable with representation (1,Dg,C*).

We also represent the result from [4].

Theorem 2.2 (Theorem 3 in [4]). Let Y be a bilateral phase-type distributed random
variable. Then we obtain two random variables Y™ = max(0,Y) and Y~ = —min(0,Y)
which are both phase-type distributed.

Note that Y, Y~ have both realizations in R*. The general formula for the k-th

moment of Y is given by
E[Y"] = kiz(MC*) 1, (2.84)

where M = —Dgl is given in Def. 2.4.

Properties BPHDs inherit several important properties of PHDs first mentioned
in [4]. BPHDs are closed under convolutions and mixtures, the proof of these prop-
erties can be adapted from proofs presented in [115]. Furthermore, the BPH class
is closed under the minimum and the maximum operation, as mentioned in [95]. If
we consider the case where the partition .% is empty and all reward rates ¢; = 1 for
the transient states from .#}, one can verify that PHDs on [0, ) represent a subset of
BPHDs.

Similarly to PHDs, the matrix representation is not unique. Let V be a non-singular
diagonal matrix with positive elements, then the tuple (7, VDo, VC*) defines the same
BPHD [95]. This similarity property allows the definition of all reward rates as ¢; =
1 for all transient phases i € .7 such that C* = I*, where I* is a diagonal matrix
containing I*(i,i) = 1 for state i € .} and I*(i,i) = —1 for state i € .%3 as given in [4].

As mentioned above, one of the most interesting properties of BPHDs is that they
can be represented as a mixture of a positive and negative PHDs. For this purpose
consider two PHDs (n(“),D(()a)), (ﬂ(b),D(()b)) and two constants 0 < a, f < 1 satisfying
o+ B < 1. Then the positive part of a BPHD can be modeled by the PHD given by
(7@, D).

Correspondigly, the negative part is modeled by the PHD represented as (71'(”) , D(()b) ).
The initial probabilities (%), (%) can be weighted with constants o and B such that
P(Y >0)=a, P(Y <0) = and an atom at 0 obtains the probability P(Y = 0) =
1 —a— B. The given PHDs (ﬂ(“),Dg’)), (x(b)7D(()b)) are then conditional distributions
of |Y|, given that Y > 0, and that Y < O respectively.

The constructed BPHD Y has the representation

([an@, Bz®)], diag(DY" D), diag(1,~T)).
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on?(l) —
).1(“) (a)
an®(2) H@% —2 0 0 0
—~ o -AY o 0
2 Do=1 0 _a® g
201 HW |
pr°(1) M . 0 0 IO
A (2.85)
Br*(2) —
(a) A graphic representation of the BPH distri- (b) The infinitesimal subgenerator Dy

bution.

Figure 2.20.: The bilateral phase-type distribution constructed as the mixture of two
PHDs in hyperexponential representation based on [95].

Fig. 2.20 contains the graphic representation of the construction for PHDs (71'(“) , D(()a)),

(n(b),D(gb)) in hyperexponential representation which are both of order 2. Then the
k-th moment of the BPH distributed random variable Y can be also represented by

E[YY =kl an @MDY + (—=1)kk B 2 (MP)*1, (2.86)
such that the BPHD is given by the convex mixture of two PHDs.

Example 2.10. We present an example from [4] to demonstrate capabilities of BPHDs
that can be used modeling interesting characteristics. Consider the acyclic BPHD

A p3

Haqi

Figure 2.21.: The BPHD composed as the convolution of two Erlang distributions both
of order n (see [4]).

of order 2n visualized in Figure 2.21. It holds that ) = {1,...,n} and > = {n+
1,...,2n}. The first n transient phases have mean sojourn times 1 /A and reward rates
1, whereas the remaining n phases have mean sojourn times 1/l and reward rates —1.

The process starts in the phase 1 € | and goes first through the sequence of phases
from the set 1. With probability p; the process traverses the path containing remain-
ing phases from the set .. At the end of this path the process gets absorbed with
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probability g3. In that case the BPH random variable is realized as the difference of
two independent Erlang random variables X, and X», where X; ~ Erlang(n,A) and
X, ~ Erlang(n,p).

After a start in phase 1 and going through the sequence of states 1,. .. ,n, the process
may also go back to the initial phase 1 with probability p|, which would lead to the
repeated visit of all states from the set /1. The other possibility is to jump from the
state n to the absorbing state with probability ps.

Analogously, once the sequence n+1,...,2n is passed through, the process may
jump to the initial state 1 with probability q, or goes back to the state n+ 1 with
probability q», which leads to the repeated traversing of the phases from the set /5.

In the case where the probabilities p3 = 0 and q, = 0 the sequence of phases n+
1,...,2n from the set %5 is traversed at least once and the process cannot jump back to
initial state 1, if the whole sequence of states has been traversed. In the case that py =
1, g3 =1, and A = u, the BPHD has mean zero. Observe that the return probabilities
P1, q2 can be used to model the positive and negative parts as a geometric mixture of
successive convolutions of the corresponding Erlang distribution.

Fitting methods for BPHDs A possible fitting approach for BPHDs considers
positive and negative values from the trace separately and then determines parameters
for both PHDs according to these parts [95]. In the last step established fitting methods
can be applied to obtain a PH distribution. Then the construction in Fig. 2.20 can
be used to obtain a BPHD for the whole sample [4]. However, this approach has a
disadvantage that the fitting of BPHDs with continuity behavior at zero will in general
result in small likelihood at zero. The approach developed in [95] presents moments
bounds and the moment matching algorithm for ABPHDs dealing with pdf functions
having equal left and right limit at zero.

2.5. Markovian Arrival Processes

In this section we consider Markovian Arrival Processes (MAPs) which belong to
powerful stochastic models enabling models with correlated inter-event times. MAPs
were first introduced by Neuts [132] and can be considered as a generalization of
PHDs. They were originally used as input processes for queueing systems enabling
analytical solutions [121]. In this thesis MAPs are used in some simulation models.
Application areas of MAPs range from queueing, communications, performance anal-
ysis, reliability and finance to name a few. However, there is a huge amount of work
about MAPs and their applications. We refer to [139, 53, 129, 14, 54] for further
studying of MAPs and their applications.

The flexibility and versatility of MAPs are based on their main properties; first, the
inter-arrival times are PH distributed, which allows an application of established fitting
methods to the real world data. Secondly, the correlation between inter-arrival times
can be modeled, which is present in many real data traces. In the following we describe
the concept of MAPs and give an overview based on [47].

Basic definitions A MAP is a Markov process which can be described by an irre-
ducible Markov chain where some transitions correspond to the occurrence of an event
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also called as arrival.

Definition 2.13. [47] Formally, a MAP with representation (,Do, D) is a Markov
chain with a finite state space .7, initial vector T and irreducible infinitesimal gener-
ator matrix Q with

Q=Dy+D;, D; >0, D; #0, Dy(i, /) >0 fori# j.

Similarly to PHDs, the size of the state space n = || defines the order of the MAP.
The constraint on the row sums is given by [47]

Dol = DL 2.87)

The stochastic behavior of a MAP is as follows: The MAP starts in state i with prob-
ability 7(i), stays in the state i an exponentially distributed time with rate A (i) which
can be derived from Eq. 2.87 as —Dq(i,i) = ¥ ;;Do(i, j) + X ;D1(i, j). Afterwards
either the transition from Dy or from D; occurs. Transitions from the infinitesimal
subgenerator Dy are not associated with an event. The MAP only goes to the phase j
with probability Dy (i, j) /A (i) [112, 47].

If the transition from the matrix D; occurs, a MAP generates an event. The whole
probability of an event is given by Y ;D1 (i, j) /A (i). The process then goes to the state
J with probability Dy (i, j) /A (i) for i # j. With probability D (i,i)/A (i) the successor
state is again i [112, 47].

Observe that the matrix Do + D is an irreducible infinitesimal generator matrix of
the underlying Markov process. The stationary distribution vector 7, is the solution of
7.Q =0 with r.I1=1.

The event occurrence form an embedded DTMC with transition probability matrix
P, = (—Dy)~'D;. The matrix P, has the unique left eigenvector 7, P; = 7, with T, 1= 1
which describes the distribution instantly after an event occurrence. Thus 7, can be
implicitly used as initial vector of the MAP such that its representation can be reduced
to the tuple (Do, D) and the following relation holds [96, 38]

T — ﬂs(_DO)_] . — ﬂ:ch
(=D ' Y mDiI

(2.88)

The vector 7, has a further important interpretation, namely the stationary inter-arrival
times of a MAP are PH distributed with initial distribution vector 7, and infinitesimal
subgenerator matrix Dy. Note that (7,Dy) is also a PHD, which describes the inter-
arrival time in the first event epoch. In that case the distribution of the initial phase of
a MAP differs from the stationary inter-event distribution.

Remark that each PHD with representation (7r,Dg) can be described by a MAP. The
MAP (7,Dy,d;7) has the same behavior as the mentioned PHD. In fact, d; = —Dy I
describes uncorrelated transition rates, it contains no relation between exit and entry
phases of the MAP. Thus the inter-event times of the MAP are independently and
identically distributed PHDs (7,Dy).

Example 2.11. Figure 2.22 shows a 2-state MAP. The stochastic behavior of the MAP
is as follows. If it starts in state 1, it resides there for an exponentially distributed time
with mean duration of 0.2. When the exponential distribution elapses, the transition to
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-5 0.83 417 0
Dy = D, —
0 -—1.5 0.41 1.09
(a) The state transition dia- (b) The matrices for the MAP.

gram for the MAP.

Figure 2.22.: A 2-state MAP. The dashed transition arrows correspond to state transi-
tions generating an event. The solid line transition arrows correspond to
transitions according to Dy.

state 2 without generating an event occurs with probability O'Sﬁ = 0.166. An event is
generated with rate 4.17, i.e., the process stays in state 1 with probability 4% =0.834.
In state 2 the MAP generates events with an exponentially distributed inter-event time
with mean duration of 0.66. After generating an event the MAP stays in state 2 with
probability % = 0.273 and performs transition to state 1 with probability % =

0.726.

Distribution and Moments Since the inter-event times of a MAP are dependent
we introduce measures that describe dependencies. Let Xi,...,X; be a sequence of
arbitrary k consecutive inter-event times and X an arbitrary inter-event time. In the fol-
lowing we assume that MAP has representation (Do, D) and 7 = 7,. The probability
density function and the distribution function of X are given by [112, 47]

f(x) =D, F(x) =1 — me™ L (2.89)

The i-th moment ; of the inter-event time X can be computed as given in Eq. 2.66.
The joint density of a MAP generating k consecutive events with inter-event times
x; is given by [112, 47]

fx1,x2,...,x;) = meP1 D P02 D, L0 D T, (2.90)

which can be evaluated using the uniformization method [162]. For this, let o >
max; (|Do(i,i)|), Po =Do/a+Tand Py = D;/a. Then Eq. 2.90 can be written as [47]

k oo
fxi,x0,....x)=m (H ( B(axi,l)P6> P1> I (2.91)
=0

i=1

where f3(g,!) is the probability of / events of a Poisson process with parameter q.
The joint moments of k consecutive inter-event times are [47]

EX]' X2, X = i lia! ... ig!m(—Do) Py (—Dg) ... Py(—Do) *I,  (2.92)

with orders i;, 1 <[ <k.
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2.5. MARKOVIAN ARRIVAL PROCESSES

Dependency between inter-event times that are lag-k apart is often expressed in
terms of the coefficient of autocorrelation. It can be determined if dependency be-
tween the first and the k-th inter-event time should be computed [47]

EXi, X0l — (E[X])>  T(=Do) ' P{(~Do)” I~ (75(—1)0)711[)2
P = S = . (2.93)
E[X?] - (E[X]) 21 (~Dg) 21— (n(—DO)*I][)

Subclasses Since MAPs represent a powerful class of stochastic processes, they
contain several well-known stochastic processes as subclasses. An important subclass
allowing for modeling correlations between inter-event times while still remaining an-
alytically tractable is a Markov Modulated Poisson Process (MMPP) [75]. The matrix
D, is constructed from rates of n Poisson processes with event rates A;. Thus D is a
diagonal event rate matrix with A; values on the diagonal. Additionally, an auxiliary
Markov process of order n selects one of the Poisson processes. In particular, if the
Markov process is in state i, the events occur according to a Poisson process with rate
Ai. The MMPP can be described by a MAP.

Example 2.12. Fig. 2.23 shows the 2-state MM PP.

ri
—(ri+A) r
Dy, =
O O ] ARy
: (4 1]
(a) A state transition diagram of a MMPP. 2

(b) The infinitesimal subgenerator matrix Dy
and the event rate matrix D of the MMPP.

Figure 2.23.: Symbolic representation of the 2-state MMPP.

One can easily obtain the probabilities Prob(A = A1) = —2— and Prob(A = A;) =

ri+nr

rl:lrz. Then the mean arrival rate of the 2-state MMPP is defined as

(2.94)

2
q:

A Prob(h = &) = 2 n
-l ri+nr

An Interrupted Poisson Process (IPP) is a special case of MMPP [113]. The IPP
is a Poisson process with the rate A which is regulated by an auxiliary on-off Markov
process. When the Markov process is in the on-state, events occur according to the
basic Poisson process. Thus the diagonal elements of D are either given by A or
equals 0. On and off time intervals of the Poisson process are PH distributed.

Multiclass Markovian Arrival Processes IMMAPS) describe marked events and were
originally introduced in [88]. It has the representation (7, Do, Dy, ...,Dy) with
(, Dy, ):le D) describing a MAP where matrices Dy, define different event types. For
further studying we refer to [9, 43, 86]. Batch Markovian Arrival Processes (BMAPs)
differ in the interpretation of the event types [120, 87, 154]. Here matrices D; con-
tain transition rates accompanied by events occuring in the batch of size k. On the
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other hand further MAP generalizations exist. Rational Arrival Processes (RAPs) also
known as Matrix Exponential Processes (MEPs) [8, 51, 32, 50] describe stochastic
processes with matrix exponential inter-event time. An additional freedom is added to
this class since the involved matrices and vectors are not restricted to have an interpre-
tation of stochastic behavior for the underlying process.
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Chapter

PH-Graph Model

In this chapter we introduce a stochastic graph model with Phase-type distributed edge
weights (PH-Graph). The kernel of the model is a composition of two PH distributed
random variables. Additionally the information about the existing correlation between
them is decoded. This property permits modeling of dependent edge weights on adja-
cent edges in a stochastic graph.

In the following we consider the composition of PH distributions which contains a
pair of PHDs and a matrix encoding the correlation between them. Then the PH-Graph
model containing a PHD composition for each adjacent edge pair is introduced. The
PH-Graph model encodes the existing correlations for the whole graph where edge
weights are described by PHDs.

The developed model leads to efficient solutions for issues in the context of Stochas-
tic Shortest Path Problems with correlations. In particular, it enables the computation
of the minimum/maximum expected total time for reaching an absorbing state, and
the computation of the maximum/minimum probability of reaching an absorbing state
within a given deadline, both in stochastic graphs including correlations. More com-
putational issues can be handled by the model, e.g. the modeling of PH distributed
interclaim times and claim sizes in insurance risk models.

3.1. The Composition of PH Distributions

Let PHD PH; = (m;,D;) be of order n;, and PHD PH; = (7;,D;) be of order n; where
matrices D;, D; are subgenerator matrices Dy of corresponding PHDs. PH; describes
the distribution of a random variable X;, and PH; is the distribution of a random vari-
able X;. Furthermore the random variables X;, X; are independent. Note that the sum
X = X; +X; is known to be a PHD [47]. When the dependency between two PHDs
PH;, PH; is introduced the sum X = X; + X is also a PHD and is called a composition.

Definition 3.1. The tuple ((m;,D;), (7;,D;), H;;) defines a composition of two PHDs
PH; and PH . The infinitesimal subgenerator given in Eq. 3.1 describes the underlying
Markov process {X(t)}7% for the composition of two dependent PHDs. The initial
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CHAPTER 3. PH-GRAPH MODEL

probability vector is given by m = [r;,0] where 0 is the row nj-vector of 0’s.

_ | Di Hj
Do_[ 0 D, ] 3.1
The n; x nj matrix H;; is called a transfer matrix with
H,'j >0, Hij #0, H,'jl[: —D,1. 3.2)

Furthermore the following equation has to hold to keep the initial distribution of PH;
invariant
m(—D) 'H;; = ;. (3.3)

The PHD composition ((m;,D;), (;,D;), H;;) is visualized in Fig. 3.1.

H;;(1,1)

Figure 3.1.: Symbolic representation of the Markov chain corresponding to a PHD
composition. Parameters implicitly given by the matrix H;; are high-
lighted in gray.

The resulting number of transient phases in the underlying Markov process of the
composition is n; +n;. The stochastic behavior of a composition process is as follows:
In the underlying Markov chain {X () };2, the paths of Markov chains associated with
PH; and PH; are concatenated. After the paths of the Markov chain {X;(t)}:, have
been traversed the process moves along the paths of the subsequent Markov chain
X020

The composition process starts in state k with probability m;(k). Then the process
moves along paths of the first Markov chain {X;(r)};2, until some initial state of the
Markov chain {X;(¢)}2, is reached. -

When some initial state k of the first Markov chain has been entered, the process
stays an exponentially distributed time in that state. Afterwards either the transition
from D; or from H;; occurs. If the transition from transfer matrix H;; occurs, the pro-
cess goes to some entry state of the Markov chain {X;(¢)};2,. In fact, transfer matrix
H;; works analogously as D matrix from the MAP theory. It describes transitions
corresponding to the occurrence of an event in the first Markov process.
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Similarly to a MAP (cf. 2.5) the absorption of the first Markov chain {Xi(t)};%,
induces an embedded Markov process with transition probability matrix defined by

P;; = M/H;; (3.4
where M; = (—D;)~!. It holds that
P;l=(-D;) 'H;;I=(-D;) ' (-D)I=1

The matrix entry P;;(k,!) gives the probability of starting in state / of the subsequent
Markov chain, if the composition process begins at state k of the first Markov chain.

Since the transfer matrix H;; satisfies the Eq. 3.3, it holds that ;P;; = 7; such that
7; describes the distribution instantaneously after the absorption of the Markov chain
{Xi(t) };% has occurred. If the composition process starts with probability distribution
m;, then it continues in the average with probability distribution 7; in entry state of
the {X;(t)}7%,. Thus the distribution function, i.e. initial vector 7; of the subsequent
Markov process {X;(t)}, remains invariant.

