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Dedicated to everyone who labors in the field 
of statistics, whether they are students, 
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How to Use This Book 
This book is designed to be a practical guide to regression modeling. There is 
little theory here, and methodology appears in the service of the ultimate goal 
of analyzing real data using appropriate regression tools. As such, the target 
audience of the book includes anyone who is faced with regression data [that 
is, data where there is a response variable that is being modeled as a function 
of other variable (s)], and whose goal is to learn as much as possible from that 
data. 

The book can be used as a text for an applied regression course (indeed, 
much of it is based on handouts that have been given to students in such a 
course), but that is not its primary purpose; rather, it is aimed much more 
broadly as a source of practical advice on how to address the problems that 
come up when dealing with regression data. While a text is usually organized 
in a way that makes the chapters interdependent, successively building on 
each other, that is not the case here. Indeed, we encourage readers to dip into 
different chapters for practical advice on specific topics as needed. The pace 
of the book is faster than might typically be the case for a text. The coverage, 
while at an applied level, does not shy away from sophisticated concepts. It is 
distinct from, for example, Chatterjee and Hadi (2012), while also having less 
theoretical focus than texts such as Greene (2011), Montgomery et al. (2012), 
or Sen and Srivastava (1990). 

This, however, is not a cookbook that presents a mechanical approach to 
doing regression analysis. Data analysis is perhaps an art, and certainly a craft; 
we believe that the goal of any data analysis book should be to help analysts 
develop the skills and experience necessary to adjust to the inevitable twists 
and turns that come up when analyzing real data. 

We assume that the reader possesses a nodding acquaintance with re-
gression analysis. The reader should be familiar with the basic terminol-
ogy and should have been exposed to basic regression techniques and con-
cepts, at least at the level of simple (one-predictor) linear regression. We also 
assume that the user has access to a computer with an adequate regression 
package. The material presented here is not tied to any particular software. 
Almost all of the analyses described here can be performed by most stan-
dard packages, although the ease of doing this could vary. All of the analyses 
presented here were done using the free package R (R Development Core 
Team, 2011), which is available for many different operating system plat-
forms (see h t t p : //www.R-pro j e c t . org/ for more information). Code for 

xi 
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the output and figures in the book can be found at its associated web site at 
h t tp : / /people . s te rn .nyu.edu/ j s imonof /Regress ionHandbook/ . 

Each chapter of the book is laid out in a similar way, with most having at 
least four sections of specific types. First is an introduction, where the general 
issues that will be discussed in that chapter are presented. A section on con-
cepts and background material follows, where a discussion of the relationship 
of the chapter's material to the broader study of regression data is the focus. 
This section also provides any theoretical background for the material that is 
necessary. Sections on methodology follow, where the specific tools used in 
the chapter are discussed. This is where relevant algorithmic details are likely 
to appear. Finally, each chapter includes at least one analysis of real data us-
ing the methods discussed in the chapter (as well as appropriate material from 
earlier chapters), including both methodological and graphical analyses. 

The book begins with discussion of the multiple regression model. Many 
regression textbooks start with discussion of simple regression before moving 
on to multiple regression. This is quite reasonable from a pedagogical point 
of view, since simple regression has the great advantage of being easy to un-
derstand graphically, but from a practical point of view simple regression is 
rarely the primary tool in analysis of real data. For that reason, we start with 
multiple regression, and note the simplifications that come from the special 
case of a single predictor. Chapter i describes the basics of the multiple re-
gression model, including the assumptions being made, and both estimation 
and inference tools, while also giving an introduction to the use of residual 
plots to check assumptions. 

Since it is unlikely that the first model examined will ultimately be the 
final preferred model, Chapter 2 focuses on the very important areas of model 
building and model selection. This includes addressing the issue of collinear-
ity, as well as the use of both hypothesis tests and information measures to 
help choose among candidate models. 

Chapters 3 through 5 study common violations of regression assump-
tions, and methods available to address those model violations. Chapter 3 
focuses on unusual observations (outliers and leverage points), while Chapter 
4 describes how transformations (especially the log transformation) can often 
address both nonlinearity and nonconstant variance violations. Chapter 5 is 
an introduction to time series regression, and the problems caused by auto-
correlation. Time series analysis is a vast area of statistical methodology, so 
our goal in this chapter is only to provide a good practical introduction to 
that area in the context of regression analysis. 

Chapters 6 and 7 focus on the situation where there are categorical vari-
ables among the predictors. Chapter 6 treats analysis of variance (ANOVA) 
models, which include only categorical predictors, while Chapter 7 looks at 
analysis of covariance (ANCOVA) models, which include both numerical and 
categorical predictors. The examination of interaction effects is a fundamental 
aspect of these models, as are questions related to simultaneous comparison of 
many groups to each other. Data of this type often exhibit nonconstant vari-
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ance related to the different subgroups in the population, and the appropriate 
tool to address this issue, weighted least squares, is also a focus here. 

Chapters 8 though 10 examine the situation where the nature of the 
response variable is such that Gaussian-based least squares regression is no 
longer appropriate. Chapter 8 focuses on logistic regression, designed for bi-
nary response data and based on the binomial random variable. While there 
are many parallels between logistic regression analysis and least squares re-
gression analysis, there are also issues that come up in logistic regression that 
require special care. Chapter 9 uses the multinomial random variable to gener-
alize the models of Chapter 8 to allow for multiple categories in the response 
variable, outlining models designed for response variables that either do or 
do not have ordered categories. Chapter 10 focuses on response data in the 
form of counts, where distributions like the Poisson and negative binomial 
play a central role. The connection between all these models through the 
generalized linear model framework is also exploited in this chapter. 

The final chapter focuses on situations where linearity does not hold, 
and a nonlinear relationship is necessary. Although these models are based 
on least squares, from both an algorithmic and inferential point of view there 
are strong connections with the models of Chapters 8 through 10, which we 
highlight. 

This Handbook can be used in several different ways. First, a reader may 
use the book to find information on a specific topic. An analyst might want 
additional information on, for example, logistic regression or autocorrelation. 
The chapters on these (and other) topics provide the reader with this subject 
matter information. As noted above, the chapters also include at least one 
analysis of a data set, a clarification of computer output, and reference to 
sources where additional material can be found. The chapters in the book are 
to a large extent self-contained and can be consulted independently of other 
chapters. 

The book can also be used as a template for what we view as a reasonable 
approach to data analysis in general. This is based on the cyclical paradigm 
of model formulation, model fitting, model evaluation, and model updating 
leading back to model (re)formulation. Statistical significance of test statistics 
does not necessarily mean that an adequate model has been obtained. Further 
analysis needs to be performed before the fitted model can be regarded as an 
acceptable description of the data, and this book concentrates on this impor-
tant aspect of regression methodology. Detection of deficiencies of fit is based 
on both testing and graphical methods, and both approaches are highlighted 
here. 

This preface is intended to indicate ways in which the Handbook can be 
used. Our hope is that it will be a useful guide for data analysts, and will 
help contribute to effective analyses. We would like to thank our students 
and colleagues for their encouragement and support. We hope we have pro-
vided them with a book of which they would approve. We would like to 
thank Steve Quigley, Jackie Palmieri, and Amy Hendrickson for their help in 



xiv PREFACE 

bringing this manuscript to print. We would also like to thank our families 
for their love and support. 

SAMPRIT CHATTERJEE 
Brooksville, Maine 

JEFFREY S. SIMONOFF 
New York, New York 

August, 2012 
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1.1 Introduction 

This is a book about regression modeling, but when we refer to regression 
models, what do we mean? The regression framework can be characterized 
in the following way: 

1. We have one particular variable that we are interested in understanding 
or modeling, such as sales of a particular product, sale price of a home, or 
voting preference of a particular voter. This variable is called the target, 
response, or dependent variable, and is usually represented by y. 

Handbook of Regression Analysis. By Samprit Chatterjee and Jeffrey S. Simonoff 3 
Copyright © 2013 John Wiley & Sons, Inc. 



4 CHAPTER i Multiple Linear Regression 

2. We have a set of p other variables that we think might be useful in pre-
dicting or modeling the target variable (the price of the product, the com-
petitor's price, and so on; or the lot size, number of bedrooms, number 
of bathrooms of the home, and so on; or the gender, age, income, party 
membership of the voter, and so on). These are called the predicting, or 
independent variables, and are usually represented by #i , #2> e t c-

Typically, a regression analysis is used for one (or more) of three purposes: 

i. modeling the relationship between x and y; 

2. prediction of the target variable (forecasting); 
3. and testing of hypotheses. 

In this chapter we introduce the basic multiple linear regression model, 
and discuss how this model can be used for these three purposes. Specifically, 
we discuss the interpretations of the estimates of different regression param-
eters, the assumptions underlying the model, measures of the strength of the 
relationship between the target and predictor variables, the construction of 
tests of hypotheses and intervals related to regression parameters, and the 
checking of assumptions using diagnostic plots. 

1.2 Concepts and Background Material 

1.2.1 THE LINEAR REGRESSION MODEL 

The data consist of n sets of observations {xu, X2i,..., xPi, y^}, which rep-
resent a random sample from a larger population. It is assumed that these 
observations satisfy a linear relationship, 

Vi = A) + Pixu H h f3pXpi + eu (1.1) 

where the (3 coefficients are unknown parameters, and the si are random 
error terms. By a linear model, it is meant that the model is linear in the 
parameters', a quadratic model, 

Vi = A) + PiXi + foxf + eu 

paradoxically enough, is a linear model, since x and x2 are just versions of x\ 
and X2-

It is important to recognize that this, or any statistical model, is not 
viewed as a true representation of reality; rather, the goal is that the model 
be a useful representation of reality. A model can be used to explore the re-
lationships between variables and make accurate forecasts based on those re-
lationships even if it is not the "truth." Further, any statistical model is only 
temporary, representing a provisional version of views about the random pro-
cess being studied. Models can, and should, change, based on analysis using 
the current model, selection among several candidate models, the acquisition 
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G U R E 1.1 The simple linear regression model. The solid line corresponds to the 
true regression line, and the dotted lines correspond to the random errors ei, 

of new data, and so on. Further, it is often the case that there are several dif-
ferent models that are reasonable representations of reality. Having said this, 
we will sometimes refer to the "true" model, but this should be understood as 
referring to the underlying form of the currently hypothesized representation 
of the regression relationship. 

The special case of (i.i) withp = 1 corresponds to the simple regression 
model, and is consistent with the representation in Figure i. i. The solid line 
is the true regression line, the expected value of y given the value of x. The 
dotted lines are the random errors Si that account for the lack of a perfect 
association between the predictor and the target variables. 

1.2.2 ESTIMATION USING LEAST SQUARES 

The true regression function represents the expected relationship between the 
target and the predictor variables, which is unknown. A primary goal of a 
regression analysis is to estimate this relationship, or equivalently, to estimate 
the unknown parameters (3. This requires a data-based rule, or criterion, 
that will give a reasonable estimate. The standard approach is least squares 
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2 4 6 8 

x 

1.2. Least squares estimation for the simple linear regression model, using 
the same data as in Figure I . I . The gray line corresponds to the true regression line, 
the solid black line corresponds to the fitted least squares line (designed to estimate the 
gray line), and the lengths of the dotted lines correspond to the residuals. The sum of 
squared values of the lengths of the dotted lines is minimized by the solid black line. 

regression, where the estimates are chosen to minimize 
n 

S k / i - (A) + PlXli + • • • + PpXpi)]2. (l.2) 
i=l 

Figure 1.2 gives a graphical representation of least squares that is based on 
Figure 1.1. Now the true regression line is represented by the gray line, and 
the solid black line is the estimated regression line, designed to estimate the 
(unknown) gray line as closely as possible. For any choice of estimated param-
eters /3, the estimated expected response value given the observed predictor 
values equals 

Vi = A) + PlXli H r- PpXpi, 

and is called the fitted value. The difference between the observed value yi 
and the fitted value yi is called the residual, the set of which are represented 
by the lengths of the dotted lines in Figure 1.2. The least squares regression 
line minimizes the sum of squares of the lengths of the dotted lines; that is, 
the ordinary least squares (OLS) estimates minimize the sum of squares of the 
residuals. 
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1.3 Least squares estimation for the multiple linear regression model with 
two predictors. The plane corresponds to the fitted least squares relationship, and the 
lengths of the vertical lines correspond to the residuals. The sum of squared values of 
the lengths of the vertical lines is minimized by the plane. 

In higher dimensions (p > 1) the true and estimated regression relation-
ships correspond to planes (p = 2) or hyperplanes (p > 3), but otherwise the 
principles are the same. Figure 1.3 illustrates the case with two predictors. 
The length of each vertical line corresponds to a residual (solid lines refer to 
positive residuals while dashed lines refer to negative residuals), and the (least 
squares) plane that goes through the observations is chosen to minimize the 
sum of squares of the residuals. 

The linear regression model can be written compactly using matrix nota-
tion. Define the following matrix and vectors as follows: 

X = 

1 x 11 

1 xln 

Xpi 

°pn 

y = 

/ 

( Vl) 

\yn ) 

13 = 

(M 

\Pp) 

£ = 

( e1 \ 

\Sn ) 

The regression model ( I . I ) is then 

y = X/3 + e. 
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The normal equations [which determine the minimizer of (1.2)] can be 
shown (using multivariate calculus) to be 

(X'X)0 = X'y, 

which implies that the least squares estimates satisfy 

p = {X'X)-lX'y. 

The fitted values are then 

y = Xp = X(X'X)-lXfy = ffy, (1.3) 

where H = X{X,X)~1Xf is the so-called "hat" matrix (since it takes y to y). 
The residuals e = y — y thus satisfy 

e = y - y = y - X&'X^X'y = (I - X(X / X)" 1 X / )y , (1.4) 

or 
e = ( I - f f ) y . 

1.2.3 ASSUMPTIONS 

The least squares criterion will not necessarily yield sensible results unless 
certain assumptions hold. One is given in (1.1) — the linear model should 
be appropriate. In addition, the following assumptions are needed to justify 
using least squares regression. 

1. The expected value of the errors is zero (E{ei) — 0 for all i). That is, it 
cannot be true that for certain observations the model is systematically 
too low, while for others it is systematically too high. A violation of this 
assumption will lead to difficulties in estimating J3Q. More importantly, 
this reflects that the model does not include a necessary systematic com-
ponent, which has instead been absorbed into the error terms. 

2. The variance of the errors is constant (V(ei) = a2 for all i). That is, 
it cannot be true that the strength of the model is more for some parts 
of the population (smaller a) and less for other parts (larger a). This 
assumption of constant variance is called homoscedasticity, and its vio-
lation (nonconstant variance) is called heteroscedasticity. A violation of 
this assumption means that the least squares estimates are not as efficient 
as they could be in estimating the true parameters, and better estimates 
are available. More importantly, it also results in poorly calibrated confi-
dence and (especially) prediction intervals. 

3. The errors are uncorrelated with each other. That is, it cannot be true 
that knowing that the model underpredicts y (for example) for one par-
ticular observation says anything at all about what it does for any other 
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observation. This violation most often occurs in data that are ordered in 
time (time series data), where errors that are near each other in time are 
often similar to each other (such time-related correlation is called auto-
correlation). Violation of this assumption can lead to very misleading 
assessments of the strength of the regression. 

4. The errors are normally distributed. This is needed if we want to con-
struct any confidence or prediction intervals, or hypothesis tests, which 
we usually do. If this assumption is violated, hypothesis tests and confi-
dence and prediction intervals can be very misleading. 

Since violation of these assumptions can potentially lead to completely mis-
leading results, a fundamental part of any regression analysis is to check them 
using various plots, tests, and diagnostics. 

1.3 Methodology 

1 .3 .1 INTERPRETING REGRESSION COEFFICIENTS 

The least squares regression coefficients have very specific meanings. They 
are often misinterpreted, so it is important to be clear on what they mean 
(and do not mean). Consider first the intercept, (3Q. 

Po: The estimated expected value of the target variable when the predictors 
all equal zero. 

Note that this might not have any physical interpretation, since a zero value 
for the predictor(s) might be impossible, or might never come close to occur-
ring in the observed data. In that situation, it is pointless to try to interpret 
this value. If all of the predictors are centered to have mean zero, then (3$ 
necessarily equals Y, the sample mean of the target values. Note that if there 
is any particular value for each predictor that is meaningful in some sense, if 
each variable is centered around its particular value, then the intercept is an 
estimate of E{y) when the predictors all have those meaningful values. 

The estimated coefficient for the jth predictor (j — 1 , . . . , p) is inter-
preted in the following way. 

J3j: The estimated expected change in the target variable associated with a one 
unit change in the j th predicting variable, holding all else in the model 
fixed. 

There are several noteworthy aspects to this interpretation. First, note 
the word associated — we cannot say that a change in the target variable is 
caused by a change in the predictor, only that they are associated with each 
other. That is, correlation does not imply causation. 

Another key point is the phrase "holding all else in the model fixed," the 
implications of which are often ignored. Consider the following hypothetical 
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example. A random sample of college students at a particular university is 
taken in order to understand the relationship between college grade point 
average (GPA) and other variables. A model is built with college GPA as a 
function of high school GPA and the standardized Scholastic Aptitude Test 
(SAT), with resultant least squares fit 

College GPA = 1.3 + .7 x High School GPA - .0001 x SAT. 

It is tempting to say (and many people would say) that the coefficient for SAT 
score has the "wrong sign," because it says that higher values of SAT are asso-
ciated with lower values of college GPA. This is not correct. The problem is 
that it is likely in this context that what an analyst would find intuitive is the 
marginal relationship between college GPA and SAT score alone (ignoring 
all else), one that we would indeed expect to be a direct (positive) one. The 
regression coefficient does not say anything about that marginal relationship. 
Rather, it refers to the conditional (sometimes called partial) relationship that 
takes the high school GPA as fixed, which is apparently that higher values 
of SAT are associated with lower values of college GPA, holding high school 
GPA fixed. High school GPA and SAT are no doubt related to each other, 
and it is quite likely that this relationship between the predictors would com-
plicate any understanding of, or intuition about, the conditional relationship 
between college GPA and SAT score. Multiple regression coefficients should 
not be interpreted marginally; if you really are interested in the relationship 
between the target and a single predictor alone, you should simply do a re-
gression of the target on only that variable. This does not mean that multiple 
regression coefficients are uninterpretable, only that care is necessary when 
interpreting them. 

Another common use of multiple regression that depends on this con-
ditional interpretation of the coefficients is to explicitly include "control" 
variables in a model in order to try to account for their effect statistically. 
This is particularly important in observational data (data that are not the re-
sult of a designed experiment), since in that case the effects of other variables 
cannot be ignored as a result of random assignment in the experiment. For 
observational data it is not possible to physically intervene in the experiment 
to "hold other variables fixed," but the multiple regression framework effec-
tively allows this to be done statistically. 

1.3.2 MEASURING THE STRENGTH OF THE REGRESSION RELA-
TIONSHIP 

The least squares estimates possess an important property: 

Bw-F)a = ]Bw-fc)2 + f>-F)2. 
i=l i=l i—\ 

This formula says that the variability in the target variable (the left side of the 
equation, termed the corrected total sum of squares) can be split into two mu-
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tually exclusive parts — the variability left over after doing the regression (the 
first term on the right side, the residual sum of squares), and the variability 
accounted for by doing the regression (the second term, the regression sum of 
squares). This immediately suggests the usefulness of R2 as a measure of the 
strength of the regression relationship, where 

2 _ YsiiVi ~ ^ ) 2 _ Regression SS _ Residual SS 
~~ HiiVi ~ Y)2 ^ Corrected total SS ~ ~ Corrected total SS' 

The R2 value (also called the coefficient of determination) estimates the pop-
ulation proportion of variability in y accounted for by the best linear combi-
nation of the predictors. Values closer to 1 indicate a good deal of predictive 
power of the predictors for the target variable, while values closer to 0 indicate 
little predictive power. An equivalent representation of R2 is 

R2 = c o r r ( ^ , ^ ) 2 , 

where _ 

corr(yi,yi) = , _ _== 

\jEM-Y)2Ei(yi-Y)2 

is the sample correlation coefficient between y and y (this correlation is called 
the multiple correlation coefficient). That is, R2 is a direct measure of how 
similar the observed and fitted target values are. 

It can be shown that R2 is biased upwards as an estimate of the population 
proportion of variability accounted for by the regression. The adjusted R2 

corrects this bias, and equals 

^ = ̂ -^7n(1-^)- <■•') 
It is apparent from (1.5) that unless p is large relative to n — p — 1 (that is, 
unless the number of predictors is large relative to the sample size), R2 and 
JR2 will be close to each other, and the choice of which to use is a minor 
concern. What is perhaps more interesting is the nature of R^ as providing 
an explicit tradeoff between the strength of the fit (the first term, with larger 
R2 corresponding to stronger fit and larger R%) and the complexity of the 
model (the second term, with larger p corresponding to more complexity and 
smaller R%). This tradeoff of fidelity to the data versus simplicity will be 
important in the discussion of model selection in Section 2.3.1. 

The only parameter left unaccounted for in the estimation scheme is the 
variance of the errors a2. An unbiased estimate is provided by the residual 
mean square, 

a2 = £ ^ i ^ - ^ ) 2 . ( l.6) 
n—p—1 

This estimate has a direct, but often underappreciated, use in assessing the 
practical importance of the model. Does knowing # 1 , . . . , xp really say any-
thing of value about y? This isn't a question that can be answered completely 
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statistically; it requires knowledge and understanding of the data (that is, it 
requires context). Recall that the model assumes that the errors are normally 
distributed with standard deviation a. This means that, roughly speaking, 
95% of the time an observed y value falls within ±2a of the expected response 

E(y) = Po + /3ixi H h PpXp. 

E{y) can be estimated for any given set of x values using 

y = A) + fi\xx H h PpXp, 

while the square root of the residual mean square (1.6), termed the standard 
error of the estimate, provides an estimate of a that can be used in construct-
ing this rough prediction interval ±2<J. 

1.3.3 HYPOTHESIS TESTS AND CONFIDENCE INTERVALS FOR (3 

There are two types of hypothesis tests related to the regression coefficients 
of immediate interest. 

1. Do any of the predictors provide predictive power for the target variable? 
This is a test of the overall significance of the regression, 

H0 : ft = • • • = PP = 0 

versus 
Ha : some (3j ̂  0, j = 1 , . . . ,p. 

The test of these hypotheses is the F-test, 

Regression MS _ Regression SS/p 
~ Residual MS ~~ Residual SS/(n - p - 1)' 

This is referenced against a null F-distribution on (p,n — p — 1) degrees 
of freedom. 

2. Given the other variables in the model, does a particular predictor pro-
vide additional predictive power? This corresponds to a test of the signif-
icance of an individual coefficient, 

H0:Pj=0, j = l , . . . , p 

versus 
Ha : fij + 0. 

This is tested using a t-test, 
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which is compared to a t-distribution on n — p — 1 degrees of freedom. 
Other values of j3j can be specified in the null hypothesis (say f3jo), with 
the t-statistic becoming 

= 4 ^ ( } 
The values of £e.(J3j) are obtained as the square roots of the diagonal ele-
ments of V(/3) — {X'X)~xo2, where a2 is the residual mean square (1.6). 
Note that for simple regression (p = 1) the hypotheses corresponding to 
the overall significance of the model and the significance of the predictor 
are identical, 

#o : Pi = 0 

versus 
Halp!^ 0. 

Given the equivalence of the sets of hypotheses, it is not surprising that 
the associated tests are also equivalent; in fact, F = t\, and the associated 
tail probabilities of the two tests are identical. 

A t-test for the intercept also can be constructed as in (1.7), although this 
does not refer to a hypothesis about a predictor, but rather about whether 
the expected target is equal to a specified value /?oo if all of the predictors 
equal zero. As was noted in Section 1.3.1, this is often not physically 
meaningful (and therefore of little interest), because the condition that all 
predictors equal zero cannot occur, or does not come close to occurring 
in the observed data. 

As is always the case, a confidence interval provides an alternative way of 
summarizing the degree of precision in the estimate of a regression parameter. 
That is, a 100 x (1 — a)% confidence interval for (3j has the form 

where £™72
P_1 is the appropriate critical value at two-sided level a for a t-

distribution on n — p — 1 degrees of freedom. 

1.3.4 FITTED VALUES AND PREDICTIONS 

The rough prediction interval y ± 2<r discussed in Section 1.3.2 is an approx-
imate 95% interval because it ignores the variability caused by the need to 
estimate a, and uses only an approximate normal-based critical value. A more 
accurate assessment of this is provided by a prediction interval given a par-
ticular value of x. This interval provides guidance as to how precise ?/o is as a 
prediction of y for some particular specified value xo, where ?/o is determined 
by substituting the values XQ into the estimated regression equation; its width 
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depends on both a and the position of XQ relative to the centroid of the pre-
dictors (the point located at the means of all predictors), since values farther 
from the centroid are harder to predict as precisely. Specifically, for a simple 
regression, the estimated standard error of a predicted value based on a value 
#0 of the predicting variable is 

— , ^ . L 1 (X0 - X)2 

More generally, the variance of a predicted value is 

V(y£) = ll + Xo(X'X)-1x0}a2. (i.g) 

Here XQ is taken to include a 1 in the first entry (corresponding to the inter-
cept in the regression model). The prediction interval is then 

where £e.(yg) = yV(y£). 

This prediction interval should not be confused with a confidence inter-
val for a fitted value. The prediction interval is used to provide an interval 
estimate for a prediction of y for one member of the population with a particular 
value of x0; the confidence interval is used to provide an interval estimate for 
the true expected value of y for all members of the population with a particular 
value of xo. The corresponding standard error, termed the standard error for 
a fitted value, is the square root of 

V (yg) = x^(X'X)- 1 x 0 a 2 , (1.9) 

with corresponding confidence interval 

A comparison of the two estimated variances (i.g) and (1.9) shows that the 
variance of the predicted value has an extra a2 term, which corresponds to 
the inherent variability in the population. Thus, the confidence interval for a 
fitted value will always be narrower than the prediction interval, and is often 
much narrower (especially for large samples), since increasing the sample size 
will always improve estimation of the expected response value, but cannot 
lessen the inherent variability in the population associated with the prediction 
of the target for a single observation. 

1.3.5 CHECKING ASSUMPTIONS USING RESIDUAL PLOTS 

As was noted earlier, all of these tests, intervals, predictions, and so on, are 
based on the belief that the assumptions of the regression model hold. Thus, 
it is crucially important that these assumptions be checked. Remarkably 
enough, a few very simple plots can provide much of the evidence needed 
to check the assumptions. 
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1. A plot of the residuals versus the fitted values. This plot should have no 
pattern to it; that is, no structure should be apparent. Certain kinds of 
structure indicate potential problems: 
(a) A point (or a few points) isolated at the top or bottom, or left or right. 

In addition, often the rest of the points have a noticeable "tilt" to them. 
These isolated points are unusual points, and can have a strong effect 
on the regression. They need to be examined carefully, and possibly 
removed from the data set. 

(b) An impression of different heights of the point cloud as the plot is 
examined from left to right. This indicates potential heteroscedasticity 
(nonconstant variance). 

2. Plots of the residuals versus each of the predictors. Again, a plot with no 
apparent structure is desired. 

3. If the data set has a time structure to it, residuals should be plotted versus 
time. Again, there should be no apparent pattern. If there is a cyclical 
structure, this indicates that the errors are not uncorrelated, as they are 
supposed to be (that is, there is potentially autocorrelation in the errors). 

4. A normal plot of the residuals. This plot assesses the apparent normality 
of the residuals, by plotting the observed ordered residuals on one axis 
and the expected positions (under normality) of those ordered residuals 
on the other. The plot should look like a straight line (roughly). Isolated 
points once again represent unusual observations, while a curved line 
indicates that the errors are probably not normally distributed, and tests 
and intervals might not be trustworthy. 

Note that all of these plots should be routinely examined in any regression 
analysis, although in order to save space not all will necessarily be presented 
in all of the analyses in the book. 

An implicit assumption in any model that is being used for prediction 
is that the future "looks like" the past; that is, it is not sufficient that these 
assumptions appear to hold for the available data, as they also must continue 
to hold for new data on which the estimated model is applied. Indeed, the 
assumption is stronger than that, since it must be the case that the future 
is exactly the same as the past, in the sense that all of the properties of the 
model, including the precise values of all of the regression parameters, are the 
same. This is unlikely to be exactly true, so a more realistic point of view is 
that the future should be similar enough to the past so that predictions based 
on the past are useful. A related point is that predictions should not be based 
on extrapolation, where the predictor values are far from the values used to 
build the model. Similarly, if the observations form a time series, predictions 
far into the future are unlikely to be very useful. 

In general, the more complex a model is, the less likely it is that all of 
its characteristics will remain stable going forward, which implies that a rea-
sonable goal is to try to find a model that is as simple as it can be while still 
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accounting for the important effects in the data. This leads to questions of 
model building, which is the subject of the next chapter. 

1.4 Example — Estimating Home Prices 

Determining the appropriate sale price for a home is clearly of great interest 
to both buyers and sellers. While this can be done in principle by examining 
the prices at which other similar homes have recently sold, the well-known 
existence of strong effects related to location means that there are likely to 
be relatively few homes with the same important characteristics to make the 
comparison. A solution to this problem is the use of hedonic regression mod-
els, where the sale prices of a set of homes in a particular area are regressed 
on important characteristics of the home such as the number of bedrooms, 
the living area, the lot size, and so on. Academic research on this topic is 
plentiful, going back to at least Wabe (1971). 

This analysis is based on a sample from public data on sales of one-family 
homes in the Levittown, NY area from June 2010 through May 2011. Levit-
town is famous as the first planned suburban community built using mass 
production methods, being aimed at former members of the military after 
World War II. Most of the homes in this community were built in the late 
1940s to early 1950s, without basements and designed to make expansion on 
the second floor relatively easy. 

For each of the 85 houses in the sample, the number of bedrooms, num-
ber of bathrooms, living area (in square feet), lot size (in square feet), the year 
the house was built, and the property taxes are used as potential predictors of 
the sale price. In any analysis the first step is to look at the data, and Figure 
1.4 gives scatter plots of sale price versus each predictor. It is apparent that 
there is a positive association between sale price and each variable, other than 
number of bedrooms and lot size. We also note that there are two houses 
with unusually large living areas for this sample, two with unusually large 
property taxes (these are not the same two houses), and three that were built 
6 or 7 years later than all of the other houses in the sample. 

The output below summarizes the results of a multiple regression fit. 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) -7.149e+06 3.820e+06 -1.871 0.065043 . 
Bedrooms -1.229e+04 9.347e+03 -1.315 0.192361 
Bathrooms 5.170e+04 1.309e+04 3.948 0.000171 *** 
Living.area 6.590e+01 1.598e+01 4.124 9.22e-05 **• 
Lot.size -8.971e-01 4.194e+00 -0.214 0.831197 
Year.built 3.761e+03 1.963e+03 1.916 0.058981 . 
Property.tax 1.476e+00 2.832e+00 0.521 0.603734 
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1 . 4 Scatter plots of sale price versus each predictor for the home price data. 

Signif. codes: 
0 '*•*' 0.001 0.01 0.05 0.1 

Residual standard error: 47380 on 78 degrees of freedom 
Multiple R-squared: 0.5065, Adjusted R-squared: 0.4685 
F-statistic: 13.34 on 6 and 78 DF, p-value: 2.416e-10 

The overall regression is strongly statistically significant, with the tail 
probability of the F-test roughly 10~10. The predictors account for roughly 
50% of the variability in sale prices (R2 « 0.5). Two of the predictors (num-
ber of bathrooms and living area) are highly statistically significant, with tail 
probabilities less than .0002, and the coefficient of the year built variable is 
marginally statistically significant. The coefficients imply that given all else 
in the model is held fixed, one additional bathroom in a house is associated 
with an estimated expected price that is $51,700 higher; one additional square 
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foot of living area is associated with an estimated expected price that is $65.90 
higher (given the typical value of the living area variable, a more meaningful 
statement would probably be that an additional 100 square feet of living area 
is associated with an estimated expected price that is $659 higher); and a house 
being built one year later is associated with an estimated expected price that 
is $3761 higher. 

This is a situation where the distinction between a confidence interval 
for a fitted value and a prediction interval (and which is of more interest to a 
particular person) is clear. Consider a house with 3 bedrooms, 1 bathroom, 
1050 square feet of living area, 6000 square foot lot size, built in 1948, with 
$6306 in property taxes. Substituting those values into the above equation 
gives an estimated expected sale price of a house with these characteristics 
equal to $265,360. A buyer or a seller is interested in the sale price of one 
particular house, so a prediction interval for the sale price would provide 
a range for what the buyer can expect to pay and the seller expect to get. 
The standard error of the estimate a — $47,380 can be used to construct a 
rough prediction interval, in that roughly 95% of the time a house with these 
characteristics can be expected to sell for within ±(2)(47380) = ±$94,360 of 
that estimated sale price, but a more exact interval might be required. On the 
other hand, a home appraiser or tax assessor is more interested in the typical 
(average) sale price for all homes of that type in the area, so they can give 
a justifiable interval estimate giving the precision of the estimate of the true 
expected value of the house, so a confidence interval for the fitted value is 
desired. 

Exact 95% intervals for a house with these characteristics can be obtained 
from statistical software, and turn out to be ($167277, $363444) for the pre-
diction interval and ($238482, $292239) for the confidence interval. As ex-
pected, the prediction interval is much wider than the confidence interval, 
since it reflects the inherent variability in sale prices in the population of 
houses; indeed, it is probably too wide to be of any practical value in this 
case, but an interval with smaller coverage (that is expected to include the 
actual price only 50% of the time, say) might be useful (a 50% interval in 
this case would be ($231974, $298746), so a seller could be told that there is a 
50/50 chance that their house will sell for a value in this range). 

The validity of all of these results depends on whether the assumptions 
hold. Figure 1.5 gives a scatter plot of the residuals versus the fitted values and 
a normal plot of the residuals for this model fit. There is no apparent pattern 
in the plot of residuals versus fitted values, and the ordered residuals form a 
roughly straight line in the normal plot, so there are no apparent violations of 
assumptions here. The plot of residuals versus each of the predictors (Figure 
1.6) also does not show any apparent patterns, other than the houses with 
unusual living area and year being built, respectively. It would be reasonable 
to omit these observations to see if they have had an effect on the regression, 
but we will postpone discussion of that to Chapter 3, where diagnostics for 
unusual observations are discussed in greater detail. 
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G U R E 1 . 5 Residual plots for the home price data, (a) Plot of residuals versus 
fitted values, (b) Normal plot of the residuals. 

An obvious consideration at this point is that the models discussed here 
appear to be overspecified; that is, they include variables that do not appar-
ently add to the predictive power of the model. As was noted earlier, this 
suggests the consideration of model building, where a more appropriate (sim-
plified) model can be chosen, which will be discussed in the next chapter. 