In fact, the transfer matrix H; ; of a composition describes correlated transition rates.
In particular, the entry H;;(k,/) contains a transition rate if & is the exit phase of the
Markov process {X;(¢)};2, and [ is the entry phase of the Markov process {X;(r)}2.
Thus the transfer matrix H; ; contains the relations between exit and entry phases of the
two PHDs in the composition. Observe that if H;; = d"1 7j the PHDs in the composition
are uncorrelated.

Since two PHDs PH;, PH; in the composition are no longer independent, the de-
pendency measures can be derived, i.e. adapted from the MAP theory. Let (X;,X;) be
two consecutive absorbing times. The joint density of a composition generating two
consecutive absorbing times x;, x; is given by

PrOb(X,‘ = Xi, Xj :)Cj) = f(x,‘,x]‘) = ﬂl‘exiDi H,'j efof' (—Dj)]l. (35)

The joint moments of two consecutive absorption times X;, X; which are correlated
according to the transfer matrix H;; are defined as

EXf, X! = k! 11 mM; P MUT (3.6)

with orders k, [, 1 <k <1, where M; = (—D;) ! and M; = (-D;) .
The covariance of two consecutive absorption times X;, X; is given by

Cov[X;, Xj] =E[X, X]] - E[X,

1 ]

1]-E[Xj1] = ;M P;; ML — (ML) - (m; MT). (3.7)

Then the correlation coefficient of two consecutive absorption times in the compo-
sition can be determined as

B Cov(X;, X/
XX = X -V;r[xj} (38)
ﬂiMiPiij]I— (ﬂlM,]I) . (ﬂij][)
V(2m (=D;) 21— (m (=D;)'1)?) - (2m; (-D;) 21— (m; (-D;)'1)?)
(3.9)
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Using the transfer matrix H;; the correlation of two consecutive absorption times in
the composition can be modeled. The absorption times of PHDs in the composition
can be used in modeling and computation in different application areas. In particular,
the absorption time is often interpreted as a time which is required until some action is
performed. The consecutive absorption times in the composition can be interpreted as
correlated edge weights for adjacent edges in a stochastic graph.

Note that in stochastic graphs edge weights are defined by random variables. Since
the class of PHDs is dense in the sense of weak convergence in the class of all distri-
butions with positive support [15], edge weights can be modeled w. 1. 0. g. by PHDs
in stochastic graphs. Then PH distributed edge weights can be interpreted as traveling
times or costs for adjacent edges [40], failure rates of components in series [46], inter-
claim times and claim sizes in insurance risk models [15] or strength of connection in
functional brain networks [60].

Example 3.1. We consider the following two PHDs in the composition. The first PHD
PH; is given by

7= (0.4,0.6), D, = ( — 11529 0 >

0 —12.941

and the subsequent PHD has the representation

7 = (0.45,0.55), D; = ( —1.0 0.44444 )

0 -5.0

The transfer matrix resulting in E[X], X]l] =0.39050 and px, x; = 0.27798 is

o 11529 0
77\ 1.07842 11.86258 )

The underlying Markov chain {X ()}, for the composition of two PHDs is visualized
in Fig. 3.2. In particular, the equation 7;(—D;) ™' H,; results in a vector (0.45, 0.55)
which is equal to T;.

04—( 1) .
s 0.55556
1.07842 .

0.44444 @
05—(3) ol

11.86258

Figure 3.2.: The Markov process of the PHDs composition. The transition rates ac-
cording to the matrix H;; are highlighted in blue.
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3.1. THE COMPOSITION OF PH DISTRIBUTIONS

Dependencies between several PHDs Generally, a PHD composition can be
extended to more than two PHDs. Let PHD PH; depend on two PHDs PH, and PH;.
Then additional phases should be introduced to code the exit phases of previous PHDs
with representation PH, = (7,,D,) and PH; = (m;,D;). First we consider the following
infinitesimal subgenerator matrix

Dmin(g,i) = Dg @I+ Ig ®@D; = Dg @D, (3.10)

where I, I; are identity matrices of order ng and n;, respectively. ® and & denote
the Kronecker product and Kronecker sum [58, 118] which are defined for two square
matrices A and B of order a and b as

A(1,DB - A(l,a)B
ARB= andAGB=ARI,+1I,®B. (3.11)
A(a,1)B --- A(a,a)B

In fact, the underlying Markov process models the concurrent behavior of previous
PHD processes {X,(¢)}72, and {X;(¢)};2,. If it gets absorbed, the minimum of two
PHDs PH,, PH; is determined [47]. Now the additional states (1, +1,-) and (-,n; + 1)
correspond to absorption of one of the PHDs involved. Reaching one of that states
the Markov chain evolves according to the second PHD which has not been absorbed
yet. The process described contains all combinations of transitions until absorption of
two PHDs PH, and PH;. The following infinitesimal subgenerator matrix describes
the behavior mentioned.

Dmin(g,i) Ig (4 dll df QI
Dgi = 0 Dg 0 . (3.12)
0 0 D;

The corresponding Markov chain of order ngn; + ng + n; contains pairs of phases
{(k,): ke FE 1€ LU {(ng+1,1) [ng+1€ .75, 1€ S Uu{(k,ni+1) | k€
2, ni+1 € .7;}, and the absorbing state. The initial probability vector is given by

Ty = (Mg @ M, T Wi (ni+ 1), g (ng + 1) ;). (3.13)

In fact, the Markov process with representation (7,;,D,;) describes the PHD of the
maximum of two PH, and PH;. In the case when PHD PH; depend on more than
one predecessor PHD the transfer matrix Hg ;) ; is of dimension (ngn; +ng +n;) x n;.
Furthermore it holds

H(g7i)j >0, H(g,i)j #0, H( 1= —Dg,'][, ngi(_Dgi)H(g,i)j =T;. (3.14)

8i)J
Formally, the tuple ((7y;,Dg;), (7;,D;), Hyy ) ;) defines a composition of three PHDs
PH,, PH; and PH ;. The infinitesimal subgenerator given in Eq. 3.15 and the initial dis-
tribution vector T = (7g;, 0), where 0 is of dimension ; x 1, describe the underlying
Markov process for the composition containing PHD depending on two PHDs.

_ | Dgi H(g-,i)j
DO[ 0 D, ) (3.15)
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Example 3.2. We consider the following PHDs in the composition. The first predeces-
sor PHD PH, is given by

-7 0
ng:(o.s,o.s),Dg:< 0 05 >

and the second predecessor PHD PH; is given by

-5 0
ni—(0.6,0.4),Di_< 0 _1>.

We assume that the subsequent PHD PH; is equal to PH,. Let 1, 2 denote the states
of PHg where state 3 is the absorbing state. PH; contains transient states 4, 5, and the
absorbing state 6. The subsequent PH; contains transient states T and 8.

Following transfer matrices are defined

7 0 4.16667 0.83333
Hg-":<o 0.5>’Hf-’:< 0 1 >

such that px,x; = 0.3 and px,x; = 0.23. The subgenerator Dy; is given by

[ —12 0 0 0 5 0 7 0 7
0 -8 0 0 1 0 0o 7

0 0 =55 0 0 5 05 0O
D.. — 0 0 0 =15 0 1 0 0.5
st 0 0 0 0o =7 0 0 O

0 0 0 0 0O =05 0 O
0 0 0 0 0 0 -5 0
0 0 0 0 0 0 0 -1

We computed the following transfer matrix H, ;) ; with p(x, x,)x; = 0.162

0 0

0 0

0 0

0 0

Hgi); = 7 0
0.167 0.333

5 0

0.0497 0.9503

The underlying Markov process is visualized in Fig. 3.3.

3.2. Graphs with PH Distributed Edge Weights

We define a stochastic graph G = (V, E, P) by the triple where V is a set of nodes, E
is a set of edges, and a set P containing PHDs, and PHD compositions describing the
statistics of edge weights. The graph G is then called a PH-Graph. In particular, the
weight of an edge i € E is assumed to be a non-negative random variable X; which is
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3.2. GRAPHS WITH PH DISTRIBUTED EDGE WEIGHTS

Figure 3.3.: The Markov process of the composition of three PHDs. The transition
rates according to the matrix Hy, ; ; are highlighted in blue.

a PHD PH; with representation (7;, D;) of order n;. In addition, there is an origin node
Vini € V and a destination node vi, € V, viy; # Vi [40].

The edges in graph G are directed. The weight of edge i € E is a random variable
which can be interpreted as, for example a travel time from the starting node of i to
the destination node of i. In particular, for the edge i ini(i) € V denotes the starting
node, and fin(i) € V denotes the destination node. Any two edges i, j are adjacent
if fin(i) = ini(j). Furthermore we described the following sets of predecessor and
successor edges for each edge i € E as described [40]

o = { 0 if ini(i) = vin

| {JIfin(j) =ini(i)} otherwise
. ] 0 if fin(i) = v (3.16)
e {jlini(j) = fin(i)} otherwise

Any adjacent edges i, j can have dependent weights and are modeled using the PHD
composition. For i, j € E, i € ej the PHD PH; in the composition corresponds to the
weight of the edge i [40]. The subsequent PHD PH; corresponds to the weight of
the adjacent edge j which follows edge i in the graph. Then the dependency between
weights of adjacent edges is encoded in the transfer matrix H;;. Thus the entry phase
of PH; of the successor edge is dependent on the exit phase of PH; of the predecessor
edge [40].

We assume that for every v € V at least one path to the destination v;, exists and let
Paths be a set of all finite paths [40]. In addition, E;,; = {i|ini(i) = viy;} denotes a set
of edges emanating from the origin v;,; and E;, = {i| fin(i) = v, } denotes a set of
edges ending in the destination v ;,.

We define a path from the origin v;,; to the destination vy;, as a sequence of edges
(i1,...,ix) € Paths where ij € Ej;, ix € Efin and ix_; € oi; fork=2,...,K [40]. The
weight of a path is the sum of PHD weights of edges [40]. A possible interpretation of
a path weight can be the length of a route traversed by a vehicle until the destination
Vfin is reached. Furthermore, we assume that the stochastic graph can be cyclic where
the weight of each cycle is non-negative.
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For a given path (iy,...,ix) € Paths between v;,; and vy, for each ix_; € i the
PH-Graph contains the PHD composition (71, Dx—1), (%, Di), H—1)x) € P. Ac-
cordingly, PHD (m;, D) with 1 < k < K and K > 2, appears in two PHD compositions,
once as second PHD in the composition, and once as first PHD in the composition (see
Ex. 3.3). Let (ix_1,ik,ix+1) be the corresponding subpath. Then two PHD composi-
tions ((TCk_l,Dk_]), (ﬂk,Dk), H(k—l)k)’ ((ﬂk,Dk), (ﬂk+1,Dk+]), H, (k+1)) describe the
sum of edge weights along the subpath. Observe that even though correlation is de-
fined for subsequent edges, i.e. is defined within a PHD composition, the effect of
correlation cummulates for edges along the path of length greater than two.

In fact, a path (iy,...,ix) € Paths in a PH-Graph corresponds to an absorbing Markov
chain with Zszl n;, states (see Sec. 2.1.3). Then the state space of the absorbing CTMC
. contains the states of PHDs corresponding to edges along the path.

Definition 3.2. [40] The time until absorption along a path (iy,...,ig) € Paths is
defined by an absorbing CTMC with subgenerator matrix given in Eq. 3.17. The initial
vector of the CTMC equals © = (n;,,0) where 0 is the row (n — n;, )-vector of 0’s.

D, Hy;, 0 fee 0
0 D, H,, :
Qi) =1 = . e 0 : (3.17)
: DiK—l HiK—liK
0 - o 0 Dy

Example 3.3. Consider the stochastic graph in Fig. 3.4. We have two paths for a
given destination vs, namely (iy,iz,is) and (iy,i3,is). The visualized PHDs of order
2 are assigned to edges such that corresponding transfer matrices are highlighted in
blue. If edge weights are interpreted as traveling times, the traveling times along the

Figure 3.4.: Example of the PH-Graph with v;,; = vi and v;, = vs.

paths (iy,i2,14) and (iy,i3,is) are described by absorbing CTMCs with the following
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subgenerator matrices and initial distribution vector © = (m(1),m(2),0).

Dil Hi1i2 0 Dil HiliS 0
Qi iniy) = 0 D;, Hyy |.Quii= 0 D; H;;
0 0 D,'4 0 0 Di5

3.3. Summary and Overview

In this chapter we first described the composition of two PH distributions and then
presented the developed extension called a PH-Graph model. In a PH-Graph model
edge weights are described by PHDs and correlations between adjacent edge pairs are
modeled using transfer matrices - the concept adopted from MAPs. Thus PH-Graphs
allow for modeling dependent edge weights in stochastic graphs.

Stochastic graph models including correlations find applications in numerous fields,
e.g., in vehicle routing. If we consider vehicle routing as an application for PH-Graphs
then given a stochastic graph G a vehicle traverses the graph edges from the origin v;,;
to the destination vy;,. The traveling time which is spent by a vehicle traversing the
graph is not known a priori. The vehicle only knows the PHD of edges which it travels
and the existing dependencies between edges. As the vehicle moves through the graph
the edge traveling time realized becomes known to it.

It can be assumed that every time the vehicle visits a node vy, (i) the realization of
the random variable X; is known and can be collected in a set of realizations of traveling
times for edge i. Furthermore, in dependence of the known realized traveling times and
dependencies between edge weights of adjacent edges the vehicle can decide which
edge to traverse next. Thus one is interested in efficient parameterization methods for
PH-Graphs which will be considered in Chapter 4. Existing fitting approaches [47] can
be used to model PHDs at graph edges. More attention is devoted to fitting methods
for transfer matrices H which add correlation in PH-Graph models.

Various fitting algorithms work on specific PHD representations. Furthermore, pa-
rameters of two PHDs in the composition are incorporated in fitting of the correspond-
ing transfer matrix H. This implies that matrix representations of PHDs PH;, PH; in
the composition have significant influence on parameters of the transfer matrix H;;. In
Chapter 6 we will show which matrix representations of two PHDs are most suitable
in order to maximize the correlation of their composition.

Based on the PH-Graph model efficient solution methods for Stochastic Shortest
Path Problems with Correlations can be developed. Competing paths from v;,; to vy,
in a PH-Graph can be interpreted over continuous-time Markov decision processes.
SSPP with Correlations over CTMDP requires then computation of optimal control
strategies to find the path with minimum expected total time of reaching a destination.
The extension of the PH-Graph model over CTMDPs with rewards will be introduced
in Chapter 5. The solution technique to compute the minimum expected total time
of reaching the destination and the numerical approach for time bounded reachability
results will also be presented in Chapter 5.
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Chapter

Fitting Algorithms

In this chapter the parameterization problem of PH-Graphs is considered. Though
various fitting approaches exist to compute PHDs for the weights of edges in a PHG,
fitting the parameters for transfer matrices is much more complex. The major reason is
that a long trace should be considered for adequate correlation fitting when trace-based
fitting methods are used. Furthermore transfer matrices should preserve important
conditions within a composition which requires an additional solution of optimization
problems.

First an introduction of trace-based fitting methods for PHDs is given in order to
explain the parameterization of the PHD composition. Then we present approaches
for fitting the transfer matrix which have been derived from existing approaches for
MAPs. In particular, an EM algorithm for MAPs has been extended to transfer matri-
ces. Although its computational effort is higher than the effort of the EM algorithm
for PHDs, it can be applied in practice. Two phase fitting approaches have also been
derived from existing approaches for MAPs. The methods can be used to compute the
parameters according to first joint moments or correlation coefficent from a trace and
are also described.

4.1. Trace-Based Fitting Methods

Assume that there is a process of interest Proc. Often the behavior of the process
Proc should be approximated using an adequate model. When models based on PHDs
and MAPs are to be used, the objective of a fitting procedure is the computation of
parameters (7,D) (for PHDs), (Do, D1) (for MAPs), and of ((7;,D;), (7;,D;), H;;)
(for PHD compositions). The models based on PHDs and MAPs should then exhibit
statistical properties equal or similar to properties of the process Proc.

As described in [141], the behavior of process Proc is usually substituted by a finite
observed sequence of data, e.g. inter-arrival or service times, which is denoted as a
trace J = (t1,...,tn). The reason is that the behavior of the process Proc cannot be
infinitely observed from the real system or from an adequate simulation model. The
trace .7 is defined as a realization of the process Proc. Its statistical properties should
resemble the characteristics of the underlying process Proc [141].

Let K be a set of statistical measures characterizing process Proc. A statistical
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measure K; € K can be either directly given by kp,,. or can be estimated from the
trace 7 as Ko [141]. The fitting procedure approximates Kp,, or K by the statistical
measure of the model based on PHDs or MAPs, e.g. by k{z p,) computed from a PHD
with a representation (7, D).

4.1.1. Trace Definition and Properties

Often traces contain the measured data points which correspond to preliminary obser-
vations of the process. It can be described by a sequence of m chronologically ordered
points in time t; > 0, i = 1,...,m. For our application example, the trace can result
from measurements of traveling times on the road which requires bookkeeping of the
time steps of vehicles. In this case an element ¢#; describes the traveling time of the
ith vehicle passing through the road segment. Commonly, an element ¢#; describes the
inter-event time of the i-th event, and many other interpretations are possible. Fur-
thermore, the sequence 71, ...,%, is assumed to be in a strict-sense stationary, which
implies a common distribution of #; independent on i.

Fitting methods can be divided in two classes. Trace-based fitting approaches use
the complete trace for the parameter computation of PHDs and MAPs. The second
class of fitting algorithms uses only some statistical measures estimated from the trace.
Consequently, the parameter of models using PHDs and MAPs are computed in order
to approximate the derived measures as close as possible. The advantages and disad-
vantages of both methods are described in [47].

In the following we describe some statistical measures which can be estimated from
the trace in order to determine parameters of models based on PHDs and MAPs. The
estimator for the i-th moment of the trace and the variance are given by [112, 47]

1 & : 1 &
;i =—Y (r;)) and 62=——Y (t;—[)> 4.1
H m}_;(]) m—lj;(J ) 4.1)
Often there are dependencies between consecutive data points #;, ;4 ;, j=1,.... Then

the autocorrelation or the joint moments are of interest. The coefficient of autocorre-
lation of data points that are lag k apart is estimated by [112, 47]

N 1

m—k
P i ) -

The estimator of the joint moments y;; = E[X], X,g 1) of two consecutive data points
is given by [47]
1 m—1

Q= —— Y (t) (tr1) 4.3)

The empirical distribution function of a trace is given by a step function with m
steps [112, 47]

oot < i h—
P = ZmPG=X) gy 1 b =tre, @4
m 0 if b= false.
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Set M of measurements
1.1 p
W] = ((l]’tl)""’(lil’ti‘] )7

wa = (G th. .G ).

-~ Y

Sets 7 for edges i Sets 7;; for edges i € o
1, (li, tj)l’
1, (ti’ tj)z’
where (%, ) € w, where (i, 1), (if;”,tj) € w,, with
with X, = i,m = 1,...,N k=i = jm=1,...,N

Figure 4.1.: Trace extraction from the set of measurements .7 .

Edge Weights Trace To derive the parameters of the PH-Graph we need to con-
sider the realizations of edge weights. In order to obtain coherent parameters of PHDs
for edge weights, the measurements of entities that passed through the graph should
be collected. Then several traces could be used to compute parameters of PHDs and
transfer matrices.

A single measurement of related edge weights is a sequence w, = ((il,z}),...,
(i¢,t5") ) where edges ¥ € & build a path, i.e., i¥ € ei**!, and 0 < ¥ < oo, for the
number of edges along the path 1 < k < ¢,. Here, the sequence need not start in v;,;
or end in vy;,. Let .# be a set of all measurements w, and N the number of measured
sequences.

Using sequences w, the trace .7; containing all measured weights for edge i € &,
and the trace .7;; containing all measured value pairs of adjacent edges i and j can be
obtained obtained.

In particular, the trace .7; contains a sequence f1,?; ... of all measured edge weights
t, from w, € .# where w, contains a pair (i, £X) with i¥ = i. Observe that if the value
t, appears in several measurement sequences or several times in one measurement
sequence, then it appears several times in the corresponding chronological order in the
trace 7.

Similarly, the trace .7; contains value pairs (f;, ;) which appear in some w, € .#
such that a pair of tuples (i¥,#;), (i71¢;) € wy, and X =i,ikT! = j. Again the trace 7},
contains several entries (t;,¢;), if they appear several times in some w, or in several
measurement sequences. We denote N; and N;; as the number of elements in the trace
J; and .7}, respectively. Fig. 4.1 shows the extraction of traces .7, .Jj; for i,j € &
graphically.

In particular, using a trace .7; and Eq. 4.1 the estimate for u,’; =F [Xik] is

N 1 k A2 1 ~NiN2
fi=—Y ()" and 67 = Y (—np). 4.5)
Nitje‘% ! lel

l‘jG'Jyj

Considering the traces .7;; the estimator of the joint moments u,ijl =F [Xl-k Xf] for
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weights of adjacent edges i and j is given by

N7 1
bi=v— L @), (4.6)
VT (nt)EeTy

In PH-Graphs there are dependencies between weights of adjacent edges #;, t; with

i € oj. The coefficient of correlation of two consecutive edge weights is estimated by
R 1 NIy,

Pi= =2y, M — Ay 4.7

The coefficent of correlation of data points that are lag k apart is estimated by

bk = A . — 0!
pij - (Nij—k— 1)6i6-j ((tl)l H; )((tj)l-i—k .u]) (48)

4.1.2. Expectation Maximization Algorithm for PHDs

The Expectation Maximization (EM) approach is an iterative algorithm which com-
putes the maximum-likelihood estimate of parameters of an underlying distribution
from the complete trace. There are several EM algorithms for PHDs. Asmussen et al.
developed in [10] the EM algorithm for general PHDs. The EM fitting approach for
APHDs in canonical form was proposed in [30]. Uniformization based methods allow
for more efficient implementations of the EM algorithm [38, 48, 109]. In this section
we give an overview of the EM algorithm for general PHDs including the improvement
using uniformization described in [10, 38, 47].

If the complete measured data collected in a trace .7 = (11, ... ,t,) should be used,
then usually the likelihood

Z((m,D0)|.7) HﬂeDU”dl 4.9)

is maximized. In (4.9) the value .Z((7,Dy)|.7") gives the likelihood that the PHD
(m,Dy) generates the trace .7 . Then the optimal parameter estimation satisfies

(,Dp)* = arg max HneD"t'd (4.10)

(m,Do) ;-

The expectation (E) step determines the distribution of the unobserved data, given
known values of observations and the current estimate of the distribution parameters
(#,Dp). The observed data corresponds to absorption times (f1,...,%,). The unob-
served data corresponds to the states of PHD visited before absorption, state holding
times etc. In the maximization (M) step the parameters are reestimated to be those
with the maximum-likelihood, given that the distribution was computed correctly in
the E step.

To obtain the complete data in the E-step one can use the embedded Markov pro-
cess {X,}o<r< (see Sec. 2.1.2). Let k be the number of steps of the Markov pro-
cess before absorption occurs, and let n be the defined order of the PHD. Further-
more, the sequence Xp,...,Xy—; denotes the sequence of visited states of the PHD
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until absorption. The sequence Sy, ...,Sx—1 denotes the corresponding state holding
times [10, 47]. The behavior of {X,}o<,<; on the interval [0,7] is given by a tuple
2= (X0, Xk—1,50,---,8—1)- Then the density function of the complete observation
can be written as [47]

F(z(m,Dg)) = m(x0)A (x0)e F 0P (xg, x1 ) - A (g Je D P (1 n4-1)
= ﬂ(XO)eil(XO)SODo(XQ,Xﬂ e eil(x"’])sk’ld1 (kal).
Considering the whole trace data (¢,...,%,) the observation contains m outcomes,

such that the tuple z = (x},...,x%,...,si_|,...,s"" ). The likelihood function is then
given by [47]

n+1

Z((m,D0)|.7) = f(z|(7,Dy)) Hn BHeZDO” [T Do

i=1 i=1 j=1,j#i

N

where the variable B; denotes the number of times the Markov process started in state
i, Z; denotes the total time spent in state i, and NV;; is the total number of jumps from
state i to state j, fori# j,i € .7, and j € ..

The forward vector f, the backward vector b, and the flow matrix F are defined as

Dot
f(ﬂ-,Do)J =me™,

b(zpo) = €”dy, @.11)
! T T
F(ﬂaDO)vt :/0 (f(ﬂvDO)atfu) (b(ﬂ',Do),u) du’

and can be computed in the E-step with standard methods like Runge-Kutta method
[11], or using uniformization [162, 47]. Using these vectors the likelihood can be
computed as [47]

ZL((r,Do)|.T) = Hﬂb (2.00). andlog (Z((m,D0)|7)) = Y log (7b(zn,) )

k=1
4.12)
Given the current estimate (77,Dy) of the PHD the conditional expectations of B;, Z;, N;;
can be obtained as [10, 47]

m . .
1 7(D)b(zpy). s (1)
E(”aDo),y[Bi] = %kgl Tnz);
m-F z.Dg), (i,i)
E(n,Do)ﬂ[Zi] :% y %7
k=1 7,00 )1k
& Do(is i (4.13)
E N 1 Do(l"’)F(”-Do)-fk(’v-/)
(7E,Do).,<7[ l.[] = E,El W
A ()f(rpy)s, ()
Ezpy),7[Nint1] = %kgl R0,

In the M-step the new parameters of the PHD are estimated in order to maximize the
likelihood

.. A .. En‘ I [N[']
717(1) = E(n,DO),ﬂ[Bi]’ Do(l,]) = %’

A . Eﬂ, [Nm ] Fa ..
(1) = 2T Duli) = (@) + L Dol )

(4.14)
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Algorithm 4.1: EM algorithm for computing PHD (7,Dy) using .7 = (t1,...,ts)

1: Choose PHD (n(o),D(()O)) and set r = 0;
2: repeat

3. Compute f(z p)) > P(zp,), and F(z p,); using (n(’),Dér)) in Eq. 4.11 or using
uniformization [47, Eq. 3.12] fort =t1,... .ty ;

4: E-step: Compute the conditional expectations using Eq. 4.14;

5. M-step: Compute (Jr(’+1),D(()r+l)) using Eq. 4.14 and setr =r+1;

6: wntil ||z — (=D || D —D{ V|| <&

7: Return (Jr(’),D(()r)) ;

Algorithm 4.1 from [47] describes the complete EM algorithm for general PHDs.

Observe that EM algorithm is an iterative local maximization method, such that
the sequence of estimates with a non-decreasing likelihood values is generated. The
sequence of estimates may either result in a local maximum or a saddle point which
often depends on the initial parameter choice [62, 177].

Note that it is also possible to fit a PHD according to some statistical quantities from
the measurements collected in a trace 7. Commonly, k order moments are estimated
from the trace (see Eq. 4.5). Fitting algorithms according to the moments are described
in [31, 44, 94]. Then the obtained PHD representation (7,Dg) could be used as the
initial parameter estimation in the EM algorithm to reduce the runtime. Methods which
use the complete trace or moments from the trace are implemented in several tools [25,
93].

EM Algorithm for Hyper-Erlang PHDs EM algorithms for PHDs have been ex-
tended to restricted classes [108, 168] which enables more efficient fitting algorithms
without reducing the resulting PHD’s quality significantly. In this section we describe
the approach developed in [168] which is implemented in the freely avalaible tool gfit.
We used this software for parameterization of PH-Graphs in our experiments. The
presented EM algorithm computes Hyper-Erlang PHDs (HErD) (see Sec. 2.4.1). The
Hyper-Erlang class constitutes no restriction since any pmf of a non-negative random
variable can be approximated arbitrary close by mixtures of Erlang distributions of
unlimited order (cf. Theorem 1 from [168]).

For HErD fitting a mixture of K mutually independent Erlang branches should be de-
termined. The i-th Erlang distribution is weighted with initial probability (i), where
i=1,...,Kand ¥X, (i) = 1. Furthermore the i-th Erlang branch contains s; phases
with rate parameter A (i) [47]. The density of the i-th Erlang distribution is given by
(see Eq. 4.15)

m )L i si—1 ]
flx) = l; ﬂ(i)((s(l_)j)l)!k(i)e_“’)x for x > 0, (4.15)

Let ® = {x(1),...,n(K),A(1),...,A(K)} be the vector of parameters. The trace
7 = (11,...,ty) corresponds to the observed data, such that #; are independent and
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identically distributed with the density

f(t;10) = Zn Vet A (k). (4.16)

The unobserved data is denoted by z; € {1,...,K}, i =1,...,m, which corresponds to
the Erlang branch that generated the trace element #;. Considering the whole observa-
tion .7 = (1,...,tn) and z = (z1,...,zx) the log-likelihood can be given as

m

logZ(®| 7 ,z) Zlog (zi) [ (8| A (2)))- (4.17)

Assume that © = {#(1),...,#(K),A(1),...,A(K)} is the current estimation of the
parameters, and Z is the random variable generating z;. Then the probability mass
function of the unobserved data z given the observed data .7 and the estimates O can
be computed by

ih@:q@m><m@>_ BOLGAED)

) Y a0 AGIAR)

q(z| 7.0) =[1a(zit.A(z)), (4.19)
=1

and the conditional expectation of the complete data log-likelihood is given by

E(log#(©|2,7)7,0)= Y 10gZ(®|z,7) q(z| 7,0)
ze{l, LK

q(klti, A (k) + Z Zlog filti| 2(0))) - q(klri, A (k).

(4.20)

~L

The maximization of the conditional expectation according to the parameters © is
performed in the M-step. In (4.20) the first term containing 7 (k) and the second term
containing A (k) can be maximized independently using the following closed-form for-
mulas [168, 47]

HM§

) s ¥ q(k| 1 A (k)
qk|t,A(k),  A(k) = ——— 4.21)
I .EIQ(k\fi,l(k))fi

™=

n(k) = %

In each iteration of successive E and M-steps the sequence of non-decreasing log-
likelihood values is generated until the algorithm converges to a local maximum.
In [168, 47] the two following convergence criteria were proposed. First the maxi-
mal difference of the values of the parameter vectors of successive iterations can be
considered. Secondly the relative difference of the log-likelihood values of successive
iterations is important. The EM algorithm for HErD fitting based on ® = (7(1), ...,
n(K), A(1), ..., A(K)) is presented in [168, 47] and is given below.

Note that if an aggregated trace [47, Sec. 3.1.1] of length m* < m is considered,
an efficient speed up of the EM algorithm can be achieved, such that the runtime
complexity is reduced from &'(mK) to &(m*K) which is independent of the PHD
order in both cases.
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Algorithm 4.2: EM algorithm for computing HErD (7,Dy) using .7 = (#1,... 1)

1: Choose initial parameter estimates ® = (#(1),...,#(K),A(1),...,A(K));

2: repeat

3 Compute the logarithmic form of the density function given by Eq. 4.15

4 fi(ti| A (k) = A (k) el DmA®R) -In(se=D=AK)i for all j =1,....m, k=1,...,K;

5. E-step: Compute the pmf of the unobserved data fori =1,...,m, k=1,....K
. 1 _ _#)fiti|A(K) .

6 qlk|tA (k) = Z_’,-‘:(u ff(/’)i‘jiti I(i)()j)) ’

7:  M-step: Compute (k) and A (k) that maximize the conditional expectation

Eq.4.20 fori=1,...,m according to Eq. 4.21;
8 Set®:= Q;

9: until described convergence criterion reached;

4.1.3. EM Algorithm for Transfer Matrices

In this section we consider an EM algorithm for computing the parameters of transfer
matrix H;; using a given trace .7j;. If we assume that PHDs (7;,D;), (7;,D;) of a
composition are given from a preceding PHD fitting step the EM algorithm computes
only the elements of the transfer matrix H;;. The proposed approach is the extention
of EM algorithms for the parameter fitting of PHDs and MAPs (cf. Sec. 4.1.2, [47,
38, Sec. 5.2]). Considering the whole trace .7;; with consecutive traveling times of
adjacent edges i, j the likelihood function is defined as

(k) (OFY
LM T)=m [] € "Hyeh P(-D)L (4.22)
", I_E-k> Ve

The optimal model parameters for the transfer matrix H;; satisfy

® ®p. i
H;‘j = argmax Tr; H i PiH; j ¢ Di di, (4.23)
ij (ti(k)v t](_k))ezj
such that conditions H;; > 0, H;;1 = —D;I, 7;M; H;; = 7; are satisfied, and
d = (-D))L
First the forward and backward vectors are defined. For the trace .7;; = ((t-(l) t(l)),

i 0
(t,-(z),tj-z)), e (tl-(K) ,tj(.K))), where the number of value pairs is K = Nj;, the kth obser-

vation corresponds to the value pair (ti(k),tj(-k)). Consider the forward variable f,([.k) (x)
defined as

£ =, i), (4.24)

which is computed using the partial absorption time ti(k) € (ti(k),tj(.k)) and phase x at
i(k). The forward value 4.24 is obtained as the joint density of being in phase x of
PH; at time 1" and initial distribution of the PHD PH;.

In a similar manner, the backward variable bff) (y) is defined as

time ¢

b (y) = & Dl (), (4.25)

Ij
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which is computed using the remaining absorption time t](-k) € (ti(k),tj(-k)) of the PHD
composition, given that the initial phase of PH; is y. The backward value (4.25) is

(k)

computed as the joint density of being in phase y of PH; directly after time ;" and

the probability of getting absorbed at time %, The corresponding vectors of the kth

J
observation are denoted as the forward vector f,(ik) and the backward vector b,(ik). The

expressions (4.24), (4.25) can be computed using the uniformization method described
in Sec. 2.1.2.

Let B(n, at) and matrices P;, P; be parameters computed using the uniformization
method (2.11), (2.13). Now we can use the forward-backward procedure to compute
the transition likelihoods between states of PH; and PH; in composition. The normal-
ized likelihoods are then used as estimates for the transition rates in the transfer matrix
Hi j-

According to the Poisson process we define the following vectors

V(O) = m; and V(”+1) = v(")Pi

wO —dl and WD) — pwl) (4.26)
forn=0,1,.... Then forward and backward vectors can be computed as
£9 =Y B(n, oty v, (4.27)
n=0

bY =Y B(m, o)y wm,
m=0

where the lower truncation points /;, /; > 0 and the upper truncation points r;, r; < oo
of the infinite sum can be pre-computed such that the required error tolerance € is
satisfied [162]. Now observe that the value

X®(x,y) = Pr(Xi(t1) = x, X, = y | 6, 19) € Zy, (m,Dy). (m;,D)), Hyy))

gives the likelihood of being in phase x of PH; at time ti(k)
t](.k), given the PHD composition model and the observed value pair (tl-(k),tj(-k)). The
above transition likelihoods can be estimated elementwise using forward and backward

vectors as

and phase y of PH; at time

X® (x,y) = £ (x)H;; (x, )b (v), (4.28)

for 1 <x<m, 1 <y<nj, and (ti(k),tj(.k)) € J;;. Summing over all pairs in the trace

J;; we obtain the expected value for transition likelihoods, such that

K
Y=Y x%. (4.29)

Yiry) =5 Y(xy), (4.30)
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which can be used as a new estimate for H;;(x,y). The initialization of the EM algo-
rithm for the transfer matrix parameter fitting should be performed with a valid matrix
H;; satisfying conditions H;; > 0, H; ;1= (—D;)I, -;M; H;; = ;. E.g., the initial trans-
fer matrix H;; = (—D;)Ix; can be used, which describes uncorrelated absorption times
of PH; and PH; in composition.

Additionally, the initial transfer matrix H;; can be computed using parameter fitting
methods according to empirical moments and correlation coefficient of the trace (see
Sec. 4.2). Finally, one can use methods described in Chap. 6 to compute the initial
transfer matrix maximizing the first joint moment of the PHD composition.

According to [38] the elements H;; (x,y) which are initialized with 0.0 or become 0.0
during the EM step will remain 0.0 because the elements X(*) (x,y) computed in (4.28)
will result in 0.0. This property enables us to perform computations with sparse matri-
ces H;; or with special structures within H;;. Then the fitted matrix H;; resulting from
this initialization preserves some predefined structure.

After steps (4.28)-(4.29) are computed, it holds that YI = (—D;)I and Y > 0. The
condition m;M; Y = 7 ' 1s usually not satisfied after one iteration of the EM algorithm.
Thus, an additional optimization step is required to guarantee that the resulting transfer
matrix assures the invariance of the initial distribution 7; within a composition.

Iterative EM Approach In the following we present a combination of the EM
algorithm and a non-negative least squares approach to obtain the transfer matrix Y’
from Y, such that the condition T M; Y = 7; holds.

In particular, to preserve the initial distribution 7; the transfer matrix Y has to be
repaired after each iteration or after a few iterations of the EM algorithm. This can be
achieved by solving the following non-negative least squares problem

. PPN

min ( v -Y ) : 4.31)
?'IY,ZO, Y,II?L JT[M,‘?,:TEJ‘

where Y is the matrix from the EM iteration and Y’ is the repaired transfer matrix
satisfying the initial distribution 7;. The defined optimization problem with equality

constraints minimizes the entry-wise Frobenius norm HSA(’ — SA(HZ. After solving the
repair step (4.31) a new iteration of the EM algorithm using the repaired matrix Y’ is
performed.