1.5 Summary 

In this chapter we have laid out the basic structure of the linear regression 
model, including the assumptions that justify the use of least squares estima-
tion. The three main goals of regression noted at the beginning of the chapter 
provide a framework for an organization of the topics covered. 

1. Modeling the relationship between x and y: 

• the least squares estimates (3 summarize the expected change in y for a 
given change in an x, accounting for all of the variables in the model; 

• the standard error of the estimate a estimates the standard deviation 
of the errors; 

• R2 and R2
a estimate the proportion of variability in y accounted for 

byx; 
• and the confidence interval for a fitted value provides a measure of the 

precision in estimating the expected target for a given set of predictor 
values. 

2. Prediction of the target variable: 
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GURE 1.6 Scatter plots of residuals versus each predictor for the home price data. 

• substituting specified values of x into the fitted regression model gives 
an estimate of the value of the target for a new observation; 

• the rough prediction interval ±25" provides a quick measure of the 
limits of the ability to predict a new observation; 

• and the exact prediction interval provides a more precise measure of 
those limits. 

Testing of hypotheses: 
• the F-test provides a test of the statistical significance of the overall 

relationship; 
• the t-test for each slope coefficient testing whether the true value is 

zero provides a test of whether the variable provides additional predic-
tive power given the other variables; 

• and the t-tests can be generalized to test other hypotheses of interest 
about the coefficients as well. 
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Since all of these methods depend on the assumptions holding, a fundamental 
part of any regression analysis is to check those assumptions. The residual 
plots discussed in this chapter are a key part of that process, and other diag-
nostics and tests will be discussed in future chapters that provide additional 
support for that task. 

KEY TERMS 
Autocorrelation: Correlation between adjacent observations in a (time) se-
ries. In the regression context it is autocorrelation of the errors that is a 
violation of assumptions. 
Coefficient of determination (R2): The square of the multiple correlation 
coefficient, estimates the proportion of variability in the target variable that 
is explained by the fitted least squares model. 
Confidence interval for a fitted value: A measure of precision of the esti-
mate of the expected target value for a given x. 
Dependent variable: Characteristic of each member of the sample that is 
being modeled. This is also known as the target or response variable. 
Fitted value: The least square estimate of the expected target value for a 
particular observation obtained from the fitted regression model. 
Heteroscedasticity: Unequal variance; this can refer to observed unequal 
variance of the residuals or theoretical unequal variance of the errors. 
Homoscedasticity: Equal variance; this can refer to observed equal variance 
of the residuals or the assumed equal variance of the errors. 
Independent variable(s): Characteristic(s) of each member of the sample 
that could be used to model the dependent variable. These are also known as 
the predicting variables. 
Least squares: A method of estimation that minimizes the sum of squared 
deviations of the observed target values from their estimated expected values. 
Prediction interval: The interval estimate for the value of the target variable 
for an individual member of the population using the fitted regression model. 
Residual: The difference between the observed target value and the corre-
sponding fitted value. 
Residual mean square: An unbiased estimate of the variance of the errors. 
It is obtained by dividing the sum of squares of the residuals by (n — p — 1), 
where n is the number of observations and p is the number of predicting 
variables. 
Standard error of the estimate (a): An estimate of a, the standard deviation 
of the errors, equaling the square root of the residual mean square. 
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2.1 Introduction 

All of the discussion in Chapter 1 is based on the premise that the only model 
being considered is the one currently being fit. This is not a good data analysis 
strategy, for several reasons. 

1. Including unnecessary predictors in the model (what is sometimes called 
overfitting) complicates descriptions of the process. Using such models 
tends to lead to poorer predictions because of the additional unnecessary 
noise. Further, a more complex representation of the true regression 
relationship is less likely to remain stable enough to be useful for future 
prediction than is a simpler one. 
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2. Omitting important effects (underfitting) reduces predictive power, bi-
ases estimates of effects for included predictors, and results in less under-
standing of the process being studied. 

3. Violations of assumptions should be addressed, so that least squares esti-
mation is justified. 

The last of these reasons is the subject of later chapters, while the first two 
are discussed in this chapter. This operation of choosing among different 
candidate models so as to avoid overfitting and underfitting is called model 
selection. 

First, we discuss the uses of hypothesis testing for model selection. Vari-
ous hypothesis tests address relevant model selection questions, but there are 
also reasons why they are not sufficient for these purposes. Part of these dif-
ficulties is the effect of correlations among the predictors, and the situation 
of high correlation among the predictors (collinearity) is a particularly chal-
lenging one. 

A useful way of thinking about the tradeoffs of overfitting versus under-
fitting noted above is as a contrast between strength of fit and simplicity. The 
principle of parsimony states that a model should be as simple as possible 
while still accounting for the important relationships in the data. Thus, a 
sensible way of comparing models is using measures that explicitly reflect this 
tradeoff; such measures are discussed in Section 2.3.1. 

The chapter concludes with a discussion of techniques designed to address 
the existence of well-defined subgroups in the data. In this situation it is often 
the case that the effects of a predictor on the target variable is different in 
the two groups, and ways of building models to handle this are discussed in 
Section 2.4. 

2 . 2 Concepts and Background Material 

2.2.1 USING HYPOTHESIS TESTS TO COMPARE MODELS 

Determining whether individual regression coefficients are statistically signif-
icant as discussed in Section 1.3.3 is an obvious first step in deciding whether 
a model is overspecified. A predictor that does not add significantly to model 
fit should have an estimated slope coefficient that is not significantly different 
from 0, and is thus identified by a small t-statistic. So, for example, in the 
analysis of home prices in Section 1.4, the regression output on page 16 sug-
gests removing number of bedrooms, lot size, and property taxes from the 
model, as all three have insignificant t-values. 

It should be noted, however, that t-tests can only assess the contribu-
tion of a predictor given all of the others in the model. When predictors 
are correlated with each other, t-tests can give misleading indications of the 
importance of a predictor. Consider a two-predictor situation where the pre-
dictors are each highly correlated with the target variable, and are also highly 
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correlated with each other. In this situation it is likely that the t-statistic for 
each predictor will be relatively small. This is not an inappropriate result, 
since given one predictor the other adds little (being highly correlated with 
each other, one is redundant in the presence of the other). This means that 
the ^-statistics are not effective in identifying important predictors when the 
two variables are highly correlated. 

The t-tests and F-test of Section 1.3.3 are special cases of a general for-
mulation that is useful for comparing certain classes of models. It might be 
the case that a simpler version of a candidate model (a subset model) might be 
adequate to fit the data. For example, consider taking a sample of college stu-
dents and determining their College grade point average (GPA), SAT reading 
score (Reading) and SAT math score (Math). The full regression model to fit 
to these data is 

GPA; = /3o + /^Reading- + /?2Math; + £;. 

Instead of considering reading and math scores separately, we could consider 
whether GPA can be predicted by one variable: total SAT score, which is the 
sum of Reading and Math. This subset model is 

GPA; == 70 + 71 (Reading + Math); + eri? 

with Pi = /?2 = 7i- This equality condition is called a linear restriction, 
because it defines a linear condition on the parameters of the regression model 
(that is, it only involves additions, subtractions, and equalities of coefficients 
and constants). 

The question about whether the total SAT score is sufficient to predict 
grade point average can be stated using a hypothesis test about this linear 
restriction. As always, the null hypothesis gets the benefit of the doubt; in 
this case, that is the simpler restricted (subset) model that the sum of Reading 
and Math is adequate, since it says that only one predictor is needed, rather 
than two. The alternative hypothesis is the unrestricted full model (with no 
conditions on (3). That is, 

H0: 13!= P2 

versus 

These hypotheses are tested using a partial F-test. The F-statistic has the 
form 

(Residual SSsubset — Residual SSfun)/d 
= Residual S S f u n / ( n - p - l ) ' ( 2 ' ^ 

where n is the sample size, p is the number of predictors in the full model, 
and d is the difference between the number of parameters in the full model 
and the number of parameters in the subset model. This statistic is compared 
to an F distribution on (d,n — p — 1) degrees of freedom. So, for example, 
for this GPA/SAT example, p = 2 and d = 3 — 2 = 1, so the observed 
F-statistic would be compared to an F distribution on (1, n — 3) degrees of 
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freedom. Some statistical packages allow specification of the full and subset 
models and will calculate the F-test, but others do not, and the statistic has 
to be calculated manually based on the fits of the two models. 

An alternative form for the F-test above might make clearer what is going 
on here: 

F = (RMi ~ Subset)ld 

( l - J * L ) / ( n - p - l ) -

That is, if the strength of the fit of the full model (measured by R2) isn't much 
larger than that of the subset model, the F-statistic is small, and we do not 
reject the subset model; if, on the other hand, the difference in R2 values is 
large (implying that the fit of the full model is noticeably stronger), we do 
reject the subset model in favor of the full model. 

The F-statistic to test the overall significance of the regression is a special 
case of this construction (with restriction j3i — • • • = (3P — 0), as is each of the 
individual ^-statistics that test the significance of any variable (with restriction 
Pj = 0). In the latter case Fj = t2. 

2.2.2 COLLINEARITY 

Recall that the importance of a predictor can be difficult to assess using t-
tests when predictors are correlated with each other. A related issue is that of 
collinearity (sometimes somewhat redundantly referred to as multicollinear-
ity), which refers to the situation when (some of) the predictors are highly 
correlated with each other. Predicting variables that are highly correlated 
with each other can lead to instability in the regression coefficients, and as 
a result the t-statistics for the variables can be deflated. This can be seen in 
Figure 2.1. The two plots refer to identical data sets, other than the one data 
point that is a different color. Dropping the data points down to the (#1, #2) 
plane makes clear the high correlation between the predictors. The estimated 
regression plane changes from 

y = 9.906 - 2.514xi + 6.615x2 

in the top plot to 
y = 9.748 + 9.315xi - 5.204x2 

in the bottom plot; a small change in only one data point causes a major 
change in the estimated regression function. 

Thus, from a practical point of view, collinearity leads to two problems. 
First, it can happen that the overall F-statistic is significant, yet each of the 
individual ^-statistics is not significant (more generally, the tail probability for 
the F-test is considerably smaller than those of any of the individual coeffi-
cient t-tests). Second, if the data are changed only slightly, the fitted regression 
coefficients can change dramatically. Note that while collinearity can have a 
large effect on regression coefficients and associated t-statistics, it does not 
have a large effect on overall measures of fit like the overall F-test or R2, since 
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x1 

E 2 . 1 Least squares estimation under collinearity. The only change in the 
data sets is the colored data point. The planes are the estimated least squares fits. 

adding unneeded variables (whether or not they are collinear with predictors 
already in the model) cannot increase the residual sum of squares (it can only 
decrease it or leave it roughly the same). 

Another problem with collinearity comes from attempting to use a fitted 
regression model for prediction. As was noted in the previous chapter, sim-
ple models tend to forecast better than more complex ones, since they make 
fewer assumptions about what the future looks like. If a model exhibiting 
collinearity is used for future prediction, the implicit assumption is that the 
relationships among the predicting variables, as well as their relationship with 
the target variable, remain the same in the future. This is less likely to be true 
if the predicting variables are collinear. 

How can collinearity be diagnosed? The two-predictor model 

2/i = A) + Pixu + &2X2i + £i 
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TABLE 2 .1 Variance inflation caused by correlation of predictors in a two-predictor 
model. 

r±2 

0.00 
0.50 
0.70 
0.80 
0.90 
0.95 
0.97 
0.99 
0.995 
0.999 

Variance 
inflation 

1.00 
1.33 
1.96 
2.78 
5.26 

10.26 
16.92 
50.25 

100.00 
500.00 

provides some guidance. It can be shown that in this case 

and 

var(/3i) — a2 

var02) = <J2 

E*^1 
' 12J 

, i = l 

n - 1 

L2i (1 12; 

where r\2 is the correlation between x\ and #2- Note that as colhnearity 
increases (7*12 —» ±1), both variances tend to oc. This effect is quantified in 
Table 2.1. 

This ratio describes by how much the variances of the estimated slope 
coefficients are inflated due to observed colhnearity relative to when the pre-
dictors are uncorrelated. It is clear that when the correlation is high, the 
variability (and hence the instability) of the estimated slopes can increase dra-
matically. 

A diagnostic to determine this in general is the variance inflation factor 
(VIF) for each predicting variable, which is defined as 

VIF, = 
1 
ny 

where R2 is the R2 of the regression of the variable Xj on the other pre-
dicting variables. VIFj gives the proportional increase in the variance of fij 
compared to what it would have been if the predicting variables had been un-
correlated. There are no formal cutoffs as to what constitutes a large VIF. 
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Collinearity is generally not a problem if the observed VIF satisfies 

VIF < max (10, ^ ) > 

where it^odel is the usual it!2 for the regression fit. This means that either the 
predictors are more related to the target variable than they are to each other, 
or they are not related to each other very much. In either case coefficient 
estimates are not very likely to be very unstable, so collinearity is not a prob-
lem. If collinearity is present, a simplified model should be considered, but 
this is only a general guideline; sometimes two (or more) collinear predictors 
might be needed in order to adequately model the target variable. In the next 
section we discuss a methodology for judging the adequacy of fitted models 
and comparing them. 

2 . 3 Methodology 

2.3.1 MODEL SELECTION 

We saw in Section 2.2.1 that hypothesis tests can be used to compare models. 
Unfortunately, there are several reasons why such tests are not adequate for 
the task of choosing among a set of candidate models for the appropriate 
model to use. 

In addition to the effects of correlated predictors on t-tests noted earlier, 
partial F-tests only can compare models that are nested (that is, where one is 
a special case of the other). Comparing a model based on {xi, X3, £5} to one 
based on {#2, £4}, f° r example, is clearly important, but is impossible using 
these testing methods. 

Even ignoring these issues, hypothesis tests don't necessarily address the 
question a data analyst is most interested in. With a large enough sample, 
almost any estimated slope will be significantly different from zero, but that 
doesn't mean that the predictor provides additional useful predictive power. 
Similarly, in small samples, important effects might not be statistically signif-
icant at typical levels simply because of insufficient data. That is, there is a 
clear distinction between statistical significance and practical importance. 

In this section we discuss a strategy for determining a "best" model (or 
more correctly, a set of "best" models) among a larger class of candidate mod-
els, using objective measures designed to reflect a predictive point of view. As 
a first step, it is good to explicitly identify what should not be done. In recent 
years it has become commonplace for databases to be constructed with hun-
dreds (or thousands) of variables and hundreds of thousands (or millions) of 
observations. It is tempting to avoid issues related to choosing the potential 
set of candidate models by considering all of the variables as potential predic-
tors in a regression model, limited only by available computing power. This 
would be a mistake. If too large a set of possible predictors is considered, it 
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is very likely that variables will be identified as important just due to random 
chance. Since they do not reflect real relationships in the population, models 
based on them will predict poorly in the future, and interpretations of slope 
coefficients will just be mistaken justifications of random behavior. This sort 
of overfitting is known as "data dredging," and is among the most serious 
dangers when analyzing data. 

The set of possible models should ideally be chosen before seeing any data 
based on as thorough an understanding of the underlying random process as 
possible. Potential predictors should be justifiable on theoretical grounds if at 
all possible. This is by necessity at least somewhat subjective, but good basic 
principles exist. Potential models to consider should be based on the scientific 
literature and previous relevant experiments. In particular, if a model simply 
doesn't "make sense," it shouldn't be considered among the possible candi-
dates. That does not mean that modifications and extensions of models that 
are suggested by the analysis should be ignored (indeed, this is the subject of 
the next three chapters), but an attempt to keep models grounded in what is 
already understood about the underlying process is always a good idea. 

What do we mean by the (or a) "best" model? As was stated on page 4, 
there is no "true" model, since any model is only a representation of reality 
(or equivalently, the true model is too complex to be modeled usefully). Since 
the goal is not to find the "true" model, but rather to find a model or set of 
models that best balances fit and simplicity, any strategy used to guide model 
selection should be consistent with this principle. The goal is to provide a 
good predictive model that also provides useful descriptions of the process 
being studied from estimated parameters. 

Once a potential set of predictors is chosen, most statistical,packages in-
clude the capability to produce summary statistics for all possible regression 
models using those predictors. Such algorithms (often called best-subsets al-
gorithms), such as the one described in Furnival and Wilson (1974), do not 
actually look at all possible models, but rather list statistics for only the mod-
els with strongest fits for each number of predictors in the model. This is 
much less computationally intensive. Such a listing can then be used to deter-
mine a set of potential "best" models to consider more closely. 

Note that model comparisons are only sensible when based on the same 
data set. Most statistical packages drop any observations that have missing 
data in any of the variables in the model. If a data set has missing values scat-
tered over different predictors, the set of observations with complete data will 
change depending on which variables are in the model being examined, and 
model comparison measures will not be comparable. One way around this is 
to only use observations with complete data for all variables under considera-
tion, but this can result in discarding a good deal of available information for 
any particular model. 
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2.3.2 EXAMPLE - ESTIMATING HOME PRICES (CONTINUED) 

Consider again the home price data examined in Section 1.4. We repeat the 
regression output from the model based on all of the predictors below: 

Coefficients: 

(Intercept) 
Bedrooms 
Bathrooms 
Living.area 
Lot.size 
Year.built 
Property.tax 

Estimate 
-7. 
-1. 
5. 
6, 

-8, 
3, 
1. 

,149e+06 
.229e+04 
.170e+04 
.590e+01 
.971e-01 
.761e+03 
.476e+00 

Std.Error 
3. 
9. 
1, 
1. 
4, 
1. 
2, 

.820e+06 

.347e+03 

.309e+04 

.598e+01 

.194e+00 

.963e+03 

.832e+00 

t value 
-1. 
-1. 
3. 
4, 

-0. 
1. 
0, 

.871 

.315 

.948 

.124 

.214 

.916 

.521 

Pr(>|t|) 
0, 
0, 
0, 
9, 
0. 
0. 
0, 

.065043 

.192361 

.000171 

.22e-05 

.831197 

.058981 

.603734 

1, 
1, 
1. 
1, 
1, 
1. 

VIF 

.262 

.420 

.661 

.074 

.242 

.300 

* * * 
• * * 

Signif. codes: 
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 47380 on 78 degrees of freedom 
Multiple R-squared: 0.5065, Adjusted R-squared: 0.4685 
F-statistic: 13.34 on 6 and 78 DF, p-value: 2.416e-10 

This is identical to the output given earlier, except that variance inflation 
factor (VIF) values are given for each predictor. It is apparent that there 
is virtually no collinearity among these predictors (recall that 1 is the mini-
mum possible value of the VIF), which should make model selection more 
straightforward. The following output summarizes a best-subsets fitting: 

rs 
1 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 

R-Sq 
35.3 
29.4 
10.6 
46.6 
38.9 
37.8 
49.4 
48.2 
46.6 
50.4 
49.5 

R-Sq(adj) 
34.6 
28.6 
9.5 

45.2 
37.5 
36.3 
47.5 
46.3 
44.7 
48.0 
47.0 

Mallows 
Cp 

21.2 
30.6 
60.3 
5.5 
17.5 
19.3 
3.0 
4.9 
7.3 
3.3 
4.7 

AICc 
1849.9 
1857.3 
1877.4 
1835.7 
1847.0 
1848.6 
1833.1 
1835.0 
1837.5 
1833.3 
1834.8 

S 
52576 
54932 
61828 
48091 
51397 
51870 
47092 
47635 
48346 
46885 
47304 

B 
e 
d 
r 
0 

0 

m 
s 

X 

X 

B 
a 
t 
h 
r 
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0 

m 
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X 

X 

X 
X 
X 
X 
X 
X 
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4 
5 
5 
5 
6 

49. 
50. 
50. 
49. 
50. 

.4 

.6 

.5 

.6 

.6 

46. 
47. 
47. 
46. 
46. 

.9 

.5 

.3 

.4 

.9 

5, 
5, 
5, 
6, 
7, 

.0 

.0 

.3 

.7 

.0 

1835. 
1835, 
1835, 
1836, 
1836, 

.1 

.0 

.2 

.8 

.9 

47380 
47094 
47162 
47599 
47381 

X X X X 
X X X X X 
X X X X X 
X X X X X 

X X X X X X 

Output of this type provides the tools to choose among candidate models. 
The output provides summary statistics for the three models with strongest fit 
for each number of predictors. So, for example, the best one-predictor model 
is based on Bathrooms, while the second best is based on Living, area; the 
best two-predictor model is based on Bathrooms and Living, area; and so 
on. The principle of parsimony noted earlier implies moving down the table 
as long as the gain in fit is big enough, but no further, thereby encouraging 
simplicity. A reasonable model selection strategy would not be based on only 
one possible measure, but looking at all of the measures together, using vari-
ous guidelines to ultimately focus in on a few models (or only one) that best 
trade off strength of fit with simplicity, for example as follows: 

i. Increase the number of predictors until the R2 value levels off. Clearly 
the highest R2 for a given p cannot be smaller than that for a smaller 
value of p. If R2 levels off, that implies that additional variables are not 
providing much additional fit. In this case the largest R2 values go from 
roughly 35% to 47% from p = 1 to p = 2, which is clearly a large gain 
in fit, but beyond that more complex models do not provide much addi-
tional fit (particularly past p = 3). Thus, this guideline suggests choosing 
either p = 2 or p = 3. 

2. Choose the model that maximizes the adjusted R2. Recall from equation 
(1.5) that the adjusted R2 equals 

Ri=R2 P 
n — p ■ T

( i - * 2 ) 

It is apparent that R^ explicitly trades off strength of fit (R2) versus sim-
plicity [the multiplier p/(n — p — 1)], and can decrease if predictors that 
do not add any predictive power are added to a model. Thus, it is reason-
able to not complicate a model beyond the point where its adjusted R2 

increases. For these data R2
a is maximized at p = 4. 

The fourth column in the output refers to a criterion called Mallows' Cp 

(Mallows, 1973). This criterion equals 

_, Residual SS^ 
Cp = -, v- - n + 2p + 2, 

where Residual SSP is the residual sum of squares for the model being exam-
ined, p is the number of predictors in that model, and cr2 is the residual mean 
square based on using all p* of the candidate predicting variables. Cp is de-
signed to estimate the expected squared prediction error of a model. Like R2

a, 
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Cp explicitly trades off strength of fit versus simplicity, with two differences: 
it is now small values that are desirable, and the penalty for complexity is 
stronger, in that the penalty term now multiplies the number of predictors in 
the model by 2, rather than by 1 (which means that using R% will tend to lead 
to more complex models than using Cp will). This suggests another model 
selection rule: 

3. Choose the model that minimizes Cp. In case of tied values, the sim-
plest model (smallest p) would be chosen. In these data, this rule implies 
choosing p — 3. 

An additional operational rule for the use of Cp has been suggested. 
When a particular model contains all of the necessary predictors, the residual 
mean square for the model should be roughly equal to a2. Since the model 
that includes all of the predictors should also include all of the necessary ones, 
a2 should also be roughly equal to a2. This implies that if a model includes 
all of the necessary predictors, then 

_, (n-p-l)a2 

Cp « ^ ^-v-
1 n + 2p + 2 = p + l . 

(7Z 

This suggests the following model selection rule: 

4. Choose the simplest model such that Cp « p + 1 or smaller. In these data, 
this rule implies choosing p = 3. 

A weakness of the Cp criterion is that its value depends on the largest 
set of candidate predictors (through <J*), which means that adding predictors 
that provide no predictive power to the set of candidate models can change 
the choice of best model. A general approach that avoids this is through the 
use of statistical information. A detailed discussion of the determination of 
information measures is beyond the scope of this book, but Burnham and 
Anderson (2002) provides extensive discussion of the topic. The Akaike In-
formation Criterion AIC, introduced by Akaike (1973), 

AIC = nlog(<r2) + nlog[(n-p- l)/n] + 2p + 4, (2.2) 

where the log(-) function refers to natural logs, is such a measure, and it es-
timates the information lost in approximating the true model by a candidate 
model. It is clear from (2.2) that minimizing AIC achieves the goal of balanc-
ing strength of fit with simplicity, and because of the 2p term in the criterion 
this will result in the choice of similar models as when minimizing Cp. It is 
well known that AIC has a tendency to lead to overfitting, particularly in 
small samples. That is, the penalty term in AIC designed to guard against too 
complicated a model is not strong enough. A modified version of AIC that 
helps address this problem is the corrected AIC, 

AICe = AIC+
2(p + 2)(pt3) (,3) 

n — p — 6 
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(Hurvich and Tsai, 1989). Equation (2.3) shows that (especially for small sam-
ples) models with fewer parameters will be more strongly preferred when 
minimizing AICC than when minimizing AIC, providing stronger protec-
tion against overfitting. In large samples the two criteria are virtually identi-
cal, but in small samples, or when considering models with a large number 
of parameters, AICC is the better choice. This suggests the following model 
selection rule: 

5. Choose the model that minimizes AICC. In case of tied values, the sim-
plest model (smallest p) would be chosen. In these data, this rule implies 
choosing p = 3, although the AICC value for p = 4 is virtually identical 
to that of p = 3. Note that the overall level of the AICC values is not 
meaningful, and should not be compared to Cp values or values for other 
data sets; it is only the value for a model for a given data set relative to 
the values of others for that data set that matter. 

Cp, AIC, and AICC have the desirable property that they are efficient 
model selection criteria. This means that in the (realistic) situation where the 
set of candidate models does not include the "true" model (that is, a good 
model is just viewed as a useful approximation to reality), as the sample gets 
larger the error obtained in making predictions using the model chosen using 
these criteria becomes indistinguishable from the error obtained using the 
best possible model among all candidate models. That is, in this large-sample 
predictive sense, it is as if the best approximation was known to the data 
analyst. Another well-known criterion, the Bayesian Information Criterion 
BIC [which substitutes log(n) xp for 2p in (2.2)], does not have this property. 

A final way of comparing models is from a directly predictive point of 
view. Since a rough 95% prediction interval is ±2cr, a useful model from a 
predictive point of view is one with small <7, suggesting choosing a model that 
has small a while still being as simple as possible. That is, 

6. Increase the number of predictors until a levels off. For these data (S in 
the output refers to a) this implies choosing p — 3 or p — 4. 

Taken together, all of these rules imply that the appropriate set of mod-
els to consider are those with two, three, or four predictors. Typically the 
strongest model of each size (which will have highest R2, highest R%, lowest 
Cp, lowest AICC, and lowest a, so there is no controversy as to which one 
is strongest) is examined. The output on page 31 provides summaries for the 
top three models of each size, in case there are reasons to examine a second-
or third-best model (if, for example, a predictor in the best model is difficult 
or expensive to measure), but here was focus on the best model of each size. 
First, here is output for the best four-predictor model. 
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Coefficients: 
Estimate Std.Error t value Pr(>|t|) VIF 

(Intercept) -6.852e+06 3.701e+06 -1.852 0.0678 
Bedrooms -1.207e+04 9.212e+03 -1.310 0.1940 1.252 
Bathrooms 5.303e+04 1.275e+04 4.160 7.94e-05 1.374 *** 
Living.area 6.828e+01 1.460e+01 4.676 1.17e-05 1.417 *** 
Year.built 3.608e+03 1.898e+03 1.901 0.0609 1.187 . 

Signif. codes: 
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 46890 on 80 degrees of freedom 
Multiple R-squared: 0.5044, Adjusted R-squared: 0.4796 
F-statistic: 20.35 on 4 and 80 DF, p-value: 1.356e-ll 

The ^-statistic for number of bedrooms suggests very little evidence that 
it adds anything useful given the other predictors in the model, so we con-
sider now the best three-predictor model. This happens to be the best four-
predictor model with the one statistically insignificant predictor omitted, but 
this does not have to be the case. 

Coefficients: 
Estimate Std.Error t value Pr(>|t|) VIF 

(Intercept) -7.653e+06 3.666e+06 -2.087 0.039988 * 
Bathrooms 5.223e+04 1.279e+04 4.084 0.000103 1.371 *** 
Living.area 6.097e+01 1.355e+01 4.498 2.26e-05 1.210 *** 
Year.built 4.001e+03 1.883e+03 2.125 0.036632 1.158 * 

Signif. codes: 
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 47090 on 81 degrees of freedom 
Multiple R-squared: 0.4937, Adjusted R-squared: 0.475 
F-statistic: 26.33 on 3 and 81 DF, p-value: 5.489e-12 

Each of the predictors is statistically significant at a 0.05 level, and this 
model recovers virtually all of the available fit (R2 = 49.4%, while that using 
all six predictors is R2 — 50.6%), so this seems to be a reasonable model 
choice. The estimated slope coefficients are very similar to those from the 
model using all predictors (which is not surprising given the low collinearity 
in the data), so the interpretations of the estimated coefficients on page 17 still 
hold to a large extent. A plot of the residuals versus the fitted values and a 
normal plot of the residuals (Figure 2.2) look fine, and similar to those for the 
model on all six predictors in Figure 1.5; plots of the residuals versus each of 
the predictors in the model are similar to those in Figure 1.6, so they are not 
repeated here. 

Once a "best" model is chosen, it is tempting to use the usual inference 
tools (such as t-tests and F-tests) to try to explain the process being stud-
ied. Unfortunately, doing this while ignoring the model selection process can 
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E 2 . 2 Residual plots for the home price data using the best three-predictor 
model, (a) Plot of residuals versus fitted values, (b) Normal plot of the residuals. 

lead to problems. Since the model was chosen to be best (in some sense) it 
will tend to appear stronger than would be expected just by random chance. 
Conducting inference based on the chosen model as if it was the only one 
examined ignores an additional source of variability, that of actually choosing 
the model (model selection based on a different sample from the same popu-
lation could very well lead to a different chosen "best" model). This is termed 
model selection uncertainty. As a result of ignoring model selection uncer-
tainty, confidence intervals can have lower coverage than the nominal value, 
hypothesis tests can reject the null too often, and prediction intervals can be 
too narrow for their nominal coverage. 

Identifying and correcting for this uncertainty is a difficult problem, and 
an active area of research, but there are a few things practitioners can do. 
First, it is not appropriate to emphasize too strongly the single "best" model; 
any model that has similar criteria values (such as AICC or a) to those of 
the best model should be recognized as being one that could easily have been 
chosen as best based on a different sample from the same population, and any 
implications of such a model should be viewed as being as valid as those from 
the best model. 

There is a straightforward way to get a sense of the predictive power of a 
chosen model if enough data are available. This can be evaluated by holding 
out some data from the analysis (a holdout or validation sample), applying 
the selected model from the original data to the holdout sample (based on 
the previously estimated parameters, not estimates based on the new data), 
and then examining the predictive performance of the model. If, for example, 
the standard deviation of the errors from this prediction is not very different 
from the standard error of the estimate in the original regression, chances are 
that making inferences based on the chosen model will not be misleading. 
Similarly, if a (say) 95% prediction interval does not include roughly 95% of 
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G U R E 2 . 3 Plot of observed versus predicted house sale price values of validation 
sample, with pointwise 95% prediction interval limits superimposed. The dotted line 
corresponds to equality of observed values and predictions. 

the new observations, that indicates poorer-than-expected predictive perfor-
mance on new data. 

Figure 2.3 illustrates a validation of the three-predictor housing price 
model on a holdout sample of 20 houses. The figure is a plot of the observed 
versus predicted prices, with pointwise 95% prediction interval limits super-
imposed. The intervals contain 90% of the prices (18 of 20), and the average 
predictive error on the new houses is only $3429 (compared to an average 
observed price of more than $313,000), not suggesting the presence of any 
forecasting bias in the model. Two of the houses, however, have sale prices 
well below what would have been expected (more than $130,000 lower than 
expected), and this is reflected in a much higher standard deviation ($66,308) 
of the predictive errors than a = $47,090 from the fitted regression. If the two 
outlying houses are omitted the standard deviation of the predictive errors is 
much smaller ($49,515), suggesting that while the fitted model's predictive 
performance for most houses is in line with its performance on the original 
sample, there are indications that it might not predict well for the occasional 
unusual house. 
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If validating the model on new data this way is not possible, a simple 
adjustment that is helpful is to estimate the variance of the errors as 

~2 _ YH=i(yi-& 3*=^=""\ »" , (2.4) 
n - p* — 1 

where y is based on the chosen "best" model, and p* is the number of predic-
tors in the most complex model examined, in the sense of most predictors (Ye, 
1998). Clearly if very complex models are included among the set of candidate 
models, a can be much larger than the standard error of the estimate from the 
chosen model, with correspondingly wider prediction intervals. This rein-
forces the benefit of limiting the set of candidate models (and the complexity 
of the models in that set) from the start. In this case a — $47,987, so the effect 
is not that pronounced. 

2 . 4 Indicator Variables and Modeling Interactions 

It is not unusual for the observations in a sample to fall into two distinct 
subgroups; for example, people are either male or female. It might be that 
group membership has no relationship with the target variable (given other 
predictors); such a pooled model ignores the grouping and pools the two 
groups together. 

On the other hand, it is clearly possible that group membership is pre-
dictive for the target variable (for example, expected salaries differing for men 
and women given other control variables could indicate gender discrimina-
tion). Such effects can be explored easily using an indicator variable, which 
takes on the value 0 for one group and 1 for the other (such variables are 
sometimes called dummy variables or 0/1 variables). The model takes the 
form 

Vi = Po + Pixii H h pp-ixp-14 + ppli + d, 

where Xi is an indicator variable with value 1 if the observation is a member of 
group and 0 otherwise. The usual interpretation of the slope still applies: j3p is 
the expected change in y associated with a one-unit change in X holding all else 
fixed. Since X only takes on the values 0 or 1, this is equivalent to saying that 
the expected target is (3P higher for group members (X — 1) than nonmembers 
(X = 0), holding all else fixed. This has the appealing interpretation of fitting a 
constant shift model, where the regression relationships for group members 
and nonmembers are identical, other than being shifted up or down; that is, 

V% = A) + Pixu H h Pp-iXp-ij + Si 

for nonmembers and 

Vi = A) + PP + Pixu H h Pp-iXp-^i + Si 



2.4 Indicator Variables and Modeling Interactions 39 

for members. The £-test for whether 0V = 0 is thus a test of whether a 
constant shift model (two parallel regression lines, planes, or hyperplanes) is 
a significant improvement over a pooled model (one common regression line, 
plane, or hyperplane). 

Would two different regression relationships be better still? Say there is 
only one numerical predictor x; the full model that allows for two different 
regression lines is 

V% = A)o + Pioxu + si 

for nonmembers (X = 0), and 

Vi = An + Piixu + Si 

for members (X = 1). The pooled model and the constant shift model can be 
made to be special cases of the full model, by creating a new variable that is 
the product of x and X. A regression model that includes this variable, 

Vi = A) + Pixu + foXi + famuli + si, 

corresponds to the two different regression lines 

Vi = A) + 0i%ii + e* 

for nonmembers (since X — 0), implying /3oo = /?o a n d /?io = Pi above, and 

Vi = Po + /?I^H + #2 + /?3^ii + ^i 
= (Po + fh) + (Pi + 0s)xu + d 

for members (since X = 1), implying /?oi = /3o + /?2 and /3n = /?i + /?3 above. 
The t-test for the slope of the product variable (/33 = 0) is a test of whether 

the full model (two different regression lines) is significantly better than the 
constant shift model (two parallel regression lines); that is, it is a test of paral-
lelism. The restriction /?2 = 0% = 0 defines the pooled model as a special case 
of the full model, so the partial F-statistic based on (2.1), 

(Residual SSpooied — Residual SSfun)/2 
s? -— 

Residual SSfun/(n — 4) 

on (2, n — 4) degrees of freedom, provides a test comparing the pooled model 
to the full model. This test is often called the Chow test (Chow, i960) in the 
economics literature. 