Since the EM algorithm is a local maximization algorithm generating a sequence
of estimates Y with a non-decreasing likelihood, the sequence may result in a local
maximum which often depends on the initial transfer matrix. Generally, the final es-
timate Y has a large likelihood, such that the repaired matrix Y’ will often result in
a decreased likelihood value. In principle, starting with the repaired matrix Y’ could
result in a different local maximum. The iterative EM approach using uniformization
method is summarized in Algorithm 4.3. The proposed EM algorithm uses the set

Tij = ((t.(l) t(l)),...,(t.(K),tJ(.K))) and two PHDs with representation (7;,D;), (7;,D;)

i 0% i
as an 1mput.

Examples and Experiments In the following we perform series of experiments
to validate the results from the EM approach. As mentioned above the EM algorithm
converges to a local optimal solution and is not guaranteed to find a global optimum.
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Algorithm 4.3: EM algorithm for computing transfer matrix H;;
1: Choose Hg-)) and set r = 0;
Compute f(l_k), b;j@ using (7;,D;), (7;,D;) in Eq. 427 fork=1,...,K;
repeat
Set H(()r) = Hg)/(x and compute X*) using H(()r) inEq.428fork=1,...,K;
E step: Compute the conditional expectation Y using Eq. 4.29;
M step: Compute Y") using Eq. 4.30;
Repair step: Set Y = a¥ (). Compute Y’ using Y in Eq. 4.31 and set
Y =Y r=rt1;
8: until [H) —H/V|| <&

9: Return Hl(jr) ;

A A

Mpz_ H%Z\H
M1
Ql P12
RN
/M1 /o0 1—pi
)vl(l_[”z) Q3
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A My

Figure 4.2.: The network of - /M /1 /e queues.

Often the quality of resulting transfer matrix depends on the initial transfer matrix
HE?). The same holds for the number of iterations which also depends on a number of
repair steps and is usually sensitive to the choice of randomization parameter o and
the stopping criterion [38].

We consider a simple queueing network simulation model to obtain correlated data.
From the data PH distributions are generated using the software tools gfir [168] and
Momfit [44]. Traces resulting from measurements and corresponding PH distributions
are used as input for the EM algorithm. For the trace containing about 10* samples the
runtime of the iterative EM approach for € = 1073 is in range from 5 to 25 seconds on
a standard PC.

To demonstrate the EM fitting procedure for transfer matrices we use a queueing
model [40] visualized in Fig. 4.1.3. The queueing network model is parameterized as
follows. It consists of three queues Q, O», and Q3. Arrivals to Q) are generated by a
MMPP with two states (see Sec. 2.5). The MMPP used in the queueing network model
is shown in Fig. 4.3.

Note that the matrix Dy is a diagonal event rate matrix with A; values on the diagonal.
If the Markov process is in state i, events occur according to a Poisson process with
rate A;.

The service time at Q is exponentially distributed. After leaving Q) an entity enters
with probability pi, the queue O,, and with probability p;3 = 1 — p1» the queue Qs.
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(a) A state transition diagram of a 2-state MMPP. . N .
(b) The infinitesimal subgenerator matrix Dy

and the event rate matrix D of the MMPP.

Figure 4.3.: The 2-state MMPP for the queueing network.

Service times at Q> and Q3 are also exponentially distributed. The probability p;> is
set to 0.99. The queue Q3 receives an additional Poisson arrival stream with rate A5.

The visualized MMPP generating the arrivals of Q; has a high arrival rate in state 2
and a low arrival rate in state 1. Furthermore it stays a long time in state 1 with a low
arrival rate which implies that the load of O, and subsequently Q> is low.

In state 2, O fills quickly such that customers are backlogged and waiting times
increase significantly. Thus many customers leave towards Q, which also fills up. The
effect of the high arrival rate on Q3 is marginal because the routing probability from
Q1 to Q3 is small. Thus, the sojourn times in Q; and Q; are highly correlated whereas
the sojourn times in O and Q3 are almost independent.

The PH-Graph corresponding to the queueing network model is shown in Fig. 4.1.3.
The sojourn time of O corresponds to the weight of the edge i in Fig. 4.1.3. Analo-

Figure 4.4.: The weights of the edges are modeled by queue residence times of Qj,
0>, and Q3 in the open queue network in Fig. 4.1.3. The edges ij, i with
correlated weights are highlighted.

gously, the sojourn times of O, and Q3 correspond to the weights of the adjacent edges
ip and i3, respectively.

In particular, the mean arrival rate of the MMPP is given by Eq. 2.94 and results in
A1 =0.0095. The service rate of Q; is u; = 0.1429, i.e., the service time is exponential
with mean 7. The service rate of Q» is ty = 0.0526, i.e., the service time is exponential
with mean 19. The service rate of Q3 is U3 = 5, i.e., the service time is exponential
with mean 0.2, and A, = 0.1429.

The proposed queueing network is implemented in the OMNeT++ simulator [92].
Then the measurements from the simulation model were recorded to the trace. From
this trace we consider first 14,300 samples for the fitting of PH distributions and trans-
fer matrix.

First three sets Jp,, Jp,, and Jp, containing measured sojourn times in queues are
extracted from the trace. Then, two sets 7p,0,, 70,0, containing all measured value
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Figure 4.5.: Sojourn times of entities traveling through queues Q;, 05, and Q3.

pairs of consecutive queues are extracted.

Example 4.1. [Fitting of PHD composition] Three traces Jy,, Ty, and Ty, are
used for fitting PH distributions of order 4 using the software tool gfit [168]. The
sojourn time of entities traveling through Q\ and Q; is correlated with a correlation
coefficient p = 0.1345 and the first joint moment (I = 1.2142. The sojourn times for

each queue are summarized graphically in Fig. 4.5.

One can see that the sojourn times in Q1 and Q» have large peaks and the cor-
relation between both sojourn times becomes visible. The sojourn time in Q3 is less
variable, such that no correlation with the sojourn time in Q1 or Q5 is visible. The
hyperexponential PHD PH;, defined in (4.32) describes the sojourn time distribution
of queue Q1. Whereas the hyper-Erlang PHD PH;, defined in (4.33) gives the sojourn
time distribution of queue Q».

—0.657 0.000  0.000  0.000
0.000 —-0.721 0.000  0.000
0.000  0.000 —3.429 0.000 ’
0.000  0.000 0.000 —4.717

m, = (0.414,0.195,0.185,0.204), D;, =

4.32)
—0.724 0.000  0.000  0.000
0.000 —3.534 0.000  0.000
7, = (0.5206,0.3858,0.0936,0). Diy = | o'000 0000 1085 1.085
0.000  0.000 0.000 —1.085
(4.33)
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Here the maximal achievable first joint moment is |} ; = 1.34, maximal correlation
coefficent is p* = 0.21 and the corresponding transfer matrix

0.5088 0.0 0.1482 0.0

p*=021 _ | 0.7215 0.0 0.0 0.0
1 0.0656 3.3635 0.0 0.0
0.0 47173 0.0 0.0

The PHD PH;, with m;; = (1) and D;; = (—0.9999) models the sojourn time distri-
bution of Q3 which is exponential because Q3 is a M/M/1 queue with a small additional

load from Q.
The PHD composition containing PH;, and PH,;, requires the transfer matrix H; ;,
to describe the correlation between the sojourn times along the edges iy and iy. We

used the trace Ty, o, as an input for the iterative EM algorithm 4.3. The matrix Y

resulting from the EM step and the approximation Y' resulting from the repair step are
given below

0.499648 0 0.157417 0O 0.508965 0 0.148109 0O

¥ = 0.335285  0.386282 0 0 v = 0.348646  0.372924 0 0
0 3.429211 0 (U 0 3.429212 0 0

2.581962  2.135355 0 0 2.418297  2.299020 0 0

The matrix Y) from the EM step results in the correlation coefficent p = 0.1296
and the first joint moment 1.2099. As expected, the condition 7, M;, Y") = m;, is not
satisfied.

The approximation Y' is then used as H;,;,, such that p = 0.1294 and the first joint
moment 1.2097 which are very good approximations of the values estimated from the
trace Jp,0, of the simulation model.

Note that the sojourn times in Q| and Q3 are uncorrelated. Thus the fitting of the
transfer matrix H;, ;, is not required to obtain the PHD composition containing PH;,
and PH;,. The uncorrelated transfer matrix can be obtained as H;, ;, = dill T

Example 4.2 (Fitting of Transfer Matrix). We use the hyperexponential PHD PH;,
defined in (4.32) as input. The PHD PH;, in canonical representation is obtained using
software tool Momfit [44] and is defined as

—0.8126  0.8126 0.000 0.000
0.000 —0.8629 0.8629 0.000
0.000 0.000 —1.7067 1.7067
0.000 0.000 0.000  —3.8052

(4.34)

The maximal achievable first joint moment is /J'il = 1.385, maximal correlation coef-

ficent is p* = 0.2339 and the corresponding transfer matrix

7, = (0.0483,0.2650,0.2358,0.4507), D, =

0.0765 0.4198 0.1606 0.0
p*=0.2339 0.0 0.0 0.4953 0.2261
i1 o 0.0 0.0 0.0  3.4292
0.0 0.0 0.0 4.7173

We computed the estimate of the transfer matrix using three different initial matrices
0 . . = i
HEI 22, namely the zero correlation matrix computed as Hf] I.ZO = dll' 71:1.’2,

. . *=0.2339 . =0.1129 ., .
correlation transfer matrix Hfl i , and the matrix Hfl i which is computed

using a fitting method according to empirical moments of the trace (see Sec. 4.2).

the maximal
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Log-likelihood values for different initial guesses of transfer matrix H
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Figure 4.6.: Log-likelihood values for different initial transfer matrices.

Queueing network trace )
Trace ZZO ﬁzo.1129 ﬁ ij0.2339
Pii, | 0.1345 0.0806 0.0622 0.1070
u{tl’z 1.2142 1.1375 1.1079 1.1802
W'y | 115112 8.927 8.4685 9.0546
Méig’z 233.7016 167.69 154.5642 160.5274
log-likelihood —1.730e+04 | —1.757e+04 | —1.743e+ 04

Table 4.1.: Moments and log-likelihood values for the queueing network simulation
trace for different initial transfer matrices.

Figure 4.6 shows log-likelihood value curves for different initial transfer matrices.
One can see the impact of initial transfer matrix on initial log-likelihood value and on
the convergence speed of the EM algorithm.

Table 4.1 contains the correlation coefficent, the first three joint moments of the
trace and log-likelihood values of the fitted transfer matrices when the EM algorithm
is initialized with three different transfer matrices. The repair step has been performed
ones for the final estimate.

Starting the EM algorithm with the initial matrices HEIOBZ B and 0 = Hfl 720'1 129
no significant correlation can be reached as shown in Tab. 4.1. However, the initial

(0)  1yp*=0.2339

transfer matrix H; s
12

iy = results in good approximations for the quantities of

the trace.
The results differ if different frequencies of repair steps are used within the iterative
EM approach. First, the EM algorithm is initialized with Hf.)l zo and a different num-

ber of repair steps is performed. Figure 4.7 shows the log-likelihood values resulting
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Log-likelihood values for different repair steps of initial transfer matrix H = 00
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Figure 4.7.: Log-likelihood values for different number of repair steps within iterative

EM approach for HEIOBZ = Hfl l:-zo.
Queueing network trace
Trace no repair steps | 3000 repair steps | 600 repair steps
Piyi, | 0.1345 0.0806 0.0798 0.1119
1“?71!2 1.2142 1.1375 1.1363 1.1882
,uétzlz 11.5112 8.927 8.7957 8.9916
us's | 233.7016 167.69 163.3031 162.6987
log-likelihood —1.730e 404 —1.731e+404 —1.732¢ 404

Table 4.2.: Moments and log-likelihood values for the queueing network simulation

trace for different number of repair steps using initial transfer matrix Hfl ZO.

for different frequencies of repair steps. One can see that different number of repair
steps result in different local maxima. Furthermore, the repaired transfer matrix often
results in a decreased likelihood value. Nevertheless, the estimate with a smaller log-
likelihood value can result in a better approximation of the correlation coefficent and
the moments from the trace. The results according to the quantities of the trace are
summarized in Table 4.2.

We also performed experiments using the initial transfer matrix with high correla-
tion coefficent

0.0765 0.4081 0.1722 0.0
HP=02245 _ 0.0 0.0 0.4682 0.2532
i 0.0 0.1362 0.0 3.2929 |’
0.0 0.0 0.0 4.7173
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Log-likelihood values for different repair steps of initial transfer matrix H = 0.2245
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Figure 4.8.: Log-likelihood values for different number of repair steps within iterative
EM approach for H”) = gP=-024

R) i1 iy

Queueing network trace
number of repair steps
Trace 0 10 300 3000
Pi iy 0.1345 0.1070 —0.0481 0.1741 0.0389
/,Lﬁl’2 1.2142 1.1802 0.9295 1.2886 1.0702
Ky'y* | 115112 9.0546 6.2133 9.9988 7.8254
py's? | 233.7016 | 160.5274 114.5717 176.8562 137.0110
log-likelihood —1.743e+04 | —1.758e+04 | —1.769¢+04 | —2.038e+ 04

Table 4.3.: Moments and log-likelihood values for the queueing network simulation

trace for different number of repair steps using initial transfer matrix
0=0.2245

i1ip

which has been obtained using two phase fitting approach and results in p;, ;, = 0.2245.
Figure 4.8 shows the impact of different frequencies of repair steps for Hglol-)z = Hfl 20'2245
The results according to the quantities of the trace are summarized in Table 4.3. One
can see that larger number of repair steps not necessarily results in a better log-
likelihood value.

For example, the transfer matrix which has been repaired in each iteration results in
the smallest log-likelihood value. Although the number of iterations is high, only un-
satisfactory approximation of correlation from the trace can be obtained. In contrast,
already 30 repair steps could be an adequate choice to obtain a good approximation
of the correlation coefficent and higher order moments.
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4.1. TRACE-BASED FITTING METHODS

Since the proposed iterative EM approach is a heuristic the number of repair steps
resulting in the optimal solution cannot be determined exactly. However, a good strat-
egy is to start with repair steps after few EM iterations. Then, repairing a transfer
matrix can result in a different local optimum.

EM Algorithm for Extended Composition The PHD composition with repre-
sentation ((7;,D;), (;,D;), H;;) can be extended when additional correlation between
PH;, PH; should be added. The composition process starts in some initial state x with
probability m;(x). Then the process moves along the paths of the first Markov chain
{Xi(1)};2( until some initial state of the second Markov chain {X;()};2 is reached.
Afterwards the composition restarts in some initial state of the first Markov chain
{Xi(r)};2, and the process iterates. Thus the transfer matrix H; describes transitions
corresponding to the occurence of an event in the second Markov process. The ex-
tended composition can then be defined as

((m:,Dy), (m;,D;), Hyj, Hj). (4.35)

In that case different traces could be used to compute parameters of the PHD compo-
sition. The trace .7 is described by a sequence of m chronologically ordered points in
time (¢}, tjz, £, t;‘, ... ,tl-”’_l, t}”), such that the pairs (#¥, tj-‘“) and (tf, tf“) are corre-
lated fork=1,...,m— 1. From the above trace the measurements w;; = ( (i,#;)n, (j,;)n )
and wi = ( (Jstj)ns (i,1i)n ) can be constructed for n = 1,...,[m/2] (cf. Sec. 4.1.1).
Then the trace .7j; contains value pairs (tiyt j) which appear in wilj , and the trace .7;
contains value pairs (7;,;) from wil,

For the computation of the parameters for the transfer matrix H;; the Algorithm 4.3
with the trace .7;; can be used as described in Sec. 4.1.3. The parameters of the sec-
ond transfer matrix Hj; can be also determined using the EM-algorithm 4.3 with the
trace .7j; and by reversing the order of PHDs, such that ((7;,D;), (m;,D;), Hj;) is the
resulting PHD composition. Note that in this case the likelihood function is computed
for every trace entry separately as defined in (4.22).

It is in principle possible to interpret the extended composition as a MAP with rep-

resentation
_[D; 0 | 0 Hj;
DO_[O DJ]’DI_[Hﬁ 0]'

In that case the two phase iterative EM algorithm for MAPs (see [47, Sec. 5.3.3]) can
be used to compute parameters of the above matrix D;. The parameters D;, D; are
assumed to be precomputed from the previous PH fitting step, such that only elements
of Dy, i.e. of H;; and H}; are determined.

Observe that the likelihood function of the extended composition can be defined
considering the whole trace

ml k1
E(Hij, Hj,' ’ 9) =T H i Di H,‘j éi D; Hj[. (4.36)

k=1
For evaluating of (4.36) the forward-backward procedure defined in EM algorithm for
MAPs (see [47, Sec. 5.2]) can be in principle used. However, in that case both condi-
tions m;M;H;; = m; and @; M;H; = m; will usually not hold and should be repaired
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after each EM iteration. The further drawback is the high computational effort of the
resulting fitting procedure. Like in the EM algorithm for MAPs forward vectors all
have to be precomputed and stored. For very large traces this means a huge number
of vectors have to be computed and a high amount of memory is needed to store the
vectors.

4.2. Two Phase Approaches

Fitting methods directly using the complete trace often have a high complexity, since
traces can be very large containing up to a million or more entries. In turn, fitting
algorithms based on derived measures are usually much more efficient. Indeed they
are limited to an information according to a concrete statistical measure, but avoid an
increased computational complexity and instability. In the case when, e.g. parameters
of a MAP should be computed, it can be fitted to a process given by its empirical
density function of the inter-arrival time distribution and by the lag correlation of the
trace.

In this section we consider two phase fitting approaches for determining the param-
eters of a transfer matrix. The methods are based on two phase fitting approaches
for MAPs where first the parameters of a PHD with representation (7,Dy) are com-
puted. Similarly to MAPs, in the first step the parameters of two PHDs in composition
with representation (7;,D;), (7;,D;) are determined. Here various fitting methods for
PHDs can be applied (see e.g. [10, 30, 93, 108, 168, 47]). Generally, PHD fitting al-
gorithms can handle different input data. The approaches described in [10, 168, 108]
fit PHDs to a trace. The algorithms from [30, 93] consider pdf, cdf, and the trace. The
moments based fitting algorithm from [90] determines parameters of a PHD, such that
up to three moments can be matched.

In the second phase of the MAP fitting approach, the parameters of the matrix D; are
determined, such that the inter-arrival time distribution of MAP remains unchanged.
This requires that 7 is the stationary distribution of the resulting MAP with represen-
tation (Do, D). Furthermore the lag correlation function of the resulted MAP approx-
imates the correlation of the inter-arrival times collected in the trace.

Similarly to the MAP fitting approach, in the second phase the matrix H;; of PHD
composition is constructed. Therefore the matrix H;; should be parameterized in order
to satisfy conditions given in Eq. 3.2, 3.3 Furthermore the correlation function of the
resulting composition with representation ((7;,D;), (7;,D;), H;;) approximates the
correlation of the edge weights collected in the trace .7j;.

In the following we first present two phase fitting algorithms for MAPs according to
the joint moments and the autocorrelation which are briefly described in [45, 96, 47].
Then we describe the adapted two phase approach for fitting of a transfer matrix H
according to the joint moments and the correlation coefficient.

4.2.1. Joint Moment Fitting of MAPs

For joint moment fitting of MAP (Do, D) matrices Dy and D; are constructed in
separate steps. First, the matrix Dy and the vector & are determined using algorithms
for fitting PHDs.
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In the second step, the matrix D is determined such that lag correlation function
of the resulting MAP approximates the one of the trace. Therefore the following
conditions have to be satisfied to ensure that the inter-arrival time distribution de-
termined in the first step remains invariant, namely D; (i, j) > 0, DI = —Dyl, and
n(—Dy)~'D; = & as described [45, 96].

We can formulate the linear system of equations considering these constraints [45,
96, 47]. Let x be the column vector of size n%, which is composed by the columns of
the matrix D as shown below:

{Di 1
D= {Di}; {Di}2 ... {Di}, ] withx= {D:I}z 4.37)
{Dl}n

where {D; }; denotes the ith column of D;. The coefficient matrix .27 and the column
vector b encode the necessary conditions as follows:

x|z , (4.38)

'Q{2n xn2

where W = M, such that the first n rows of <7 correspond to the condition given in
Eq. 2.87, and the other rows correspond to the second condition 7(—Dg)~!D; = 7.

A proper matrix Dy, i.e. the corresponding vector x, satisfying necessary constraints
is the solution of the following system of linear equations and inequalities

dx=h, x> 0. (4.39)

Observe that the «/x = b is determined for n = 2 and under-determined for n >
3 [45]. In the last case, e.g. the simplex algorithm can be used to solve the prob-
lem (4.39).

Non-Negative Least Squares Problem Assume that some joint moments fi;;
from the set of measured joint moments _# should be matched by the matrix D;. In
this case the fitting problem can be written as the minimization problem [96, 47]:

2
. Hij )
min E i —— — DB . 4.40
Dy (i.j)>0,D 1=—Dy1,7MD; =7 <ﬁ,.j€ /< ! fui; i ) (4-40)

In Eq. 4.40 (m,Dy) is a representation of a PHD that is expanded to a MAP representa-
tion (Do, D) with i, j-th order joint moments g;;. The set # contains joint moments
which have to be approximated. The non-negative coefficients 3;; can be used to priv-
ilege some of the moments.
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The exact solution of the Eq. 4.40 is found if the minimum becomes zero. Otherwise
an approximation in terms of the Euclidean norm is determined.
The i, j-th order joint moment for two consecutive events of a MAP is given by

wij = E[X],X3] = itj!xM" Dy ML (441)

Letting x' = zM*! and y/ = M/Il the i, j-th order joint moment can be expressed as a
linear constraint

Hij = Z Z X' (k)Dy (k,m)y’ (m). (4.42)

=1m=1

Assume we are interested in the first order joint moment

it = E[X;, Xi11] = 7(~Do) " 'Py(~Do) 'L
The splitted vectors result in x' = 7(—Dg)~!(=Dg) !, y! = (—Dp) 1. The resulting
linear condition (4.42) can be concatenated to the matrix <7 and vector b as shown

below [96, 47].

[ Luxn | [ x| [n ] 77T 1 [ ]

d

x | =

v "
[ xoy0 | [ @y m | o [ x¥wym 1] L ] Lo
—— N —

D (1) n X2 boyt1

(4.43)
Here the coefficient B is set to one. Observe that (4.43) is a non-negative least squares
problem with n? variables and 2n linear constraints which can be solved with standard
algorithms for non-negative least squares problems [47, 116].

4.2.2. Joint Moment Fitting of Transfer Matrices

We adapted the described fitting method for MAPs from Sec. 4.2.1 to compute the
parameters of the transfer matrix H. In the second fitting step, we start with two PHDs
(m;,D;), (7;,D;) that are the part of composition ((;,D;), (7;,D;), H;;). The matrix
H;; has to satisfy the following two conditions to maintain the PHDs determined in the
first step, namely H; ;1= —D;I, and ni(—Di)*lHij = 7; as given in (3.2), (3.3).

We can formulate the constraints as a linear system of equations. Since the transfer
matrix is of dimension n; x n;, the vector X is a column vector of size n;n;, which is
composed similarly to (4.37)

{Hijh
. {Hij}2
Hij: [ {Hij}l {Hij}Z {Hij}n ] with x = .

75



4.2. TWO PHASE APPROACHES

where {H;;}; denotes the ith column of H. The coefficient matrix ./ and the vector b
can be rewritten as

[ ]n,-><n,- } [ ]n1><11,- ] [ In,-><n,~ ]

dx =N @

- SN~——
%("i+”j)><("i”j) b(}zi+n/)
X(njn ;) ’

L

where y; = mM; and d| = (—D;)I. The first n; rows of 7 correspond to the first
constraint H;;1 = —D;Il, and the second n; rows are added according to the condi-
tion m;M;H;; = m;. A proper H matrix which can be obtained from vector x satisfy-
ing (4.39).

Assume now that joint moments [ftl’jl from the set of measured joint moments _Z;;
should be approximated by PHD composition containing H. The fitting problem can
be formulated as the optimization problem [96, 47]:

k! :
min Yy (Bk,z A;{,—Bk,l> : (4.45)

H;;(i,j)>0, HI=—H1, ;MH;;=n; \ ! <
1 (R Y] ] :uij e(/ij ij

where uik]?l is the &,/ order joint moment of PHD composition ((7;,D;), (7;,D;), H;j)
(see (3.6)). The joint moments of two consecutive absorption times in PHD composi-
tion can be derived using moment matrices M; = (—D;) ™! and M; = (—D;) ! of the
corresponding PHDs

whh = E[xf, X!) = kim MEH; MUT,

which can be expressed as a linear constraint

W' = Z Y X () Hi;(rm)y' (m), (4.46)

r=1m=1

where x* = niMi-‘“ andy' = M?][. The above expression for uikj’l (4.46) can be plugged
in for /.Likj’[ in the minimization problem (4.45).

We now consider how the first joint moment can be expressed as a linear con-
straint in detail. The first order joint moment of two consecutive absorption times
in PHD composition ((m;,D;), (7;,D;), H;;) is given by [.Ll-lj’l = m;M?H;;M,L. The
splitted vectors are x' = 7;,(—D;')(=D;") and y' = (=D;")I. Then the linear con-
straint (4.46) can be concatenated to the matrix 7 and the vector b from Eq. 4.44 as
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follows

d

7T.

’—Hfl J

XY | @Yo | | X )y ) ] alt
(it 1) () Xoinp)  Byinji)

(4.47)

where the weight f3; ; is set to one. The resulting problem (4.47) is a non-negative least
squares problem with n;n; unknowns and n; +n; + 1 constraints. The problem can be
solved with standard algorithms for non-negative least squares problems [116].

Example 4.3. We consider again the trace I, g, from the small queueing network
model in example 4.1. The set Ty, o, contains measured sojourn time pairs of con-
secutive queues. The estimated first joint moment of the trace is Il = 1.2142, and the
sojourn time of entities traveling through Q| and Q; is correlated with correlation
coefficent p = 0.1345.

Furthermore the sets Jp,, Jp, contain the measured sojourn times in queues. Fol-
lowing PHDs have been fitted to the traces Jp,, Ty,

—0.657 0.000  0.000  0.000
0.000 —-0.721 0.000  0.000
0.000  0.000 —3.429 0.000 ’
0.000 0.000 0.000 —4.717

—0.724 0.000  0.000  0.000
0.000 —3.534 0.000  0.000
0.000 0.000 —1.085 1.085
0.000  0.000 0.000 —1.085

7, = (0.414,0.195,0.185,0.204), D;, =

7, = (0.5206,0.3858,0.0936,0), D;, =

We formulate the following linear system of equations. The coefficient matrix </ is
of dimension 9 X 16 and results in

[ Laxa Laxa Iaxa Laxa
v, 0 0 0
0 " 0 0
0 0 Wi 0o |
0 0 0 "

L VAl Y /) 73 Zy |

where the vector y;, = m; M;, = [0.6313,0.2714,0.0540,0.0433] and 0 is the 1 x 4
vector containing zeros.

The linear constraint according to the first joint moment corresponds to the last row
of the matrix <. In particular, the row vector x' = [0.9608,0.3761,0.0157,0.0092]
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and the row vector y' = [1.3802,0.2830, 1.8421,0.9211], such that

z; =[1.326, 0.519, 0.021, 0.012],
2, = [0.271, 1.77, 0.692, 0.029],
23 =[1.77, 0.692, 0.029, 0.016],
z4 = [0.885, 0.346, 0.014, 0.008].

Furthermore, the vector
b = [0.6571,0.7216,3.4292,4.7173,0.5206,0.3859,0.0935,0,1.2142]',

where the first 4 values correspond to the exit rates of the PHD (m;,,D;,), the next
4 values correspond to the m;,, and the last value is [l = 1.2142. The problem has
been implemented in matlab where the function lsqnonneg has been used to obtain the
transfer matrix H; ;,
0.5090 0 0.1481 O

0.3617 0.3599 0 0

0 3.4292 0 0

2.3363 2.3811 0 0

The matrix H;, ;, results in the correlation coefficient p = 0.1322779 and the first joint
moment |11 | = 1.2142 which is a very good approximation of the p = 0.1345 estimated
from the trace 9, ¢,.

4.2.3. Autocorrelation Fitting of MAPs

In a two phase approach fitting of a given number of lag k correlations can be incorpo-
rated. In this section we present how this fitting method can be expressed as a linear
constrained non-linear optimization problem from [96, 47]. In the second phase the
given PHD with representation (7,D) should be expanded to a MAP (Dy,Dy), such
that the lag k autocorrelation coefficients of the MAP approximates lag k autocorrela-
tion coefficients Py, k =1,...,K of some observed process.

In the following we summarize an exact lag 1 correlation fitting problem described
in [96]. First observe that the formula for lag 1 autocorrelation in Eq. 2.93 can be

expressed in terms of arrivals intensity A = L as

ﬂ(*D())i 1

_Am (—Do) *D; (—Dg) 11
2221 (—Dg) 21—1 '

p1

Using m = (—Dyg) "' I the above term can be reformulated as

A27(~Do) *Dim = p; [ﬂm(-no)*z 1-1]+1,
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which can be concatenated to the matrix .7 and vector b as

i [Inxn] [Inxn] [Inxn] i i i i i
d
. x | = . (4.48)
'71[/ T
[ m)e | [m@o | o [me |] [ | |o]
~~ ~—— ~——
‘Q{(ZnJrl)xnz X2 b2+ 1

where ¢ = A27(—Dg) 2, and m(i) is the i-th element of the vector m. The right
hand side is denoted as @ = p; [}»22%(—D0)72 I-—- 1} + 1. Observe that p; is the
lag 1 autocorrelation coefficient which has to be approximated by the expanded MAP
(Do,Dy), and can be often estimated from the trace.

In the case where more lag k autocorrelation values should be matched, the fol-
lowing optimization problem with linear constraints given in Eq. 4.39 can be defined

K
. min ( B (px —ﬁk)2> : (4.49)
Dl(l,J)ZO,Dl1:7D01,TC(7D0)71D1:TC =2

The problem (4.49) is the squared difference between lag k autocorrelation coefficients
of the observed process and the fitted MAP. The lag K is the largest autocorrelation
coefficient that should be matched, and weight f3; is used to privilege lower lag auto-
correlations.

As mentioned in [96] higher higher lag autocorrelations result in non-linear con-
straints. For example the lag 2 first order joint moment

EI:X[,X[+2:| = ﬂ(—DQ)_IPE(—DQ)_I][

would lead to a term containing squared elements of the matrix D [47].

4.2.4. Correlation Fitting of Transfer Matrices

Similarly to the autocorrelation fitting of MAPs described in Sec. 4.2.3, the exact cor-
relation fitting of transfer matrix H;; represents a linear constrained non-linear opti-
mization problem.

We start with two PHDs with representation (7;,D;), (7;,D;) which are computed
separately. In the second phase the matrix H;; has to be constructed, such that the
correlation function of a composition ((;,D;), (7;,D;), H;;) approximates the one
of the trace. In particular, the correlation of a composition can be defined as a linear
constraint. According to formula (3.8) we obtain

EiMIZHiij][— [(ﬂ',‘M,'][) . (ﬂij]I)]
Vv (2m (=Di) 21— (m (-D;)"")?) - /(27; (-D;) 20— (m; (—D;)~'1)?)

Let 67 = (2m; (M;)*1— (m;M,1)?) and 67 = (27; M31— (m;M;1)?). Then the expres-
sion

Pij =

Pij\/ Giz Gj2 = ﬂiMizHl‘ij][* [(ﬂ',M,][) : (NJMJ]I)]
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can be rewritten as a linear constraint
O, f = pij (/07 07 + [(m M) - (m; M;T)] (4.50)

where f = (—D;)L, and ¢ = m;(—D;) "' (—=D;) "I Let @ denote the right hand side of
Eq. 4.50 which can be concatenated to the matrix .27 and vector b as

i [Ini><n,- ] |:Iﬂi><l’l,‘ ] [Ini><ni ] I [ |

Vi d
v | e Cwsh

n.
’

| e || r2)e | fope |1 L ] | e

~~ e e

) Xinj)  Pluyinj1)

where f(i) is the ith element of vector f. The @ contains the correlation coefficient
pij from the original process which can be often estimated from the trace .7;;. The
problem (4.51) is a non-negative least squares problem with n;n; variables and n; +
n;+ 1 linear constraints, and can be solved using standard algorithms for non-negative
least squares problems [116].

If more lag k correlation values should be matched, the fitting problem is a linearly
constrained non-linear optimization problem with linear constraints given in Eq. 4.44.
Assume that lag k correlation coefficents ﬁl’j should be matched, such that K is the
largest lag correlation coefficient. The fitting problem can be formulated as the fol-
lowing minimization problem

K 2
: k _ Ak
= Pi; . 4.52
Hij(iaj)zosHijlllllnDilv”iMiHij:nj <k2ﬁk <plj plj) ) ( )
In the problem (4.52) the weights fB; can be used to priviledge either the lower lag k
correlation or the higher lag k correlation coefficient.

Example 4.4. Analogously to example 4.3 we used the traces Ty,, T9,, J0,0,> and
PHDs (m;,,D;,), (m;,,D;,) to fit the transfer matrix H;, ;,. We solve the problem (4.51)
using matlab function lsqnonneg. The resulting transfer matrix is

0.5145 0.1426 0 0

o _| 07 o0 0 0

T 00 1.6964 17324 0.0003
0 47173 0 0

The matrix H;, ;, results in the correlation coefficient p = 0.102288 and the first joint
moment (1| = 1.165641 which are both very good approximations of the values p =
0.1345, and f1; 1 = 1.2142 estimated from the trace 9, ¢,

80



CHAPTER 4. FITTING ALGORITHMS

4.3. Summary and Remarks

Prior work has shown the effectiveness of methods to fit the parameters of PHDs ac-
cording to some measured data. For example, EM algorithms can be applied to fit
PHDs efficiently and guarantee good fitting quality, even for complex empirical den-
sity functions. We refer to [47] for PHD fitting methods according to pdf, cdf and a
given number of moments of trace. These and other existing fitting techniques form
a solid basis for obtaining parameters of PHDs in composition. However, fitting the
parameters of transfer matrices according to some paired trace data .7;; has not been
focused in the context of PHG parameter fitting.

In this chapter we adapted the EM algorithm from the area of PHD and MAP pa-
rameter fitting. The approach is an extension of iterative approaches considering the
whole trace data which means that the effort is proportional to the uniformization
method over value pairs of the trace. Consequently, its effort can be very high when
large traces are used, e.g., with up to 10° value pairs.

Furthermore, the EM algorithm requires an additional optimization since the quality
of the resulting transfer matrix is usually not satisfactory with respect to PHD com-
position. Specifically, it is not guaranteed that the initial distribution of the successive
PHD in a composition is valid when the resulting transfer matrix is used.

However, after repairing the transfer matrix the EM algorithm often stucks in local
solution areas which is actually typical for expectation-maximization approaches. In
particular, it is not yet clear which initial transfer matrix and which PHD representa-
tions are best suited for some given data set. The adapted EM algorithm is applied to
an example trace resulting from the queueing network simulation model. Our results
provide transfer matrices which capture the trace correlation very well.

In addition, two phase fitting approaches for MAPs are adapted. Two phase methods
start with fitting of both PHDs in a composition and then compute parameters of the
transfer matrix according to joint moments or correlation coefficients from the trace.
Although the efficiency of these methods has been shown several times in literature
(see [47] and references therein), the representation of two PHDs has large influence
when fitting a transfer matrix. Note that PHD representation is non-unique. Entries
in PHDs (m;, D;) and (7;, D;) put constraints on the representation of transfer matrix
H;;, such that the range of the first joint moment that can be fitted is usually limited.
We investigate this aspect in Chap. 6.

It should also be mentioned that estimation of correlation from a trace is a non
trivial task. First, real world traces are often not available, such that using traces from
simulation models seems to be indispensable. Furthermore, it is not yet clear which
data set is correlated if only poor information about correlations is available.
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Chapter

Solutions to SSPP with correlated edge weights

In this chapter we develop a CTMDP based on the PHG model that can capture corre-
lations between adjacent edge weights in stochastic graphs. The PHG model aims
at decoding information about existing correlations for the whole stochastic graph
according to a real or simulated system under consideration, e.g., simulated routing
graph. In this chapter we formulate problems arising in the SSPP context in terms
of decision problems in CTMDPs. Different algorithms and their variants to compute
optimal policies for CTMDPs are described.

First we consider the computation of a path with minimum expected weight starting
in the origin and ending in the destination node. Then we add a solution technique
considering a history of realized edge weights along the covered path.

The other challenging problem for SSPP with correlations is to compute the path
that has the maximum/minimum probability of reaching a destination within a given
time horizon. This results in the problem of computing the maximum/minimum prob-
ability to reach a set of goal states within a given time bound in CTMDPs which is
a well studied problem [127, 49, 131, 42]. We present a numerical method based
on discretization to compute and to approximate the maximum/minimum gain vector
per state in a CTMDP for a finite interval [0, 7] which is an adaptation of the algo-
rithm [127] to compute the accumulated reward in a CTMDP over a finite interval.