These constructions can be easily generalized to multiple predictors, with 
different variations of models obtainable. For example, a regression model 
with unequal slopes for some predictors and equal slopes for others is fit by 
including products of the indicator and the predictor for the ones with dif-
ferent slopes and not including them for the predictors with equal slopes. 
Appropriate t- and F-tests can then be constructed to make particular com-
parisons of models. 
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A reasonable question to ask at this point is "Why bother to fit the full 
model? Isn't it just the same as fitting two separate regressions on the two 
groups?" The answer is no. The full model fit above assumes that the vari-
ance of the errors is the same (the constant variance assumption), while fitting 
two separate regressions allows the variances to be different. The fitted slope 
coefficients from the full model will, however, be identical to those from two 
separate fits. What is gained by analyzing the data this way is the comparison 
of versions of pooled, constant shift, and full models based on group member-
ship, including different slopes for some variables and equal slopes for others, 
something that is not possible if separate regressions are fit to the two groups. 

Another way of saying that the relationship between a predictor and the 
target is different for members of the two different groups is that there is 
an interaction effect between the predictor and group membership on the 
target. Social scientists would say that the grouping has a moderating effect 
on the relationship between the predictor and the target. The fact that in the 
case of a grouping variable the interaction can be fit by multiplying the two 
variables together has led to a practice that is common in some fields: to try 
to represent any interaction between variables (that is, any situation where 
the relationship between a predictor and the target is different for different 
values of another predictor) by multiplying them together. Unfortunately, 
this is not a very reasonable way to think about interactions for numerical 
predictors, since there are many ways that the effect of one variable on the 
target can differ depending on the value of another that have nothing to do 
with product functions. 

2.4.1 EXAMPLE - ELECTRONIC VOTING AND THE 2004 
PRESIDENTIAL ELECTION 

The 2000 U.S. presidential election matching Republican George W. Bush 
against Democrat Al Gore attracted worldwide attention because of its close 
and controversial results, particularly in the state of Florida. The 2004 elec-
tion, pitting the incumbent Bush against John Kerry, is less discussed, but was 
also controversial, in part because of the introduction of electronic voting ma-
chines in some polling places across the country (such machines were intro-
duced in part because of the irregularities in paper balloting that occurred in 
Florida in the 2000 election). Some of the manufacturers of electronic voting 
machines were strong supporters of President Bush, and this, along with the 
fact that the machines did not produce a paper trail, led to speculation about 
whether the machines could be manipulated to favor one candidate over the 
other. 

This analysis is based on data from Hout et al. (2004) (see also Theus and 
Urbanek, 2009). The observations are the 67 counties of Florida. Although 
this is not a sample of Florida counties (it is actually a census of all of them), 
these counties can be considered a sample of all of the counties in the coun-
try, making inferences drawn about the larger population of counties based 
on this set of counties meaningful. The target variable is the change in the 
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E 2 . 4 Plots for the 2004 election data, (a) Plot of percentage change in Bush 
vote versus 2000 Bush vote, (b) Side-by-side boxplots of percentage change in Bush vote 
by whether or not the county employed electronic voting in 2004. 

percentage of votes cast for Bush from 2000 to 2004 (a positive number mean-
ing a higher percentage in 2004). We start with the simple regression model 
relating the change in Bush percentage to the percentage of votes Bush took 
in 2000, with corresponding scatter plot given in the left plot of Figure 2.4. It 
can be seen that most of the changes are positive, reflecting that Bush carried 
the state by more than 380,000 votes in 2004, compared with the very close 
result (a 537 vote margin) in 2000. 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) -2.9968 2.0253 -1.480 0.14379 
Bush.pet.2000 0.1190 0.0355 3.352 0.00134 ** 

Signif. codes: 
0 '***' 0 .001 **' 0 . 01 0 .05 0 . 1 

Residual s tandard e r r o r : 2.693 on 65 degrees of freedom 
Mult iple R-squared: 0.1474, Adjusted R-squared: 0.1343 
F - s t a t i s t i c : 11.24 on 1 and 65 DF, p -va lue : 0.00134 

There is a weak, but statistically significant, relationship between 2000 
Bush vote and the change in vote to 2004, with counties that went more 
strongly for Bush in 2000 gaining more in 2004. The constant shift model 
now adds an indicator variable for whether a county used electronic voting 
in 2004. The side-by-side boxplots in the right plot in Figure 2.4 show that 
overall the 15 counties that used electronic voting had smaller gains for Bush 
than the 52 that did not, but that of course does not take the 2000 Bush vote 
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into account. There are also signs of nonconstant variance, as the variability-
is smaller among the counties that used electronic voting. 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) VIF 

(Intercept) -2.12713 2.10315 -1.011 0.31563 
Bush.pet.2000 0.10804 0.03609 2.994 0.00391 1.049 ** 
e.Voting -1.12840 0.80218 -1.407 0.16437 1.049 

Signif. codes: 
0 '•**' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

R e s i d u a l s t a n d a r d e r r o r : 2 .672 on 64 d e g r e e s of freedom 
M u l t i p l e R - s q u a r e d : 0 . 1 7 3 , A d j u s t e d R - s q u a r e d : 0 .1471 
F - s t a t i s t i c : 6.692 on 2 and 64 DF, p - v a l u e : 0 .002295 

It can be seen that there is only weak (if any) evidence that the constant 
shift model provides improved performance over the pooled model. This does 
not mean that electronic voting is irrelevant, however, as it could be that two 
separate (unrestricted) lines are preferred. 

Coefficients: 
Estimate Std.Error t value Pr(>|t|) VIF 

-2.228 0.029431 * 
4.006 0.000166 1.44 *** 
2.268 0.026787 32.26 * 

-2.574 0.012403 -31.10 * 

Signif. codes: 
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 2.562 on 63 degrees of freedom 
Multiple R-squared: 0.2517, Adjusted R-squared: 0.2161 
F-statistic: 7.063 on 3 and 63 DF, p-value: 0.0003626 

The t-test for the product variable indicates that the model with two un-
restricted lines is preferred over the model with two parallel lines. A par-
tial F-test comparing this model to the pooled model, which is F — 4.39 
(p = .016), also supports two distinct lines, 

Change.in.Bush.pct = -5.239 + .162 x Bush.pct.2000 

for counties that did not use electronic voting in 2004, and 

Change.in.Bush.pct = 4.434 - .038 x Bush.pct.2000 

(Intercept) 
Bush.pet.2000 
e.Voting 
Bush.2000 
X e.Voting 

-5, 
0, 
9, 

-0, 

.23862 

.16228 

.67236 

.20051 

2, 
0, 
4, 

0, 

.35084 

.04051 

.26530 

.07789 

for counties that did use electronic voting. This is represented in Figure 2.5. 
This relationship implies that in counties that did not use electronic voting 
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GURE 2 . 5 Regression lines for election data separated by whether the county used 
electronic voting in 2004. 

the more Republican a county was in 2000 the larger the gain for Bush in 
2004, while in counties with electronic voting the opposite pattern held true. 

As can be seen from the VIFs, the predictor and the product variable are 
collinear. This isn't very surprising, since one is a function of the other, and 
such coUinearity is more likely to occur if one of the subgroups is much larger 
than the other, or if group membership is related to the level or variability of 
the predictor variable. Given that using the product variable is just a compu-
tational construction that allows the fitting of two separate regression lines, 
this is not a problem in this context. 

This model is probably underspecified, as it does not include control vari-
ables that would be expected to be related to voting percentage. Figure 2.6 
gives scatter plots of the percentage change in Bush votes versus (a) the to-
tal county voter turnouts in 2000 and (b) 2004, (c) median income, and (d) 
percentage of the voters being Hispanic. None of the marginal relationships 
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are very strong, but in the multiple regression summarized below, median 
income does seem to add important predictive power without changing the 
previous relationships between change in Bush voting percentage and 2000 
Bush percentage very much. 

Coefficients: 

Estimate Std.Error t val P(>|t|) VIF 
(Intercept) 
Bush.pet.2000 
e.Voting 
Bush.2000 

X e.Voting 
Vote.turn.2000 

1 
1 
1 

-2 
-5 

166e+00 
639e-01 
426e+01 

545e-01 
957e-06 

2 
3 
4 

8 
3 

55e+00 
69e-02 
84e+00 

47e-02 
10e-05 

0 
4 
2 

-3 
-0 

46 
45 
95 

01 
19 

0.650 
3.9e-5 
0.005 

0.004 
0.848 

1 
54 

47 
210 

55 
08 

91 
66 

* * * 
-k -k 

•k -k 
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Vote.turn.2004 1.413e-06 2.49e-05 0.06 0.955 205.81 
Median.income -1.745e-04 5.61e-05 -3.11 0.003 1.66 ** 
Hispan.pop.pct -4.127e-02 3.18e-02 -1.30 0.200 1.32 

Signif. codes: 
0 '***' 0.001 '•*' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

R e s i d u a l s t a n d a r d e r r o r : 2 .244 on 59 d e g r e e s of freedom 
M u l t i p l e R - s q u a r e d : 0 .4624 , A d j u s t e d R - s q u a r e d : 0 .3986 
F - s t a t i s t i c : 7 .25 on 7 and 59 DF, p - v a l u e : 2 . 9 3 6 e - 0 6 

We could consider simplifying the model here, but often researchers pre-
fer to not remove control variables, even if they do not add to the fit, so that 
they can be sure that the potential effect is accounted for. This is generally 
not unreasonable if collinearity is not a problem, but control variables that do 
not provide additional significant predictive power, but are collinear with the 
variables that are of direct interest, might be worth removing so they don't 
obscure the relationships involving the more important variables. In these 
data the two voter turnout variables are (not surprisingly) highly collinear, 
but a potential simplification to consider (particularly given that the target 
variable is the change in Bush voting percentage from 2000 to 2004) is to con-
sider the change in voter turnout as a predictor (the fact that the estimated 
slope coefficients for 2000 and 2004 voter turnout are of opposite signs and 
not very different also supports this idea). The model using change in voter 
turnout is a subset of the model using 2000 and 2004 voter turnout separately 
(corresponding to restriction #2004 — —/#200o)> so the two models can be com-
pared using a partial F-test. As can be seen below, the fit of the simpler model 
is similar to that of the more complicated one, collinearity is no longer a prob-
lem, and it turns out that the partial F-test (F = 0.43, p = .516) supports that 
the simpler model fits well enough compared to the more complicated model 
to be preferred (although voter turnout is still apparently not important). 

Coefficients: 

(Intercept) 
Bush.pet.2000 
e.Voting 
Bush.2000 

X e.Voting 
Change.turnout 
Median.income 
Hispan.pop.pet 

Signif. codes: 

Estimate 
1. 
1, 
1. 

-2, 
-1. 
-1 
-4, 

0 '*•*' 0.001 ' 

.157e+00 

.633e-01 

.272e+01 

.297e-01 

.223e-05 

.718e-04 

.892e-02 

'**' 0.01 

Std.Error 
2.54e+00 
3.67e-02 
4.20e+00 

7.53e-02 
1.36e-05 
5.57e-05 
2.94e-02 

'*' 0.05 

t val 
0. 
4, 
3, 

-3, 
-0, 
-3. 
-1. 

1 r 

.46 

.46 

.03 

.05 

.90 

.08 

.66 

0.] 

P(>|t|) 

3. 

1 

0.651 
.7e-05 
0.004 

0.003 
0.370 
0.003 
0.102 

' ' 1 

1. 
41, 

38. 
2, 
1, 
1. 

vi: 

.55 

.25 

.25 

.44 

.65 

.14 

Residual standard error: 2.233 on 60 degrees of freedom 
Multiple R-squared: 0.4585, Adjusted R-squared: 0.4044 
F-statistic: 8.468 on 6 and 60 DF, p-value: 1.145e-06 
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GURE 2 . 7 Residual plots for the 2004 election data. 

Residual plots given in Figure 2.7 do not indicate any obvious problems, 
although the potential nonconstant variance related to whether a county used 
electronic voting or not noted in Figure 2.4 is still indicated. We will not 
address that issue here, but correction of nonconstant variance related to sub-
groups in the data will be discussed in Section 6.3.3. 

2 . 5 Summary 

In this chapter we have discussed various issues related to model building and 
model selection. Such methods are important because both underfitting (not 
including variables that are needed) and overfitting (including variables that 
are not needed) lead to problems in interpreting the results of regression anal-
yses and making predictions using fitted regression models. Hypothesis tests 
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provide one tool for model building through formal comparisons of models. 
If one model is a special case of another, defined through a linear restriction, 
then a partial F-statistic provides a test of whether the more complex model 
provides significantly more predictive power than does the simpler one. One 
important example of a partial F-test is the standard t-test for the signifi-
cance of a slope coefficient. Another important use of partial F-tests is in the 
construction of models for data where observations fall into two distinct sub-
groups that allow for common (pooled) relationships over groups, constant 
shift relationships that differ only in level but not in slopes, and completely 
distinct and different relationships across groups. 

While useful, hypothesis tests do not provide a complete tool for model 
building. The problem is that a hypothesis test does not necessarily answer 
the question that is of primary importance to a data analyst. The t-test for 
a particular slope coefficient tests whether a variable adds predictive power 
given the other variables in the model, but if predictors are collinear it could 
be that none add anything given the others, while separately still being very 
important. A related problem is that collinearity can lead to great instability 
in regression coefficients and t-tests, making results difficult to interpret. Hy-
pothesis tests also do not distinguish between statistical significance (whether 
or not a true coefficient is exactly zero) from practical importance (whether 
or not a model provides the ability for an analyst to make important discov-
eries in the context of how a model is used in practice). 

These considerations open up a broader spectrum of tools for model 
building than just hypothesis tests. Best-subsets regression algorithms allow 
for the quick summarization of hundreds or even thousands of potential re-
gression models. The underlying principle of these summaries is the principle 
of parsimony, which implies the tradeoff of strength of fit versus simplicity: 
that a model should only be as complex as it needs to be. Measures such as 
the adjusted R2, Cp, and AICC explicitly provide this tradeoff, and are useful 
tools in helping to decide when a simpler model is preferred over a more com-
plicated one. An effective model selection strategy uses these measures, as well 
as hypothesis tests and estimated prediction intervals, to suggest a set of po-
tential "best" models, which can then be considered further. In doing so, it is 
important to remember that the variability that comes from model selection 
itself (model selection uncertainty) means that it is likely that several models 
actually provide descriptions of the underlying population process that are 
equally valid. One way of assessing the effects of this type of uncertainty is to 
keep some of the observed data aside as a holdout sample, and then validate 
the chosen fitted model (s) on that held out data. 

Although best-subsets algorithms and modern computing power have 
made automatic model selection more feasible than it once was, they are still 
limited computationally to a maximum of roughly 30 predictors. In recent 
years it has become more common for a data analyst to be faced with data sets 
with hundreds or thousands of predictors, making such methods infeasible. 
Recent work has focused on alternatives to least squares called regulariza-
tion methods, which can be viewed as effectively variable selectors, and are 
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feasible for very large numbers of predictors. See Biihlmann and van de Geer 
(2011) for detailed discussion of such methods. 

KEY TERMS 
AICC: A modified version of the Akaike Information Criterion (AIC) that 
guards against overfitting in small samples. It is used to compare models when 
performing model selection. 
Best-subsets regression: A procedure that generates the best-fitting models 
for each number of predictors in the model. 
Chow test: A statistical (partial F-)test for determining whether a single 
regression model can be used to describe the regression relationships when 
two groups are present in the data. 
Collinearity: When predictor variables in a regression fit are highly corre-
lated with each other. 
Constant shift model: Regression models that have different intercepts but 
the same slope coefficients for the predicting variables for different groups in 
the data. 
Indicator variable: A variable that takes on the values 0 or 1, indicating 
whether a particular observation belongs to a certain group or not. 
Interaction effect: When the relationship between a predictor and the target 
variable differs depending on the group in which an observation falls. 
Linear restriction: A linear condition on the regression coefficients that 
defines a special case (subset) of a larger unrestricted model. 
Mallows' Cp: A criterion used for comparing several competing models to 
each other. It is designed to estimate the expected squared prediction error of 
a model. 
Model selection uncertainty: The variability in results that comes from the 
fact that model selection is an iterative process, arrived at after examination 
of several models, and therefore the final model chosen is dependent on the 
particular sample drawn from the population. Significance levels, confidence 
intervals, etc., are not exact, as they depend on a chosen model that is itself 
random. This should be recognized when interpreting results. 
Overfitting: Including redundant or noninformative predictors in a fitted 
regression. 
Partial F-test: F-test used to compare the fit of an unrestricted model to 
that of a restricted model (defined by a linear restriction), in order to see if 
the restricted model is adequate to describe the relationship in the data. 
Pooled model: A single model fit to the data that ignores group classification. 
Underfitting: Omitting informative essential variables in a fitted regression. 
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Variance inflation factor: A statistic giving the proportional increase in the 
variance of the sample regression coefficient for a particular predictor due to 
the linear association of the predictor with other predictors. 
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3.1 Introduction 

As is true of all statistical methodologies, linear regression analysis can be a 
very effective way to model data as long as the assumptions being made are 
true, but if they are violated least squares can potentially lead to misleading 
results. The residual plots discussed in Section 1.3.5 are important tools to 
check these assumptions, but their flexibility is both a strength and a weak-
ness. The plots can be examined for evidence of violations of assumptions 
without requiring specification of the exact form of the violations, but the 
subjective nature of such examination can easily lead to different data analysts 
having different impressions of the validity of the underlying assumptions. 
Plots also by definition can only provide two-dimensional views of a multi-
variate regression relationship. 

In this chapter (and several others to follow) we describe other tools that 
can be used to identify and address potential problems with the application of 
linear least squares estimation to regression problems. This chapter discusses 
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diagnostics for the identification of unusual observations. We will describe 
both graphical and more formal uses of these diagnostics, but will not empha-
size tests of significance. 

3 . 2 Concepts and Background Material 

There are several reasons why it is important to identify unusual observa-
tions. 

i. Unusual observations are sometimes simply mistakes that arise from in-
correct entry or faulty measurement of numerical values. Obviously 
these should be corrected if possible. 

2. It is often the case that a great deal of information can come from ex-
amination of unusual observations. It is possible that the reason that an 
observation apparently has a different relationship between the response 
and the predictor(s) from the one that is typical for the data is that it is 
different in a fundamental way from the other observations, such as hav-
ing been measured under different conditions. In such a circumstance it 
could be that the observation should have never been included in the sam-
ple at all, or perhaps the regression model could potentially be enriched 
to account for these different conditions through additional predictors, 
aiding in estimation not only for that observation but others as well. An-
other possibility is that an observation has a very different set of predic-
tor values from what is typical for the bulk of the data; this could suggest 
sampling more observations with similar values of those predictors. 

3. It is important that all of the observations in a sample have similar in-
fluence on a fitted model. It is not desirable that just a few of the obser-
vations have a strong influence on the fitted regression. The summary 
of the relationship between the response and the predictor(s) should be 
based on the bulk of the data, and not just on a small subset of it. This 
should hold for not only the estimated regression coefficients, but also for 
measures of its strength, and any variable selection that might be done. 
All of these measures are potentially affected by unusual observations, 
and the presence of such observations can lead to a misleading model for 
the data if they are ignored. 

It is worth saying a little more about the third reason given above. In 
situations where an unusual observation is not obviously "wrong" (that is, a 
point is not unusual because of a transcription error), it is sometimes argued 
that it is not appropriate to omit unusual observations from a data set, be-
cause all of the observations in the data are "legitimate." The argument is 
to keep the data "as they really are." This is a fundamentally incorrect atti-
tude, as it ignores the key goal of any statistical model, which is to describe 
as accurately as possible the underlying process driving the bulk of the data. 
Consider Figure 3.1. The fitted regression line that is based on all of the data 
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>> ifi H 

3.1 Scatter plot of data with an unusual observation (A), with the fit-
ted regression line with (solid line) and without (dashed line) the unusual observation 
included. 

(the solid line) is obviously an extremely poor representation of what is going 
on in the data — it does not in any way describe the data "as they really are," 
because of the deficiencies of least squares regression modeling (and its sen-
sitivity to unusual observations). A regression method that is insensitive to 
unusual observations (a so-called robust method) would be affected much less 
by the unusual observation, resulting in a fitted line similar to that obtained 
when omitting observation A (the dashed line). This is the correct summary 
of the data, but the role of A should be noted and reported in the analysis. 
That is, the issue is not that there is something "wrong" with the data point; 
rather, the issue is that there is something wrong with least squares regression 
in its sensitivity to unusual observations. For this reason, the least squares 
fit with unusual observations omitted should always be examined. If it is no-
ticeably different from that with the unusual observations included it should 
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be reported, as it is likely to be a better representation of the underlying rela-
tionship. When this is done, however, the points omitted must be identified 
and discussed as part of the summary of the results. 

A data analyst should always examine diagnostics and report on unusual 
observations. This can be done by printing them out, or (particularly if the 
sample is large) displaying them in observation order (a so-called index plot) 
to help make identification easier. Such a plot also has the advantage of high-
lighting relative values of diagnostics (compared to the others in the sample), 
since an observation that is very unusual compared to the sample as a whole is 
worth investigating further even if it is not objectively "very unusual" based 
on an arbitrary cutoff value. 

3 . 3 Methodology 

3.3.1 RESIDUALS AND OUTLIERS 

An outlier is an observation with a response value yi that is unusual relative 
to its expected value. Since the fitted value yi is the best available estimate of 
the expected response for the ith observation, it is natural that the residual 
^i — Vi — V% should be the key statistic used to evaluate if an observation is an 
outlier. An outlier is an observation with a large absolute residual (note that 
residuals can be positive or negative). The issue is then to determine what is 
meant by "large." As was noted in equation (1.4), the residuals satisfy 

e = (/ - H)y, 

where H = X(X'X)~1X' is the hat matrix. Since the variance of yi satisfies 
V(yi) = cr2, straightforward algebra shows that 

V{e) = {I-H)a\ 

or for an individual residual, 

V(ei)=a2(l-hii), (3.1) 

where hu is the ith diagonal element of the hat matrix. Thus, scaling the 
residual by its standard deviation 

e* = - 7 = = (3-2) 

results in a standardized residual that has mean 0 and standard deviation 1. 
Since the errors are assumed to be normally distributed, the residuals will also 
be normally distributed, implying that the usual rules of thumb for normally 
distributed random variables can be applied. For example, since only roughly 
1% of the sample from a normal distribution is expected to be outside ±2.5, 



3.3 Methodology 57 

standardized residuals outside ±2.5 can be flagged as potentially outlying and 
examined further. 

The standardized residual (3.2) depends on the unknown cr, so actual cal-
culation requires an estimate of a. The standard approach is to use the stan-
dard error of the estimate <r, the square root of the residual mean square (1.6); 
this is sometimes called the internally studentized residual, but is usually 
just referred to as the standardized residual. An alternative approach is to 
base the estimate of a on all of the observations except the ith one when de-
termining the zth residual, so the point will not affect the estimate of a if it is 
in fact an outlier; this is called the externally studentized residual 

0"(i)V'l _ ha 

where a^ is the standard error of the estimate based on the model omitting 
the ith observation. It can be shown that 

_ _ „ / n-p-2 
ei-e^n-p-l-ef 

The distribution of the externally studentized residuals is simpler than that 
of the internally studentized (standardized) residuals (they follow a tn_p_2-
distribution), and will be larger in absolute value for outlying points, but 
since one is a monotonic function of the other, plots using the two types of 
residuals will be similar in appearance. Note that this is also true for the types 
of residual plots discussed in Section 1.3.5; although the appearance of the 
plots will be similar no matter which version of the residuals are plotted, given 
the standard-normal scale on which they are measured, there is no reason not 
to use some form of standardized residual in all residual plots. 

3.3.2 LEVERAGE POINTS 

One of the reasons observation A in Figure 3.1 had such a strong effect on the 
fitted regression is that its value for the predictor was very different from that 
of the other predictor values. This isolation in the x-space tended to draw the 
fitted regression line towards it. This can be made more formal. As noted in 
equation (1.3), the fitted values satisfy y = iJy, where H is the hat matrix. 
This can be written out explicitly for the zth fitted value as 

V% = hnyi + hi2y2 H + huyi -\ + hinyn. (3.3) 

Thus, the ith diagonal element of the matrix, ha, represents the potential 
effect that the ith observed value yi can have on the ith. fitted value yi. Since 
leverage points, by being isolated in the X-space, draw the regression line 
(or plane or hyperplane) towards them, hu is an algebraic reflection of the 
tendency that an observation has to draw the line towards it. The connection 
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between large values of hu and an unusual position in X-space is particularly 
clear in the case of simple regression, where 

the farther xi is from the center of the data (as measured by the sample mean 
of the x's), the higher the leverage. 

It can be shown that 0 < hu < 1 for all z, and the sum of the n leverage 
values equals p + 1, where p is the number of predicting variables in the re-
gression. That is, the average leverage value is (p + l ) /n . A good guideline 
for what constitutes a large leverage value is (2.5)(p+ l ) /n . Cases with values 
greater than that should be investigated as possible leverage points. 

Based on equation (3.1), it is easy to see that leverage points have residuals 
with less variability than residuals from non-leverage points (since hu is closer 
to 1, resulting in a smaller variance of the residual). This is not surprising; 
since a leverage point is characterized by a fitted value close to the observed 
target value (that is, it tends to pull the fitted regression towards it), its residual 
is likely to be closer to zero. Another way to see this is from the fact that 

e2 

hii + T^T " 7T < 1, 

az{n — p — 1) 

which shows that as hu gets closer to 1, |e^| gets closer to 0. 

3.3.3 INFLUENTIAL POINTS AND COOK'S DISTANCE 

As described in the previous section, the idea of leverage is all about the po-
tential for an observation to have a large effect on a fitted regression; if the 
observation does not have an unusual response value, it is possible that draw-
ing the regression towards it will not change the estimated coefficients very 
much (or at all). Figure 3.2 gives two examples of this pattern. In the top 
plot the unusual point is a leverage point, but falls almost directly on the 
line implied by the rest of the data; that is, it is not an outlier. If this point 
is omitted the fitted regression line will change very little, so in the sense 
of effect on the estimated coefficients the point is not influential. Note that 
the deletion may have other effects; for example, the R2 and overall F-statistic 
with the point included would probably be noticeably higher than those with 
the point omitted, as the unusual point increases the total sum of squares 
Yl(yi — Y)2 without increasing the residual sum of squares J2(Vi ~ Vi)2- ^n 

the bottom plot the unusual point is an outlier but not a leverage point. As 
equation (3.3) shows, since hu would be relatively small for this point, the 
observed yi has little effect on the fitted yu so omitting it changes the fitted 
regression very little. 

Given these different notions of influence, it is not surprising that there 
are many measures of the influence of an observation in regression analysis. 
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G U R E 3 . 2 Scatter plots of data with an unusual observation, with the fitted 
regression line with (solid line) and without (dashed line) the unusual observation in-
cluded. 

The most widely used measure is the one proposed by Cook (1977), which 
measures the change in the fitted regression coefficients if a case were dropped 
from the regression, relative to the inherent variability of the coefficient esti-
mates themselves. Cook's distance D is also equivalent to the change in the 
predicted values from the full data and the fitted value obtained by deleting 
the observation. Cook's distance combines the notions of outlyingness and 
leverage in an appealing way, since 

Di = 
(e*)2^ 

(p+ l ) ( l - f t i i ) ' (3.4) 

Observations that are outliers (with large absolute standardized residual |e*|) 
or leverage points (with large ha) are potentially influential, and points that 
are both (so-called "bad" leverage points) are the most influential. A value of 
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Cook's D over 1 or so should be flagged. These points should be examined 
further. 

It is important to remember that Cook's D only measures one particular 
form of influence, and shouldn't be viewed as the final judge of whether or 
not a point is worth investigating. For example, outliers that have low values 
of Cook's D can still have a large effect on hypothesis tests, R2, the standard 
error of the estimate, and so on. Other measures of influence have been 
proposed that focus on such notions of influence; see Belsley et al. (198°) and 
Chatterjee and Hadi (1988) f° r more discussion. 

It is worth noting a weakness of all of these diagnostics. Specifically, they 
are all sensitive to the so-called masking effect. This occurs when several 
unusual observations are all in the same region of the (X, y) space. When 
this happens, the diagnostics, which all focus on changes in the regression 
when a single point is deleted, fail, since the presence of the other nearby un-
usual observations means that the fitted regression changes very little if one 
is omitted. The problem of multiple outliers in regression is a topic of ongo-
ing research, and typically involves defining a "clean" subset of the sample to 
which potentially outlying observations are compared; see, for example, Hadi 
and Simonoff (1993) and Atkinson and Riani (2000). 

3 . 4 Example — Estimating Home Prices (continued) 

Consider again the home price data examined in Chapters 1 and 2. Regression 
diagnostics for the chosen model on page 3 5 are given as index plots in Figure 
3.3. The guidelines given earlier for flagging unusual values are given using 
dotted lines, although this is not given in the Cook's distance plot as the 
largest value is not close to 1. 

None of the points are flagged as outliers or influential points (according 
to Cook's distance), but there are five leverage points flagged as unusual. The 
scatter plots given in Figure 1.4 on page 17 show that these correspond to the 
only two houses with living area greater than 2500 square feet (each having 
living area more than 2900 square feet), and the only three houses built after 
1955 (each being built in 1961 or 1962). It is possible that the underlying re-
lationship could be different for houses of these types, and it is important to 
see if their inclusion has had a noticeable effect on the fitted regression. A 
plot of Cook's distances versus diagonal elements of the hat matrix (Figure 
3.4) shows that not all of these leverage points would change the estimated 
coefficients very much if they were omitted, although as noted above change 
in estimated coefficients is not the only possible effect. One of those effects, 
in fact, is on the model selection process discussed in Section 2.3.1; once ob-
servations are omitted this is a new data set, and the "best" model might not 
be the same as it was before, so best subsets regression needs to be rerun. 

In fact, the best three-predictor model is still based on the number of 
bathrooms, the living area, and the year the house was built, but there is a 
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G U R E 3 . 3 Index plots of diagnostics for the three-predictor regression fit for 
the home prices data given on page 3 5, with the guideline values superimposed on the 
standardized residuals and leverage plots. 

noticeable change from the previous output (given on page 35), in that the 
evidence that the year the house was built adds to the predictive power of the 
model is noticeably weaker (because the standard error of the coefficient for 
that variable is 50% larger than that from the model based on all of the data), 
and the coefficient for living area is roughly 1.5 standard errors larger than 
that from the model based on all of the data: 

Coefficients: 

(Intercept) 
Bathrooms 
Living.area 
Year.built 

Estimate Std. Error t value Pr(>|t| VIF 
-9.545e+06 5.690e+06 -1.678 0.09754 
4.409e+04 1.405e+04 3.138 0.00242 1.600 ** 
8.161e+01 1.790e+01 4.559 1.93e-05 1.352 *** 
4.964e+03 2.921e+03 1.699 0.09332 1.257 . 
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o 
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3 . 4 Plot of Cook's distance versus diagonal element of the hat matrix for 
the three-predictor regression fit for the home prices data given on page 3 5. 

Signif. codes: 
0 '***' 0.001 '•*' 0.01 '•' 0.05 0.1 

Residual standard error: 47390 on 76 degrees of freedom 
Multiple R-squared: 0.4888, Adjusted R-squared: 0.4687 
F-statistic: 24.23 on 3 and 76 DF, p-value: 4.192e-ll 

The apparent strength of the fit after omitting the leverage points is less 
(smaller R2, larger <r), but this is not unusual when omitting leverage points, 
and is certainly not a reason to not prefer this model. A viable alternative is 
the best two-predictor model, which removes year built as a predictor: 
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IGURE 3 . 5 Index plots of diagnostics for the two-predictor regression fit for the 
home prices data, with the guideline values superimposed on the standardized residuals 
and leverage plots. 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) VIF 

(Intercept) 124450.24 26978.18 4.613 1..55e-05 *** 
Bathrooms 54883.41 12689.09 4.325 4.52e-05 1.274 *** 
Living.area 74.29 17.59 4.224 6.51e-05 1.274 *** 

Signif. codes: 
0 '***' 0.001 '**' 0.01 '*' 0.05 0.1 ' 

R e s i d u a l s t a n d a r d e r r o r : 47970 on 77 d e g r e e s of freedom 
M u l t i p l e R - s q u a r e d : 0 .4694 , A d j u s t e d R - s q u a r e d : 0 .4556 
F - s t a t i s t i c : 34 .06 on 2 and 77 DF, p - v a l u e : 2 . 5 3 2 e - l l 

The regression diagnostics are no longer flagging any points (Figure 3.5), and 
residual plots (not given) now look fine. The implications of this model are 
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not very different from the earlier one, but its simpler form could be use-
ful; for example, it might be that a model that is not based on the year the 
house is built could be applicable to other neighborhoods that are similar to 
Levittown, but where the houses were built at a different time. 

3 . 5 Summary 

The identification of unusual observations is an important part of any regres-
sion analysis. Outliers and leverage points can have a large effect on a fitted 
regression, on estimated coefficients, measures of the strength of the regres-
sion, and on the model building process itself. Further, unusual observations 
can sometimes tell the data analyst as much (or more) about the underlying 
random process as the other observations. They can highlight situations in 
which the model could be enriched to account for their different behavior. 

Residual plots can often identify unusual observations, but they should 
be supplemented with examination of diagnostics like the diagonal element of 
the hat matrix (leverage) and Cook's distance. Guidelines for what constitutes 
an unusual value are useful, but the values should also be plotted to make 
sure relative (rather than only absolute) unusualness is also made apparent. 
Identification of multiple unusual values can be challenging because of the 
masking effect, and is a topic of ongoing research. 

KEY TERMS 
Cook's distance: A statistic that measures the change in the fitted regression 
coefficients when an observation is dropped from the regression analysis, rel-
ative to the inherent variability of the coefficients. This is also equivalent to 
the change in the predicted value of an observation when it is included or 
excluded in the analysis. It is used as an influence measure for a particular 
observation. 
Hat matrix: A matrix that contains the weights of the predictor variables 
that determine the predicted values. The diagonal element ha represents the 
potential effect of the ith observation on its own fitted value, and is used as a 
measure of leverage. 
Influential point: An observation whose deletion causes major changes in 
the fitted regression. Such points exercise an undue amount of influence on 
the fit, thereby distorting it. As is true of all unusual observations, attention 
should be paid to these points. 
Leverage point: A point that has a high value of the diagonal of the hat 
matrix. Leverage points draw the fitted regression towards them, thereby 
potentially distorting the fitted model. They also can have a strong effect on 
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measures of the strength of the observed regression relationship. As is true of 
all unusual observations, attention should be paid to these points. 
Masking effect: The tendency in data sets when there are several unusual 
observations clustered together that attempts to identify one observation at a 
time fail because they hide each other. 
Outlier: An observation with a large absolute value of the residual, reflecting 
an observation whose response value is unusual given its predictor variable 
values. As is true of all unusual observations, attention should be paid to 
these points. 
Robust regression: A regression procedure that is not affected by extreme 
points. This is accomplished by giving less weight to high leverage points and 
outliers in the fitting procedure. Instead of minimizing the sum of squared 
residuals, other functions of the residuals are minimized that yield the desired 
properties. 
Standardized residual: A residual that is standardized by scaling it with its 
estimated standard deviation. The residuals can be standardized using the es-
timate of the standard deviation based on the entire data set. A modification 
to this is to standardize the residual using the standard deviation obtained by 
omitting the observation for which the residual is being computed. This is 
called the externally studentized residual. Since the two residuals are mono-
tonic functions of each other, residual plots using either form will have a 
similar appearance. 
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4 . 1 Introduction 

The linear regression models discussed thus far are only appropriate in the 
situation where the relationship between the response and the predictors is 
at least roughly linear. One situation that violates this assumption can be 
handled easily: the possibility of polynomial relationships. For example, 
examination of the data might uncover a parabolic (quadratic) relationship 
between x and y. This suggests enriching the model to include both linear 
and quadratic terms; that is, just fit a model that includes the two predictors 
x and x2. This is not a problem, as this quadratic relationship with x just 
corresponds to a linear multiple regression relationship with those two pre-
dictors. Another possibility is the situation where the context of the problem 
implies the existence of an inherently nonlinear relationship between the re-
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sponse and the predictors. This requires moving away from linear regression 
to nonlinear regression methods, and is the subject of Chapter 11. 

Between these two extremes are what are called linearizable models. 
These correspond to response/predictor relationships that are nonlinear, but 
can be changed into linear relationships through the use of transformation 
(most often the logarithmic transformation). Happily, it is often the case that 
taking logs of a variable can have multiple positive effects on a regression fit. 
First, variables that have most of their values relatively small and positive, but 
have some values much larger, so the variable covers several orders of magni-
tude (that is, have a distribution with a long right tail) often become much 
more symmetrical when treated after taking logs. In particular, previously in-
discernible structure can become apparent when working in the logged scale. 

Another benefit of taking logs of the response variable is that it can ad-
dress certain kinds of heteroscedasticity. A situation where the variability of 
the response variable reflects multiplicative, rather than additive errors, can 
be accommodated by taking logs. Consider a true relationship that has the 
form 

Vi = /(xi,/3) xSi, (4.1) 

where Si is an error term with E(S{) = 1. In this situation the standard 
deviation of yi equals /(x^,/3), so observations with larger response values 
will also have more variability. Equation (4.1) implies that 

log j/i = log[/(x2,/3)] + log (5, = log[/(x,,/3)] + Si- (4.2) 

if log[/(xi, j3)] is a roughly linear function of the xi variables and Si has con-
stant variance cr2, this is reasonably represented with a linear regression model 
based on log y as the response variable. In the next two sections we describe 
two relationships that satisfy this property. Note that the base of the loga-
rithm does not matter in equation (4.2); the most common choices are the 
common logarithm (base 10) and the natural logarithm (base e). 

The fact that multiplicative relationships become additive when taking 
logs implies that the standard deviation a of the errors ei in equation (4.2) 
has a multiplicative, rather than additive, interpretation. The interval ±2a is 
still a rough 95% prediction interval for the response, but since that response 
is logy rather than y, the correct interpretation is that y can be predicted 
95% of the time to within a multiplicative factor of 102cr (i.e., multiplying or 
dividing the estimated expected y by 102°") if common logs are used, or of e2cr 

if natural logs are used. Note that the intervals will be identical in the y scale 
in either case, as the values of a are automatically adjusted accordingly. 

A related point to this connection between logarithms and multiplicative 
relationships is that money tends to operate multiplicatively rather than ad-
ditively. For example, when making an investment, people understand that 
it is a proportional, rather than absolute, return that is sensible (that is, an 
investor would not expect to be told something like "This investment could 
yield a profit of $50,000 for you," as it would depend on how much was in-
vested, but would expect to be told something like "This investment could 
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yield a profit of 10% on your investment"). For this reason, it is often useful 
to treat money variables in the logged scale. 

4 . 2 Concepts and Background Material: The Log-Log 
Model 

A model often used to describe a growth process is 

y — a r . 

This corresponds to a multiplicative/multiplicative relationship, in the sense 
that it is consistent with proportional changes in x being associated with 
proportional changes in y. It is apparent that for this relationship multi-
plying x by a constant multiplies y by a constant, as x —* x' — ax implies 
y —> y' — a(ax)P = a^ax^ = aPy. This functional form is linearizable, since 
if logs are taken of both sides of the equation we obtain 

log?/ = logQJ + / ? l o g £ = p0 + Pi logX. (4.3) 

That is, the model is linear after logging both x and y, and is hence called the 
log-log model. The log-log model has an important interpretation in terms 
of demand functions. Let y above represent demand for a product, and x be 
the price. The price elasticity of demand is defined as the proportional change 
in demand for a proportional change in price; that is, 

dy/y = dy/dx 
dx/x y/x 

where dy/dx is the derivative of y with respect to x. Some calculus shows that 
for the log-log model, the elasticity is (a constant) /?, and the log-log model is 
therefore sometimes called the constant elasticity model, since such a slope 
coefficient corresponds to an elasticity. This provides a direct interpretation 
for the slope coefficient in a log-log model as the proportional change in y 
associated with a proportional change in x (holding all else in the model fixed). 
Thus, when fitting model (4.3) the estimated coefficient J3j implies that a 1% 
change in Xj is associated with an estimated J3j % change in y (holding all else 
in the model fixed if there are other predictors). 

4 . 3 Concepts and Background Material: Semilog 
Models 

Semilog models correspond to the situation where either the response variable 
or a predicting variable is logged, but not both. The two situations have 
fundamentally different interpretations, and so are treated separately. 
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4.3 .1 LOGGED RESPONSE VARIABLE 

Another model often used to describe a growth process is 

y = <*0x. 

This corresponds to an additive/multiplicative relationship, in the sense that 
it is consistent with additive changes in x being associated with multiplicative 
changes in y. For this relationship adding a constant to x multiplies y by a 
constant, as x —» x' — x + a implies y —> y' — a(3xJra = (3aaf3x = j3ay. If 
the predictor is time, another interpretation of this model is through the fact 
that this relationship is consistent with a growth rate that is proportional to 
the current level of the response. This functional form is linearizable, since if 
logs are taken of both sides of the equation we obtain 

log y = log a + x log (3 = /?0 + fax, (4.4) 

corresponding to a relationship where log y is linearly related to x. An equiv-
alent representation of this relationship is 

y = exp(p0 + /31x). (4.5) 

This model is particularly appropriate, for example, for modeling the growth 
of objects over time, such as the total amount of money in an investment 
as a function of time, or the number of people suffering from a disease as a 
function of time. Growth operates multiplicatively, but time operates addi-
tively. In this situation the estimated slope J3j is a semielasticity, and 10^ 
(using common logs) or e@j (using natural logs) is interpreted as the estimated 
expected multiplicative change in y associated with a one unit increase in Xj 
holding all else in the model fixed. 

4.3 .2 LOGGED PREDICTOR VARIABLE 

The other possibility for a semilog model is a regression model where the 
response variable y is not logged, but the predictor x is. The functional rela-
tionship this implies between y and x is 

exp(y) — OLX^\ 

and thus corresponds to a multiplicative/additive relationship, with multi-
plicative changes in x being associated with additive changes in y. Logging 
both sides gives the relationship 

y = log a + (3 log x = fio + Pi log x. 

The slope (3j in such a model is based on the usual interpretation of regression 
slopes, except that adding one to log x corresponds to multiplying x by 10 (if 
common logs are used) or by e (if natural logs are used). That is, for example 
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for common logs, the model implies that multiplying Xj by 10 is associated 
with an estimated expected increase of j3j in y, holding all else in the model 
fixed. Such a model is appropriate in the situation where the response vari-
able does not vary over a wide range while the predictor does. For example, 
a model exploring the relationship for a sample of countries between a health 
outcome like life expectancy and a measure of wealth like gross national in-
come is a situation where it is reasonable to think that a proportional increase 
in income would be associated with an additive change in life expectancy (im-
plying that absolute increases in income are "worth more" for low-income 
countries than they are for high-income countries). 

4 . 4 Example — Predicting Movie Grosses After One 
Week 

The movie industry is a business with a high profile, and a highly variable 
revenue stream. In 2010, moviegoers spent more than $10 billion at the U.S. 
box office alone. A single movie can be the difference between tens of millions 
of dollars of profits or losses for a studio in a given year. It is not surprising, 
therefore, that movie studios are intensely interested in predicting revenues 
from movies; the popular nature of the product results in great interest in 
gross revenues from the general public as well. 

The opening weekend of a movie's release typically accounts for 35% 
of the total domestic box office gross, so we would expect that the opening 
weekend's grosses would be highly predictive for total gross. In fact, this un-
derstates the importance of the opening weekend. It is on the strength of the 
opening weekend of general release that many important decisions pertaining 
to a film's ultimate financial destiny are made. Since competition for movie 
screens is fierce, movie theater owners do not want to spend more than the 
contractually obligatory two weeks on a film that doesn't have "legs." Should 
a film lose its theatrical berth very quickly, chances are slim that it will have 
significant play internationally (if at all), and it is less likely that it will make 
it to pay-per-view, cable, or network television. This all but guarantees that 
ancillary revenue streams will dry up, making a positive return on investment 
virtually impossible to achieve, as ancillary deals are predicated on domestic 
box office gross. Exhibitors often make the decision to keep a film running 
based on the strength of its opening weekend. The ability to predict total 
domestic gross after the first weekend of release is thus of great importance. 

The following analysis is based on the movies released in the U.S. dur-
ing 2009 that opened on more than 500 screens, which can be viewed as a 
sample from the ongoing process of movie production and release. The re-
sponse variable is the total domestic (U.S.) grosses, while potential predictors 
are opening weekend gross (in millions of dollars), the number of screens on 
which the movie opened, the estimated production budget when reported 
(in millions of dollars), and the rating of the movie at the film review aggre-
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F I G U R E 4 . 1 Scatter plots of total domestic gross versus opening weekend gross 
(both in millions of dollars), number of opening screens, estimated production budget 
(in millions of dollars), and Rotten Tomatoes rating, respectively, for 2009 movies data. 

gator website Rotten Tomatoes (rottentomatoes.com). Note that the first 
three predictors would certainly be available to a producer after the opening 
weekend, and a general perception of the critical reaction to a movie would 
be also, even if the exact Rotten Tomatoes rating might not be. Figure 4.1 
exhibits for several of the variables typical signs that the variables are better 
analyzed in the logged scale: plots involving total domestic gross, opening 
weekend gross, and budget all show bunching in the lower left corner, with 
a gradual spreading out of the data points moving towards the upper right 
corner. The relationship between total domestic gross and opening screens 
also looks distinctly nonlinear. 

Figure 4.2 gives corresponding plots logging (base 10) the total domestic 
gross, first weekend gross, and budget variables. It is apparent that the re-
lationships look much more consistent with the assumptions of linear least 
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i 4 . 2 Scatter plots of logged total domestic gross versus logged opening 
weekend gross, number of opening screens, estimated logged production budget, and 
Rotten Tomatoes rating, respectively, for 2009 movies data. All logs are base 10. 

squares regression. There are reasonably strong relationships with all of the 
variables other than the Rotten Tomatoes rating. There is evidence of non-
constant variance in the plot of logged total gross versus logged opening week-
end gross, and a very obviously unusual point to the left in the plot versus 
logged production budget (a potential leverage point that corresponds to "The 
Last House on the Left," which had a reported production budget of only 
roughly $100,000). The movie "Avatar" also shows up as unusually successful 
(and a potential outlier) at the top of several of the plots. 

The following output summarizes results for a regression fit of logged 
total domestic gross on logged opening weekend gross, number of opening 
screens, logged estimated production budget, and Rotten Tomatoes rating. 
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Coefficients: 
Estimate 

(Intercept) 2.353e-01 
Log.opening.gross 1.014e+00 
Screens 1.002e-06 
Log.budget 8.657e-02 
RT 1.619e-03 

Std.Err. 
4.75e-02 
4.87e-02 
2.61e-05 
3.17e-02 
4.56e-04 

t val 
4.95 

20.82 
0.04 
2.73 
3.55 

Pr(>|t|) 
2. 
< 
0. 
0, 
0, 

.5e-06 
2e-16 
.96947 
.00727 
.00056 

VIF 

2.93 
3.27 
1.68 
1.07 

* * * 
* * * 

* * 
* * * 

S i g n i f . c o d e s : 
0 ' * * * ' 0 . 0 0 1 ' * * ' 0 . 0 1 ' * ' 0 . 0 5 ' . ' 0 . 1 ' ' 1 

Residual standard error: 0.1191 on 115 degrees of freedom 
Multiple R-squared: 0.9285, Adjusted R-squared: 0.926 
F-statistic: 373.3 on 4 and 115 DF, p-value: < 2.2e-16 

The model fit is very strong, with R2 over 92%, and a highly statistically 
significant F-statistic. While logged opening weekend gross, logged budget, 
and Rotten Tomatoes rating are all strongly statistically significant, given the 
other predictors the number of screens on which the movie opens does not 
add any predictive power. This is consistent with the results of a best subsets 
regression (output not given), which identifies the model with all of the pre-
dictors other than number of screens as best. The output for this simplified 
model is given below. 

Coefficients: 
Estimate Std.Err. t val Pr(>|t|) VIF 

(Intercept) 0.2358772 0.04474 5.27 6.3e-07 *** 
Log.opening.gross 1.0154911 0.03440 29.52 < 2e-16 1.47 *•• 
Log.budget 0.0870212 0.02924 2.98 0.00355 1.44 ** 
RT 0.0016163 0.00045 3.61 0.00046 1.04 *** 

Signif. codes: 
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 0.1185 on 116 degrees of freedom 
Multiple R-squared: 0.9285, Adjusted R-squared: 0.9267 
F-statistic: 502.1 on 3 and 116 DF, p-value: < 2.2e-16 

The estimated standard deviation of the errors a — .1185, but as was 
noted on page 38, this should be adjusted to account for the model selection 
process. In this case the adjustment proposed in equation (2.4) makes little 
difference, as a = .119. This implies that these variables can predict total 
domestic gross to within a multiplicative factor of 1.73, roughly 95% of the 
time (1()(2)(-119) = 1.73). Thus, it would not be surprising for a movie pre-
dicted to have a total gross of $100 million to have an actual gross as large as 
$173 million or as small as $58 million, which reflects the inherent high vari-
ability in movie grosses, even based on a model that accounts for more than 
92% of the variability in logged grosses. The coefficients for logged opening 
weekend gross and logged budget are elasticities, so they imply that holding 



4.4 Example — Predicting Movie Grosses After One Week 75 

Standardized residuals 

Diagonal elements of the hat matrix 

Cook's distances 

o 

o 

o o _ 

• 

• • 

• 

« * ^ ~ ^ A - ^ ^ . 
60 

Index 

E 4 . 3 Index plots of diagnostics for the regression fit on the three-predictor 
model for the movie grosses data, with guideline values superimposed on the standard-
ized residuals and leverage plots. 

all else fixed a 1% increase in opening weekend gross is associated with an es-
timated expected 1.02% increase in total domestic gross, and a 1% increase in 
production budget is associated with an estimated expected 0.09% increase in 
total domestic gross, respectively. The coefficient for Rotten Tomatoes rating 
is a semielasticity, implying that holding all else fixed an increase of one point 
in the rating is associated with an estimated expected 0.4% increase in total 
domestic gross (100016 = 1.004). 

Regression diagnostics (Figure 4.3) identify "The Last House on the Left" 
as an extreme leverage point, as would be expected. After omitting this point, 
best subsets regression still points to the same three-predictor model as best, 
and the regression results change very little, although diagnostics (Figure 4.4) 
now indicate several marginal leverage points (corresponding to "Next Day 
Air," "Ponyo," and "The Twilight Saga: New Moon"). 
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GURE 4 . 4 Index plots of diagnostics for the three-predictor regression fit after 
removing the leverage point, with guideline values superimposed on the standardized 
residuals and leverage plots. 

Coefficients: 

(Intercept) 
Estimate Std.Err. 
0.2156550 0.04862 

Log.opening.gross 1.0006562 
Log.budget 
RT 

0.1120680 
0.0015644 

0.03712 
0.03759 
0.00045 

t val Pr (>|t|) VIF 
4.44 2.1e-05 *** 

26.96 < 2e-16 1.72 *** 
2.98 0.00350 1.71 ** 
3.47 0.00073 1.05 *** 

Signif. codes: 
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 

Residual standard error: 0.1185 on 115 degrees of freedom 
Multiple R-squared: 0.9291, Adjusted R-squared: 0.9273 
F-statistic: 502.4 on 3 and 115 DF, p-value: < 2.2e-16 
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E 4 . 5 Residual plots for the three-predictor regression fit after removing the 
leverage point for the movie grosses data. 

Residual plots (Figure 4.5) illustrate more serious issues: residuals that are 
somewhat right-tailed, and nonconstant variance, where movies with larger 
estimated (logged) domestic grosses have higher variability. The latter issue 
requires the use of weighted least squares, which will be discussed in Sections 
6.3.3 and 10.7. 
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TABLE 4 . 1 Total domestic grosses (in millions of dollars) for 2010 movies with 95% 
prediction limits, based on using the model fit to 2009 data. 

Movie 

Cop Out 
Daybreakers 
Dear John 
Edge of Darkness 
Extraordinary Measures 
From Paris With Love 
Leap Year 
Legion 
Percy Jackson and the Olympians 
Shutter Island 
The Book of Eli 
The Crazies 
The Tooth Fairy 
The Wolf Man 
Valentine's Day 
Youth in Revolt 

Lower 
limit 

27.88 
25.70 
46.17 
31.73 

9.27 
13.82 
13.16 
25.84 
59.27 
82.05 
60.85 
27.56 
21.82 
59.30 
88.63 
11.57 

Actual 
gross 

44.88 
30.10 
80.01 
43.31 
12.48 
24.08 
25.92 
40.17 
88.77 

128.01 
94.84 
39.12 
60.02 
62.19 

110.49 
15.29 

Upper 
limit 

83.03 
76.70 

138.26 
94.15 
27.69 
41.27 
39.21 
77.01 

176.32 
244.73 
180.81 
82.50 
65.12 

178.00 
267.54 
34.63 

A natural use of this model is to forecast grosses for future movies. Table 
4.1 summarizes the results of such predictions based on this model for movies 
released in January and February of 2010, giving 95% prediction limits for 
total gross (obtained by antilogging the upper and lower limits of prediction 
intervals based on the model for logged total domestic gross). It can be seen 
that the model does a good job of predicting future grosses, with all of the 
prediction intervals containing the actual total domestic gross values. 

4 . 5 Summary 

Linear least squares modeling makes several assumptions about the underly-
ing regression relationship in the population, which might not hold. Several 
violations of these assumptions, including multiplicative rather than additive 
errors (which result in nonconstant variance) and certain forms of nonlinear-
ity, correspond to linearizable violations, in that using the target or predicting 
variables (or both) in the logged scale can address them. The logged transfor-
mation is particularly useful in situations where a variable is long right-tailed. 
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When the target variable is logged the slope coefficients take the form of elas-
ticities (for logged predictors) or semielasticities (for unlogged predictors) that 
have natural and intuitive interpretations in the original scale, making this 
transformation a particularly attractive one in many situations. 

KEY TERMS 
Elasticity: The proportional change in the response corresponding to a pro-
portional change in a predictor. In economics this often corresponds to a 
proportional change in demand of a product or service corresponding to a 
proportional change in its price. 
Log-log model: A relationship of the form E(y) = ax@. This relationship 
is linearizable, as the unknown parameters can be estimated from a linear 
regression of log y on log x. 

Semielasticity: The proportional change in the response corresponding to 
an additive change in a predictor. 
Semilog models: Relationships of the form y = a/3x or exp(y) = ax@. 
These relationships are linearizable, as the unknown parameters can be esti-
mated from a linear regression of log y on x or y on log x, respectively. 
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5.1 Introduction 

As was noted in Section 1.2.3, a standard assumption in regression modeling 
is that the random errors ei are uncorrelated with each other. Correlation 
in the residuals represents structure in the data that has not been taken into 
account. When the observations have a natural sequential order, and as a 
result the correlation structure is related to that order, this correlation is called 
autocorrelation. Although the issues we will discuss in this chapter can arise 
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in any situation where there is a natural sequential ordering to the data, we 
will refer to it generically as time series data, since data ordered in time is 
certainly the most common application area. 

Autocorrelation occurs for several reasons. In time series data it is of-
ten the case that adjacent values are similar, with high values following high 
values and low values following low values. Often this is a result of the tar-
get variable being subjected to similar external conditions. Adjacent errors in 
economic data, which correspond to measurements from consecutive time pe-
riods like days, months, or years, are often positively correlated because of the 
effects of underlying economic processes that are evolving over time. Adja-
cent experimental values, such as successive outputs in a production process, 
can be positively correlated because they are affected by similar short-term 
conditions on machinery. 

Autocorrelation in time series data also can arise by omission of an impor-
tant predictor variable from the model. If the successive values of an impor-
tant omitted variable are correlated, the errors from a model that omits this 
variable will tend to be autocorrelated, since the errors will reflect the effects 
of the missing variable. This means that issues of model selection for time se-
ries data can become conflated to some extent with issues of autocorrelation. 
Measures designed to compare models that do not account for autocorrelation 
can be misleading in the presence of autocorrelation, complicating the ability 
to identify appropriate choices of variables. 

In this chapter we will discuss some of the issues related to building re-
gression models for time series data. We will first discuss the effects of auto-
correlation if it is ignored. We will then examine several approaches to iden-
tifying autocorrelation, which range from one requiring strong assumptions 
(the Durbin-Watson statistic) to one related to a simple graphical examination 
of residuals that requires virtually no assumptions (the runs test). We then dis-
cuss several relatively simple approaches to accounting for common forms of 
autocorrelation, including trends and seasonal effects, and explore how val-
ues from previous time periods can be used to enrich a regression model and 
account for autocorrelation. We conclude with discussion of a more sophis-
ticated approach to handling autocorrelation that moves past ordinary least 
squares estimation to estimation designed for time series data. 

It is important to note that the methods discussed here only scratch the 
surface of time series analysis and modeling. It would not be at all surprising if 
an analyst finds that using the methods discussed in this chapter will account 
for much (or even most) of the observed autocorrelation in a data set, but 
in many cases there will still be apparent autocorrelation that requires more 
complex methods. That is beyond the scope of this book, but there are many 
books that discuss such methods that can be consulted, such as Cryer and 
Chan (2008) and Kedem and Fokianos (2002). 
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5 . 2 Concepts and Background Material 

Autocorrelation can have several problematic effects on a fitted model. These 
are as follows: 

i. Least squares estimates are unbiased, but are not efficient, in the sense that 
they do not have minimum variance. Since the degree to which the OLS 
estimates are inefficient depends on the type and amount of autocorrela-
tion in both the errors and the predictor, we need to specify a particular 
form of autocorrelation to explore this. A first-order autoregressive 
[AR(1)] process satisfies 

Si = pSi-i +Zi, \p\ < 1, (5.1) 

where the zi are independent and identically distributed normally dis-
tributed random variables. The standard assumption underlying least 
squares is that p = 0, and in that situation the OLS estimator has the 
minimum variance possible among all unbiased estimators, but if p ^ 0 
that is no longer the case [in this case p = corr(ei,£i-i)]. Figure 5.1 il-
lustrates this point graphically for a simple regression model where the 
predictor x follows an AR(1) process with parameter A. The panels of 
the plot correspond to values of A equal to 0, 0.1, 0.3, 0.5, 0.7, and 0.9 
from the lower left to the upper right, with each plot giving the ratio of 
the variance of the OLS estimate of (3\ to that of the unbiased estimator 
with minimum variance for large samples versus the autocorrelation of 
the errors p. It can be seen that while the OLS estimator is not very in-
efficient for all A when \p\ < 0.3 (with plotted inefficiency close to the 
horizontal line corresponding to a ratio equal to 1), for larger amounts 
of autocorrelation in the errors its variance can be considerably larger 
than the minimum possible value. In Section 5.4.5 we will discuss con-
struction of the estimator that has minimum variance for all p for this 
situation. 

2. The estimates of the standard errors of the regression coefficients and of 
a2 are biased. Figure 5.2 illustrates this point. Each panel of the plot gives 
the percentage bias of the usual estimate of the variance of the OLS J3\ for 
large samples as a function of p for a given A. The solid horizontal line at 
0 corresponds to no bias, while the dashed line corresponds to a bias of 
— 100% (the lowest possible value). It can be seen that when p and A are 
nonzero with the same sign (the right side of each panel) the estimated 
variance is negatively biased (often extremely biased). This means that 
t-statistics will be larger than they should be (since the square root of the 
estimated variance is the denominator of the t-statistic), resulting in a spu-
rious impression of precision. This is the typical situation for economic 
data (where both p and A will be positive). If the two autocorrelation 
parameters are of opposite sign (the left side of each panel) the estimated 
variances are positively biased, and measures of the strength of the regres-
sion will be too small rather than too large. Note that while there is no 
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5 .1 Inefficiency of OLS estimator compared to minimum variance esti-
mator under first-order autoregressive errors, with first-order autoregressive predictor; 
p = corr(€i,6i-i) and A = corr(xi,Xi-i). 

requirement that predictors lack autocorrelation to justify least squares 
(which is reflected in the bias equaling 0 when p = 0 for all values of A), 
autocorrelation of the predictors does have a strong effect on the conse-
quences of autocorrelation in the errors if it exists, with stronger effects 
as |A| increases. Not only does the direction of the bias depend on the 
sign of A, the bottom left panel of the figure shows that for this type of 
time series structure there is no bias in the estimated variances if A = 0 
for all values of p. 

3. As a result of this bias, confidence intervals, significance tests, and predic-
tion intervals are no longer valid. 

Given the seriousness of the autocorrelation problem, corrective action 
to address it should be taken. The appropriate action depends on the source 
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5 . 2 Percentage bias of the estimated variance of the OLS estimator of (3\ 
under first-order autoregressive errors, with first-order autoregressive predictor. 

of the autocorrelation. If autocorrelation is due to the absence of a variable 
or other structure (such as seasonal effects) in the model, once the necessary 
structure is included, the problem is reduced or disappears. On the other 
hand, if autocorrelation is an inherent part of the population error structure, 
addressing this autocorrelation requires transformation or changing the least 
squares criterion. 

5 . 3 Methodology: Identifying Autocorrelation 

We describe three tests for detecting autocorrelation that range from strongly 
parametric (based on a set of strong assumptions about the underlying error 
process) to nonparametric (based on very weak assumptions). 
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5.3.1 THE DURBIN-WATSON STATISTIC 

The Durbin-Watson statistic is the most widely used test for detecting auto-
correlation. The test is strongly parametric, being based on the assumption 
that the errors follow the AR(1) process (5.1). The situation where there is 
no autocorrelation (p = 0) corresponds to all of the standard least squares 
assumptions: that is, the errors are independent and identically distributed 
Gaussian random variables. Further, if autocorrelation exists, it is assumed 
that it takes the specific AR(1) form. It can be shown that the AR(1) process 
on the errors implies that the autocorrelations geometrically decay as the lag 
increases; that is, 

pk = corr(ei, ei-k) = Pk- (5.2) 

While the implication that errors that are farther apart are more weakly corre-
lated is often reasonable, the errors will often have a more complex correlation 
structure than this, so the adequacy of the Durbin-Watson statistic depends 
on (5.1) [and hence (5.2)] being a reasonable approximation to reality. 

In its standard form the Durbin-Watson statistic d tests the hypotheses 

#0 : 9 = 0 

versus 
Ha : p > 0. 

The test statistic is defined as 

- _ E ? = 2 ( e < - e i - i ) 2 

where e$ is the zth least squares residual. A drawback of this statistic is that it 
is not pivotal; that is, its distribution (and hence critical values used to apply 
it as a hypothesis test) depends on unknown parameters. Durbin and Watson 
(1951) showed that the statistic is asymptotically pivotal, and further showed 
that a set of two critical values {d^,, du} can be used to implement the test as 
follows: 

1. If d < du, reject HQ. 

2. If d > du, do not reject iiTo-
3. If d G (djr,, du), the test is inconclusive. 

Critical values {du,du} have been tabulated by many authors and are 
available on the internet, including at the website for this book. Alternatively, 
for large n (say n > 100) a normal approximation to the distribution of d can 
be used, 

This form of the test shows that a value of d close to 2 is indicative of the 
absence of autocorrelation. Some statistical packages provide an exact tail 
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probability for the test based on its null distribution (a linear combination of 
X2 variables). 

Tests for negative autocorrelation are performed more rarely than for 
positive autocorrelation. If a test is desired for p < 0, the appropriate test 
statistic is 4 — d, and the procedure outlined above is then followed. 

5.3.2 THE AUTOCORRELATION FUNCTION (ACF) 

Use of the Durbin-Watson statistic is based on assuming an AR(1) process 
for the errors, so it is important to check whether that holds. This can be 
done through use of an autocorrelation function (ACF) plot. In this plot 
estimates of autocorrelations for a range of lags are plotted, often with ap-
proximate 95% confidence bands around 0 superimposed. The estimate of 
the /cth-lag autocorrelation is 

En 
_ i=k+l eiei-k 

Pk - n 2 . 

If there is no autocorrelation the standard error of pk satisfies s.e.(pk) ~ 
l/^/n, implying that pk values greater than roughly 2 / y ^ are significantly 
different from 0 at a .05 level. Examination of the ACF plot can show if there 
is any evidence of autocorrelation in the residuals, if observed autocorrelation 
is consistent with an AR(1) process (by seeing if the estimated autocorrela-
tions follow a roughly geometric decay), or if other forms of autocorrelation 
(such as seasonality) are present. 

5.3.3 RESIDUAL PLOTS AND THE RUNS TEST 

The presence of autocorrelation in a given set of time series data can be de-
tected by an examination of an index plot of the values in time order. As 
was noted on page 15, a standard approach for the detection of autocorrela-
tion of regression errors is the corresponding index plot of the (standardized) 
residuals. This is particularly helpful in the presence of underlying positive 
autocorrelation of the errors, as this corresponds to a positive (negative) er-
ror in one time period being associated with a positive (negative) error in the 
next time period. In this case the residual plot has a distinctive cyclical pat-
tern, where residuals of the same sign are clustered, with positive residuals 
tending to follow positive residuals and negative residuals tending to follow 
negative residuals. The corresponding pattern for negative autocorrelation, 
with positive residuals tending to follow negative residuals (and vice versa), 
also can occur, but this is difficult to see in a residual plot. 

These patterns of same-signed residuals either following or not following 
each other is the principle underlying a nonparametric test of autocorrelation. 
The runs test formalizes the detection of residual clustering by counting the 
number of runs of residuals of the same sign. For example, in a series of 
residuals with signs++HH H h+++H 1 h+, 



8£ CHAPTER 5 Time Series Data and Autocorrelation 

there are n+ = 14 positive residuals, n_ = 16 negative residuals, and w = 9 
runs (a run of 4 positive residuals, followed by a run of 4 negative residuals, 
and so on). For small sample sizes the null distribution of the number of runs 
can be determined exactly on the basis of all possible permutations of pluses 
and minuses, while for larger sample sizes if there is no autocorrelation u is 
roughly normally distributed with mean 

and variance 
2 2n + n_(2n + n_ — n) 

n2(n — 1) 

Too few runs corresponds to positive autocorrelation, while too many runs 
corresponds to negative autocorrelation, thus providing a test of the null hy-
pothesis that the errors are independent and identically distributed. The runs 
test has the advantage of being a nonparametric test, not requiring any as-
sumptions about the underlying distribution of the errors (other than that 
there is a common distribution for all errors). 

5 . 4 Methodology: Addressing Autocorrelation 

5.4.1 DETRENDING AND DESEASONALIZING 

The time series literature is very extensive, and it is beyond the scope of 
this book (and most routine regression analyses) to cover that material in 
detail. Fortunately, it turns out that many autocorrelation problems can be 
addressed to a large (if not complete) extent using relatively simple methods 
that should be part of the data analyst's toolkit. Indeed, simply including 
appropriate predictors in a regression model can often take initially strong 
autocorrelation in the target variable and turn it into little or no autocorrela-
tion in the residuals, accounting for the problem almost completely. 

Temporal data (observations taken over time) often have two characteris-
tics, trend and seasonality. Trend is the general movement in the data, going 
up or down over the period of observation. Since many variables naturally 
grow over time (for example, family income because of inflation or national 
production because of population growth), it is reasonable to incorporate 
such growth into the model. This can be done in two simple ways. First, 
variables (especially response variables) should be modeled in a natural scale 
that is comparable across time periods if at all possible. Thus, if incomes 
grow naturally because of inflation, they should be corrected for inflation by 
using an appropriate price deflator so they are in constant dollars rather than 
current dollars. Similarly, if production grows naturally with population, 
population-corrected per capita measures should be used. 

A second approach (which can still be useful even if the variables have 
been rescaled as described above) is to incorporate a time trend into the model. 
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The trend is often modeled by incorporating a linear or quadratic term (using 
time and perhaps time2 as predictors). The need for such detrending can 
be assessed using the model building methods described in Chapter 2. In 
situations where the growth is exponential, the semilog model described in 
Section 4.3 is appropriate, with the target variable logged and time entering 
the model unlogged. 

Temporal data also often have a component that varies with time, repre-
senting the effects of the season. For example, monthly sales data often exhibit 
the recurring pattern of sales being higher than normal at the end of the year 
(because of the Christmas season) and lower than normal at the beginning of 
the year (the aftermath of the Christmas season). This sort of pattern would 
show up as persistent monthly patterns in monthly data, or persistent quar-
terly patterns for quarterly data. It can often be identified by examining the 
residuals appropriately. For example, a seasonal effect in quarterly data can 
show up in an ACF plot as a significant autocorrelation at lag 4 (and multiples 
of 4), since residuals that are four quarters apart follow the persistent seasonal 
pattern by being one year apart; similarly, a monthly seasonal effect can show 
up as a significant autocorrelation at lag 12 (and multiples of 12). Side-by-side 
boxplots of residuals separated by quarter or month also can uncover seasonal 
effects. 