In the following the model concept including the CTMDP extension of the PHG
model is introduced and it is shown that efficient solution techniques for the SSPP
with correlations based on the developed model can be applied.

5.1. SSPP formulation of the PH-Graph model

In this section describe a SSPP formulation associated with a PH-Graph (V,E,P) in
order to solve the stochastic shortest path problem with correlations based on [40].
Then the stochastic shortest path problem in stochastic graphs with dependent edge
weights can be efficiently solved using algorithms for CTMDPs. In particular, we
build an undiscounted CTMDP with a single absorbing state such that the optimal
policy minimizes the expected total reward of reaching the destination vy;, from the
origin vip;.
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CHAPTER 5. SOLUTIONS TO SSPP WITH CORRELATED EDGE WEIGHTS

The states of the CTMDP are described by tuples (i,x) wherei € E andx € {1,...,n;}
is a phase of the PHD assigned to the edge i. The set of transient states can be formal-
ized as

S ={{,x)|VieE, xe{l,....n;}}. (5.1)

The set of absorbing states contains a single absorbing state denoted as (0,0) which
corresponds to the destination v ;,, such that .74 = {(0,0)}. Then the state space is
defined as . = .9 U.%4 and contains Zlill n; + 1 states.

In particular, for some state (i,x) the choice of the successor edge j € ie is associated
with an admissible decision u. Let Z(i) be the set of possible decisions for a current
state (i,x) which only depends on the edge i and not on the current phase of the PHD
PH;. Then

~ J {jljeie} ifie+0,
70) = { {0} if ie = 0. (5-2)

Let Q“((i,x), (j,y)) be the transition rate from the state (i,x) to the state (j,y) if the
decision u € Z(i) is made. It holds that

Q“((i,x), (i,x)) = — Z Q“((i,x), (/,y)) (5.3)
(EZ,(Jy)#(ix)
Then the infinitesimal subgenerator Q“ prescribes the transition rates for successor
states as follows.
Di(x,y) ifj=i,i>0
. . H;,(x,y) ifj=u,ucie i>0,u>0
u _ U\t 3 ) )
Q ((l,x),(],y))— d’l(x) iszOandyzO
0 otherwise.

54

The absorbing state (0,0) has a single decision u € Z(0) such that the transition rates
are Q“((0,0),(j,y)) =0 for all (j,y) € .. Note that the absorbing state is reached
when some edge i € Ey;, has been traversed and thus can be interpreted as the destina-
tion v fin-

Given the set of transition rates 2 = {Q"((i,x), (j,»))|(i,x),(j,y) € L u € (i)}
the CTMDP described can be transformed into a DTMDP using the method of uni-
formization (see Sec. 2.1.2). The uniformization rate o is selected such that o >
max; ye.» (Max,eq ) (|Q“((i,x), (i,x))|)) holds. The entries of the transition matri-
ces of the embedded Markov processes are then defined as

QUGG e (R ()
Pi((), (79)) = { L Q (. o)/ i) = (1) O

such that for each u € Z(i) the matrix P* is stochastic.
The expected rewards for all states have the same unit value (cf. Eq. 5.22)

wo +_J 1 forall (i,x) € 7, ue 2(i),
r(i,x) _{ 0 for (i,x) = (0,0).

H

(5.6)

Now consider a stationary policy u which assignes a decision rule u(i,x) € Z(i) to
each state (i,x) € .. Then the transition probability matrix P" of dimension |.¥| X
|-7| is defined by (cf. Eq. 2.34)

P (i), (o) = POV ((0,%), (7,3))- (5.7
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Observe that in the case where the policy u is improper, the absorbing state (0,0) can
never be reached from some states, i.e. the total expected reward of that policy from
some states will be infinite. In that case some component of the sum Y72 ,(P*)'r"
diverges to oo as t — co. On the other hand, for every proper policy u these rewards are
expected to be finite for every state. In this case a policy u reaches an absorbing state
with probability 1, i.e. a policy is guaranteed to eventually reach an absorbing state.
Then the sum Y;2 ((P*)'r" is finite such that the following matrix exists

oo

N =(1-P")'=) (P, (5.8)
t=0

where the value N"((,x), (j,y)) is the mean number of visits of state (j,y) before the
absorbing state is reached starting from state (i,x) [105, 40]. We define for the proper
policy u

E'ix) =} N™(i,x),(j.) (5.9)

(jy)es

as the mean number of steps until absorption starting from (i,x). Note, that matrices
P“ have been obtained using uniformization with rate & as given in Eq. 5.5. Consider
now the CTMC induced by the proper policy u applied to the CTMDP. Then the scaled
value % is the expected total time spent in transient states before absorption if the
process starts in state (i,x), i.e. it is the expected path weight corresponding to the
policy u.

Note that the existence of at least one proper policy is required in SSPP MDP (see
Sec. 2.3.3). Since the matrix D; of a PHD PH; is nonsingular, the absorption occurs
with probability 1 (cf. Eq. 2.1). Consequently, the PHD PH; for each edge i is eventu-
ally left. Thus starting from arbitrary edge i € E;,; on the path leading to v;, the path
to the absorbing state (0,0) exists which satisfies the requirement.

Example 5.1. Consider the stochastic graph highlighted in grey in Fig. 5.1. The edge
weights are described by hyperexponential PHDs of order 2. The absorbing state
corresponds to the destination v3. In states (iy,1), (i1,2) two successor edges exist
such that P(iy) = {i2, i3}. Furthermore, it holds that 9 (i) = P(iz) = {0} since
io, i3 € Efin. The transition probabilities for successor states of the states (iy,-) are
given as

P — 0.9231 0 0.0769 0 P — 0.9231 0 0.0461  0.0307
0 0.1373 0 0.8627 ’ 0 0.1373  0.5176  0.3461 '

The transition probabilities for the states associated with edges i, and i3 are given as
P°((ip,1),(0,0)) =P°((i3,1),(0,0)) = 0.0667,
P((i2,2),(0,0)) =P°((i3,2),(0,0)) = 0.3333,
P%((ip,1),(i2, 1)) = P°((i3,1), (i3,1)) = 0.9333,
P%((i2,2),(i2,2)) = P°((i3,2), (i3,2)) = 0.6667.

13,
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0.9231

0.0769
0.9333

Figure 5.1.: Example for the SSPP of the PH-Graph with v;,; = vy and v, = v3.

5.2. Analysis of Paths in PH-Graphs

In section 3.2 we defined the absorbing CTMC corresponding to a path (iy,...,ig) in
a PH-Graph as given in [40]. The subgenerator matrix Qy;, . ;) defined in Eq. 3.17
contains nonsingular matrices D; on its diagonal and thus is a nonsingular matrix. Then
the matrix (—Q;, ))_1 is the fundamental matrix (cf. Def. 2.4) of the absorbing
CTMC corresponding to the PHG path. The entry (—Q(;, ;)" ((i,x),(j,y)) gives
the expected total time spent in state (j,y) before absorption given that the initial state
is (i,x) [40]. Then the ith moment of the weight of the path is given by [40]

W o =AML (5.10)

.711() 5 ..,l[()

where M(;, i) = (—Q(,-lw,,,-K))*1 is the moment matrix and the initial distribution
vector 7 is defined in Def. 3.2.
The probability that the path weight is less or equal to w is given by [40]

Fiir. iy (W) =1 —me” Qrio) L (5.11)

i1yiK

Depending on the application context, the first moment of the path weight ;)
can be interpreted as the mean traveling time along the path or as the mean duration
of the ruin process or as the mean strength of the connection between two nodes in
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5.2. ANALYSIS OF PATHS IN PH-GRAPHS

a stochastic graph. Correspondingly, F{;, . ;(w) is the distribution function of the
traveling time along the path to a destination.

Note that the evaluation of the matrix exponential (see Eq. 2.9) in Eq. 5.11 can be
computationally unstable such that the method of uniformization is used here to obtain
an accurate numerical solution for the probability density function in Eq. 5.11 (see
Sec. 2.1.2).

Given the subgenerator Q;, ;) the corresponding CTMC can be transformed into
a DTMC using the uniformization method described in Sec. 2.1.2. The uniformization
rate o is selected such that o« > max; e # (|Qqi, ....ix) ((i,X), (i,x))]). Then the matrix
=Q;,...ix)/ & +1is the transition probability matrix of the embedded Markov
process as described in [40]. The fundamental matrix of the absorbing DTMC is then
defined as [40]

Qqiy.....ix) 1

Niiy, i) = E=P, i)™ = (1= Y )= (—Qm,...,m)a)*l =Mi,,....ix) -
(5.12)
The probability distribution function is then given by [40]
Caw o (0w)"
Fliy,._ iy (W) =1 (”e - Zb 1 Plit,in) | T (5.13)
n=

such that the sum in brackets need to be truncated. Finite truncation points can be
pre-computed (cf. Eq. 2.14) to achieve the required error tolerance.

Now assume that edge weights are interpreted as traveling times. Then we are given
a vehicle traversing a path (iy,...,ix) from the origin v;,; to the destination node v Fin-
The vehicle only knows the PHD of the edges along the path and the existing depen-
dencies between the edge traveling times. Every time the vehicle reaches a destination
node fin(i;) of the edge k, k € {1,...,K}, the realization of the PHD random variable
X;, is known. As the vehicle has passed through the subpath (iy,...,i;) for [ < K, the
realized traveling times (wy,...,w;) become known to it. Then the history vector as
defined in [40]

-1
D; D;
Y wieeizwr) = Ty (He " Hj, ik+1> e (5.14)
k=1
gives the conditional distribution after passing the edges (ij,...,i;—1) with weights
(w1,...,w;_1) and having accumulated weight w; at edge i, i.e. it gives the distribution

among the states of PHD PH; immediately before leaving the edge i;. In the case that
w; = 0, the history vector gives the conditional distribution immediately after entering
the edge i;.

Again, the evaluation of the matrix exponential is required in equation 5.14. Using
the uniformization method first the transition probability matrices P;, can be evaluated
as described in [40]

P, = Q; /oy, +Iwith o, > max,(|D;, (x,x)|).

Then the history vector can be computed as given in [40]

l—] 0w Sl i Wi n n Hi i
W(il,wl,.“,ihwl) = W, H <€ Q. k(zo (a/;l!IJ (Pik) > (2{:“)) .

n=

(5.15)

e*OCi[WI < OZQ" (ai/WI)n (Pi,)n> ’

|
n—0 n:
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and should be normalized to 1 as defined in [40]

— Vi W1 eend,W,
W) = 3y S (5.16)
F1 W el W

Depending on the known realized traveling times and correlations between edge
weights the vehicle can decide which edge to traverse next using the history vector
Wiy wi,...ipw)- In particular, the conditional moments of the remaining path (iy1,. .., ig)
can be computed analogously to Eq. 5.10 using the subgenerator as given in [40]

D M, 0 o 0
0 Di1+1 Hi1+1 i142
Q(i]+l ..... l]() = 0
DiK—l Hik—l iK
0 0 Dy

‘u(;lﬂ ] :i!TL'/Mé#/ ol (.17)

Example 5.2. We present a stochastic network example from [40]. A four-node PHG
is shown in Figure 5.2, it contains three paths from the origin v| to the destination vy,
namely (i1,i2), (i3,i4), and (is). The edge weights in the PHG are modeled by order

i1 (u = 1.0000,6% = 1.7237) ir (1 = 1.0000, 0% = 1.5213)

@

is (1 = 1.4369,0% = 6.8150)

is (U =2.4223,0% = 12.569)

i3 (1 = 2.0009, 6% = 4.0422)

Figure 5.2.: The weights distribution for each edge is modeled by a PHD with expec-
tation and variance given in a tuple at the corresponding edge.

4 PHDs (m;,,D;,), k € {1,...,5}, in hyperexponential and hyper-Erlang representa-
tion, and are summarized below. Furthermore, weights can be interpreted as traveling
times.
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—0.657 0 0 0
m;, = (0.4148,0.1958,0.1851,0.2043), D;, = 8 _06721 _3(129 8 ,
0 0 0 —4.717
—0.724 0 0 0
™, = (0.5206,0.3858,0.0936,0), D;, = 8 ’36534 _19085 1_885 ;
0 0 0 —1.085
—0.4745 0 0 0
m;, = (0.4227,0.2707,0.1814,0.1252), D;, = 8 *0'3900 _0_2230 8
0 0 0 —0.5940
—0.3000 0 0 0
m, = (0.3977,0.3945,0.2078,0), D;, = 8 ’4'3847 B 6_2209 8
0 0 0 —8.8200
—0.385 0 0 0
T, = (0.145,0.478,0.113,0.264), D;, = 8 706241 _2_5 8
0 0 0  —6325

The weights of the path (i1,iy) € Paths can be described by an acyclic absorbing
CTMC with 8 transient states with the following subgenerator

—0.657 0 0 0 0.509 0 0.148 0
0 —0.721 0 0 0.721 0 0 0
0 0 —3.429 0 0.064 3.364 0 0
_ 0 0 0 —4.717 0 4.717 0 0
Quiria) = 0 0 0 0 —0.724 0 0 0
0 0 0 0 0 —3.534 0 0
0 0 0 0 0 0 —1.085 1.085
0 0 0 0 0 0 0 —1.085
and the initial distribution vector 7, ;,y = (7;,,0,0,0,0).

The first moment for the weight of the path (iy,iz) is computed using the moment
matrix M;, ;) = (= Qi 1))~ " which results in [,L(l. ) = i i) My i) T = 1.9999.

i1,i2) i, i) YA (i1,02)
Furthermore, we obtain the following subgenerator for the CTMC corresponding to
the weight of the path (i3,is)

—0.4745 0 0 0 0.18871 0.18719  0.09806 0
0 —0.49 0 0 0.19487 0.19331  0.10182 0
0 0 —0.523 0 0208  0.20632  0.10868 0
_ 0 0 0 —0.594 023623 0.23433  0.12343 0
Qg = 0 0 0 0 —03 0 0 0
0 0 0 0 0 —4.8847 0 0
0 0 0 0 0 0 —6.8209 0

0 0 0 0 0 0 0 —-8.82

with initial distribution 7, ;) = (7:,,0,0,0,0). The expected travel time for the path
(i3,14) results in [.L(ll.%u) = iy i) Miy iy L = 3.4377. Finally, the weight of the path (is)
is described by Q;; = D;, such that the expected travel time equals 2.4223.

We can now compute the history vector W, ., i, 0) using (5.15), and (5.16). As-
sume that the traveling time on the edge iy was wy = 0.5. Then the vector includ-
ing the distribution immediately after entering the edge iy results in Y 05.,0) =
T, i O'SHil i P20 and the normalized history vector is V(i,,05,,0) = (0.5052,0.4064,
0.0884,0). The conditional weights of the remaining path through the adjacent edge ip
can be computed from an absorbing CTMC with generator matrix containing only the
generator Dy,. Then the first conditional moment results in W, o5 i, 0)Mi, I = 0.9752.
We plotted the values of the first conditional moment using weights in interval [0,2]
which is visualized in Fig. 5.3.
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First conditional moment for traveling time of the edgei,
0 | | | | | | | | |

0 0.2 0.4 0.6 0.8 1 12 14 16 18 2
Traveling time for the edge i

Figure 5.3.: The expected traveling time of the adjacent edge i € ij® depending on the
weight of the edge i;.

5.3. Solution methods for SSPP

As already mentioned in Sec. 2.3 the optimal stationary policy u* and the correspond-
ing gain vector g* of a SSPP can be computed using value iteration, policy iteration
and linear programming which we describe from the sources [29, 27, 28, 40] and ref-
erences therein.

5.3.1. Value lteration

Using value iteration (VI) the dynamic programming iteration given in Eq. 2.50 is
computed starting with some initial gain vector g as

Tg(i)= min (r“(i)+ Y P“(i,j)g(j) |, forallie 77,
ue9(i) =1

such that the sequence T'gy, T2gy, ... is generated successively. In particular, the se-
quence of value representations g, = 7g;_ is computed iteratively for k = 1, where
the T operator is defined in Eq. 2.36, and the resulting optimal reward vector g; after
k-th iteration. In fact, gy = Tg;_ is computed by applying the mapping T k times to
g0, i.e. g = T*go.

The convergence of the value iteration to the optimal total reward vector g* has been
shown in [28, Proposition 2.2.2] (see Eq. 2.51). During the iteration of the dynamic
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programming algorithm the sequence of errors |g,(i) —g*(i)| is given in the k-th itera-
tion, such that the errors are bounded as follows

|guk (i) —g* (i) | < p*M, (5.18)

where p = maxycqy p", and the reachability probability p" is defined in Eq. 2.40. Ob-
serve that n denotes in Eq. 2.40 an integer such that there is a positive probability
that the absorbing state will be reached after no more that n steps, or rather n deci-

sion epochs. K is a positive integer, and M =n-  max 0 | (i) |. Consider now the
i€, uc9(i)

following error bounds

min

&

= min (g1 (i) —g(i)), & = max (ger1()) — (7). (5.19)

Si€EST Si€ST

Then it holds for every state i € .77, iteration k and arbitrary vector g [27, Eq. 7.17]

g1 (1) + & (N (i) = 1) < g"(0) < 8%(i) < g1 (1) + " (N (i) = 1), (5.20)
where the following terms occur

e u; denotes the stationary policy whose u (i) element results in the minimum in
the k-th iteration for all i.

e N, (i) denotes the expected number of steps before absorption starting from state
i and following the optimal policy.

e Ny, (i) denotes the expected number of steps before absorption starting from state
i and using the stationary policy uy.

In principle, the value iteration method runs for an infinite number of iterations. Thus
using the established error bounds one can decide when to stop the value iteration
method. In each value iteration g; approximates g* with sufficient accuracy, even
though the error bounds in Eq. 5.20 can be computed only if values N, NV, can be
determined. Unfortunately, the values N, Ny, can be not be efficiently obtained in
general as explained in [27].

The following example demonstrates the convergence properties of the value itera-
tion method.

Example 5.3. Consider the SSPP instance in example 2.5. Since we have two admis-
sible decisions in states 1,2, namely uy and u, the k-th value iteration performs the
computation of the function T as

gc(i) =Tgr—1(i) = mm( +ZJ PG T) g ( +Z P2 (i, j) gr—1(J ))

Uy, up

Initially, k = 1 and the value iteration method is initialized with the initial cost vector
go = (0,0,0). Then the computation of the above equation is performed such that the
values vector g1 = T'gy is obtained
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In the next iteration k =2 and the values vector g» = T'g, is obtained after computation
of the above dynamic programming expression

2:(1) =1.005, g2(2) =1.275, g(3)=0.