Seasonal effects can be taken into account using a set of indicator vari-
ables as a generalization of the analysis discussed in the presence of data with 
two subgroups in Section 2.4 (since quarterly data fall into four distinct sub-
groups, monthly data fall into 12 distinct subgroups, and so on). An indicator 
variable is defined for each subgroup (quarter or month) with one of the indi-
cators omitted to account for the presence of an intercept term in the model 
(this approach is discussed in much more detail in Chapter 6). This proce-
dure accounts for systematic shifts in the target variable from seasonal effects 
(that is, it corresponds to fitting a constant shift model, with the regression 
(hyper)plane shifted up or down by season). 

It is often the case that trend and seasonal effects are viewed as nuisance 
effects, not being related to the contextual relationships of interest to the 
researcher. Removing trend and seasonality from the data in these ways thus 
allows a more focused examination of the structure of the data after these 
effects have been taken into account. 

5.4.2 EXAMPLE - E-COMMERCE RETAIL SALES 

Electronic (e-)commerce is a multibillion dollar business, encompassing on-
line sales sites (such as Amazon) and auction sites (such as eBay); indeed, it is 
hard to imagine almost any retail business not having some sort of online sales 
presence, if not now then in the near future. The importance of this business 
sector makes it important to understand the dynamics of e-commerce sales. 
Figure 5.3 gives a time series plot of the quarterly e-commerce retail sales 
(in millions of dollars) for the United States from the fourth quarter of 1999 
through the first quarter of 2011, based on information from the U.S. Cen-
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FIGURE 5 .3 Time series plot of quarterly U.S. e-commerce retail sales. 

sus Bureau. Two characteristics of this series are immediately apparent: sales 
trended upwards during the decade, and there is a clear seasonal effect, with 
sales peaking in the fourth quarter and then dropping sharply in the first 
quarter (this of course corresponds to the effects of holiday shopping). 

These patterns are characteristic of retail sales in general, so it is reason-
able to think that total sales could be a good predictor for e-commerce sales 
(this assumes, of course, that the underlying relationships during this time pe-
riod remain at least roughly the same in the future). Figure 5.4 is a scatter plot 
of e-commerce sales versus total sales, and it is clear that there is the expected 
direct relationship between the two. 

Output for the regression of e-commerce sales on total sales is given be-
low. 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) -7.396e+04 8.120e+03 -9.108 1.10e-ll *** 
Total.sales 1.103e-01 9.109e-03 12.104 1.35e-15 *** 



5.4 Methodology: Addressing Autocorrelation 91 

' 1 1 1 1 

7e+05 8e+05 9e+05 1e+06 

Total retail sales 

5.4 Scatter plot of e-commerce retail sales versus total retail sales. 

Signif. codes: 
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 6270 on 44 degrees of freedom 
Multiple R-squared: 0.769, Adjusted R-squared: 0.7638 
F-statistic: 146.5 on 1 and 44 DF, p-value: 1.348e-15 

There is a highly statistically significant relationship between e-commerce 
sales and total sales. Unfortunately, autocorrelation is apparent in the resid-
uals, as Figure 5.5 shows. The time series plot of the standardized residuals 
in plot (a) shows a cyclical pattern indicative of positive autocorrelation. The 
ACF plot in plot (b) shows that there are significant autocorrelations at many 
lags, including lags 1-4 and 8. 

The jumps in the autocorrelation at lags 4 and 8 are particularly inter-
esting, since the quarterly nature of the data implies that these are likely to 
represent seasonality. This is further supported in Figure 5.6, which is a set 
of side-by-side boxplots of the standardized residuals separated by quarter. 
Remarkably, however, the seasonal effect is not that sales are higher than ex-
pected in the fourth quarter and lower than expected in the first quarter, as 
the original time series plot of e-commerce sales would have implied; rather, 
e-commerce sales are higher than expected in the first quarter. The reason for 
this is that while the holiday seasonal effect does exist in the e-commerce sales, 
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5 . 5 Residual plots for the e-commerce regression fit based on total retail 
sales, (a) Time series plot of standardized residuals, (b) ACF plot of residuals, with 
superimposed 95% confidence limits around 0. 
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I G U R E 5 . 6 Side-by-side boxplots of the standardized residuals for the e-commerce 
regression fit based on total retail sales. 

it is actually weaker than the corresponding effect in the total sales; when to-
tal sales are taken into account, first quarter e-commerce sales look better 
than expected because they are not as relatively poor as sales overall. This 
highlights that the autocorrelation structure in the residuals, which take pre-
dictor^) into account, can be very different from that in the original response 
variable. 



5.4 Methodology: Addressing Autocorrelation 93 

This seasonality effect can potentially be accounted for by adding indi-
cator variables for any of the three quarters. The resultant output (based on 
including indicators for the first three quarters) is given below. 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) -8.538e+04 7.667e+03 -11.136 5.68e-14 *** 
Total.sales 1.217e-01 8.129e-03 14.972 < 2e-16 *** 
Quarter.1 7.564e+03 2.275e+03 3.325 0.00187 ** 
Quarter.2 -2.108e+03 2.199e+03 -0.959 0.34328 
Quarter.3 -7.620e+02 2.203e+03 -0.346 0.73122 

Signif. codes: 
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 5241 on 41 degrees of freedom 
Multiple R-squared: 0.8496, Adjusted R-squared: 0.835 
F-statistic: 57.92 on 4 and 41 DF, p-value: 2.49e-16 

The quarterly indicators add significant predictive power (the partial F-
test comparing the models with and without the seasonal indicators is F = 
7.33 on (3,41) degrees of freedom, with p = .0005, reflecting the increase 
in R2 from 77% to 85%). The coefficient for Quarter . 1 implies that first 
quarter e-commerce sales are estimated to be on average $7.56 billion higher 
than fourth quarter sales, given total sales are held fixed. 

Unfortunately, while this has addressed the seasonality to a large extent, 
it has not addressed all of the problems. Figure 5.7 shows that there is a clear 
break in the residuals, with e-commerce sales higher than expected starting 
with the fourth quarter of 2oog. This is reflecting the relative insensitivity of 
e-commerce sales to the worldwide recession that began in late 2003; while 
total retail sales went down during that time, e-commerce sales continued to 
go up. It is also interesting to note that the ACF plot [Figure 5.7(b)] is unable 
to identify this pattern, instead pointing to an AR(l)-like slow decay of the 
autocorrelations. This reinforces the importance of looking at the residuals in 
different graphical ways, and not just depending on test statistics to identify 
problems. 

The following output summarizes a regression model that adds a con-
stant shift corresponding to quarters during the recession. The indicator for 
the recession is highly statistically significant, implying $11.9 billion higher 
estimated expected e-commerce sales during the recession given the quarter 
and the total retail sales. 
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FIGURE 5 . 7 Residual plots for the e-commerce regression fit based on total retail 
sales and quarterly indicators, (a) Time series plot of standardized residuals, (b) ACF 
plot of residuals. 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 
Total.sales 
Quarter.1 
Quarter.2 
Quarter.3 
Recession 

-7 
1 
5 

-1 
-5 
1 

208e+04 
041e-01 
888e+03 
773e+03 
199e+02 
193e+04 

2 
3 
8 
8 
8 
7 

937e+03 
181e-03 
432e+02 
090e+02 
106e+02 
356e+02 

-24 
32 
6 

-2 
-0 
16 

540 
721 
983 
191 
641 
217 

< 2e-16 
< 2e-16 
1.98e-08 
0.0343 
0.5250 

< 2e-16 

* * * 
* * * 
** * 
* 

* * * 

Signif. codes: 
0 '***' 0.001 0 .01 0.05 0 . 1 

Residual s tandard e r r o r : 1928 on 40 degrees of freedom 
Mult iple R-squared: 0.9802, Adjusted R-squared: 0.9777 
F - s t a t i s t i c : 395 on 5 and 40 DF, p -va lue : < 2.2e-16 

At this point the R2 of the model is over 98%, and most of the autocor-
relation is accounted for (see Figure 5.8). There are three quarters with un-
usually high e-commerce sales (the fourth quarters of 2007, 2009, and 2010, 
respectively), but otherwise the plot of standardized residuals versus fitted 
values, time series plot of the standardized residuals, and normal plot of the 
standardized residuals look reasonable. The ACF plot of the residuals flags 
a significant autocorrelation at lag 4, suggesting some sort of seasonality that 
was not accounted for by the indicators. This is quite possible, as much more 
complex deseasonalizing methods (such as the X-12 ARIMA deseasonalizing 
method used by the U.S. Census Bureau; U.S. Census Bureau, 2011) are often 
used with economic data. Side-by-side boxplots of the standardized residuals 
suggest potential heteroscedasticity related to both quarter (with fourth quar-
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5 . 8 Residual plots for the e-commerce regression fit based on total retail 
sales, quarterly indicators, and recession indicator, (a) Plot of standardized residuals 
versus fitted values, (b) Time series plot of standardized residuals, (c) Normal plot of 
standardized residuals, (d) ACF plot of residuals, (e) Side-by-side boxplots of standard-
ized residuals separated by quarter, (f) Side-by-side boxplots of standardized residuals 
separated by pre- or post-2oog recession. 

ter residuals more variable) and recession (with pre-recession quarters more 
variable); ways to address such heteroscedasticity is the subject of Section 
6.3.3. 

Given the apparent non-AR(l) nature of the autocorrelation and het-
eroscedasticity the Durbin-Watson statistic is not appropriate. The runs test, 
however, is (virtually) always appropriate, and in this case when applying it 
to the residuals it has p = .008, reinforcing that there is still some autocorre-
lation present in the residuals. 
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5.4.3 LAGGING AND DIFFERENCING 

The values of variables from previous time periods can often be useful in 
modeling the value from a current time period in time series data. This can 
reflect a natural time lag of the effect of a predictor on the response variable; 
for example, the Federal Reserve Bank changes interest rates in order to affect 
the dynamics of the U.S. economy, but it is expected that such effects would 
take one or two quarters to be felt through the economy. Thus, it would be 
natural to use a lagged value of interest rate as a predictor of gross national 
income (that is, using x^_i or Xi-2 to model yi for quarterly data). 

A different use of a lagged variable as a predictor is using a lagged version 
of the response variable itself as a predictor; that is, using for example yi-i as 
a predictor of y ,̂ resulting in 

V% = Po + Pixu H K PpXpi + 0p+iyi-i + Si (5.3) 

(in principle further lags, such as yi-2 or ^ - 3 , could be used). Including 
a lagged response as a predictor will often reduce autocorrelation in the er-
rors dramatically, as it directly models the tendency for time series values to 
move in a cyclical pattern. This fundamentally changes the interpretation of 
other regression coefficients, as they now represent the expected change in the 
response corresponding to a one unit change in the predictor holding the pre-
vious time period's value of the response fixed (as well as holding everything 
else in the model fixed), but from a predictive point of view can dramatically 
improve the predictive power of a model while reducing the effects of auto-
correlation. 

A related operation is differencing variables; that is, modeling changes in 
the response value, rather than the value itself. Formally this corresponds to 
a special case of (5.3) with /?p+i = 1. Differencing a variable also can be mean-
ingful contextually, as in many situations the change in the level of a variable 
is more meaningful than the level itself. The example that follows based on 
stock prices is such an example, since it is returns (the proportional change in 
prices) that are meaningful to an investor, not prices themselves. It is standard 
practice in time series modeling in general to difference nonstationary series 
(time series where the distribution of the series changes over time) for exactly 
this reason. 

The Durbin-Watson statistic is not meaningful for a model using lagged 
response values as a predictor, and should not be used in that situation. 

5.4.4 EXAMPLE - STOCK INDEXES 

The Standard & Poor's (S&P) stock indexes are well-known value-weighted 
indexes of stock prices of publicly-held firms. The S&P 500 is based on 
500 large capitalization firms, the S&P 400 is based on 400 mid-capitalization 
firms, and the S&P 600 is based on 600 small capitalization firms. It would be 
expected that such indexes would move together based on the overall health 
of the economy, but it is not clear exactly what those relationships might be. 
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IGURE 5 . 9 Scatter plots of daily S&P 500 (large-cap) index values from 2006 
through 2010 versus (a) S&P 600 (small-cap) index values, and (b) S&P 400 (mid-cap) 
index values. 

Figure 5.9 gives scatter plots of the daily S&P 500 (large-cap) index versus 
the S&P 600 (small-cap) and S&P 400 (mid-cap) indexes, respectively, for all 
trading days from 2006 through 2010. Clearly there is a direct relationship 
between the indexes, but the plots seem to suggest several separate regimes. 

As was noted in the previous chapter, it is often the case that money data 
are better analyzed in the logged scale. Figure 5.10 gives corresponding scatter 
plots based on (natural) logged index values, which still have an apparent 
pattern of different regimes in the series but appear to reflect more linear 
relationships with less heteroscedasticity. 

Regression output for the regression of logged large-cap index on logged 
small-cap and logged mid-cap indexes is given below. 

Coefficients: 

(Intercept) 
log.S.P.Small.cap 
log.S.P.Mid.cap 

Signif. codes: 
0 '***' 0.001 

Estimate Std. Error t value Pr(>|t|) 
1.57402 0.05949 26.458 < 2e-16 *** 
1.25458 0.03835 32.715 < 2e-16 *** 

-0.27745 0.03910 -7.096 2.14e-12 *** 

**' 0.01 '*' 0.05 ' 0.1 

Residual standard error: 0.04833 on 1256 degrees of freedom 
Multiple R-squared: 0.9284, Adjusted R-squared: 0.9283 
F-statistic: 8145 on 2 and 1256 DF, p-value: < 2.2e-16 

The regression relationship is very strong, but autocorrelation is a serious 
problem. Figure 5.11 illustrates the strong cyclical pattern in the standardized 
residuals, consistent with a nonstationary time series that has mean value that 
shifts up and down. The ACF plot is consistent with this, in that the estimated 
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GURE 5 . 1 0 Scatter plots of logged daily S&P 500 (large-cap) index values versus 
(a) logged S&P 600 (small-cap) index values, and (b) logged S&P 400 (mid-cap) index 
values. 
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FIGURE 5 .1 1 Residual plots for logged large-cap index regression fit based on 
logged small-cap and logged mid-cap indexes, (a) Time series plot of standardized resid-
uals. (b) ACF plot of residuals. 

autocorrelations of the residuals are very large, and decay very slowly. The 
Durbin-Watson statistics is d = .026, which is extremely strongly statistically 
significant. 

Both context and the statistical results imply that differencing the data is 
appropriate. As was noted on page 96, it is not stock price (or index value) 
that matters to an investor, but rather stock return. The return is defined as 
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the proportional change in price, or 

= pi -pi-i = j^_ _ 

Consider now prices in the natural log scale. Differencing this variable yields 

logpi - logpi-i = log —— 

= log ( l + - ^ - - l ) 

= log(l + r»); 

since the return Vi is usually close to 0, a Taylor series expansion yields log(l + 
Ti) ~ ri (Taylor series expansions will be discussed more fully in Section 
11.3.1). That is, the differenced logged price series is roughly equal to the 
return series, and for this reason the differenced logged price is referred to as 
the log return in the finance and economics literature. 

The slowly-decaying autocorrelations in Figure 5.11(b) are a common 
symptom of the need to difference a series. We can also see this in the follow-
ing output of the regression of logged S&P large-cap price on lagged logged 
S&P large-cap price: 

Coefficients: 
Estimate Std.Error t value Pr(>|t|) 

(Intercept) 0.02699 0.017421 1.55 0.122 
lag.log.S.P.Large.cap 0.99619 0.002456 405.57 <2e-16 *** 

Signif. codes: 
0 '**•' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 0.01573 on 1256 degrees of freedom 
(1 observation deleted due to missingness) 

Multiple R-squared: 0.9924, Adjusted R-squared: 0.9924 
F-statistic: 1.645e+05 on 1 and 1256 DF, p-value: < 2.2e-16 

The slope coefficient is very close to 1, highlighting that differencing the re-
sponse variable (that is, using log returns) is an appropriate strategy. The 
residuals from this regression exhibit little autocorrelation [Figure 5.12(b)], 
but they now reflect two typical properties of stock returns: they are long-
tailed relative to the normal distribution [Figure 5.12(c)], and they exhibit 
heteroscedasticity, with periods of low variability randomly alternating with 
periods of high variability [Figure 5.12(a)], with particularly high variability 
in late 2008. Both of these violations of least squares are consistent with cer-
tain time series models, such as ARCH, GARCH, and stochastic volatility 
models, which are often used to model stock returns. Such models are be-
yond the scope of this book, but see Gregoriou (2009) for further discussion 
of their use for modeling the volatility of stock returns. 
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5 . 1 2 Residual plots for the logged large-cap index regression fit based on 
the lagged logged large-cap index, (a) Time series plot of standardized residuals, (b) ACF 
plot of residuals, (c) Normal plot of standardized residuals. 

These results suggest regressing large-cap returns on small-cap and mid-
cap returns, and output for that model is given below. Note that log returns 
(differenced logged prices) are used here, but results using actual returns are 
virtually identical. 

Coe f f i c i en t s : 

(Intercept) 
S. P .Small.cap.return 
S.P.Mid.cap.return 

Estimate Std.Error t value Pr(>|t|) 
-0.000142 0.000124 -1.14 0.25289 
-0.095647 0.029382 -3.26 0.00116 ** 
0.965094 0.031271 30.86 < 2e-16 *** 

Signif. codes: 
0 '***' 0.001 **' 0.01 0.05 0.1 
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Residual standard error: 0.004411 on 1255 degrees of freedom 
(1 observation deleted due to missingness) 

Multiple R-squared: 0.9215, Adjusted R-squared: 0.9214 
F-statistic: 7370 on 2 and 1255 DF, p-value: < 2.2e-16 

The regression is highly statistically significant, with 92% of the variabil-
ity in large-cap returns accounted for by mid-cap and small-cap returns. The 
relationship is strongest between large- and mid-cap returns, but the negative 
slope of small-cap returns suggests that including them in a portfolio with 
mid-cap funds could provide useful diversification. The residuals exhibit au-
tocorrelation, and the heteroscedasticity and long tails noted earlier (Figure 
5.13), implying that more complex time series models are needed for these 
data. On the other hand, the runs test has p = .31, not pointing to autocor-
relation. 

Note that measures of strength of fit like R2 and the overall F-statistic are 
not comparable between models using undifferenced and differenced response 
variables. The model on page 99 for logged large-cap index has R2 = 99.2% 
while that for large-cap return above has R2 = 92.2%, yet the latter model 
clearly reflects a stronger relationship, as seen in the much smaller value of a 
(these values are comparable, since the model for log return is a special case of 
a model for logged price that uses lagged logged price as a predictor and sets 
the slope to 1). 

5.4.5 GENERALIZED LEAST SQUARES (GLS): THE COCHRANE-
ORCUTT PROCEDURE 

All of the methods discussed in the previous section fundamentally change the 
regression model being fit, whether it is by adding predictors (representing 
time trends, seasonal effects, or the lagged response) or changing the response 
completely (through differencing). Sometimes the original relationship hy-
pothesized is the specific one of interest, and converting to a question about 
differences (for example) is not desired. The problem is then that OLS is an 
inappropriate criterion to use to fit the model, since the presence of autocor-
relation is a violation of assumptions. 

A solution to this problem is to use the "correct" criterion; that is, the 
one for which the autocorrelation present is assumed. This defines the gener-
alized least squares (GLS) criterion, of which OLS is a special case. Equiv-
alently, the idea is to transform the target and predictor variables so that the 
new variables satisfy a linear relationship based on the same parameters but 
satisfying the usual regression assumptions, and then use OLS to estimate 
those parameters. GLS estimation is not in general available in statistical soft-
ware, but it turns out that for one particular type of autocorrelation it can 
be easily fit using OLS software. This is the essence of the Cochrane-Orcutt 
procedure, introduced by Cochrane and Orcutt (1949). We describe the algo-
rithm for the single-predictor case, but it generalizes in a straightforward way 
to multiple predictors. 
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3 Residual plots for the large-cap log return regression fit based on 
small-cap log return and mid-cap log return, (a) Plot of standardized residuals versus 
fitted values, (b) Time series plot of standardized residuals, (c) Normal plot of stan-
dardized residuals, (d) ACF plot of residuals, (e) Scatter plot of standardized residuals 
versus small-cap log returns, (f) Scatter plot of standardized residuals versus mid-cap log 
returns. 

The Cochrane-Orcutt procedure provides a GLS fit assuming the errors 
follow an AR(1) process, as in (5.1), 

Vi = A) + PlXi + Si, Si = pEi-i + Zi. 

Now, consider the transformation to 

Vi =Vi- PVi-i. 
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Substituting into the regression model yields 

V* =y%- PVi-i 

= A) + PiXi +Si- p(p0 + ftzi-i + e»-i) 
= /30(1 - p) + /M^t - P^i-l) + £i - p£;_i 
= /?0(1 - p) + 0i(xi - pxi-i) + ^ 

where /?Q = /?o(l — p) and x* = â  — pxi-i9 and the substitution in the fourth 
displayed line is based on (5.1). Thus, the regression of y* on x\ provides 
estimates of (3$ and /?i that are appropriate (that is, they are the GLS esti-
mates), since the errors zi for the constructed regression are independent and 
identically normally distributed. We are not interested in /?Q , but can get an 
estimate of (3Q by dividing the estimate of (3Q by 1 — p. 

The Cochrane-Orcutt procedure is thus as follows: 

1. Determine an estimate of p. A good one is the entry for lag 1 in the ACF 
plot of the residuals from an OLS fit (call it p). 

2. Form the transformed variables y* ~y% — pyi-i and x\ — Xi — pXi-i (do 
this for each of the predicting variables in a multiple regression). 

3. Fit the regression of y* on the x*'s using OLS. The slope estimates are 
left alone; the constant term estimate is adjusted using fio = J3Q / (1 — p). 
A rough 95% prediction interval is y ± 2a, where a = or/y/1 — p2 and a 
is the standard error of the estimate from the Cochrane-Orcutt fit. 

It is important to remember that the Cochrane-Orcutt procedure is mere-
ly a computational trick that allows a generalized least squares analysis us-
ing ordinary least squares programs. There is no physical meaning to y* or 
x*; they are merely tools that are used to get the GLS fit. However, since 
the Cochrane-Orcutt regression mimics that GLS fit, the usual measures of 
fit (R2, F , t), residual plots, and regression diagnostics from the Cochrane-
Orcutt fit can be interpreted in the usual way, since they are the appropriate 
ones from a GLS fit. The Cochrane-Orcutt procedure is not appropriate if a 
lagged version of the response variable is being used as a predictor. 

A variation on the Cochrane-Orcutt procedure is the Prais-Winsten pro-
cedure (Prais and Winsten, 1954), which replaces x\ and y* (which are missing 
when using Cochrane-Orcutt) with x\ \J\ — p2 and y\ \J\ — p2, respectively. 
Typically the results of the two approaches are very similar. In addition, each 
procedure can be iterated, by successively substituting the new estimates of (3 
into the appropriate formulas, although usually if that is necessary a different 
approach should probably be tried. 
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5.4.6 EXAMPLE - TIME INTERVALS BETWEEN OLD FAITHFUL 
ERUPTIONS 

A geyser is a hot spring that occasionally becomes unstable and erupts hot 
water and steam into the air. The Old Faithful Geyser at Yellowstone Na-
tional Park in Wyoming is probably the most famous geyser in the world. 
Visitors to the park try to arrive at the geyser site to see it erupt without 
waiting too long; the name of the geyser comes from the fact that eruptions 
follow a relatively stable pattern. The National Park Service posts predictions 
of when the next eruption will occur at the Old Faithful Visitor Center and 
online. Thus, it is of interest to understand and predict the time interval until 
the next eruption. 

The mechanism by which a geyser works suggests how the time to the 
next eruption might be predicted. Geysers occur near active volcanic areas, 
with about half of the roughly 1000 geysers in the world being in Yellowstone 
National Park. The eruption of a geyser comes from surface water working 
its way downwards through volcanic rock until it hits magma (molten rock). 
The combination of pressure and high temperatures heats the water far above 
the usual boiling temperature. The eventual boiling of the water results in 
superheated water and steam spraying out through the plumbing system of 
constricted fractures and fissures in the rock. 

The observed duration of an eruption is subject to various random effects, 
and at Old Faithful can vary between roughly 90 seconds and five minutes. If 
an eruption turns out to be relatively short, less of the superheated water is 
sprayed out, meaning that it will tend to take less time for the remaining water 
(when mixed with new cold surface water) to be heated to boiling point. On 
the other hand, in a long eruption most of the heated water is lost, meaning 
that it will take longer until the next eruption. Thus, the duration of the 
previous eruption should be directly related to the time interval until the next 
eruption, with shorter time intervals following shorter eruptions and longer 
time intervals following longer eruptions. This suggests using regression to 
try to predict the time interval until the next eruption (and hence the time at 
which it will occur) from the duration of the previous eruption. 

Figure 5.14, a plot of time interval to the next eruption versus duration of 
the previous eruption (both in minutes), shows that this is a reasonable idea. 
It is based on a sample of 222 eruption duration and following inter-eruption 
times taken during August 1978 and August 1979, as given in Weisberg (1980). 
It should be noted that the eruption behavior of the geyser has changed since 
this time, in particular because of the magnitude 6.9 earthquake that occurred 
less than 200 miles away at Borah Peak, Idaho, on October 29, 1983, so this 
analysis does not necessarily apply today. It can be seen that as expected there 
is a positive relationship between duration time and time to the next eruption. 
The following regression output summarizes the relationship. 
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5 . 1 4 Scatter plot of the time interval to next eruption versus the duration 
of the previous eruption for eruptions of The Old Faithful Geyser. 

Coefficients: 
Estimate Stcl. Error t value Pr(>|t|) 

(Intercept) 33.9668 1.4279 23.79 <2e-16 *** 
Duration 10.3582 0.3822 27.10 <2e-16 *** 

Signif. codes: 
0 '***' 0.001 '**' 0.01 0.05 0.1 

Residual standard error: 6.159 on 220 degrees of freedom 
Multiple R-squared: 0.7695, Adjusted R-squared: 0.7685 
F-statistic: 734.6 on 1 and 220 DF, p-value: < 2.2e-16 

There is clearly a strong relationship between the duration of the previous 
eruption and the time until the next eruption, with each additional minute's 
duration of the previous eruption associated with an estimated expected in-
crease of 10.4 minutes in the time to the next eruption. Residual plots (Fig-
ure 5.15) suggest heteroscedasticity (with higher variability for longer fitted 
time intervals between eruptions and in the second half of the data), and also 
significant negative autocorrelation at the first lag (p — —.255, d = 2.55, 
p < .0001). Negative autocorrelation is less common than positive autocor-
relation, particularly for economic data, where cyclical behavior is consistent 
with positive autocorrelation. In this situation, however, the geyser erup-
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5 . 1 5 Residual plots for the Old Faithful time interval until the next erup-
tion OLS regression fit based on duration of previous eruption, (a) Plot of standardized 
residuals versus fitted values, (b) Time series plot of standardized residuals, (c) ACF plot 
of residuals, (d) Normal plot of standardized residuals. 

tion process makes negative autocorrelation reasonable. If an eruption takes 
longer to occur than expected (a positive error from the point of view of the 
regression model), the water will be heated to a higher than usual tempera-
ture; however long the eruption then is, the hotter water that remains will 
result in it taking less time than usual to heat all of the water in the geyser to 
the boiling point, meaning that it will take less time to the next eruption than 
expected (that is, a negative error is more likely to follow the positive error). 

With the relatively small estimated autocorrelations it is difficult to assess 
the appropriateness of an AR(1) assumption for the errors, but as the first 
three estimated autocorrelations decrease and change signs in the appropriate 
way (from negative to positive to negative) a Cochrane-Orcutt GLS fit is not 
unreasonable. The corresponding regression output is as follows: 
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C o e f f i c i e n t s : 
E s t i m a t e S t d . E r r o r t v a l u e P r ( > | t | ) 

( I n t e r c e p t ) 45 .542 1.918 2 3 . 7 5 <2e-16 *** 
D u r a t i o n s t a r 9 .711 0 .418 2 3 . 2 3 <2e-16 *** 

S i g n i f . c o d e s : 
0 ' * * * ' 0 .001 ' * * ' 0 .01 ' • ' 0 .05 ' . ' 0 . 1 ' ' 1 

Residual standard error: 5.933 on 219 degrees of freedom 
(1 observation deleted due to missingness) 

Multiple R-squared: 0.7113, Adjusted R-squared: 0.71 
F-statistic: 539.6 on 1 and 219 DF, p-value: < 2.2e-16 

The regression relationship is still strong, with estimated regression 

Interval = 36.29 + 9.711 x Duration 

(after adjusting the intercept), so the GLS estimated intercept is slightly higher 
than the OLS one while the estimated slope is slightly lower. Residual plots 
(Figure 5.16) still indicate heteroscedasticity, but the autocorrelation appears 
to have been addressed (d — 2.05, and the runs test has p = .21). Regression 
diagnostics do not indicate any problems (the largest value of ha is .021 < 
(2.5)(1 + 1)/221 - .023, and the largest Cook's D is .02). The adjusted esti-
mate of the standard deviation of the errors is a — 5.933/^1 — (—.256)2 = 
6.138, so a rough 95% prediction interval would be being able to predict the 
time to the next eruption to within ±(2) (6.14) = ±12.3 minutes. A rough 
90% interval would correspond to ±(1.65)(6.14) = ±10.1 minutes, and the 
National Park Service reports on its Old Faithful Geyser prediction web site 
(h t tp : //www. nps . gov/yel l ) that their prediction model "has proven to be 
accurate, plus or minus 10 minutes, 90% of the time." 

Note that since these data have gaps corresponding to separate days, sev-
eral cases should actually be considered missing in the Cochrane-Orcutt fit, 
since the lagged duration and interval are not known for those cases. If this is 
done the results do not change appreciably. 

S .5 Summary 

In this chapter we have examined the effects of autocorrelation and various 
ways to identify it. We have also looked at simple ways of dealing with it 
within the context of least squares estimation, including accounting for time 
trends and seasonal effects, lagging and differencing series to account for the 
effects of earlier time periods and to address nonstationarity, and applying the 
Cochrane-Orcutt procedure to determine a GLS fit that is optimal for AR(1) 
errors. 

As we have seen from the analyses in this chapter (where there is evi-
dence for further autocorrelation effects), we have only scratched the surface 
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5 . 1 6 Residual plots for the Old Faithful time interval until the next erup-
tion Cochrane-Orcutt GLS regression fit based on the duration of previous eruption, (a) 
Plot of standardized residuals versus fitted values, (b) Time series plot of standardized 
residuals, (c) ACF plot of residuals, (d) Normal plot of standardized residuals. 

of time series modeling. Deseasonalizing can require more complicated ap-
proaches than simple constant shift models, and time series models more 
complicated than AR(1) (such as autoregressive/moving average [ARMA], 
ARCH, GARCH, and stochastic volatility models) can be appropriate. De-
spite this, the simple approaches discussed here will often account for a good 
deal of the autocorrelation present in regression errors, and can also serve as 
preliminary steps of an analysis that remove large-scale effects to allow subtler 
aspects of the data to emerge. 
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KEY TERMS 
AR(1) process: A time series process, typically assumed for the errors when 
used in regression modeling, that is defined by £i = p£i-i + Zi, where z\ is a 
Gaussian (normal) random variable with mean 0, and |p| < 1. 
Autocorrelation: The correlation that exists between the observations in 
time series data. The correlation between Xi and called the rth order 
autocorrelation. 
Autocorrelation function (ACF): A plot of the estimated autocorrelation 
against the order (lag) of the autocorrelation. 
Cochrane-Orcutt procedure: An algorithmic procedure used to construct 
the generalized least squares fit for a linear model to regression data assumed 
to have errors that follow an AR(1) process using ordinary least squares soft-
ware. This is accomplished by working with transformed data. 
Differenced variable: A variable generated by taking differences of adjacent 
observations; that is, for example, y2 - 2/1,2/3 - 2/2, • • •, Vn - Vn-i-
Durbin-Watson statistic: A statistic for testing the presence of AR(1) au-
tocorrelation in the errors from a regression model fitting. Values close to 2 
show absence of significant autocorrelation. 
Lagged variable: A constructed variable whose ith. value is an earlier value 
of an original series, usually the (i — l)st value. Using the lagged version of 
a response variable as a predictor in a regression can often help account for 
autocorrelation in the errors. 
Log return: The first difference of the natural log of a stock price series. It 
is approximately equal to the proportional change in the price (the return). 
Nonstationary time series: A time series for which the joint distribution 
of {xi, Xi-i,..., Xi-m} is dependent on i for some value of m. A stationary 
process is one for which the joint distribution does not depend on i, which 
implies that the mean and variance of the series does not change over time. 
Runs test: A nonparametric test used to assess whether a sequence of obser-
vations is random. The test is based on the number of runs of consecutive 
observations above or below a specified value, and significance is determined 
based on a permutation distribution for small samples and a normal approxi-
mation for large samples. In the regression context the test is typically based 
on runs of positive and negative residuals. 
Seasonal effect: A recurring pattern in a time series linked to effects driven 
by the underlying annual cycle of the series. This can be reflected in autocor-
relations at lags that are multiples of 4 in quarterly data, multiples of 12 in 
monthly data, multiples of 52 in weekly data, and so on. 
Time trend: An general increasing or decreasing pattern in a time series, 
often reflecting smooth changes from population growth or inflation. 



PART T H R E E 

Categorical 
Predictors 

Handbook of Regression Analysis. By Samprit Chatterjee and Jeffrey S. Simonoff
Copyright © 2013 John Wiley & Sons, Inc. 



Analysis of Variance 

6.1 Introduction 113 

6.2 Concepts and Background Material 114 
6.2.1 One-WayANOVA 114 
6.2.2 Two-WayANOVA 115 

6.3 Methodology /17 
6.3.1 Codings for Categorical Predictors /17 
6.3.2 Multiple Comparisons 122 
6.3.3 Levene's Test and Weighted Least Squares 124 
6.3.4 Membership in Multiple Groups 127 

6.4 Example — DVD Sales of Movies 129 

6.5 Higher-Way ANOVA 134 

6.6 Summary 136 

6. 1 Introduction 

In the regression models examined so far, both the target and predicting vari-
ables have been continuous, or at least effectively continuous — with one 
exception. The analysis of the pooled / constant shift / full model hierarchy 
in Section 2.4 recognized that the existence of two well-defined subgroups in 
the data could have predictive power for the target variable. That is, a categor-
ical predicting variable taking on the values 0 and 1 could be used to address 
the effect of being in one or the other subgroup. 