To compute the error bounds we first evaluate

which results for the first two value iterations in

" = 0.6, &' =0.75,
erin — 0.405, ey =0.525.

In our example all policies are proper and it is obvious that the optimal policy
d"™" minimizes the expected infinite-horizon total reward for u(1) = u; and u(2) =
u. In that case the value N, = Ny, is finite and can be computed as (1 —P")~L.
Analogously, N, can be computed as (1 — P)~1. Observe that the matrices P!, P2
are of dimension /p X S and describe transition probabilities for transient states

03 03 04 04
up Uy __
P _[0.25 0.5}7P _[0.3 0.5}

We compute N, 1 = (2.9091,3.4545)T, N,, 11 = (5,5)7 which results in the following
error bounds

g1 (1) +&" (N, (1) —1) = 0.6 +0.6% 1.909 = 1.7454,

g1 (1) + €' (N,, (1) — 1) = 0.6 +0.75 % 1.909 = 2.03175,
g1(2) +€"(Ny (2) — 1) = 0.75+0.6%2.4545 = 2.2227,
g1(2) + €' (N, (2) — 1) = 0.75+0.75 % 2.4545 = 2.590875.

The results of the value iteration method with error bounds are shown in Fig 5.4.

Discounted Problems as a variant of SSPP We will now discuss the case
where the error bounds can be easily obtained as described in [27]. It corresponds to
the infinite horizon discounted problems. Particularly, any discounted infinite-horizon
MDP with discount factor v € [0,1) can be reduced to an equivalent SSPP with the
following structure.

Assume that in the original discounted MDP the state space consists of n states,
ie. / ={1,...,n}. In the corresponding SSPP the absorbing state n+ 1 with P(n +
I,n+1) =1 is added. Additionally, there is a probability (1 — ) to get absorbed for
every state and decision pair (s;,u), i # n+ 1, u € 2(i). The transition to the state j
occurs with the normalized probability yP“(i, j) for each transient state and decision
pair. Then in the constructed SSPP instance the assumption about existence of at least
one proper policy is satisfied.

Example 5.4. Observe the following infinite horizon discounted problem and the asso-
ciated SSPP in Fig. 5.5. One can see that the SSPP Markov chain represents a discrete
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Convergence of the value iteration method

gk+1(i) —_—
min Gs1(d) ——
g (D) + g (N (1) - 1) oo
Ok+1(1) + & mir(N,\iJk(l) ) J—
g (D + G (N«(2) - 1) oo
g Gl + EPHKNK(D) - 1) -
5
8
5 4
5
e}
8 3
8 |
E 2 - »/_’
1
0
012345 10 15 20 25 30

Number Iterations k

Figure 5.4.: The progress of the value iteration method with corresponding er-
ror bounds. Value iteration converges to the optimal values g*(1) =
1.9091, g*(2) = 2.4545.

time phase-type distribution where all transient states have the same absorbing prob-
ability P*(i,n+1) =1—1, fori € S and u € Y(i). Correspondingly, the probability
to not getting absorbed is .

Since the sojourn time X in a state is geometrically distributed with success proba-
bility p = 1 — v, the expected number of steps before absorption is given by

E(X)= % = ﬁ for any transient state. In fact, the expected value of the represented

dicrete time phase-type distribution is given by ﬁ, Thus the values N, and Ny, can
be assumed to be 1177

In the discounting case the obtained expected reward after n steps is y'r"(i) if de-
cision u in state i is chosen. In the associated SSPP the expected reward after n steps
in some state i also equals to y'r*(i). The reason for this is that the reward r*(i) is

obtained with probability y" which is the probability of not get absorbed after n steps.
With this insights the error bounds for the discounting case are given by

gep (i) + " (I_Vy ) < g (i) <€) < gt (i) + €0 <1_Vy > G2

Minimization of the expected time till absorption Observe the case intro-
duced in [27] where expected rewards for all states have the same unit value

r‘(i)=1, foralli € S, u e 2(i). (5.22)

In infinite horizon MDPs with the above structure and under the expected total reward
criterion the aim is to minimize the expected lifetime of the induced Markov chain.
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¥P(1,3)

y-discounted MDP corresponding SSPP

Figure 5.5.: Transition diagramms for an y-discounted MDP and the equivalent SSPP.

This lifetime corresponds to the expected time till reaching the absorbing state. As the
absorbing state n+ 1 is interpreted as the destination, the SSPP solution corresponds to
the fastest path on the average. The value g*(i) gives the minimum expected time until
absorption starting from state i. Then the values g*(i) for all i € .7 are the unique
solution of Bellman’s equation [27]

()= min [ 14+ ) P“(i,/)g"(j) |- 5.23
g" (i) ue%)< ]; (i))g (J)) (5.23)
Note that in discrete time case g*(i) is the minimum expected number of steps until
absorption [27, 40].

Gauss-Seidel Value Iteration Method Gauss-Seidel version of dynamic pro-
gramming differs from the value iteration method described earlier in that the values
g(i) are no longer computed for all states i simultaneously. The method computes the
value g(i) for one state at a time using the recent values of other states. Then the se-
quence of values g(i) is generated successively starting with the first state 1. For this
the mapping F' : R* — R" is defined as

j=1

(Fg)(1)= min (r"<1>+iw<1,j>g<j>>, (5.24)

ue9(1)

and proceeding for states i withi =2,...,n
ue (i) = =i

i—1 n
(Fg)(i) = min (r”(i) + ) P00 (Fg)(j) + ZP”(lvj)g(j)) (5.25)

Here states are numbered in some predefined or problem specific order. Generally,
the order in which the values (Fg)(i) are computed has an influence on the course of
the method, e.g., on its convergence. In [23] it has been mentioned that in SSPP it is
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advantageous to start the computation with states which are directly connected to the
absorbing state and then to proceed backwards along potential shortest paths. It is less
efficient to start the computation with initial states in the forward direction.

Observe that (Fg)(i) works analogously to the 7' operator when computing (7'g) (i)
as in Eq. 2.36. Additionally, the recently computed values (Fg)(1),...,(Fg)(i—1) are
incorporated in the above formula, such that values g(1),...,g(i — 1) are replaced in
one iteration. After n iterations all g(i) values are replaced by (Fg)(i). Analogously
to the value iteration method the sequence Fgy,F?gy,... is generated successively.
In [27] it has been shown that the Gauss-Seidel dynamic programming converges to g*
under the same conditions that ensure the convergence of the value iteration method
for SSPP, but the essential advantage is that the Gauss-Seidel converges faster.

Asynchronous fixed point iteration Asynchronous dynamic programming is a
variant of Gauss-Seidel method where the expected rewards of states are computed
in arbitrary order as described in [27]. The algorithm selects an arbitrary state i at a
time and computes its new value g (i) = Tg,— (i) in the k-th decision epoch. Values
for other states j, j # i, remain unchanged. Depending on the state selection rule it is
possible that the expected reward for some state may be computed several times before
the rewards for other states are computed once [23].

Using asynchronous dynamic programming the arbitrary initial reward vector gy
converges to the optimal gain vector g* as stated by results of Bertsekas [27]. The
convergence result holds under the condition that all states are selected infinitely often
which means that a state selection rule should never exclude some state from selection
in the future. Further conditions are the existence of at least one proper policy and that
all improper policies incur infinite expected rewards for at least one initial state [27,
23]. Similarly to Gauss-Seidel method the order in which the values are computed has
an influence on the rate of convergence.

Reduction of the set of decisions It is possible to eliminate non optimal de-
cisions from computation in the progress of the value iteration method as described
in [27, 28]. As mentioned above the optimal policy u minimizes the righthand side
of the equation g* = T g* such that the equation 7 g* = T, g" holds (see Eq. 2.53). If
some u € (i) exists such that

f@<ﬂm+iwmﬁ¢m

for some i € .7 then the decision u is non optimal. Thus it can be eliminated from the
considered set of decisions in Eq. 2.50. Unfortunately, the optimal gain vector g* is
not known in advance. However, it is stated in [28] that the following inequality holds
for non optimal decision u

g(i) <r'() + Y PU(i.j) g(), (5.26)
=1

where g(i), g(i) are the lower and upper bounds with

g(i) <g'(i) <g(i), foralli € /7.
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The lower and upper bounds converge to g* and can be computed using error bounds
introduced in Eq. 5.20. Then Eq. 5.26 can be evaluated for all u € Z(i) in the course
of value iteration. The decisions satisfying Eq. 5.26 can be eliminated. After a finite
number of value iterations possibly all non optimal decisions can be eliminated since
the set of decisions is finite. Then the considered set Z(i) can be reduced to optimal
decisions for the state i thus accelerating the value iteration method.

Pathological SSPP instances We now describe the case from [27, 28] where
the assumption that each improper policy results in an infinite expected total reward
for at least one initial state does not hold. In this case the mapping 7" has multiple fixed
points. Then the results g* = T g*, lim; ,..(T*g)(i) = g*(i) for i = 1,...,n are fragile
and their validity cannot be guaranteed any more.

Consider the deterministic shortest path example in Fig. 5.6 involving a cycle with
zero rewards and first described by Bertsekas [28]. Note that given an initial reward

OGO O NENOWB OO

Policy u; = (3,3,3) Policy u; = (2,1,3)

Figure 5.6.: Instance of deterministic SSPP with cycle involving zero rewards.

vector gp, value iteration generates the sequence g;, g>,.... The method computes
the k-th value representation as g = 7 g,_; and returns gt = limk_m(Tk go). The
optimal expected reward g* is a fixed point of the Bellman operator 7'. If the required
assumptions are not satisfied it is possible that the T operator admits more than one
fixpoint. In that case the sequence g1, g, ... can converge to any fixed point depending
on the initial gain vector gg [59].

In particular, the vector (0,0,0) satisfies the Bellman’s equation g = T'g. Then the
improper policy u; admits O expected total reward for any initial state. In contrast it is
required that every improper policy yields an infinite expected total reward for at least
one initial state which is not the case here. Similar SSPP instances can be solved by
eliminating the zero rewards state-action pairs from the MDP (see, e.g. [59]).

Another prominent example is the pure stopping problem where all rewards are 0
and the reward obtained when the stopping decision is chosen equals —1 [27, 28].
Here the stopping decision can be associated with the decision directly to go to the
absorbing state. Since in stopping problems eventual stopping in each decision epoch
is required, the smallest reward —1 should make the decision to stop in each state
favorable. It has been shown that an improper policy would never contain the decision
to stop. Though it yields finite expected reward O for each initial state.

5.3.2. Policy lteration

Generally, the value iteration method yields in the limit the optimal reward function
and an optimal policy. In this section we describe an alternative approach based on
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work [148, 27, 28] which terminates in a finite number of iterations assuming that the
state space and desicion space are finite.

Concerning the fact that there are finitely many proper policies u € I the aim is to
iterate over the finite set I1. This implies that termination occurs in a finite number of
steps. The corresponding method is implemented in policy iteration (PI) which starts
with an arbitrary proper policy ug, and generates the sequence of improving policies
uj, up,.... Particularly, we start with policy uy in the k-th iteration and compute the
values g% in the policy evaluation step as the solution of the linear system of equations

g(i) =r"(i) + Z P (i, j)g(j), foralli € A7, (5.27)
j=1

in the n unknowns corresponding to the values g(i). Then the values g(i) from the
solution determine the vector g"%. Observe that Eq. 5.27 can be equivalently written as
Eq. 2.56. After the value g of a policy uy is known it can be minimized in the policy
improvement step by the computation of

U1 (i) = argmin (r”(i) + Y P, J) g“"(j)) ; (5.28)
j=1

ueP(i)

forall i =1,...,n. Observe that in Eq. 5.28 the value of the k-th policy is used in
the second term. Here the policy ug.; is improved by minimization in the dynamic
programming equation considering g'*. A new stationary policy satisfies the equation
Ty, , g" = T g™ in the T-operator notation.

In the (k+ 1)-th iteration the policy evaluation step is performed using the policy
u,, 1 instead of u;. In the course of alternating policy evaluation and improvement
steps an improving sequence of policies is produced. In particular, g™+ (i) < g"(i)
holds for all states i € .7 and all iterations k [27, Prop. 7.2.2]. Furthermore the policy
improvement step in Eq. 5.28 is based on the following proposition:

Proposition 5.1. /28, Prop. 1.3.4] Let u, W’ be two stationary policies in the policy
iteration step Ty g* = Tg", i.e.
! G ! G
r (i) + ) PY(i.j)g"(j) = min ( r"(i) + ) P"(i./)g"()) |-
=1 ue (i) =

Then it holds that
g% (i) < g"(i), foralli€ .7,

where the strict inequality arises for at least one state i if the policy u is not optimal.

Policy iteration terminates in the (k+ 1)-th iteration with the optimal policy u; when
g"+1(i) = g" (i) holds for all i € ./7.

Example 5.5. Consider the SSPP instance given in Example 2.5 where we have al-

ready obtained the convergence result using value iteration in Example 5.3. Policy
iteration finds the optimal policy u* and the corresponding gain vector in two steps.
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Let u° = (ua,us) be the initial policy. In the policy evaluation step solution of the
linear system of equations (1 —P*)~'r" is required. This corresponds to

gh(1) =r= (1) +P=(1,1)g" (1) +P*(1,2)g%(2)
g% (2) =r2(2)+P*(2,1)g" (1) +P*(2,2)g"(2),
where by substituting the expected rewards and transition probabilities we obtain
g"(1)=0.85+0.4g"(1)+0.4g"(2)
g"(2) =0.8+0.3g%(1)+0.5g"(2).
Solving the above system of equations for g™ (1) and g"(2) we obtain the vector
g" = (4.138, 4.083).

In the policy improvement step the values (1), w(2) satisfying Ty, g" = T g" are
computed as

u (1) = argmin{r”(l) + il’”(hj) g"(j) }

ue (i) j=1
=argmin {r"' (1)+P“ (1,1)g" (1) +P*'(1,2)g"(2),
uy,uy

r2 (1) +P2(1,1) g% (1) + P=(1,2)g%(2) }
=argmin {0.6+0.3-4.138 4+ 0.3-4.083,

uy,uz

0.85+0.4-4.138+0.4-4.083 }
= argmin (3.06,4.138) = uy,

up,up

and

u;(2) = argmin { r'(2)+ i P“(2,/)g" () }

ue (i) j=1
=argmin {r" (2) +P"(2,1)g" (1) +P"(2,2)g"(2),
uy Uy

r2(2)+P2(2,1)g" (1) +P=(2,2)g%(2) }
= argmin {0.75+0.25-4.138 +-0.5-4.083,

uy,uz

0.84+0.3-4.138+0.5-4.083 }
= argmin (3.82638,4.0829 ) = uy,

uy,u
such that minimizing decisions are
u = (ul,ul).

In the next policy evaluation step the solution of (1—P“)~'r" has to be found, or
equivalently

g (1) =r""(1)+P"(1,1)g" (1) +P"(1,2)g" (2)
=0.6+0.3g" (1)+0.3g"(2),

g"(2)=r"(2)+P"(2,1)g" (1) +P"(2,2)g" (2)
=0.754+0.25g" (1) +0.5g" (2).
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The linear system of equations attains the gain vector
g" = (1.909,2.4545).

Performing the policy improvement step we obtain

MG.@([) j=
=argmin {r"' (1) +P"'(1,1)g" (1) +P"'(1,2)g" (2),

uy,uz

uy(1) = argmin{r”(l) + iPu(Lj) g"(J) }

re (1) +P2(1,1)g" (1) +P=(1,2)g" (2) }
=argmin {0.64+0.3-1.909+ 0.3 -2.4545,

uy,un

0.85+0.4-1.909+0.4-2.4545}
= argmin ( 1.909,2.5954 ) = uy,

up,uz

and

uy(2) = argmin { r'(2) + i P“(2,/)g" (j) }

ueP(i) j=1
=argmin {r"' (2)+P“'(2,1)g"' (1) +P"'(2,2)g" (2),
uy,up

r2(2)+P2(2,1)g" (1) +P(2,2)g™ (2) }
= argmin {0.75+0.25-1.909 +0.5 - 2.4545,

uy,up

0.840.3-1.909+40.5-2.4545}
= argmin (2.4545,2.6) = u;.

uy,uz

The policy iteration method terminates since u, = wy = (uy,u;) which implies that u;
is optimal. The optimal total expected reward vector is g*' = g* = (1.909,2.4545).

Modified policy iteration Observe that in the policy evaluation step (5.27) the
system of linear equations with a dimension equal to the number of states has to be
solved. If the state space is very large this step can be computationally complex,
e.g., when standard methods such as Gaussian elemination are applied [27] whose
complexity is &(n?) for an n x n input matrix. In the following we describe the method
as proposed in [27].

The system of equations (5.27), or equivalently

(1 P%) g =

can be approximated iteratively using a certain number of value iterations. In partic-
ular, after determining a g"-improving decision rule in the policy improvement step,
the value iteration is performed with the same policy several times.

The algorithm is initialized with an arbitrary vector gy. Then the policy uy satisfying
Tu,80 = T'go is determined, i.e., the policy is obtained as ug = argmin,, (i) (r*+P"g).
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After that policy improvement step the expected rewards g% are determined using
value iteration with the same policy ug for several times. The evaluated value g" of
policy ug provides the vector g; which is used in the next policy improvement step to
determine the policy u; as described above.

Let mg,my,... be a sequence of positive integers. Then the sequence of values g |
is generated by computation

g1 = (Tu)™ g, (5.29)

such that the g"-improving policy u, | is evaluated using m;, iteration steps according
to the current gain vector g.

The sequence my, for k =0,1,..., may be chosen according to some heuristic pat-
tern, or uniformly for all policy iterations, i.e. m; = m. Note that if m = 1 we obtain the
value iteration method [28], and if m = oo we obtain the policy iteration algorithm with
a policy evaluation step which is solved iteratively using the classical value iteration
method. It has also been mentioned in the literature [28] that the value iteration step
involving only a single policy is less complex than evaluating 7'g" which considers
all policies. One can also use Gauss-Seidel iterations or any other iterative numerical
solution technique to solve Eq. 5.27 in place of evaluating Eq. 5.29.

The sequence g, generated in the modified policy iteration method converges
monotonically to the optimal gain vector g* under the assumption that 7gy < g, unless
all policies are proper (see e.g. [148, Theorem 7.2.17], [28]).