A natural question is to wonder if this can be generalized to more than 
two groups. For example, does knowing the educational level of a person 
(not a high school graduate, high school graduate, college graduate, or post-
graduate degree) have predictive power for their annual salary? Is the return 
on a stock related to the industry group of the company? Do video games 
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of different types have different expected sales? This is a regression question, 
but a special kind of regression question; in this context, saying that group 
membership has predictive power for the target is the same as saying that the 
average value of the target is different for different groups. That is, this is a 
question of the comparison of means. 

In this and the following chapter we examine how regression models can 
be extended to allow for categorical predictors that identify multiple groups 
(or multiple levels of a variable). In this chapter we focus on models with 
only categorical predictors, which are termed analysis of variance (ANOVA) 
models. We start with one categorical predictor, one-way ANOVA, and then 
generalize this to two-way ANOVA. Discussion of the methodology used to 
fit such models, including the two different ways of coding them as regression 
models, follows. The important multiple comparisons problem is investi-
gated, in which the goal is to compare the different groups to each other to de-
termine which are actually different in terms of expected response. Since non-
constant variance often occurs for ANOVA data, with different groups having 
different variability of the errors, we then discuss weighted least squares, the 
generalization of ordinary least squares designed for this situation. 

6 . 2 Concepts and Background Material 

6.2.1 ONE-WAY ANOVA 

Consider the simplest situation of one categorical predicting variable that 
takes on K values. The one-way ANOVA model is 

yij = \i + OLi + €ij, i = 1 , . . . , K, j = 1 , . . . , nu (6.i) 

where y^ is the value of y for the j th member of the ith group, [i is an overall 
level (roughly corresponding to the overall mean), o^ is the effect of being in 
the ith group, e^ is the error term, and ni is the number of observations that 
fall in the ith group. 

The a terms represent the difference in E{y) that comes from being in 
any particular group relative to an overall level, since E(y) = /i + cxi = Hi for 
all observations in group i. It is natural to say that o^ = 0 for all i if there is no 
difference between groups, but this requires a little more in terms of technical 
detail. Say E(y) — 50 for all groups, corresponding to no effect related to 
the categorical predictor. While this is obviously satisfied by // = 50 and 
OL\ = • • • = OLK — 0, it is also satisfied by /i = 40 and OL\ = • • • = OLK = 10; 
indeed, there are an infinite number of possibilities that are consistent with 
this condition. For this reason, an additional constraint must be imposed on 
(6.i), that 

K 

i=l 
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With this additional constraint, it is guaranteed that a situation with no group 
effect will be modeled with a = 0. 

It is clear that the one-way ANOVA model is linear in its parameters, 
and is thus just a linear regression model based on specially-constructed pre-
dictors. This is discussed in Section 6.3.1. 

6.2.2 TWO-WAY ANOVA 

Consider now a situation with two categorical predictors, one (arbitrarily 
termed rows) with I levels and the other (arbitrarily termed columns) with 
J levels. This usage is based on the possibility of representing the I x J 
group means in the form of a table, and we will also sometimes refer to the 
combination of row level i and column level j as the (i, j) th cell. A simple 
generalization of model (6.1) is to add a set of parameters that correspond to 
the group effects of the second predictor. The model is then 

Vijk = M + (Xi + fa + eijk, i = 1 , . . . , i", j = 1 , . . . , J, k = 1 , . . . , riij, (6.2) 

where yiju is the value of y for the kth member of the (2, j)th group, /i is an 
overall level, oti is the row effect for the 2th level of the row variable, j3j is 
the column effect for the j th level of the column variable, e^k is the error 
term, and n^ is the number of observations that fall in the (i, j) th group. 
Just as was true for model (6.1), in order to make this model identifiable the 
additional constraints 

/ J 

1=1 j=i 

are required. The main effects a and (3 have a similar interpretation to the 
effect a in the one-way ANOVA model (6.1), except in an analogous way to 
slope coefficients in a multiple regression versus a simple regression. In (6.2) 
each parameter corresponds to an effect holding the level of the other variable 
fixed. Thus, the model implies that (for example) the difference in expected 
response between an observation with row level i and one with row level %' 
equals ai — a^ no matter which column level the observations come from, 
as long as they come from the same column level. Thus, the notion of a 
(single) overall row effect and (single) overall column effect is meaningful in 
this context. 

It is easy to imagine, however, a situation where the effect on y of being 
in one row category versus another row category differs depending on the 
column category (or equivalently, the effect of being in one column category 
versus another column category differs depending on the row category). This 
is an interaction effect in the same way that the existence of different slopes 
for a predictor depending on group membership discussed in Section 2.4 was 
an interaction effect. This corresponds to an extension of model (6.2) to 

Vijk = V> + OLi + Pj + (aP)ij+£ijk, i = 1 , . . . , / , j = 1 , . . . , J, k = l,...,riij, 
(6.3) 
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GURE 6 .1 Interaction plots based on expected responses in situations without 
(top plot) and with (bottom plot) an interaction effect. 

where the (a/3) terms correspond to the existence of different row (column) 
effects for different columns (rows). The constraints 

i j 

£>/?)* =£(*/?)* =0 

make the model identifiable, and clearly 

(a/3)ii = --- = (a/?)jj = 0 

corresponds to a lack of the presence of an interaction effect. 
The {ocf3) parameters themselves do not necessarily lend themselves to 

easy description of how the simple additivity of (6.2) is violated, but such a 
description is easily available through the use of an interaction plot. In such 
a plot the observed group means for each (i,j) combination are plotted in the 
form of separate lines connecting the means for each row, or alternatively sep-
arate lines connecting the means for each column. If model (6.2) holds (that 
is, there is no interaction effect), the differences between expected response 
values for each row (column) are the same for each column (row), implying 
that the lines in the plot corresponding to each row (column) will be parallel. 

This is illustrated in the top plot of Figure 6.1. The relative position of 
the lines for the different columns shows that the column effect (which is the 
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same for all rows) corresponds to increasing expected response going from 
levels 1 to 2 to 3, and the shape of those lines shows that the row effect (which 
is the same for all columns) corresponds to lowest expected response for level 
1 and highest expect response for level 2. 

This can be contrasted with the bottom plot in Figure 6.1, which is con-
sistent with the existence of an interaction effect. In this case there is no 
single "row effect" or "column effect," since the row effect is different depend-
ing on the column level, and the column effect is different depending on the 
row level, resulting in lines that are not parallel in the plot. Specifically, in 
this case, the row effect for column level 1 implies an ordering in expected 
response from low to high of row levels {1,3, 2}, for column level 2 an order-
ing of row levels {3,2,1}, and for column level 3 an ordering of row levels 
{2,1,3}. 

Of course, in an interaction plot based on sample means' one would ex-
pect to see some evidence of an apparent interaction even if the true model 
was (6.2) because of random fluctuation, so the interaction plot should not 
be viewed as a way to choose between models (6.2) and (6.3), but rather as a 
way to describe the interaction effect if it is decided that one exists. Choosing 
between the models would be done using the usual tools of regression model 
selection, which requires the ability to represent these models as regression 
models. This is discussed in the next section. 

6 . 3 Methodology 

6.3.1 CODINGS FOR CATEGORICAL PREDICTORS 

Given that a categorical predictor with K levels is just a generalization from 
one with two levels, it seems natural that it can be incorporated into a regres-
sion model in a corresponding way using indicator variables. This is in fact 
the case. Just as was true when there were two levels of a categorical variable 
(such as Male/Female) and only one indicator variable was used to account for 
that effect, in the situation with K levels of a categorical variable, K — \ indi-
cator variables are used to account for that effect. Any one of the K possible 
indicator variables can be omitted, but the choice affects the interpretation of 
the slope coefficients. 

Consider Table 6.1. The top table summarizes the implications of fitting 
a one-way ANOVA model (6.1) using indicator variables where the indicator 
for the if th level is omitted; that is, 

Vij = Po + Pi^iij H .+ PK-ITK-IJJ + £ij-

As is apparent from the table, in this situation the intercept Po equals the 
expected response when an observation comes from level K, the level for 
which the indicator was omitted. A slope coefficient pm (say) then represents 
the difference in expected response between level m and level K for m — 
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TABLE 6 .1 Indicator variable codings for a one-way ANOVA fit omitting the variable 
for level K (top table) and level 1 (bottom table), respectively. 

Level 

Level 1 
Level 2 

Level K - 2 
Level K - 1 
Level K 

Ii 
1 
0 

0 
0 
0 

T2 

0 
1 

0 
0 
0 

1K-2 

0 
0 

1 
0 
0 

%K-1 

0 
0 

0 
1 
0 

Expected response 

A>+ /?i 
0 0 + ^ 2 

00 + 0X-2 
0O+0K-1 

00 

Level 

Level 1 
Level 2 
Level 3 

Level K - 1 
Level K 

x2 
0 
1 
0 

0 
0 

Is 
0 
0 
1 

0 
0 

IK-I 

0 
0 
0 

1 
0 

1K 

0 
0 
0 

0 
1 

Expected response 

/?o 
/?o + /?2 
A) + A» 

A) + ftc-i 
PO + PK 

1 , . . . , if — 1. That is, level K is a reference group, and the slope coefficients 
represent expected deviations from that reference group. If the omitted level 
was instead level 1, the model is 

Vij = 00 + P2%2ij H r- Px^Kij + £ij-

As is summarized in the bottom table of Table 6. i, the reference group now 
becomes level 1, and all of the coefficients change accordingly (even though 
the expected responses do not change). The statistical significance of the effect 
of the categorical predictor (that is, the test of a = 0) corresponds to a test of 
all of the slopes of the indicator variables equaling 0, and is thus tested using 
the usual overall F-test. 

This indicator variable formulation is a very reasonable one when there 
is a natural reference group in the context of the problem (for example, in 
a clinical trial situation where one level corresponds to the control group 
and the others are experimental treatment groups), but it is not an obvious 
choice when there is no natural reference group. Indeed, if there is no natu-
ral reference group examining slope coefficients based on indicator variables 
artificially forces one level into the role of "reference" group in a way that 
could be completely inappropriate. Further, an indicator variable-based fit 
does not correspond to the ANOVA model (6.i). To achieve that fit requires 
a different type of variable, called an effect coding. Effect codings look very 
much like indicator variables, except for the values corresponding to the level 
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TABLE 6 . 2 Effect codings for a one-way ANOVA fit omitting the variable for level K 
(top table) and level 1 (bottom table), respectively. 

Level 

Level 1 
Level 2 

Level K-2 

Level K - 1 
Level K 

E^ 

1 
0 

0 
0 

- 1 

Eo 

0 
1 

0 
0 

- 1 

ER-2 

0 
0 

1 
0 

- 1 

EK-I 

0 
0 

0 
1 

- 1 

Expected response 

A>+ /?i 
00 + ^2 

00 + pK-2 

00 + PK-1 

0 o - 0 i - . . . - 0 K - i 
( = A ) + 0 K ) 

Level 

Level 1 

Level 2 
Level 3 

Level K - 1 
Level K 

E2 

- 1 

1 
0 

0 
0 

Es 

- 1 

0 
1 

0 
0 

EK-I 

- 1 

0 
0 

1 
0 

EK 

- 1 

0 
0 

0 
1 

Expected response 

0 0 - 0 2 PK 

( - 0 o + 0i) 
00 + 02 
0 0 + 0 3 

0O+0K-1 
PO+PK 

for the variable that is omitted. While for indicator variables observations 
from the omitted level have the value 0 for every variable, for effect codings 
observations from the omitted level have the value —1 for every variable. It 
is simple to construct these variables from a set of indicator variables, as each 
effect coding variable just equals the indicator variable for the omitted level 
subtracted from the corresponding indicator variable. 

This is laid out in Table 6.2. In the top plot the Kth level has its variable 
omitted, so any observations from that level take on the value —1 for every 
other variable (that is, the rath effect coding satisfies Em = Xm —TK), and the 
regression being fit is based on 

Vij — 0o + PiEuj H 1- PK-IEK-I,IJ + £ij-

This results in an expected response for level K of 0o — 0i — • • • — 0 K - 1 , 
rather than 0O (as was the case for indicator variables). The average of the 
expected responses over all levels (the average of the values in the last column) 
is clearly /30, which shows that in this formulation 0o is an overall level of 
the response, not the expected response for a reference group. That is, it 
is \i from the ANOVA model (6.1). A slope coefficient 0 m represents the 
difference between the expected response for level ra and this overall level /x; 
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that is, /3m = am for m = 1 , . . . , K — 1 in (6.i). Finally, since the a terms 
sum to 0, the expected response for level K is implicitly /i + ax, as implied 
by (6.i). 

The key point here is that unlike when indicator variables are used, the 
interpretation of all of the coefficients using effect codings is the same no 
matter which level has its variable omitted. The bottom table in Table 6.2 
demonstrates this, as all of the expected responses have the same form as in 
the top table, even though in this case it was the variable for the Kth level that 
was omitted. For this reason it is perfectly appropriate to report all K -f 1 of 
the estimated coefficients (K slopes along with the intercept) to summarize 
the model, even though there are only K parameters being estimated; the 
constraint that makes the model identifiable Q ^ ai = 0) is implicitly satisfied 
by the estimated coefficients. The existence of an effect is again tested using 
the overall F-test, which will be the same no matter which variable is omitted 
(and the same as that from using indicator variables). 

The two-way ANOVA model without an interaction (6.2) is fit based 
on a regression using the I — 1 indicators or effect codings for rows and the 
J — 1 indicators or effect codings for columns. Statistical significance of the 
row (column) effect is based on the partial F-test comparing the fit using 
all of the variables to the one omitting the variables corresponding to rows 
(columns). In this context these tests are sometimes referred to as being based 
on "Type III" sums of squares, and are the same type of partial F-tests (and 
t-tests) discussed earlier. Fitted values are directly available from (6.2) and the 
estimated coefficients from the regression fit using effect codings, since 

E(Vij) = p, + &i + /3j 

(note that the (3 terms above refer to the column parameters in the two-way 
ANOVA model (6.2), not the parameters from the one-way ANOVA regres-
sion formulation summarized in Tables 6.1 and 6.2). The underlying compo-
nents of these fitted values, ft -f &i and ft + $3;, are called the least squares 
means for rows and columns, respectively, as they estimate the expected re-
sponse for each row (column) taking the column (row) effect into account. 

The two-way ANOVA model with an interaction (6.3) also can be fit as 
a regression, but this requires the construction of indicator variables or effect 
codings for the interaction term. This is accomplished by calculating each of 
the (J — 1)(J — 1) pairwise products of a row variable and a column variable 
(that is, XRi x ICI,IRI X 1C2> etc., or Em x Ecu Em x EC2, etc., where the 
R (C) subscript refers to those being variables associated with row (column) 
levels. The statistical significance of the interaction effect is tested using the 
partial F-test comparing model (6.3) to model (6.2). Under model (6.3) the 
fitted value for any observation from the (i, j) th cell is the mean response for 
all observations from the (i, j) th cell, Yij.. 

An interesting question concerns the order in which ANOVA models 
should be examined; that is, should an analyst "build up" from a model with 
only main effects to one including an interaction, or should one "simplify 
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down" from a model with an interaction to one with only main effects. There 
are reasonable arguments in favor of either approach. A model that includes 
only main effects is analogous to a regression model on numerical predictors 
(where variable effects are constant given the values of the other predictors), 
and building up from that is consistent with the pooled model / constant 
shift model / full model hierarchy described in Section 2.4 (which will be 
generalized in the next chapter to allow for categorical variables with more 
than two levels). Adding an interaction effect then involves exploring whether 
it is possible to improve upon the simpler main effects model, and this can be 
tested using the corresponding partial F-test. 

On the other hand, in many situations main effects are fairly obvious 
and therefore relatively uninteresting, and it is interaction effects that are the 
focus. In that situation discussing main effects is at best uninteresting and at 
worst potentially misleading, since in the presence of an interaction "the" row 
effect or "the" column effect is no longer meaningful (an interaction means 
that there are different row effects for different columns, and different column 
effects for different rows). So, for example, if the partial F-test for columns 
based a model using only main effects is insignificant, this could potentially 
encourage the analyst to think that the column variable has no relationship 
with the target variable and should be completely omitted from the analy-
sis, when in fact it turns out that the row-column interaction effect is very 
strongly predictive. This possibility suggests starting with the model that in-
cludes the interaction effect, and using the partial F-test for it to decide if a 
simpler model with only main effects is adequate. Then, if that is the case, 
the main effects model could be fit, and row and column effect partial F-tests 
could be used to decide if the model can be simplified further. 

What is certainly true is that when fitting a model that includes an in-
teraction effect, the partial F-tests for the main effects do not correspond to 
testing meaningful hypotheses, and should not be examined. This does not 
mean that a general pattern of means for rows or columns must be ignored; 
for example, based on the bottom interaction plot of Figure 6.1 it would be 
reasonable for a data analyst to report that observations from column level 
3 have generally the highest expected response, those from column level 1 
have moderate expected response, and those from column level 2 have lowest 
expected response. What should not be done in a model that includes the 
interaction, however, is to appeal to the partial F-test for the column main 
effect to justify this statement. Further, a model that includes an interaction 
should include the corresponding main effects, since otherwise the simple 
interpretability of the interaction is lost (in fact, many statistical packages 
will refuse to fit a two-way ANOVA model that includes an interaction effect 
without including the corresponding main effects). 

The situation where the number of observations n^ is the same for all 
cells is termed a balanced design, and has several advantages over unbalanced 
designs. In a balanced design, the effects are orthogonal to each other; that 
is there is a perfect lack of collinearity between the codings that define one 
effect with those that define another effect. This implies that the variability 
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accounted for by any effect (as measured by the change in residual sum of 
squares when including or excluding the effect) is the same, no matter which 
other effects are in the model. From a practical point of view, this means 
that the statistical significance of the row effect (for example) is (virtually) 
unchanged if the column effect is included or omitted from the model. If the 
design is very unbalanced, on the other hand, it can happen that a row effect 
(for example) is highly statistically significant when the model including an 
insignificant column effect is fit, but becomes insignificant if the apparently 
unneeded column effect is omitted from the model, which is counterintuitive 
and undesirable (but not surprising in the presence of collinearity). 

Further, if the model is balanced, all observations have equal leverage. By 
contrast, in very unbalanced designs observations in cells with relatively few 
observations can have high leverage, thus potentially having a strong effect on 
the fitted ANOVA. In the most extreme situation, if a cell has only one ob-
servation (riij — 1) and the model includes an interaction effect, the leverage 
value for that observation will equal 1 (since one of the constructed effect cod-
ings will effectively be an indicator for that one observation). Omitting the 
observation is not a very desirable choice, since then it is impossible to fully 
estimate the interaction effect (it will not be possible to estimate the expected 
response for that combination of row and column levels). Indeed, some sta-
tistical packages will not fit ANOVA models with empty cells for this reason, 
and in that case it must be done by the analyst directly using regression on 
indicator variables or effect codings. 

In the particular balanced design where n^ = 1 for all cells the interac-
tion effect cannot be fit. The reason for this is that in the model that includes 
the interaction effect there are IJ parameters in the model and IJ observa-
tions in the data, yielding identically zero residuals for all observations. 

6.3,2 MULTIPLE COMPARISONS 

Consider again the one-way ANOVA model (6.i). Given that it is believed 
that the categorical variable is meaningful as a predictor, it is natural to won-
der which pairs of levels are different from each other. That is, if i and i' are 
two different levels of the variable, for which levels is c^ — a^ different from 
zero? This would seem to be testable in a fairly straightforward way using the 
partial F-test for the hypothesis o^ = a^, which is equivalent to the t-test for 
the slope of one level if the ANOVA is fit using indicator variables making 
the other level the reference level. The problem is that there is a multiple 
comparisons problem that comes from the many pairwise t-tests that are be-
ing calculated. Say there are K levels to the grouping variable. This implies 
that there are C = (*£) — K{K — l) /2 different pairwise comparisons being 
made; for example, if if — 10 there are C — 45 comparisons being made. If 
each t-test was based on a .05 level of significance, and there were no differ-
ences between the groups, (.05)(45) w 2 of the tests would be statistically 
significant just by random chance. 
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Multiple comparisons procedures correct for this by controlling the ex-
perimentwise error rate. An experimentwise error rate of .05 says that in 
repeated sampling from a population where there is no difference between 
groups, only 5% of the time would any pair of groups be considered signifi-
cantly different from each other. The broad area of multiple comparisons is 
beyond the scope of this book (for detailed discussion see, for example, Bretz 
et al., 2010), but some relatively simple methods are available for ANOVA 
models. 

The most commonly-used approaches are the Bonferroni correction and 
Tukey Honestly Significant Difference (HSD) methods. The Bonferroni 
method argues that if the experimentwise error rate is desired to be a, each 
pair wise test should be done at an a/C level, since that way the expected 
number of false positives is (a/C)(C) = a. So, for example, for K = 10, 
each pairwise t-test would be conducted at a significance level of .05/45 = 
.0011. Equivalently, the Bonferroni-adjusted p-value for each t-test multiplies 
the usual p-value based on the ^-distribution by C (and is 1 if that value is 
greater than 1). The Bonferroni correction is very general and very easy to 
apply, and usually does a good job of controlling the experimentwise error 
rate. Its only drawback is that it can sometimes be too conservative (that is, 
it does not reject the null as often as it should). 

The Tukey method is a multiple comparisons method specifically derived 
for ANOVA multiple comparisons problems. This method determines sig-
nificance and p-values of the pairwise ^-statistics using the studentized range 
distribution, which is the exact correct distribution accounting for the multi-
ple comparisons when the design is balanced. The Tukey test is less general 
than the Bonferroni correction, but is usually less conservative (particularly 
if the design is reasonably balanced). 

Multiple comparisons methods for deciding which rows or columns are 
significantly different from each other generalize in a direct way to the two-
way ANOVA model as long as the model does not include an interaction 
effect. Testing is not applicable in the presence of a fitted interaction, since 
the OL and (3 terms are not interpretable in the presence of the OL/3 terms in 
(6.3). It is possible to compare underlying cells to each other in a model with 
an interaction effect [that is, the mean response for cell (z, j) compared to that 
for cell (i\ j')~] using multiple comparisons methods, but this seems less useful 
from a practical point of view than examination of the interaction through 
an interaction plot. 

An alternative approach to the multiple comparisons problem that has 
been investigated in the last 15 years is based on controlling the false dis-
covery rate, which is the expected proportion of falsely rejected hypotheses 
among all rejected hypotheses. If all of the null hypotheses are true (that 
is, in the ANOVA context, all of the group expected responses are equal to 
each other) this is the same as the experimentwise rate controlled by the Bon-
ferroni and Tukey methods, but when some of the null hypotheses are not 
true it is easier to reject the null, therefore making the test more sensitive 
and less conservative. This method is particularly attractive in the situation 
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where a great many comparisons need to be made (such as in bioinformatics), 
since in that situation methods that control the experimentwise error rate can 
miss important differences that are actually present. Implementation of this 
method is not as straightforward as is implementation of the Bonferroni and 
Tukey methods, but it is becoming more generally available in software. See 
Strimmer (2008) for further discussion. 

6.3.3 LEVENE'S TEST AND WEIGHTED LEAST SQUARES 

The ANOVA situation (where there are by definition well-defined subgroups 
in the data) is one where heteroscedasticity (nonconstant variance) is com-
mon. Just as the responses for observations from different subgroups might 
have different means, the errors for observations from different subgroups 
might have different variances. This is a clear violation of the assumptions of 
ordinary least squares, with several negative impacts on OLS analyses. 

1. The OLS estimates of the regression coefficients are inefficient. That 
is, on average, the OLS estimates are not as close to the true regression 
coefficients as is possible. 

2. Inferential tests and intervals do not have the correct properties; confi-
dence intervals do not have the correct coverage, and hypothesis tests do 
not have the correct significance levels. 

3. Perhaps most importantly, predictions and prediction intervals are not 
correct. OLS assumes that the variance of all errors is the same (cr2), 
which is reflected, for example, in the rough 95% prediction interval of 
iji ± 2a\ Clearly, if variances are different, so that V{ei) = erf, the ap-
propriate interval is one of the form yi ± 2a i. So, for example, if the un-
derlying variability of an observation (or a certain type of observation) 
is larger than that for another (type of) observation, the corresponding 
prediction intervals should be wider to reflect that. OLS-based intervals 
obviously do not have that property. 

For these reasons it is important to try to identify potential nonconstant 
variance. As was noted in Section 1.3.5, residual plots are useful for this pur-
pose, as varying heights of the point cloud can reflect different underlying 
variances (this also applies to side-by-side boxplots of residuals for categorical 
predictors, as can be seen in Figure 2.7 on page 46). More formal tests for 
nonconstant variance are also possible. A particularly simple one is Levene's 
test, in which the absolute value of the residuals from a regression or ANOVA 
fit is used as the response variable in a regression or ANOVA. Since observa-
tions with larger values of ai would be expected to have more extreme (and 
hence larger absolute) errors, evidence of a relationship between the absolute 
residuals and any predictors would be evidence of a relationship between the 
variance of the errors and those predictors. The Levene's test is the overall 
F-test based on the absolute residuals. 
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If nonconstant variance is actually a problem, there is a relatively straight-
forward cure: weighted least squares (WLS). The idea behind WLS is the 
same as that behind the (Cochrane-Orcutt) GLS fit for a model exhibiting 
autocorrelated errors discussed in Section 5.4.5: transform the target and pre-
dicting variables to give a model with errors that satisfy the standard assump-
tions. Indeed, WLS is a special case of GLS. To keep the presentation simple, 
consider a simple regression model, although the discussion carries over di-
rectly to multiple regression and ANOVA situations. The regression model 
is 

but here with V{ei) = a2. We allow for nonconstant variance by setting 
a2 — c2a2. Dividing both sides of this equation by Q gives 

This can be rewritten 

y* = PQZU + f3iz2i + 5i, 

where y*, zu> Z21, and 5i are the obvious substitutions from the previous 
equation and V(5i) — a2 for all i. Thus, OLS estimation (without an inter-
cept term) of y* on z\ and Z2 gives fully efficient estimates of (3$ and (3\. From 
a conceptual point of view, the principle is that observations with errors with 
larger variances (larger cf) have less information in them about the regression 
relationship, and therefore should be weighted less when estimating the re-
gression parameters and conducting inference. This is achieved by estimating 
the regression parameters as the minimizer of the weighted residual sum of 
squares, 

n 

i=l 

where Wi — l/c2 is the value of the weighting variable for the ith observation. 
Ordinary least squares is a special case of WLS with Wi = 1 for all i. In matrix 
notation, the resultant WLS estimates satisfy 

P^tX'WX^X'Wy, (6.5) 

where W is the diagonal matrix with zth diagonal element W{. The weighted 
residual mean square based on (6.4) provides a (which will be reported in 
any WLS output), and c^ = a/y/wl. The hat matrix has the form H = 
X(X'WX)~1X'W, and all of the diagnostics from Chapter 3 carry over to 
WLS using this H (with ith diagonal element ha), and &i for the ith observa-
tion rather than a. In particular, standardized residuals and Cook's distances 
are defined this way based on (3.2) and (3.4), respectively. 

The obvious difficulty is that a2 (or equivalently c2) is unknown, and 
must be estimated. This is however easy to do in the ANOVA situation. 
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Consider a situation where there is a predictor defining K subgroups in the 
data. If the errors for all of the observations that come from group m (say) 
have the same variance, a?,, then the weight for each of those observations 
would be (any constant multiple of) l/a?y A choice that is then easily 
available is to use the inverse of the sample variance of the (standardized) 
residuals for the weight for members of group m. The situation where the 
variances are related to numerical predictors is more complicated, and will 
be discussed in Section 10.7. Technically, the fact that the weights are not 
fixed, but are rather estimated from the data, will have an effect on WLS-
based inference, this effect is generally minor as long as the sample size is not 
very small. 

Although generally speaking the appropriate choice of wi is unknown 
and must be estimated from the data, sometimes that is not the case. Say that 
the response variable at the level of an individual follows the usual regression 
model, 

Vi = A) + Pixn + h Ppxpi + Si, 

with Si ~ A^O,^2) (this could of course be an ANOVA model). Imagine, 
however, that the ith observed response is actually an average Yi for a sample 
of size rii with the observed predictor values {xu,... ,xPi}. The observed 
data thus actually satisfy 

Yi = A) + Pixn H h PpXpi + eu 

where 
2 

V(ii) = V(Yi\{xllJ-.-,xpi}) = —. 
Til 

An example of this kind of situation could be as follows. Say an analyst 
was interested in modeling the relationship between student test scores and 
(among other things) income. While it might be possible to obtain test scores 
at the level of individual students, it would be impossible to get incomes at 
that level because of privacy issues. On the other hand, average incomes at the 
level of census tract or school district might be available, and could be used to 
predict average test scores at that same level. This is not the same as predicting 
an individual's test scores from their particular income (since school districts 
are the units of study, not students), but could be useful from a policy point of 
view in terms of distributing resources over the various schools in the county, 
for example. 

Clearly this is just a standard heteroscedasticity model, and WLS can be 
used to fit it. In this situation the weights do not need to be estimated at 
all; since V(ii) = a2jn^ the weight for the ith observation is just n^, with 
a2 estimated from the WLS residual mean square. That is, quite naturally, 
observations based on larger samples are weighted more heavily in estimat-
ing the regression coefficients. A similar situation is the presidential election 
data discussed in Section 2.4.1. For those data the response variable was the 
change in the percentage of votes cast for George W. Bush from 2000 to 2004. 
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These percentages are the empirical proportions of total voters who voted for 
Bush (multiplied by 100), and a binomial approximation implies that their 
variances are proportional to the total number of voters in the county. Figure 
2.7 suggests nonconstant variance related to whether a county used electronic 
voting or not, but this is because larger counties were more likely to use e-
voting, so the county voter turnout effect is confused with an e-voting effect. 

6.3 .4 MEMBERSHIP IN MULTIPLE GROUPS 

Thus far we have focused on situations where each observation falls into one 
and only one category of a categorical variable. It is possible, however, that 
an individual could be a member of several of the groups defined by such a 
variable. For example, in a survey of college students, a respondent might 
want to identify themselves as being a member of several races or ethnicities, 
or as majoring in more than one field. Such responses would come from 
questions of the form "Check all that apply" when presented with a list of all 
race/ethnicity or majors groups. 

The common approaches to this problem are to either add an extra cate-
gory (such as "Multiracial" or "Double major," respectively), or to add extra 
categories for each of the possible combinations (such as "White and African 
American/Black," "White and Asian," and so on, or "Economics and Fi-
nances," "Economics and History," etc., respectively). Neither of these so-
lutions is without problems. The former approach groups all combinations 
together, implying that all combinations of races or majors have the same 
expected relationship with the response variable, which seems unlikely. The 
latter approach is much more flexible, but is likely to result in many combi-
nations with very few observations (there are 2^ — 1 different membership 
possibilities), making inference difficult, and does not take advantage of any 
information from individuals who are members of only one group that could 
be relevant for individuals who are members of that group along with others. 

It is possible to formulate a different approach using indicator variables 
or effect codings that has neither of these shortcomings, albeit at the cost of 
an additional assumption on the model. In order to handle multiple group 
membership, all that is required is to redefine the indicator variable for mem-
bership of individual i in group m to be Z ^ = 2 ^ / T , where T is the total 
number of groups of which individual i is a member. Consider, for example, a 
categorical variable that takes on K = 3 levels. Table 6.3 summarizes the dif-
ferent possible combinations of group membership in this case, the adjusted 
indicator variable values for each combination, and the expected response if 
the variable for group 3 is omitted. The first three lines of the table show 
that the interpretation of the coefficients has not changed; /3Q is the expected 
response for the (omitted) reference group (i.e., /x3), and f3\ and /?2 are the 
differences in expected response between group 1 or group 2 and group 3, 
respectively (i.e., /xi - /i3 and /z2 - ^3, respectively). 

This then implies an additional assumption about individuals who are 
members of multiple groups. Consider, for example, individuals who are 
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TABLE 6 . 3 Indicator variable codings for a one-way ANOVA fit with K 
the variable for level 3 when multiple group membership is allowed. 

= 3 omitting 

Group 
membership 

X 

X 
X 

X 

X 

X 

X 
X 

X 

X 
X 
X 

T* x l 

1 
0 
0 

1/2 
1/2 
0 

1/3 

X* 
0 
1 
0 

1/2 
0 

1/2 
1/3 

J* 
0 
0 
1 

0 
1/2 
1/2 
1/3 

Expected response 
omitting group 3 

A + A 
A + A 

A 
A + (A + A)/2 

A + A/2 
A + A/2 

A + (A+A)/3 

TABLE 6 . 4 Effect codings for a one-way ANOVA fit with K 
for level 3 when multiple group membership is allowed. 

3 omitting the variable 

Group 
membership 

X 

X 
X 

X 

X 

X 

X 
X 

X 

X 
X 
X 

El 
1 
0 

- 1 
1/2 
0 

- 1 / 2 
0 

E*2 

0 
1 

- 1 
1/2 

- 1 / 2 
0 
0 

Expected response 
omitting group 3 

A + A 
A + A 

A - A - A 
A + (A+A)/2 

A - A/2 
A - A / 2 

A 

members of both groups 1 and 2. Their expected response satisfies 

E(y) = ft Pi+fo 
M3 + 

Ml - M3 + ^2 - M3 Ml + M2 

corresponding results hold for members of other combinations of groups. 
That is, this formulation assumes that the average response for an individual 
who is a member of multiple groups is the average of the expected responses 
for those groups. 

The effect coding version of this formulation is summarized in Table 
6.4. As before, each effect coding variable equals the indicator variable for 
the omitted level subtracted from the corresponding indicator variable, now 
based on the adjusted indicators X* as given in Table 6.3. Once again the first 
three lines of the table show that the parameters have the same interpretation 
as before, consistent with the one-way ANOVA model (6.1). The last line 
directly shows that the expected response for individuals who are members of 
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all three groups is the overall level //, which of course equals the average of the 
responses for each of the three groups. Some simple algebraic manipulations 
shows that the other group memberships operate similarly, and equivalently 
to the use of (adjusted) indicator variables. 

6 . 4 Example — DVD Sales of Movies 

After-market revenues for movies from DVD sales have been a major profit 
center for studios since the introduction of the DVD in 1998, with revenues 
exceeding $14 billion in 2004. In recent years the availability of films via 
digital download has cut into these revenues, making the ability to predict 
DVD sales even more important. Two characteristics of movies believed to 
be related to revenues (in both ticket sales and DVD sales) are the MPAA 
rating and the genre of the film. 

This analysis is based on domestic DVD sales in millions of dollars for 
movies released on more than 500 screens in 2009. In order to avoid groups 
with small numbers of movies, four movies rated G, a documentary, and a 
musical are omitted from the analysis. Further, action and adventure movies 
are combined into the Action/Adventure genre, horror, romance, and thriller 
movies are included in the Drama genre, and romantic comedies are included 
in the Comedy genre. DVD sales are very long right-tailed, so logged (base 
10) sales are used as the response variable. Five of the movies used in earlier 
analyses (Section 4.4) had missing values for DVD sales. 