Asynchronous policy iteration Asynchronous policy iteration is a generaliza-
tion of the policy iteration scheme where value updates and policy updates are per-
formed for predefined sets of states and can be combined in various ways as described
in [28]. The assumption 7,80 < go is also required here to guarantee that the algo-
rithm yields in the limit the optimal total expected reward and an optimal stationary
policy. This can be achieved, e.g. by selecting an arbitrary initial policy ugy and then
obtaining gy = g".

Let (g, ux) be the generated sequence for k =0, 1,.... Then the set of states .7% is
selected such that the new pair (g 1,0, 1) can be determined as a value update

8i+1(i) = Ty, 8(i), fori € 74, (5.30)
and g1 is left unchanged for the remaining states
gk+1(i) :gk(i), forigzyk. (531)

In that case the policy remains unchanged, i.e. u;; = u;. Another way to compute
the new pair (g1, 1) is to determine the next policy

w;,1(i) = argmin (r”(i) + Z P“(i, j) gk) , fori e 4, (5.32)
ue (i) j=1

and uy is again left unchanged for the remaining states

w1 (i) = w (i), fori ¢ .7, (5.33)
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which is called a policy update. In that case the values of the gain vector g, = gx
remain unchanged.

Now suppose that the value update follows the policy update, and the same set of
states . is used in both steps. Since in the policy update step in Eq. 5.32 the policy
is computed by minimization in the dynamic programming equation considering all
possible actions, the subsequent value iteration computes in fact gy | = T g;.

For the case where ., = .7 and my value updates are done, Eq. 5.30 becomes
Eq. 5.29 and the method implements the modified policy iteration. If m; = 1 value
updates are done we obtain value iteration as described above. If m; = oo value updates
are done before updating the policy, then we have policy iteration method where the
policy evaluation step is realized through value iteration.

As next method we consider the variant of asynchronous policy iteration where only
subsets of .77 are used in the calculation. Then policy iteration is performed with one
of the subsets .7 at a time. Suppose that in the k-th iteration the policy improvement
in Eq. 5.32 has been performed for the states in . and the resulting policy ;. is
known. Then the policy evaluation is executed only for the states in .#%. This can be
done either using value iteration or using restricted linear programm with unknowns
corresponding to the expected total rewards for states in ..

It has been shown in [28], that, under the above assumption on the initial pair (go, uo)
and additionally assuming that value update in Eq. 5.30 and policy update step in
Eq. 5.32 are executed infinitely often for all states, the algorithm converges to g*.

5.3.3. Linear Programming

We now describe how the optimal stationary policy u* and the corresponding optimal
gain vector g* can be computed using linear programming as introduced in [148, 27,
28]. As explained above value iteration computes the vector gi(i) = T*go(i) in the
k-th iteration such that lim,,_,.. T"g = g* for all vectors g (cf. Eq. 2.51).

In fact, dynamic programming algorithm is a system of equations with one equation
per state i

. . U/ & U/ .
gO)SMQ%j(r(O-F;%P(uﬂgU)), (5.34)

the solution of the system of equations for i = 1,...,n is the minimal total expected
reward for all states in the one-stage problem. According to the monotonicity property
of the dynamic programming [27, p. 376] we obtain g (i) < gx+1(i) = Tg(i) for all k
and i. Incorporating the convergence criterion given in (2.51) it holds that

g <g'=Tg",

where the inequality is satisfied elementwise for an arbitrary k. It implies that the
elements of the optimal reward vector belong to the “largest” vector g satisfying the
inequality
n
g() <r'() + Y P“(0. ) &()), (5.35)
j=1

forall i € .7 and u € Z(i). Then the system of resulting inequalities depicts a polyhe-
dron in R” the northeast corner of which represents the optimal solution corresponding
to g*.
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Since g* is the "largest” vector g the objective function of the linear programm is to
maximize the sum of its elements

Y 8,

[ISSZN

subject to the constraints given in Eq. 5.35. The vector elements g*(1),...,g*(n) rep-
resent the solution of the proposed linear program.

As described in [148, 27, 28] the defined linear program contains n variables and
1 Upgy constraints, where uy,,, is the maximal cardinality of the sets Z(i), the dimen-
sion of this programm can be very large for large n and u,,,,. Then special large-scale
linear programming methods (e.g., interior-point algorithms) are required to keep prac-
ticability of this approach.

Example 5.6. Consider the SSPP instance in example 2.5 which has already been
solved via value iteration and policy iteration methods. The policies uy, uy with
u;(i) =ujfor j=1,2andall i € S, induce the Markov chains visualized in Fig. 5.7.

Policy u; with r = (0.6,0.75,0)" Policy u, with r'z = (0.85, 0.8, 0)"

Figure 5.7.: Transition diagrams for policies uy, u; in the SSPP instance.

The corresponding linear program is given by

minimize —g(1) —g(2)

subject to
g(1) <0.6 + (0.3g(1) + 0.3g(2))
g(2) <0.75 + (0.25g(1) + 0.5g(2))
g(1) <0.85 + (0.4g(1) + 0.4g(2))
g(2) <0.8+(0.3g(1) + 0.5g(2)),

where the constraints are constructed according to the reward vectors ', r'*2 and the
visualized transition diagrams in Fig. 5.7. The optimal solution vector is

g =g =(1.9091,2.4545).
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5.4. Complexity of Solving MDPs

In the following we summarize the main computational complexity results for infinite
horizon MDPs according to a review given in [91] and references therein. Observe that
any MDP can be transformed to a linear program and solved in a weakly polynomial
time. More precisely, using linear programming MDPs can be solved in a number of
arithmetic operations polynomial in s, d, and b [117], where s = |.|, d = ||, and
b is the maximum number of bits required to represent the input data. Then general
LP solution techniques, as e.g., Ellipsoid method or interior-point algorithm can be
applied [103, 107, 178]. However, the mentioned algorithms are often impractical for
solving MDPs [117].

Since MDPs and thus also SSPPs can be reformulated as a linear program, the sim-
plex method [57] can be used to solve it. However, even though the simplex results in
exponential running times in the worst case, the method performs very well in prac-
tice [117]. It is still an open question if there exist a pivoting rule that results in poly-
nomial time simplex for solving general linear programs. Note that several pivoting
rules have been shown to result in exponential number of iterations, which may not
necessarily hold for linear programs for solving SSPPs [117]. This is due to the fact
that linear programming techniques do not exploit the special structure of SSPPs.

A significant result on the MDP complexity field was obtained in [178], where it has
been shown that the policy iteration including the simplex method with most-negative-
reduced-cost pivoting rule is a strongly polynomial time algorithm for solving MDPs
with a fixed discount rate 0 < y < 1. The author showed that the simplex method ter-
minates after at most & (%log ( ﬁ)) iterations. Interestingly, strongly polynomial
time algorithms for deterministic MDPs also exist [142, 83], where a quadaratic lower
bound of deterministic problems has been shown. To the best of our knowledge, the
question if SSPPs which belong to the class of undiscounted MDPs can be solved in
strongly polynomial time still remains open.

In the following, we give a short overview of complexity results for standard MDP
methods according to [91] and references therein. The policy iteration method is the
most used iterative approach for solving MDPs [97]. The improvement step can be
performed in &(d s?). The evaluation of the current policy, i.e. computing of its value
requires inverting a s x s matrix which takes ¢'(s>37%) operations [117].

Since PI is guaranteed to find the optimal or €-optimal solution in a finite number
of iterations, its complexity depends on their bounds. In principle, there are d° distinct
policies in a MDP, such that greedy PI requires at most an exponential number of
iterations until convergence [148, 117]. In each iteration PI computes a set of actions
for which an improvement can be achieved, such that a subset of these switchable
actions can be determined. Greedy PI updates every state with switchable actions [74].

As stated in [117], the number of iterations depend on the sequential improvement
rule of PI. When, e.g., a policy is updated accordingly to the smallest index rule, PI
can take an exponential number of iterations to converge (see [117] and references
therein).

In [122] an upper bound of & (%) for the greedy PI is proved. Later results provide
an exponential lower bound for the greedy PI with the average reward and the total
reward criterion [74].
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For discounted MDPs with a fixed 0 < y < 1 a strongly polynomial time algorithm
exists [178]. It has been shown that for a fixed discount rate 0 < y < 1 the number
of iterations in the policy iteration with the most-negative-reduced-cost pivoting rule
is bounded by (Sz(ld:yl) log (%) ) For discounted infinite horizon MDPs the results

in [148, 117] show that the policy iteration needs at least as many iterations as the value
iteration to compute the optimal policy. However, [117] gives an example for which

the number of iterations of the value iteration is bounded by ( log( )) in worst
case. Concluding, policy iteration and value iteration can converge in polynomial time
for MDPs with fixed discount rate. In contrast, the complexity results for undiscounted
MDPs and thus for SSPPs state that policy iteration runs in a weakly polynomial time
under particular assumptions needed to compute the optimal policy [170, 148].

5.5. Solving of SSPP with Correlations

In this section we briefly describe solution methods adapted to SSPPs with correla-
tions. First we give a solution for finding a minimal expected shortest path between
Vini and v;,. Let u be a stationary policy. Then its total expected reward is given by

i (I NV (5.36)

where the matrix N" is defined in Eq. 5.8. The value g"(i,x) is the expected weight
of the path from state (i,x) to the absorbing state (0,0) when decision vector u is
used. For the proper policy u the total expected reward function can be computed as
(cf. Eq. 2.54)

(I-PYg"=1, (5.37)

or accordingly to Eq. 2.56 as
g'=(I-PY) 'L (5.38)

As already defined in Eq. 2.33 the minimal total expected reward starting in state (i,x)
is given by
g (i,x) = mmg U(i,x), (5.39)

uell
and the corresponding optimal stationary policy satisfying
u*(i,x) = arg min (g“(i,x)). (5.40)
ue (i)
The optimal stationary policy u* and the corresponding gain vector g* can be computed
using methods described in Sec. 5.3.1 - Sec. 5.3.3. In the following we first describe

the policy iteration method and then give an approach for computing an optimal policy
in dependence of the realized edge traveling times.

Policy Iteration Approach Policy iteration starts with an arbitrary proper policy
uy which can be obtained by running a shortest path algorithm on the instance where
PHDs are substituted by their expectations and correlations are completely neglected.
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Then the sequence of improved policies uj, uy,... is generated such that g" (i,x) >
g"(i,x) > ... forall (i,x) € . (see Prop. 5.1).

In the k-th policy evaluation step the reward function 7y, g" associated with a proper
policy uy is computed as given in Eq. 2.49

g = T, g% = [+ P%g"™, (5.41)

such that the gain vector g obtained is the solution of the linear system of equations
given u (5.27)

gh(i,x) =1+ Y P%((i,x),(j.y)) 8" (j,y), forall (i,x) € .7. (5.42)
jes

Observe that Eq. 5.42 can also be written as (see Eq. 5.37)
(I-P%)g" =1 (5.43)

After the value g% of the policy uy is known the policy improvement is applied to
obtain the improved policy uy, 1 satisfying the equation Ty, , g™ = T g™

U1 (i,x) = argmin (1 + ) P”((i7x),(jJ))g“"(j,y)> : (5.44)
ueY (i) (jy)es

The Algorithm 5.1 iterates between policy evaluation and policy improvement steps
until g*(i,x) = g*~1(i,x) for all (i,x) € .# and some k.

Algorithm 5.1: Computing the optimal stationary policy u* and the gain vector g*

1: Initialize matrices P" for all u € &7;

2: Set k = 0 and compute u using shortest path algorithm;

3: repeat

4:  Compute gain vector g% using Eq. 5.43; > policy evaluation

5:  Compute policy vy for all (i,x) € . using Eq. 5.44; > policy improvement
6: k=k+1
7
8

. until g*(i,x) = g*~1(i,x) for all (i,x) € .
: Terminate with u* = u; and g* = g'.

Observe that the value g* (i, x) is the minimal expected number of steps until absorp-
tion starting from state (i,x). Since the absorbing state is interpreted as the destination
Vrin the optimal solution u* corresponds to the fastest path on the average. Knowing
the values u* and g* the optimal decisions depend on the state of the CTMDP.

Let a; = (0, 7;, 0~;) be the initial distribution vector for the initial edge i € Ej;
where zeros vector 0; is of length ) ;g j-;n;, and zeros vector 0-; is of length
Yjck, j>inj. Then the minimal expected weight of the path starting from ini(i) = viy
to vy, is computed as

Gi=ag". (5.45)

The optimal initial edge can be chosen as

i* = arg min (&), (5.46)

i€E,;
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and the corresponding optimal minimal expected path weight is
£ =arg’, (5.47)

such that the value £*/a corresponds to the minimum expected time until absorption,
i.e. to the minimum expected traveling time until the destination v;, is reached.

Now assume that the history of realized values (wy,...,w;) become known to the
vehicle as it traverses the path to the destination. Assume that it arrives at node fin(i;).
Then the decisions of the vehicle should be based on history vectors ¥ . . i)
defined in Eq. 5.16. In particular, at node fin(i;) the decision on the next edge to
traverse is based on

}’ljl
l* = argmlnje@(il) < Zl W(il,wl,...,il,wl)(llax) '
x=

n,-l

y;lPJ‘((n,x),<iz,y>>g*<i,,y>+y§1Pf<<n,x>,<j,y>>g*<j,y>>
(5.48)

Example 5.7. We consider a simple graph visualized in Fig. 5.8 where two nodes
allow choices between two outgoing edges. The weights of all edges are described by
the following 2-order hyperexponential PHD

n=(0.5,0.5), D, —( _07 _85 )

which has the mean 1.0714 and the squared coefficient of variation 2.5.

i7

Figure 5.8.: Acyclic graph for shortest path computation. Edges with correlated
weights are highlighted in dashed style.

The mean weight of every path between v, and vy, is 4.2857. The weights of
the edges along the upper path are positively correlated with correlation coefficient
p = 0.3. The weights of the edges i) and iq, iy and i19 are negatively correlated with
correlation coefficient p = —0.3. Furthermore, the weights of the edges is, ig, 17, ig
are uncorrelated. The following transfer matrices H are chosen

p=03 (7 O p=—03 _ 0 7 p=0 _( 3.5 3.5
T ( 0 05 >7Hi'"i" a ( 05 0 )’ H = 0.25 025 )
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mi, (1)
7 (2)
(0,0)

mis (1)
mis(2)

Figure 5.9.: The PHG corresponding to the graph in Fig. 5.8.

fork=1,231=234m=1,2, n=9,10, s =5,6,7, and t = 6,7,8. The path
matrices are given by

70 70 00 00
005 005 00 00
00 70 70 00
00 0-05 005 00
Qiiisin =100 00 70 70|
00 00 0-05 005
00 00 OO0 -70
00 00 00 0-05)
70 0 7 0 0 0 0
0-05 05 0 0 0 0 0
00 -7 0 35 35 0 0
00 0-05 025025 0 O
Qiisinin=| o o 0 0 7 0 35 35 |’
00 0 0 0 -05 025 025
00 0 0 0 o0 7 0
00 0 0 0 0 0 -05
70 70 0 0 0 0
0-05 005 0 0 0 0
00 70 0 7 0 0
00 0-05 05 0 0 0
Qivinid=| 00 00 7 0 35 35 |
00 00 0 -05 025025
00 00 0 O 7 0
00 00 0 O 0 -05

106



CHAPTER 5. SOLUTIONS TO SSPP WITH CORRELATED EDGE WEIGHTS

70 35 35 0 0 0 0
0-0.5 025025 0 0 0 0
0 0 7 0 35 35 0 0
0 0 0 -05 025025 0 O
Qisisinin = | ¢ 0 0 7 0 35 35
0 0 0 0 0 -05 025 025
0 0 0 0 0 0 7 0
00 0 0 0 0 0 -05

Optimal policy The behavior of the optimal policy to minimize the mean travel
time from vin; to Vyin is as follows. For a short time required on the edge, the optimal
choice is the upper edge to exploit the positive correlation. In turn, if the time on
an edge becomes longer; it is better to choose the down edge to exploit the effect of
negative correlation. The initial policy is defined such that in the upper path always
the lower edge is chosen. The policy for the lower path chooses always the lower edge.

Policy Iteration Consider the following initial policy

(i, 1) =i, ug(in, 1) =i, (i3, 1)=1s,
u(i,2) =iy, ug(iz,2) =i, o(i3,2)=1s,

uy(is, 1) =1is, wo(is, 1) =1i7, (i, 1) =1,

u(is,2) =i, Wo(ls,2) =1i7, o(i7,2)=1s,

ug(io, 1) =i7,  wug(ito, 1) =1is,
ug(io, 2) =i7,  ug(i,2) =1ig

The weight of the policy for the uncorrelated lower path (is, ig, i7, i3) is given by

(5,1) (s,2) (s 1) (,2) (7,1) (i7,2)

(is, 1) (is,2)

Vector g*0 | 3.357 5.2143 2.2857 4.1429 1.2143 3.071

0.1429 2

The policy g for the path (iy, i, i7, ig) results in the following gain

(1) (i,2) (o, 1) (i9,2)  (i7,1)  (i7,2)

(is, 1) (is,2)

Vector g0 | 4.2857 4.2857 2.2857 4.1429 1.2143 3.0714 0.1429 2

Finally, the policy weights of the remaining states are given by

(i, 1) (i2,2) (0, 1) (i0,2) (i3,1) (i3,2)

(ia; 1) (i, 2)

Vector g0 | 3.2143 3.2143 1.2143 3.0714 0.2857 4

0.1429 2

In the policy improvement step the values u (iz, 1), w;(iz, 2) satisfying
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T, g" =T g" are computed as

ul(iZa 1) = argmin { 1+ iPu((iZa l)a ])guo(])}

ue{iio, i3} j=1

= argmin { 1 +Pi1,i2¢i|0,i8((i2v 1)3 (ilOv 2)) guo (ilOa 2)a

i10,i3
1+Pi17i27i37i4((i27 1)7(1.3) 1)>gu0(i37 1)}
— argmin {14 1-3.0714,1+1-0.2857}

i10,i3

= argmin (4.0714,1.2857) = i3,

i10i3

and

i (i2,2) = argmin { 14 Y P((,2), ) g“O(j)}

ue{iig, i3} j=1

= argmin { 1 +Pi17i27i10,i8((i27 2)’ (ilo, 1))gu0 (i107 1)+

110,13
Piy in.ing.is (2, 2), (i2, 2)) g™ (i2, 2),
1+Piy iy isi, (12, 2), (i3, 2)) 8% (i3, 2) +
Pi iy inia (02, 2), (i2,2)) " (i2, 2) }
=argmin {1+40.0714-1.2143 +0.9286-3.0714,
i10,3
1+0.0714-4+0.9286-3.0714 }
= argmin (3.0715,3.2041 ) = ijo.

i10