Figure 6.2 gives side-by-side boxplots separating logged DVD sales by the 
two categorical predictors. There is weak evidence for a rating effect, with 
PG-rated movies having highest sales, followed by PG-13-rated and then R-
rated movies. There is stronger evidence of a genre effect, with action/adven-
ture movies having highest revenues, followed by comedies and then dramas. 
There is also noticeable evidence of potential nonconstant variance, particu-
larly related to genre. 

We first fit a two-way ANOVA model that includes the interaction effect: 

R e s p o n s e : Log.dvd 
Sum Sq Df F v a l u e Pr(>F) 

R a t i n g 0.084 2 0 .2520 0.77767 
Genre 1.124 2 3 .3653 0 .03818 * 
R a t i n g : G e n r e 0 .780 4 1.1676 0 .32918 
R e s i d u a l s 18.197 109 

S i g n i f . c o d e s : 
0 ' * * * ' 0 .001 ' * * ' 0 .01 ' * ' 0 .05 ' . ' 0 . 1 ' ' 1 

Residual standard error: 0.4086 on 109 degrees of freedom 
Multiple R-squared: 0.1536, Adjusted R-squared: 0.09144 
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6 . 2 Side-by-side boxplots of logged DVD sales separated by MPAA rating 
and genre of movie. 

It is apparent that the relationship is relatively weak, with R2 only around 
15%. The interaction effect is not close to statistical significance (recall that 
the F-tests for the main effects are not meaningful in the presence of the inter-
action). This suggests removing it and fitting the model with only the main 
effects, but boxplots of standardized residuals (Figure 6.3) show reasonably 
strong evidence of nonconstant variance related to genre (it is interesting to 
note that the evidence of nonconstant variance in logged DVD sales related 
to MPAA rating has disappeared in the residual plots). 
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PG PG-13 R 

MPAA rating 
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6 . 3 Side-by-side boxplots of standardized residuals from the two-way OLS 
ANOVA fit of logged DVD sales on MPAA rating, genre, and their interaction. 
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The Levene's test confirms that nonconstant variance is related to genre, 
but not MPAA rating. 

Response: Abs.resid 
Sum Sq Df 

Rating 0.388 2 
Genre 2.430 2 
Residuals 37.891 113 

Signif. codes: 
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

This suggests performing a WLS analysis, with the weights being based 
on genre. This is accomplished by determining the variance of the (standard-
ized) residuals separated by genre group, and then weighting each observation 
from that group by the inverse of the variance. The resultant weights are 
w = 1/1.5721 for action/adventure movies, w = 1/0.7245 for comedies, and 
w = 1/0.8692 for dramas, respectively. This results in the following WLS-
based ANOVA fit: 

R e s p o n s e : Log.dvd 
Sum Sq 

R a t i n g 0 .076 
Genre 1.034 
R a t i n g : G e n r e 0 .877 
R e s i d u a l s 17 .639 

S i g n i f . c o d e s : 
0 ' * * * ' 0 .001 ' * * ' 0 .01 ' * ' 0 .05 ' . ' 0 . 1 ' ' 1 

Residual standard error: 0.4023 on 109 degrees of freedom 
Multiple R-squared: 0.1543, Adjusted R-squared: 0.09219 

The entry for R2 in the output above is worth further comment. Since 
the WLS estimates are based on minimizing the weighted residual sum of 
squares (6.4), the interpretation of R2 as the observed proportion of variabil-
ity accounted for by the regression is lost. In fact, the R2 value typically 
reported in WLS output is a transformed version of the overall F-statistic 
for the ANOVA fit that uses the relationship between R2 and the overall 
F-statistic for OLS fits, and thus has no physical interpretation. The WLS 
results are not very different from those of OLS, with the interaction effect 
still not close to statistical significance. Note, however, that now boxplots of 
standardized residuals (Figure 6.4) do not show evidence of nonconstant vari-
ance, and the Levene's test agrees (note that the Levene's test for a WLS fit 
must be based on standardized residuals, since unlike the ordinary residuals 
those take the weights into account). 

F value Pr (>F) 
0.5786 0.56235 
3.6230 0.02985 * 

Df F value Pr(>F) 
2 0.2360 0.79017 
2 3.1949 0.04484 * 
4 1.3552 0.25431 

109 
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G U R E 6 . 4 Side-by-side boxplots of standardized residuals from the two-way WLS 
ANOVA fit of logged DVD sales on MPAA rating, genre, and their interaction. 

Response: Abs.resid 
Sum Sq Df 

Rating 0.263 2 
Genre 0.053 2 
Residuals 39.711 113 

F value Pr(>F) 
0.3739 0.6889 
0.0747 0.9280 

Signif. codes: 
0 '***' 0.001 '•*' 0.01 0.05 ' .' 0.1 

It is now reasonable to omit the interaction effect from the model and 
examine the WLS fit based only on main effects. If the interaction effect had 
been needed, an interaction plot would be used to summarize its implications. 
The interaction plot is given in Figure 6.5 for completeness. The plot suggests 
that the genre effect of logged DVD sales for action/adventures and dramas are 
similar (with highest sales for PG-13 movies), while that for comedies is the 
opposite (with lowest sales for PG-i 3 movies), but the insignificant F-test for 
the interaction effect implies that this is likely to just be random fluctuation. 

The WLS-based ANOVA fit that includes only the main effects suggests 
that only genre is predictive for logged DVD sales. 

Response: Log.dvd 
Sum Sg Df F value Pr(>F) 

Rating 0.3275 2 0.9994 0.37133 
Genre 1.3232 2 4.0375 0.02025 * 
Residuals 18.5162 113 
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IGURE 6 . 5 Interaction plot for logged DVD sales separated by MPAA rating and 
genre. 

Signif. codes: 
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 1 

Residual standard error: 0.4048 on 113 degrees of freedom 
Multiple R-squared: 0.1122, Adjusted R-squared: 0.08078 

Response: Log.dvd 
Sum Sq Df F value Pr(>F) 

Genre 2.0127 2 6.1415 0.002923 ** 
Residuals 18.8437 115 

Signif. codes: 
0 '•**' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual s tandard e r r o r : 0.4048 on 115 degrees of freedom 
Mult iple R-squared: 0.0965, Adjusted R-squared: 0.08079 

Since the final model is a one-way ANOVA, the fitted value for any movie 
of a particular genre is just the mean response of movies of that genre. Thus, 
the fitted logged DVD sales for action/adventure movies is 1.471 (correspond-
ing to a geometric mean sales of 101,471 = $29.6 million), for comedies is 
1.320 ($20.9 million), and for dramas is 1.132 ($13.6 million). Tukey multiple 
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comparisons tests show that mean logged sales are statistically significantly 
different between action/adventure movies and dramas and between come-
dies and dramas, but not between action/adventure movies and comedies. 

Multiple Comparisons of Means: Tukey Contrasts 

Linear Hypotheses: 
Estimate Std.Err. t val Pr(>|t|) 

Comedy = Action/Adventure -0.1517 0.1024 -1.48 0.30083 
Drama = Action/Adventure -0.3390 0.1026 -3.30 0.00357 ** 
Drama = Comedy -0.1873 0.0793 -2.36 0.05068 . 

Signif. codes: 
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

The output from the one-way ANOVA WLS fit gives a = 0.4048. Recall-
ing that &i = a/y/wly this implies estimated standard deviations of the errors 
of (.4048)^1.5721 = .508 for action/adventure movies, (.4048) V0.7245 = 
.345 for comedies, and (.4048)^0.8692 = .377 for dramas, respectively. This 
in turn implies exact 95% prediction intervals for logged DVD sales of (0.452, 
2.491) for action/adventure movies, (0.628, 2.011) for comedies, and (0.377, 
1.888) for dramas, respectively. Unfortunately, these are far too wide to be 
useful in practice, since antilogging the ends of the intervals implies predic-
tive ranges from roughly $2 to $4 million to upwards of $300 million (for 
action/adventure movies). This is not particularly surprising, given the ob-
served weak relationship between logged DVD sales and genre. A more rea-
sonable model would also include other predictors, including numerical ones 
(such as total gross revenues of the movie in theaters). Generalizing regres-
sion modeling to allow for the possibility of both numerical and categorical 
predictors is the topic of the next chapter. 

Residual and diagnostic plots given in Figure 6.6 show that nonconstant 
variance is no longer a problem (note that the weighting is taken into account 
in the calculation of leverage values and Cook's distances). There are five 
marginal outliers ("The Blind Side," "The Hangover," and "The Twilight Saga: 
New Moon" did unusually well for their respective genres, while "Shorts" and 
"Sorority Row" did unusually poorly). An analysis after omitting these points 
(not given) does not change the results of the model selection process or the 
implications of the results, but does result in a stronger apparent relationship 
between logged DVD sales and genre, to the extent that mean logged DVD 
sales for comedies and dramas are now marginally statistically significantly 
different from each other. 

6 .5 Higher-Way ANOVA 

ANOVA models generalize past one or two grouping variables, at the cost 
of some additional complications in the model. Consider the situation of 
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F I G U R E 6 . 6 Residual and diagnostic plots for the WLS-based ANOVA fit of logged 
DVD sales on genre. 

three grouping variables, sometimes generically referred to rows, columns, 
and layers. A full three-way ANOVA model would have the form 

VijU = M + ®-i + (3j + Ik + {ot(3)ij + (aj)ik + (Pl)jk + (a(3j)ijk + e^u-

The main effects a , /3, and 7 are defined as they were before, as are the two-
way interactions (a/3), (0:7), and (/37). Just as a two-way interaction is 
defined as the presence of different main effects for one factor as the level of 
the second factor changes, a three-way interaction occurs if the two-way in-
teraction of two factors differs depending on the level of the third factor. An 
interaction plot would identify this graphically as different patterns in inter-
action plots of rows and columns for different layers. This can be extended 
further to more potential grouping variables, although difficulties in interpre-
tation make interactions that are higher order than three-way rarely used in 
practice. 
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The model is fit in the same way as the simpler ones were fit. The vari-
ables that define the three-way interaction are all of the products taking one 
effect coding each from those corresponding to rows, columns, and layers. As 
before, if only one observation per cell is available, the three-way interaction 
(being the highest order interaction) cannot be included in the model. 

6 . 6 Summary 

Categorical variables occur often in practice, and building models using them 
as predictors is often desirable. The use of indicator variables or effect codings 
makes fitting of these ANOVA models explicitly a linear regression problem, 
allowing all of the power of linear modeling to be used. The nature of categor-
ical variables as ones that identify well-defined subgroups in the data means 
that nonconstant variance related to the existence of those subgroups is a 
common problem. For this reason, weighted least squares (WLS)-based fits of 
ANOVA data are often advisable. Multiple comparisons methods such as the 
Tukey HSD test and the use of Bonferroni corrections allow for the compari-
son of mean responses for multiple pairs of groups that take into account the 
potentially large number of comparisons being made. 

There is no requirement that a regression relationship be based only on 
numerical predictors, or only on categorical ones. In the next chapter we 
discuss the natural generalization to the situation of a mixture of such variable 
types. 

KEY TERMS 
Balanced design: A data set in which the number of observations is the same 
for all combinations of group levels. 
Bonferroni correction: A correction applied in a multiple testing situation 
designed to keep the overall level of significance of the set of tests, rather 
than the significance level of each test, at a. When C tests are performed, the 
significance level is taken to be a/C for each individual test, in order to ensure 
that the overall level of significance is no greater than a. 

Effect coding: A variant of indicator variables that results in regression co-
efficients that represent deviations from an overall level when used to code 
factors in an analysis of variance model. 
Interaction effect: In two-way classified data, a pattern wherein the row ef-
fect on an observation differs depending on the column in which it is located, 
and vice versa. In higher-order classified data, a pattern wherein a lower-order 
interaction effect differs depending on the level of a factor not in the interac-
tion. 
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Interaction plot: A plot of each of the row effects separated by column level, 
or equivalently of each of the column effects separated by row level. Roughly 
parallel lines indicate the lack of an interaction effect. 
Levene's test: A test for heteroscedasticity based on using the absolute 
value of the (standardized) residuals as the response variable in a regression 
or ANOVA fit. 
Main effect: The effect on an observation related to the row or the column 
in which it occurs. 
Multiple comparisons: The statistical inference problem in which (adjusted) 
group means are compared simultaneously in an analysis of variance model. 
One-way analysis of variance (ANOVA): A methodology used to test the 
equality of means of several groups or levels classified by a single factor. 
Two-way analysis of variance (ANOVA): A methodology used to test the 
equality of means of a several groups or levels classified by two factors. The 
analysis allows variation between means to be separated into row or column 
main effects, as well as an interaction effect. 
Tukey's HSD test: A test that directly addresses the multiple comparisons 
problem by using the (correct) studentized range distribution for differences 
between sample means. 
Weighted least squares (WLS): A generalization of ordinary least squares 
(OLS) that accounts for nonconstant variance by weighting observations with 
smaller (estimated) variances more heavily than those with larger (estimated) 
variances. 
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7.1 Introduction 

The analysis of variance (ANOVA) models of the previous chapter are re-
strictive in that they allow only categorical predicting variables. Analysis of 
covariance (ANCOVA) models remove this restriction by allowing both cat-
egorical predictors (often called grouping variables or factors in this context) 
and continuous predictors (typically called covariates) in the model. This can 
be viewed as a generalization of the ANOVA models of Chapter 6 to models 
that include covariates, or a generalization of the models discussed in Section 
2.4 based on indicator variables to models that allow for categorical variables 
with more than two categories. 

7 . 2 Methodology 

7.2.1 CONSTANT SHIFT MODELS 

Conceptually ANCOVA models are quite straightforward, since they merely 
add additional numerical predictors to the constructed (effect coding) vari-
ables used in ANOVA modeling. If there is one grouping variable, for exam-
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pie, the model is 

yij = /j, + ai + (3iXuj-\ t-PpXpij+£ij, i = l,...,K, j = l , . . . , n i , (7.1) 

where a; is the corrected effect on y given membership in group i (corrected 
in the sense that the covariates x i , . . . , xp are taken into account, and subject 
to the usual constraint J2i ai = 0)> a n d Pi 1S t n e slope coefficient correspond-
ing to the expected change in the response associated with a one unit change 
in X£ given group membership and all of the other covariates are held fixed. 
This model is fit using K—l effect codings to represent the grouping variable, 
along with the p covariates and the constant term. 

There are several obvious hypotheses of interest based on this model: 

1. Are there differences in expected level between groups (given the covari-
ates)? This tests the null hypothesis 

HQ : OL\ = • • • = OLK — 0. 

The test used for this hypothesis is the partial F-test for the K — l effect 
coding variables (that is, it is based on the residual sum of squares using 
all of the variables, and the residual sum of squares using only the covari-
ates). Further analysis exploring which groups are significantly different 
from which (given the covariates) is meaningful here, and the multiple 
comparisons methods of Section 6.3.2 can be adapted to this model. 

2. Do the covariates have any predictive power for y (given the grouping 
variable)? This tests the null hypothesis 

H0 : Pi = • • • = PP = 0. 

The test used for this hypothesis is the partial F-test for the covariates 
(that is, it is based on the residual sum of squares using all of the variables, 
and the residual sum of squares using only the effect codings). 

3. Does a particular variable Xj provide any predictive power given the 
grouping variable and the other covariates? This tests the null hypoth-
esis 

H0 : Pj = 0. 

The test used for this hypothesis is the usual t-test for that covariate. 

Note that since ANCOVA models are just regression models, all of the model 
selection approaches discussed in Section 2.3.1 apply here as well, although 
they are less commonly used in practice in this situation. 

This model generalizes to more than one grouping variable as well. For 
two grouping variables, for example, the model is 

Vijk = p> + oi-i + Pj■< + (®P)ij + Tfixujk H h IpXpijk + eijk, (7-2) 

which allows for two main effects (fit using effect codings for each grouping 
variable) and an interaction effect (fit using the pairwise products of the effect 
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codings for the main effects), as well as the presence of covariates. The usual 
ANOVA hypotheses about the significance of main effects and the interaction 
effect are tested using the appropriate partial F-tests, as described in Sections 
6.2.2 and 6.3.1. 

7.2.2 VARYING SLOPE MODELS 

Models (7.1) and (7.2) are constant shift models, in the sense that the only 
differences between the expected value of the target variable for a given set 
of covariate values between groups is one of shift, with the slopes of the co-
variates being the same no matter what group an observations falls in. This 
implies a natural question: might the slopes also be different for different 
levels of the grouping variable? Assume for simplicity that there is one co-
variate x in the model. A generalized model that allows for different slopes 
for different groups is 

Vij = Li + o>i+ puxij + eij, (7.3) 

where fin is the slope of x for the ith group. If the interaction of the grouping 
variable and the covariate are entered as part of the general linear model (by 
including the pairwise products of the effect codings and the covariate), the 
partial F-test for this set of variables is a test of the hypothesis 

# 0 • /?11 = • • • = PiK 

(this is often called a test of common slope). This is easily generalized to 
more than one covariate using the appropriate interaction terms. This can 
also be generalized to the situation with more than one grouping variable, 
but that is less common. 

7 . 3 Example — International Grosses of Movies 

Although domestic (U.S. and Canada) gross revenues of movies are the num-
bers routinely reported in the American news media, revenues from other 
countries can often outstrip domestic revenues and mean the difference be-
tween profit and loss. It is thus of interest to try to model international 
gross revenues. This analysis is based on revenues for movies released in the 
United States on more than 500 screens in 2009, with logged (base 10) do-
mestic grosses and MPAA rating used to model logged (base 10) international 
grosses. Figure 7.1 shows that movies with higher domestic revenues tend to 
have higher international revenues, and movies rated G and PG tend to have 
higher international revenues than those rated PG-i 3 and R. There is also ev-
idence of nonconstant variance, with movies with lower domestic revenues 
having higher variability. 

We first fit a constant shift model: 
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7 .1 Plots for the 2009 international movie grosses data, (a) Plot of logged 
international gross versus domestic gross, (b) Side-by-side boxplots of logged interna-
tional gross by MPAA rating. 

Response: Log.international.gross 
Sum Sq Df F value Pr(>F) 

(Intercept) 3.610 1 14.2648 0.0002468 *** 
Log.domestic.gross 42.630 1 168.4463 < 2.2e-16 **• 
Rating 2.712 3 3.5722 0.0160807 * 
Residuals 30.876 122 

Signif. codes: 
0 '***' 0.001 0.01 0.05 0.1 

Coefficients: 

(Intercept) 
Log.domestic.gross 
Ratingl 
Rating2 
Rating3 

Estimate Std. Error t value Pr(>|t| 
-0.710076 
1.385308 
0.440935 
0.008748 

-0.182498 

Signif. codes: 
0 '**•' 0.001 '**' 0.01 

0.188006 -3.777 0.000247 *** 
0.106737 12.979 < 2e-16 *** 
0.192664 2.289 0.023822 * 
0.098965 0.088 0.929705 
0.086866 -2.101 0.037707 * 

0.05 0.1 

Residual s tandard e r r o r : 0.5031 on 122 degrees of freedom 
Mult iple R-squared: 0.6087, Adjusted R-squared: 0.5958 
F - s t a t i s t i c : 47.44 on 4 and 122 DF, p -va lue : < 2.2e-16 

Logged domestic gross and MPAA rating account for roughly 60% of the 
variability in logged international gross. The standard error of the estimate of 
& — 0.503 implies that the model can predict international grosses to within 
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a multiplicative factor of roughly 10, 95% of the time, clearly a large range. 
The coefficient for logged domestic gross (which is highly statistically signif-
icant) implies that, given MPAA rating, a 1% increase in domestic gross is 
associated with an estimated expected 1.39% increase in international gross. 
The three effect codings (Ratingl, Rating2, and Rating3) refer to effects 
for movies rated G, PG, and PG-13, respectively, and their coefficients im-
ply much higher grosses for G-rated movies than the other three types, given 
logged domestic gross. Since the coefficients must sum to 0, the implied es-
timated coefficient for R-rated movies is —0.267185. The rating effect, while 
much less strong than that of logged domestic gross, is also statistically signif-
icant. 

Since there is no interaction term in this model, multiple comparison 
tests based on the Tukey method (Section 6.3.2) can be used to assess which 
rating classes are significantly different from each other given logged domestic 
gross. 

Multiple Comparisons of Means: Tukey Contrasts 

Linear Hypotheses: 

Estimate Std. Error t value Pr(>|t|) 

PG = G 

PG-13 = G 

R = G 

PG-13 = PG 

R = PG 

R = PG-13 

Signif. co< 

0 '***' 

-0.43219 

-0.62343 

-0.70812 

-0.19125 

-0.27593 

-0.08469 

des : 

0.001 '**' 

0.27028 

0.26165 

0.26437 

0.11574 

0.12512 

0.10608 

0.01 '*' 0. 

-1. 
-2. 
-2. 
-1. 
-2. 
-0. 

.05 

.599 

.383 

.679 

.652 

.205 

.798 

0. 
0. 
0. 
0. 
0. 
0, 

' .' 0.1 

.3620 

.0774 

.0369 

.3329 

.1160 

.8449 

r t 

It can be seen that G-rated movies have significantly higher international 
grosses than do R-rated movies (p — .037, corresponding to 10'708 = 5.1 
times the grosses given logged domestic gross) and marginally significantly 
higher international grosses than do PG-13-rated movies (p = .077, corre-
sponding to 10'623 = 4.2 times the grosses given logged domestic gross). Note 
that these effects are larger than the corresponding marginal MPAA rating 
effects (for example, if logged domestic gross is omitted from the model, G-
rated movies are estimated to have only 3.6 times the international gross than 
R-rated movies, not 5.1 times), showing that the poorer relative international 
performance of PG-13 or R-rated movies is ameliorated somewhat by their 
stronger relative domestic performance in these data. 

A generalization of this model would be to model (7.3), allowing for dif-
ferent slopes for logged domestic gross for different MPAA rating classes. This 
involves adding the interaction between the categorical predictor and the co-
variate: 



144 CHAPTER 7 Analysis of Covariance 

Response: Log.international.gross 
Sum Sq 

(Intercept) 0.1170 
Log.domestic.gross 5.0368 
Rating 3.4105 
Log.domestic.gross:Rating 2.4103 
Residuals 28.4652 

Df 
1 
1 
3 
3 

119 

F value 
0.4892 

21.0565 
4.7526 
3.3588 

Pr (>F) 
0.485630 
1.113e-05 *** 
0.003633 ** 
0.021173 * 

Signif. codes: 
0 '**•' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 

Coefficients: 

(Intercept) 
Log.dom.gross 
Ratingl 
Rating2 
Rating3 
Log.dom.gross: 
Log.dom.gross: 
Log.dom.gross: 

:Rat 
:Rat 
:Rat 

ingl 
ing2 
ing3 

Estimate 
-0.25185 
1.08408 
1.87935 
0.24720 

-0.67295 
-0.99180 
-0.09207 
0.32025 

Std.Error 
0.3601 
0.2363 
0.9991 
0.4511 
0.4019 
0.6676 
0.2793 
0.2572 

t val 
-0.70 
4.59 
1.88 
0.55 

-1.67 
-1.49 
-0.33 
1.25 

Pr(>|t|) 
0.4856 

l.lle-05 *** 
0.0624 . 
0.5847 
0.0967 
0.1400 
0.7423 
0.2155 

Signif. codes: 
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 0.4891 on 119 degrees of freedom 
Multiple R-squared: 0.6392, Adjusted R-squared: 0.618 
F-statistic: 30.12 on 7 and 119 DF, p-value: < 2.2e-16 

Adding the interaction effect does not increase the fit greatly, but the par-
tial F-test of constant slope does imply that the slopes for logged domestic 
gross are statistically significantly different across MPAA ratings. Figure 7.2 
indicates the different implications of the two models. The plot on the left 
gives the fitted lines relating logged international and logged domestic grosses 
when restricting the model to constant slope, while the plot on the right al-
lows the slopes to be different. The interesting pattern emerges that as the 
potential audience for a movie shrinks (MPAA rating going from G to PG to 
PG-13 to R) the importance of domestic gross as a predictor of international 
gross grows. While for G-rated movies there is virtually no relationship be-
tween domestic and international grosses, a 1% increase in domestic grosses is 
associated with an estimated expected 1%, 1.4%, and 1.85% increase in inter-
national grosses for PG-, PG-i 3-, and R-rated movies, respectively. Given that 
the proportion of the audience that are adults grows going from G to R rat-
ings, it appears that internationally adults are more sensitive to the domestic 
success of a movie than are children. 

Residual plots given in Figure 7.3 highlight several violations of assump-
tions here, so these results cannot be viewed as definitive. There is appar-
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7 . 2 ANCOVA fits for the 2009 international movie grosses data. Solid line: 
G-rated movies. Short dashed line: PG-rated movies. Dotted-and-dashed line: PG-13-
rated movies. Long dashed line: R-rated movies, (a) Fitted lines for the constant slope 
model, (b) Fitted lines for the varying slope model. 

ent nonconstant variance, with movies with lower domestic revenues having 
higher variability in international revenues, and the residuals are long left-
tailed. As was noted earlier, the situation where the variances are related to a 
numerical predictor will be discussed further in Section 10.7. 

7 . 4 Summary 

Analysis of covariance models represent the natural generalization of analysis 
of variance models to allow for numeric covariates. The simplest model is 
a constant shift (constant slope) model, but models that allow for varying 
slopes for different groups are also easily constructed. Since various models 
of interest are nested within each other, partial F-tests are a natural way to 
compare models, although information measures such as AICC also can be 
used for this purpose. 

KEY TERMS 
Analysis of covariance: A methodology used to analyze data characterized 
by several groups or levels classified by a single factor or multiple factors and 
numerical predictors. The analysis allows variation between group means to 
be separated into main effects and (potentially) interaction effects, as well as 
effects related to the numerical predictors (including the possibility of differ-
ent slopes for different groups). 
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(a) (b) 

• • • • * A 

~ i 1 1 1 1 r~ 

0.5 1.0 1.5 2.0 2.5 3.0 

Fitted values 

1.5 2.0 2.5 

Logged domestic grosses 

(C) (d) 

1 1 r 

PG PG-13 R 

MPAA rating 

- 2 - 1 0 1 

Theoretical Quantiles 

I G U R E 7 . 3 Residual plots for the varying slopes ANCOVA model for the 2009 
international grosses data, (a) Plot of standardized residuals versus fitted values, (b) 
Plot of standardized residuals versus logged domestic gross, (c) Side-by-side boxplots of 
standardized residuals by MPAA rating, (d) Normal plot of standardized residuals. 

Covariate: A numerical predictor in an analysis of covariance model. 
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8.1 Introduction 

All of the regression situations discussed thus far have been characterized by 
a response variable that is continuous, but the modeling of a categorical vari-
able having two (or more) categories is sometimes desired. Consider a study 
of risk factors for cancer. From the health records of subjects data are collected 
on age, sex, weight, smoking status, dietary habits, and family's medical his-
tory. In this case the response variable is whether the person has lung cancer 
(y = 1), or does not have lung cancer (y = 0), and the question of interest is 
"What factors can be used to predict whether or not a person will have lung 
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cancer?". Similarly, in financial analysis the solvency ("health") of a company 
is of great interest. In such an analysis the question of interest is "What finan-
cial characteristics can be used to predict whether or not a business will go 
bankrupt?". 

In this chapter we will focus on data where the response of interest takes 
on the two values 0 and 1; that is, binary data. This will be generalized 
to more than two values in the next chapter. In this situation the expected 
response E(yi) is the conditional probability of the event of interest (?/$ = 1, 
generically termed a success, with yi — 0 termed a failure) given the values of 
the predictors. A linear model would be 

E(y{) = ni = p0 + P\xu H h PpXpi. 

It is clear that a linear least squares modeling of this probability is not reason-
able, for several reasons. 

i. Least squares modeling is based on the assumption that yi is normally dis-
tributed (since ei is normally distributed). This is obviously not possible 
when it only takes on two possible values. 

2. If a predictor value is large enough or small enough (depending on the 
sign of the associated slope as long as it is nonzero) a linear model implies 
that the probability of a success will be outside the range [0,1], which is 
impossible. 

3. A linear model implies that a specific change in a predictor variable is as-
sociated with the same change in the probability of success for any value 
of the predictor, which is unlikely to be the case. For example, a firm 
with extremely high debt is likely to already have a high probability of 
bankruptcy; for such a firm it is reasonable to suppose that an increase in 
debt of $1 million (say) would be associated with a small absolute change 
in the probability of bankruptcy. This is related to point (2), of course, 
since a probability close to 1 can only increase a small amount and still re-
main less than or equal to 1. Similarly, for a firm with very little debt (and 
hence a small probability of bankruptcy), this increase in debt could rea-
sonably be thought to be associated with a small change in the probability 
of bankruptcy. On the other hand, such an increase in debt could be ex-
pected to have a much larger effect on the probability of bankruptcy for a 
firm with moderate debt, and hence moderate probability of bankruptcy. 
Similar arguments (but in the opposite direction) would apply to a pre-
dictor with an inverse relationship with bankruptcy, such as revenues. 
This implies "S-shaped" curves for probabilities, as given in Figure 8.1. 

In this chapter we discuss logistic regression, an alternative regression 
model that is appropriate for binary data. Many of the inferential methods 
and techniques discussed in earlier chapters generalize to logistic regression, 
although a fundamental change is that in the present context they are not 
exact, but are rather based on approximations. 
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FIGURE 8.1 S-shaped curves for probabilities. 

8 . 2 Concepts and Background Material 

The regression models discussed thus far are characterized by two key prop-
erties: a linear relationship between the expected response and the predictors, 
and a normal distribution for the errors. Models for a binary response vari-
able are similarly based on two key properties. First, as was pointed out in 
the previous section, an S-shaped relationship rather than a linear relationship 
is the basis of the modeling. Second, a distribution that is more appropriate 
for binary data than the normal distribution is used. We treat each of these 
points in turn. 

8.2.1 THE LOGIT RESPONSE FUNCTION 

The functional form underlying logistic regression that generates curves like 
those in Figure 8.1 is the logit function. Let 7r(x) be the probability of a 
success for the observed values of the predictors x. The odds of a success is 
the ratio of the probability of a success to the probability of failure, or 

1 - 7T(X) 

(since the probability of a failure is 1 — 7r). Note that the odds vary between 
0 and 00 as the probability varies between 0 and 1. 
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The logit is defined as the (natural) log of the odds of success, 

7r(x) 
*(x) = log 

1 - 7T(x) 

Logistic regression hypothesizes that the logit is linearly related to the predic-
tors; that is, 

*(x) = log *"(x) 
1 - 7T(X) 

/30 + Pixu + f- fipXpi. (8.i) 

Note that the logit varies between — oc and oo as the probability varies be-
tween 0 and 1, making logits more suitable for linear fitting. Solving for 7r(x) 
gives an equivalent representation to (g.i) that explicitly provides the implied 
S-shaped curve for probabilities, 

ePo+Pixu-\ \-ppXPi 

^ W = 1 + e /30+/3isi i + . . .+/V*p i- ^ ' ^ 

This inverse of the logit function is sometimes called the expit function. 
Examination of (s.i) shows that it is, in fact, a semilog model for the 

odds of success, in the sense of Section 4.3 and equation (4.4). That is, the 
model posits an additive/multiplicative relationship between a predictor and 
the odds, with a multiplicative change in the odds of success of e@j associated 
with a one unit increase in Xj holding all else in the model fixed. This value 
is thus called the odds ratio, as it represents the ratio of the odds for Xj + 1 to 
the odds for Xj. A slope of 0 corresponds to no relationship between the logit 
(and hence the probability) and the predictor given the other variables in the 
model, a positive slope corresponds to a direct relationship, and a negative 
slope corresponds to an inverse relationship. 

The use of natural logs in the definition of the logit implies that if a 
predictor is going to be modeled in the logged scale, natural logs (base e) 
should be used, rather than common logs (base 10). This is because in that 
case the slope f3j is an elasticity (in the sense of Section 4.2). That is, if logXj 
is used as a predictor, this implies that a 1% change in Xj is associated with a 
Pj% change in the odds of success holding all else in the model fixed. 

The logit is not the only function that can generate S-shaped curves. In-
deed, any cumulative distribution function for a continuous random variable 
generates curves similar to those in Figure 8.1, including (for example) the 
normal distribution (which leads to probit regression). The use of the logit 
response does have some advantages, which will be discussed in Section 8-2-3-

8.2.2 BERNOULLI AND BINOMIAL RANDOM VARIABLES 

It is apparent that a normal distribution is not a reasonable choice for data 
that take on two values, 0 and 1. The natural choice is a Bernoulli random 
variable, where each observation yi is independent, with P(yi = 1) = 71̂ . 
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Combining this with the functional form (8.1) defines the logistic regression 
model. 

This model also generalizes in an important way. In some circumstances 
multiple observations with the same set of predictor variable values occur. 
This is often by design; for example, a clinical trial might be designed so that 
exactly 10 men and 10 women each receive a specific dosage of a drug from 
the set of dosages being studied. In this situation the ith response yi would 
correspond to the number of successes (say cures) out of the rii = 10 people 
of the specific gender who received the specific dosage corresponding to the 
ith observation. If the responses of each of the 10 individuals are indepen-
dent of each other, and each individual has the same probability 7̂  of being 
cured, then yi is a binomial random variable based on rii trials and iti prob-
ability of success [represented yi ~ I? (7^,71^)]. The rii value is sometimes 
called the number of replications, as each of the underlying Bernoulli trials 
has identical values of the predictors. Note that in this situation the number 
of observations n is the number of response values yi, not the total number 
of replications J2i ni-

8.2.3 PROSPECTIVE AND RETROSPECTIVE DESIGNS 

The particular choice of the logit function to represent the relationship be-
tween probabilities and predictors has two main justifications. The first, re-
ferred to in Section 8-2-1? is the intuitive nature of (8-1) as a semilog model 
for the odds of success. Multiplicative relationships are relatively easy to un-
derstand, so the interpretation of e@j as an odds ratio is an appealing one. 

The second justification is less straightforward, but of great practical im-
portance. It is related to the sampling design used when obtaining the data. 
Consider building a model for the probability that a business will go bankrupt 
as a function of the initial debt carried by the business. There are two ways 
that we might imagine constructing a sample (say of size 200) of businesses to 
analyze: 

1. Randomly sample 200 businesses from the population of interest. Record 
the initial debt, and whether or not the business went bankrupt. This is 
conceptually consistent with following the 200 businesses through time 
until they either do or do not go bankrupt, and is called a prospective 
sampling scheme for this reason. In the biomedical literature this is of-
ten called a cohort study. A variation on this design is to sample 100 
businesses with low debt and 100 businesses with high debt, respectively; 
since sampling is based on the value of a predictor (not the response), it 
is still a prospective design. 

2. First consider the set of all businesses in the population that did not go 
bankrupt; randomly sample 100 of them and record the initial debt. 
Then consider the set of all businesses in the population that did go 
bankrupt; randomly sample 100 of them and record the initial debt. This 
is conceptually consistent with seeing the final state of the businesses first 
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(bankrupt or not bankrupt), and then going backwards in time to record 
the initial debt, and is called a retrospective sampling scheme for this rea-
son. In the biomedical literature this is often called a case-control study. 

Note that whether the sampled data are current or from an earlier time has 
nothing to do with whether a design is prospective or retrospective; the dis-
tinction depends only on whether sampling is based on the response outcome 
(a retrospective study) or not (a prospective study). One way to distinguish 
between these two sampling approaches is that in a retrospective study the 
sampling rate is different for successes and for failures; that is, one group is 
deliberately oversampled while the other is deliberately undersampled so as 
to get a "reasonable" number of observations in each group. 

Each of these sampling schemes has advantages and disadvantages. The 
prospective study is more consistent with the actual physical process of in-
terest; for example, the observed sample proportion of low-debt businesses 
that go bankrupt is an estimate of the actual probability of a randomly cho-
sen low-debt business from this population going bankrupt, a number that 
cannot be estimated using data from a retrospective study (since in that case 
it was arbitrarily decided that (say) half the sample would be bankrupt busi-
nesses, and half would be non-bankrupt businesses). Such studies also have 
the advantage that they can be used to study multiple outcomes; for exam-
ple, The British Doctors Study, run by Richard Doll, Austin Bradford Hill, 
and Richard Peto, followed 40,000 doctors for 50 years, and examined how 
various factors (particularly smoking) related to different types of cancer, em-
physema, heart disease, stroke, and other diseases. On the other hand, if 
bankruptcy rates are low (say 15%), a sample of size 200 is only going to 
have about 30 bankrupt businesses in it, which makes it more difficult to ac-
curately model the probability of bankruptcy. A retrospective study can be 
designed to make sure that there are enough bankrupt companies to estimate 
their characteristics well. 

To simplify things, assume that initial debt is recorded only as Low (L) 
or High (H). This implies that the data take the form of a 2 x 2 contingency 
table (whatever the sampling scheme): 

Bankrupt 

Yes No 

Debt 
Low 

High 
nLy 

nHY 

riLN 

riHN 

Tly nN 

nH 

n 

Here the subscripts Y and N refer to bankrupt ("Yes") and not bankrupt 
("No"). 

Even though the data have the same form, whatever the sampling scheme, 
the ways these data are generated are very different. The following two tables 
give the expected counts in the four data cells, depending on the sampling 
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scheme. The IT values are conditional probabilities (so, for example, TTY\L is 
the probability of a business going bankrupt given that it has low initial debt): 

Debt 

PROSPECTIVE SAMPLE 
Bankrupt 

Yes No 

Low 

High 

riL^Y\L 

nHKy\H 

nL7TN\L 

nHTTN\H 
Debt 

RETROSPECTIVE SAMPLE 
Bankrupt 

Yes No 

Low 

High 

ny^L\Y 

nYKH\Y 

TlN7TL\N 

nNKH\N 

There is a fundamental difference between the probabilities that can be 
estimated using the two sampling schemes. For example, what is the prob-
ability that a business goes bankrupt given that it has low initial debt? As 
noted above, this is 7Ty|L. It is easily estimated from a prospective sample 
(fry\L — ^ L y / % ) , as can be seen from the left table, but it is impossible to es-
timate from a retrospective sample. O n the other hand, given that a business 
went bankrupt, what is the probability that it had low initial debt? That is 
KL\Y> which is estimable from a retrospective sample (KL\Y = ^LY/^Y), but 
not from a prospective sample. 

The advantage of logistic regression is that the existence of a relationship 
between debt level and bankruptcy is based on odds ratios (rather than prob-
abilities) through the logit function. In a prospective study, debt is related to 
bankruptcy only if the odds of bankruptcy versus nonbankruptcy are differ-
ent for low debt companies than they are for high debt companies; that is, 

^Y\L , KY\H 

KN\L ^N\H' 

or equivalently that the odds ratio does not equal 1, 

^Y\L^N\H 
7^1-

^N\L^Y\H 

By the definition of conditional probability this odds ratio is equivalent to 

KLYKHN 

KHYKLN 
(8-3) 

where (for example) TILY is the probability of a company both having low 
debt and going bankrupt. 

In a retrospective study, in contrast, debt is related to bankruptcy only if 
the odds of low debt versus high debt are different for bankrupt companies 
than they are for nonbankrupt companies; that is, if 

KL\Y , ^L\N 

KH\Y KH\N'> 

or equivalently that the odds ratio does not equal 1, 

^L\Y^H\N 

^L\N^H\Y 
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Some algebra shows that this odds ratio is identical to (8-3), the one from the 
prospective study. That is, while the type of conditional probability that can 
be estimated from the data depends on the sampling scheme, the odds ratio is 
unambiguous whichever sampling scheme is appropriate. This property gen-
eralizes to numerical predictors and multiple predictors. The logit function 
is the only choice where effects are determined by the odds ratio, so it is the 
only choice where the measure of the association between the response and a 
predictor is the same under either sampling scheme. This means that the re-
sults of studies based on the same predictors are directly comparable to each 
other even if some are based on prospective designs while others are based on 
retrospective designs. 

Since odds ratios are uniquely defined for both prospective and retrospec-
tive studies, the slope coefficients {/?i, # 2 , . . . , (3P} are also uniquely defined. 
The constant term /?o, however, is driven by the observed proportions of suc-
cesses and failures, so it is affected by the construction of the study. Thus, 
as noted above, in a retrospective study, the results of a logistic regression fit 
cannot be used to estimate the (prospective) probability of success, since that 
depends on a correct estimate of (3$ through (8.2). Let ny and n^ be the true 
(unconditional) probabilities that a randomly chosen business goes bankrupt 
or does not go bankrupt, respectively. These numbers are called prior prob-
abilities. If prior probabilities of success (ny) and failure (TTN) are available, 
the constant term in a fitted logistic regression can be adjusted so that correct 
(prospective) probabilities can be estimated. The adjusted constant term has 
the form 

\7TNnyJ 

(the method used to determine /3o is discussed in the next section). Since often 
a data analyst is not sure about exactly what (ny, 7TN) are, it is reasonable to 
try a range of values to assess the sensitivity of the estimated probabilities 
based on the adjusted intercept to the specific choice that is made. 

8 . 3 Methodology 

8.3.1 MAXIMUM LIKELIHOOD ESTIMATION 

As was noted earlier, least squares estimation of the logistic regression pa-
rameters (3 is not the best choice, as that is appropriate for normally dis-
tributed data. The generalization of least squares to binomially-distributed 
data is maximum likelihood estimation. The theory of maximum likeli-
hood is beyond the scope of this book, but the underlying principle is that 
parameters are estimated with the values that give the observed data the max-
imum probability of occurring. For binary/binomial data, this corresponds 
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to maximizing the log-likelihood function 

n 

2 = 1 

where 7^ is assumed to satisfy the expit relationship (8.2) with the predictors 
(terms that are not functions of the parameters are omitted from L since they 
do not affect estimation). A related value is the deviance, which is twice 
the difference between the maximum possible value of the log-likelihood L 
and the value for the fitted model. A small value of the deviance means that 
the observed data have almost as high a probability of occurring based on 
the fitted model as is possible. It can be shown that maximum likelihood 
estimates possess various large-sample (asymptotic) optimality properties. 

Least squares corresponds to maximum likelihood for errors that are 
normally distributed, but in general (and for logistic regression in particu-
lar) maximum likelihood estimates cannot be determined in closed form, but 
rather are obtained via an iterative algorithm. One such algorithm (iteratively 
reweighted least squares, or IRWLS) shows that the maximum likelihood esti-
mates are approximately weighted least squares estimates (6.5), with a weight 
and corresponding error variance for each observation that depends on the 
parameter estimates. This approximation is the basis of many of the infer-
ential tools used to assess logistic regression fits. Chapter 3 of Hilbe (2009) 
provides more details about this algorithm. 

8.3.2 INFERENCE, MODEL COMPARISON, AND MODEL 
SELECTION 

Inferential questions arise in logistic regression that are analogous to those in 
least squares regression, but the solutions are more complicated, as they are 
either highly computationally intensive or are based on approximations. For 
example, a test of the overall strength of the regression, testing the hypotheses 

#0 : Pi = • • • = 0P = 0 

versus 
Ha : Pj 7̂  0 for at least one j 

(which for least squares fitting is tested using the overall F-test) is desirable. 
The standard test of these hypotheses is the likelihood ratio test, which is 
based on comparing the strength of the fit without any predictors to the 
strength of the fit using predictors, as measured by the difference in the de-
viance values for the models with and without predictors. The likelihood 
ratio test for the overall significance of the regression is 

LR = 2 J2 [w log ( | ) + ta - w) 1^ ( Y T § ) (8.5) 
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where 7ra are the estimated probabilities based on the fitted logistic regression 
model, and 7r are the estimated probabilities under the null hypothesis. This 
is compared to a x2 distribution on p degrees of freedom, which is valid as 
long as either n is large or the ni values are reasonably large. 

Two tests of the additional predictive power provided by an individual 
predictor given the others are also available. These are tests of the hypotheses 

#o : Pj = 0 

versus 
Ha : 0j + 0. 

These hypotheses can be tested using the likelihood ratio test form described 
above, where it is calculated based on all predictors except the jth predictor 
and 7Ta is calculated based on all predictors, which is then compared to a 
X2 distribution on 1 degree of freedom. This requires fitting p -+- 1 different 
models to test the significance of the p slopes, and is therefore not the typical 
approach. The alternative (and standard) approach is to use the so-called Wald 
test statistic, 

fa 
aw-) 

where si*.(fa) is calculated based on the IRWLS approximation to the maxi-
mum likelihood estimate. This is analogous to a t-test for least squares fitting, 
but is again based on asymptotic assumptions, so the statistics are compared to 
a Gaussian distribution to determine significance rather than a ^-distribution. 
Confidence intervals for individual coefficients take the form fa±za/2s£.(fa), 
and a confidence interval for the associated odds ratio can be obtained by ex-
ponentiating each of the endpoints of the confidence interval for (3j. 

Any two models where one is a special case of the other based on a linear 
restriction can be compared using hypothesis testing. The simpler model rep-
resents the null while the more complicated model represents the alternative, 
and they are tested using the likelihood ratio test as a difference of deviance 
values. The appropriate degrees of freedom for the %2 approximation is the 
difference in the number of parameters estimated in the two models. This is 
analogous to the partial F-test in least squares regression. 

Such tests can be useful tools for model comparison and selection, but 
as was discussed in Section 2.3.1, hypothesis tests are not necessarily the best 
tools for model selection. The AIC criterion is applicable in logistic regres-
sion models, taking the form 

AIC = - 2 L + 2 ( p + l ) , 

where L is the log-likelihood (8-4). Equivalently —2L can be replaced with 
LR from (8.5) when calculating AIC. Although the theory underlying AICC 

is not applicable for logistic regression, practical experience suggests that it 
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z. 3.2. Two plots of hypothetical observed proportions of success versus a 
predictor. 

can help guard against the tendency of AIC to choose models that are overly 
complex, so it can still be a useful tool. As before, it has the form 

AICc = A I C ^ + 2 ^ + ^ -n — p — 3 

8-3-3 GOODNESS-OF-FIT 

The logistic model (g.i) or (8.2) is a reasonable one for probabilities, but may 
not be appropriate for a particular data set. This is not the same thing as say-
ing that the predicting variables are not good predictors for the probability of 
success. Consider the two plots in Figure 8-2. The variable X is a potential 
predictor for the probability of success, while the vertical axis gives the ob-
served proportion of successes in samples taken at those values of X. So, for 
example, X could be the dosage of a particular drug, and the target variable 
is the proportion of people in a trial that were cured when given that dosage. 

In the plot on the left, X is very useful for predicting success, but the 
linear logistic regression model does not fit the data, since the probability of 
success is not a monotone function of X (in a situation like this treating X as 
categorical, with the three categories being {[0,15), [15,30), [30,50]}, would 
seem to be a much more sensible strategy). In the plot on the right, X is not a 
useful predictor for success (the probability of success appears to be unrelated 
to X), but the linear logistic regression model fits the data, as a very flat S-
shaped curve (with fix ~ 0) goes through the observed proportions of success 
reasonably well. Goodness-of-fit tests are designed to assess the fit of a model 
through the use of hypothesis testing. Such statistics test the hypotheses 
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versus 

Ha : The linear logistic regression model does not fit the data. 

Such tests proceed by comparing the variability of the observed data around 
the fitted model to the data's inherent variability. This is possible because for 
a binomial random variable the observed model-based variability (based on 
the residual yi — n ^ ) is distinct from the inherent variability of the random 
variable [based on the fact that V{yi) — 77,^(1 — 7r^)]. 

There are two standard goodness-of-fit test statistics. The Pearson good-
ness-of-fit statistic equals 

X>=±^% (8.6) 
i=l 

rii7ti(l — 7Ti) ' 

while the deviance statistic (mentioned earlier) equals 

G2 = 2 J2 \vi lo§ {^A + ("i - Vi) log ( Ui(l -TTi) 
(8-7) 

(the latter statistic is sometimes referred to as the residual deviance). When the 
rii values are reasonably large {rii > 5, with some values perhaps even smaller), 
each of these statistics is referenced to a \2 distribution onn—p—1 degrees of 
freedom under the null hypothesis that the logistic regression model fits the 
data. Thus, a small tail probability suggests that the linear logistic regression 
model is not appropriate for the data, and an alternative should be sought. 
The signed square roots of the values on the righthand side of (8.6) are called 
the Pearson residuals. It should be noted that care must be taken to account 
for the fact that the form (and implication) of these tests can be different when 
using different statistical software when rii > 1, as they depend on how the 
software defines the observations i (whether responses are defined based on 
the binomial responses with rii replications for each observation, as is done 
here, or based on the underlying Bernoulli 0/1 outcomes). See Simonoff 
(1998a) for fuller discussion of this point. 

Unfortunately, these tests are not trustworthy when the rii values are 
small, and are completely useless in the situation of Bernoulli response data 
[rii — 1> so the response for each observation is simply success (y = 1) or 
failure (y = 0)]. This is the justification for a third goodness-of-fit test, the 
Hosmer-Lemeshow test. 

This test is constructed based on a Pearson goodness-of-fit test, but one 
where observations are grouped together in a data-dependent way to form 
rough replications. First, all of the observations are ordered by their estimated 
success probabilities it. The observations are then divided into g roughly eq-
uisized groups, with g usually taken to be 10 except when that would lead 
to too few observations in each group. Treating this new categorization of 
the data as if it was the original form of the data, with the g groups defining 
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g observations with replications, implies observed and expected numbers of 
successes for each group. The Hosmer-Lemeshow test uses these by calculat-
ing the usual X2 test based on the new categorization, which is compared to 
a x2 distribution on g — 2 degrees of freedom. It should be noted, however, 
that even the Hosmer-Lemeshow test is suspect when the expected numbers 
of successes or failures in the constructed categorization are too small (less 
than two or three, say). Other alternative statistics for the rii = 1 situation 
have also been proposed. 

8.3.4 MEASURES OF ASSOCIATION AND CLASSIFICATION 
ACCURACY 

While tests of hypotheses are useful to assess the strength of a logistic regres-
sion relationship, they do not address the question of whether the relation-
ship is of practical importance, as (for example) R? can for least squares re-
gression. Several measures of association have been proposed for this purpose, 
which are closely related to each other. Start with a fitted logistic regression 
model with resultant fitted probabilities of success for each of the observa-
tions. Consider each of the pairs (i,j) of observations where one observation 
is a success (i) and the other is a failure (j). Each of these has a corresponding 
pair (7^, itj). A "good" model would have a higher estimated probability of 
success for the observation that was actually a success than for the observation 
that was actually a failure; that is, 7̂  > TTJ. Such a pair is called concordant. If 
for a given pair 7̂  < TTJ , the pair is called discordant. A model that separates 
the successes from the failures well would have a high proportion of concor-
dant pairs and low proportion of discordant ones. There are no formal cutoffs 
for what constitutes a "good enough" performance here, but observed values 
can be compared for different possible models to assess relative performance 
in this sense. 

Various statistics are based on the observed proportions of concordant 
and discordant pairs. Somers' D, for example, is the difference between 
the proportions of concordant and discordant pairs. Somers' D is equivalent 
to the well-known area under the Receiver Operating Characteristic (ROC) 
curve (AUR = D/2 + .5), and also the Wilcoxon-Mann-Whitney rank sum 
test statistic for comparing the distributions of probability estimates of obser-
vations that are successes to those that are failures [VFMVF = AUR x n^n^, 
where ns (rip) is the number of successes (failures)]. Note that while each of 
these is a measure of the quality of the probability rankings implied by the 
model (in the sense of concordance), a good probability ranking need not nec-
essarily be well-calibrated. For example, if the estimated probability of success 
for each observation was exactly one-half the true probability, the probability 
rankings would be perfect (implying D — AUR = 1), but not well-calibrated, 
since the estimates were far from the true probabilities. 

In the medical diagnostic testing literature, the following rough guide for 
interpretation of D has been suggested (Hosmer and Lemeshow, 2000, p. 162, 
provides similar guidelines). It is perhaps useful as a way to get a sense of what 
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the value is implying, but should be recognized as being fairly arbitrary, and 
should not be taken overly seriously. 

Range of D Rough interpretation 

0.8 — 1.0 Excellent separation 
0.6 — 0.8 Good separation 
0.4 — 0.6 Fair separation 
0.2 — 0.4 Poor separation 
0.0 — 0.2 Little to no separation 

Logistic regression also can be used for prediction of group member-
ship, or classification. This is typically appropriate when operating at the 
0/1 (Bernoulli) response level. After estimating /3, (8.2) can be used to give an 
estimate of the probability of success for that observation. A success/failure 
prediction for an observation is obtained based on whether the estimated 
probability is greater than or less than a cutoff value. This value is often taken 
to be .5, although in some situations another choice of cutoff might be prefer-
able (based, for example, on the relative costs of misclassifying a success as a 
failure and vice versa). If this process is applied to the original data that was 
used to fit the logistic regression model, a classification table results. The 
resultant table takes this form: 

Actual 
result 

Success 
Failure 

Predicted result 

Success Failure 
nss 

nFs 

n.s 

nsF 
nFF 

n.F 

ns 

Up 

n 

The proportion of observations correctly classified is (nss + ^FF)/^ and 
the question is then whether this is a large number or not. The answer to 
this question is not straightforward, because the same data were used to both 
build the model and evaluate its ability to do classifications (that is, we have 
used the data twice). As a result the observed proportion correctly classified 
can be expected to be biased upwards compared to the situation where the 
model is applied to completely new data. 

The best solution to this problem is the same as it is when evaluating the 
predictive performance of least squares models — validate the model on new 
data to see how well it classifies new observations. In the absence of new data, 
two diagnostics have been suggested that can be helpful. A lower bound for 
what could be considered reasonable performance is the base rate, which is 
the proportion of the sample that comes from the larger group (sometimes 
termed Cmax in this context). 

A more nuanced argument is as follows. If the logistic regression had 
no power to make predictions, the actual result would be independent of the 
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predicted result. That is, for example, 

P(Actual result a success and Predicted result a success) = 
P(Actual result a success) x P(Predicted result a success). 

The right side of this equation can be estimated using the marginal probabili-
ties from the classification table, yielding 

P(Actual result a success and Predicted result a success) = f —1J f — J . 

A similar calculation for the failures gives 

P(Actual result a failure and Predicted result a failure) = ( — - ) ( — ) . 

The sum of these two numbers is an estimate of the expected proportion of 
observations correctly classified if the actual and predicted memberships were 
independent, so achieving this level of classification accuracy would not be 
evidence of a useful ability to classify observations. Since a higher observed 
correct classification proportion is expected because the data were used twice, 
this number is typically inflated by 25% before being compared to the ob-
served correct classification proportion, resulting the so-called Cpro measure. 

8.3.5 DIAGNOSTICS 

Unusual observations can have as strong an effect on a fitted logistic regres-
sion as in linear regression, and therefore need to be identified and explored. 
The IRWLS representation of the maximum likelihood logistic regression es-
timates provides the mechanism to construct approximate versions of diag-
nostics such as standardized (Pearson) residuals, leverage values, and Cook's 
distances, using the implied hat matrix and observation variances from IR-
WLS as if the model is a WLS fit, as is described in Section 6.3.3. 

8 .4 Example — Smoking and Mortality 

In 1972-1974 a survey was taken in Whickham, a mixed urban and rural 
district near Newcastle upon Tyne, United Kingdom (Appleton et al., 1996). 
Twenty years later a followup study was conducted, and it was determined 
if the interviewee was still alive. Among the information obtained originally 
was whether a person was a smoker or not and their age, divided into seven 
categories. The data can be summarized in the following table: 



164 CHAPTER 8 Logistic Regression 

Age group 

18-24 
18-24 

25-34 
25-34 
3 5-44 
3 5-44 
45-54 
45-54 
55-64 
55-64 
65-74 
65-74 

75 and older 
75 and older 

Smoking status 
Smoker 

Nonsmoker 
Smoker 

Nonsmoker 
Smoker 

Nonsmoker 
Smoker 

Nonsmoker 
Smoker 

Nonsmoker 
Smoker 

Nonsmoker 
Smoker 

Nonsmoker 

Survived 
53 
61 
121 
152 
95 
114 
103 
66 
64 
81 
7 

28 
0 
0 

At risk 
55 
62 
124 
157 
109 
121 
130 
78 
115 
121 
36 
129 
13 
64 

As always a good first step in the analysis is to look at the data. In this case 
there are two predictors, age and smoking status. A simple cross-classification 
shows that twenty years later 76.1% of the 582 smokers were still alive, while 
only 68.6% of 732 nonsmokers were still alive. That is, smokers had a higher 
survival rate than nonsmokers, a pattern that seems puzzling at first glance. 

Figure 8-3 gives more reasonable representations of the data. Since there 
are multiple interviewees in each of the age categories for both smokers and 
nonsmokers, the observed proportions of people who were alive 20 years later 
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F I G U R E 8 . 3 Plots for the Whickham smoking and mortality data, (a) Empirical 
survival proportions, separated by age group and smoking status, (b) Empirical logits, 
separated by age group and smoking status. 
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are reasonable estimates of the true underlying probabilities. The plots treat 
age as a numerical variable taking on a value at the midpoint of the interval 
and using the value 80 for the last age group. The left plot shows the observed 
survival proportions Wi versus age, while the right plot gives the empirical 
logits log[7fi/(l — 7fi)). Note that the empirical logit is not defined for the 
"75 or older" age group since no interviewees from that group were alive at 
followup. If a constant shift linear logistic regression model is reasonable, we 
would expect to see two roughly parallel linear relationships in the right plot, 
one for smokers and one for nonsmokers. This seems to be reasonable for 
younger ages, but the empirical logits are too low for the 65-74 group (and 
would be —00 for the 75 and older group), suggesting a possible violation of 
linearity in the logit scale. 

It is also apparent that for most age groups survival is lower for smokers 
than nonsmokers, as would be expected. This reversal of direction from the 
marginal relationship (higher survival rates for smokers than for nonsmokers) 
to the conditional one (lower survival rates for smokers than for nonsmokers 
given age) is familiar in any multiple regression situation (recall that it can 
lead to the misconception that a multiple regression slope coefficient has the 
"wrong sign" discussed in Section 1.3.1), and in the context of categorical data 
is called Simpson's paradox. The underlying reason, of course, is correlation 
between predictors, which in this case corresponds to higher smoking rates 
for younger interviewees than for older ones (49.7% among interviewees less 
than 65 years old versus 20.2% for those at least 65 years old). As a result what 
appears to be a positive effect of smoking (higher survival rates for smokers) is 
actually the positive effect of being younger at the time of original interview. 

Output for a fitted logistic regression is as follows: 

Coefficients: 
Estimate Std. Error z value Pr(>|z|) 

(Intercept) 7.687751 0.447646 17.174 <2e-16 *** 
Age -0.124957 0.007274 -17.178 <2e-16 *** 
Smoker -0.266053 0.168702 -1.577 0.115 

Signif. codes: 
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Null deviance: 641.496 on 13 degrees of freedom 
Residual deviance: 32.572 on 11 degrees of freedom 
AIC: 85.568 

The overall regression is highly statistically significant {LR = 608.9 on 
2 degrees of freedom, p « 0, obtained as the difference between the null and 
residual deviances). The Wald test for age is also highly statistically significant, 
but that for smoking status is only marginal. Exponentiating the slopes gives 
odds ratios of 0.883 and 0.766, respectively, implying that (given smoking 
status) being an additional year older is associated with an estimated 11.7% 
smaller odds of being alive 20 years later, and given age being a smoker is 
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TABLE 8 .1 Details of models fit to the Whickham smoking study data. 

Model LR G2 (p-value) X2 (p-value) AIC 

Linear 608.9 32.6 (< .001) 29.3 (.002) 85.6 
Quadratic 629.9 11.6 (.311) 9.6 (.474) 66.6 

Quadratic versus Linear: LR = 20.9, df = 1, p < .001 
Categorical 639.1 2.4 (.882) 2.4 (.882) 65.4 

Categorical versus Linear: LR = 30.2, df = 5, p < .001 
Categorical versus Quadratic: LR = 9.2, df = 4, p = .055 

associated with an estimated 23.4% lower odds of survival (the constant odds 
ratio for smoking for all ages reflects the constant shift nature of the fitted 
model). 

Unfortunately, goodness-of-fit tests imply that this model does not fit 
very well, as G2 = 32.6 (p < .001) and X2 = 29.3 (p = .002). Figure g-3(b) 
provides a clue as to why, since (as was noted earlier) the relationship between 
age and the empirical logits is apparently not linear. The figure suggests (at 
least) two possible ways of enriching the model while still maintaining a con-
stant shift for smoking status: including a quadratic function of age, or treat-
ing age as a categorical variable (since it is actually only given as membership 
in one of seven categories). Table g.i summarizes these fits, and how they 
compare to the original (constant shift) linear model. 

The quadratic and categorical models are both clear improvements over 
the linear model, with much lower AIC values and highly statistically sig-
nificant LR tests comparing them (the linear model is a special case of the 
quadratic model, and both are special cases of the categorical model). The 
choice between the quadratic and categorical models is less obvious; while the 
categorical model has lower AIC, the difference is small, and the hypothe-
sis that the quadratic model is adequate compared to the categorical model 
is only weakly rejected (p = .055). Fortunately, from the point of view of 
the relationship between smoking and mortality, the choice is moot; in either 
case the estimated slope for the smoking indicator is roughly —0.43, implying 
35% lower odds of survival twenty years later given age. 

Output for the model treating age as a categorical variable is given below. 

Coefficients: 

(Intercept) 
Age group = 2 9.5 
Age group = 3 9.5 
Age group = 4 9.5 
Age group = 5 9.5 
Age group = 6 9.5 

Estimate Std. Error 
3.8601 0.5939 

-0.1201 0.6865 
-1.3411 0.6286 
-2.1134 0.6121 
-3.1808 0.6006 
-5.0880 0.6195 

z value Pr (>|z|) 
6.500 8.05e-ll *** 

-0.175 0.861178 
-2.134 0.032874 * 
-3.453 0.000555 *** 
-5.296 1.18e-07 *** 
-8.213 < 2e-16 *** 
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Age group = 80 -27.8073 11293.1437 -0.002 0.998035 
Smoker -0.4274 0.1770 -2.414 0.015762 * 

Signif. codes: 
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

N u l l d e v i a n c e : 641 .4963 on 13 d e g r e e s of freedom 
R e s i d u a l d e v i a n c e : 2 .3809 on 6 d e g r e e s of freedom 
AIC: 65.377 

The age group variable is fit using six indicator variables, taking the youngest 
category (18-24 years old) as the reference group. A striking result in the out-
put are the strange entries for the Age group = 80 variable; the estimated 
slope is extremely large and negative, but the standard error is so large that 
the p-value for the Wald test of whether the slope equals 0 is virtually 1. The 
reason for this is that none of the interviewees in the 75 and older group were 
alive at the time of followup, so the model is trying to estimate the proba-
bility of survival of that group as 0. Based on (3.2) that can only occur for a 
slope of — 00, and for that reason the software's iterative algorithm pushes the 
estimated slope to be as negative as possible. A similar pattern would occur 
if everyone in an age group had survived, only then the coefficient would be 
extremely large and positive rather than negative. 

8 . 5 Example — Modeling Bankruptcy 

As was stated at the beginning of this chapter, the study of bankruptcy of 
companies has direct parallels to the study of survival of people. The data 
discussed here were presented in Section 9.2 of Simonoff (2003), and are 
based on a retrospective sample of 25 telecommunications firms that declared 
bankruptcy between May 2000 and January 2002 that had issued financial 
statements for at least two years, and information from the December 2000 fi-
nancial statements of 25 telecommunications that did not declare bankruptcy. 
Five financial ratios (each expressed as a percentage) were chosen as potential 
predictors of bankruptcy, details of which can be found in Simonoff (2003): 

1. Working capital as a percentage of total assets (WC/TA), a measure of liq-
uidity. 

2. Retained earnings as a percentage of total assets (RE/TA), a measure of 
cumulative profitability over time. 

3. Earnings before interest and taxes as a percentage of total assets (EBIT/TA), 
a measure of the productivity of a firm's assets. 

4. Sales as a percentage of total assets (S/TA), a measure of the ability of a 
firm's assets to generate sales. 

5. Book value of equity divided by book value of total liabilities (BVE/BVL), 
a measure of financial leverage (that is, debt). 
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either logged or unlogged versions are used, so the unlogged variable is used 
here. 

As a first step, a logistic regression model can be fit based on all of the 
predictors. This results in the following output: 

Coefficients 

(Intercept) 
WC.TA 
RE.TA 
EBIT.TA 
S.TA 
BVE.BVL 

Null 
Residual 

Estimate : 
7.42646 

-0.15587 
-0.07605 
-0.49111 
-0.08040 
-2.07764 

deviance: 69 
deviance: 11 

3td. 
6. 
0, 
0. 
0. 
0. 
1, 

.315 

.847 

Error z 
.35770 
.12208 
.06311 
.32260 
.09216 
.47488 

on 4 9 
on 44 

value 
1.168 

-1.277 
-1.205 
-1.522 
-0.872 
-1.409 

Pr(>| 

degrees 
degrees 

0. 
0. 
0. 
0. 
0. 
0. 

of 
of 

|z|) 
.243 
.202 
.228 
.128 
.383 
.159 

freedom 
freedom 

While the overall regression is highly statistically significant (LR = 57.5 on 5 
degrees of freedom, p < .001), all of the individual Wald tests have moderately 
high p-values. This suggests the possibility of simplifying the model, but 
an index plot of the standardized residuals (Figure 8-5) shows that the first 
observation is a clear outlier (this observation shows up as an outlier in any 
reasonable simplified model as well). This is the firm 36oNetworks. It was one 
of only two firms that ultimately went bankrupt that had positive earnings 
the year before insolvency, and had $6.3 billion in total assets three months 
before it declared bankruptcy because of thousands of miles of cable that it 
owned. 

A logistic regression model based on all of the predictors after omitting 
this observation results in the following output: 

C o e f f i c i e n t s : 
E s t i m a t e S t d . E r r o r z v a l u e P r ( > | z | ) 

( I n t e r c e p t ) 2 1 0 . 7 3 2 4 8 0 7 8 . 7 3 8 0 . 0 0 4 0 . 9 9 7 
WC.TA - 3 . 4 1 5 1 0 3 2 . 2 8 6 - 0 . 0 0 3 0 . 9 9 7 
RE.TA - 1 . 2 0 6 4 2 4 . 4 1 6 - 0 . 0 0 3 0 . 9 9 8 
EBIT .TA - 1 3 . 5 5 3 2 9 6 0 . 2 1 5 - 0 . 0 0 5 0 . 9 9 6 
S.TA - 2 . 2 6 5 6 1 8 . 1 5 5 - 0 . 0 0 4 0 . 9 9 7 
BVE.BVL - 6 1 . 5 7 5 1 5 4 0 1 . 2 2 7 - 0 . 0 0 4 0 . 9 9 7 

N u l l d e v i a n c e : 6 . 7 9 0 8 e + 0 1 on 48 d e g r e e s o f f r e e d o m 
R e s i d u a l d e v i a n c e : 5 . 2 1 7 6 e - 0 8 on 43 d e g r e e s o f f r e e d o m 
A I C : 12 

This model fits the data perfectly, as the deviance is 0. This is termed com-
plete separation (since the predictors completely separate the bankrupt firms 
from the nonbankrupt ones), and results in all of the estimated standard er-
rors of the estimated slopes being extremely large (and the Wald statistics 
being correspondingly deflated). Recall that a similar problem arose in the 
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E 8 . 5 Index plot of standardized (Pearson) residuals for the logistic regression 
fit to the bankruptcy data. 

Whickham smoking survey data (page 166) for the same reason; the only way 
for a logistic regression to estimate a probability as 0 or 1 is to send the slope 
coefficient to ±00. 

A viable solution to this problem is to find a simpler model, if possible, 
that fits almost as well, but where the maximum likelihood estimates are fi-
nite. Table 8.2 summarizes the best models for each number of predictors 
p. All of the models are highly statistically significant, with LR statistics at 
least 43.7, so these are not reported in the table. All of the models fit well 
according to the Hosmer-Lemeshow test. The best model according to AIC 
and AICC is the four-predictor model that omits S/TA, which has a perfect 
fit. The three-predictor model based on RE/TA, EBIT/TA, and BVE/BVL, how-
ever, fits almost perfectly (with Hosmer-Lemeshow statistic H-L = 0.6 and 
Somers' D — 0.99), and has finite (and hence interpretable) estimated slope 
coefficients. Note that neither the Pearson goodness-of-fit test X2 or the de-
viance G2 should be examined for these data, since the observations have no 
replications (rii — 1 for all i). 

Output for the three-predictor model is as follows. 
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T A B L E &*2L Details of models fit to the bankruptcy data with 36oNetworks omitted. 
H-L refers to the Hosmer-Lemeshow goodness-of-fit test, and D refers to Somers' D. 

p 
0 
1 
2 

3 
4 

5 

wc/ 
TA 

X 

X 

RE/ 
TA 

X 
X 

X 
X 

X 

EBIT 
/TA 

X 
X 

X 

s/ 
TA 

X 

BVE/ 
BVL 

X 
X 

X 
X 

H-L 
(p-value) 

5.5 (.707) 

4.8 (.778) 

0.6 (> .999) 

0.0 (1.000) 

0.0 (1.000) 

D 

0.00 

0.93 

0.98 

0.99 

1.00 

1.00 

AIC 

69.9 

28.3 

20.9 

17.4 

10.0 

12.0 

AICC 

70.2 

28.8 

21.8 

18.8 

12.0 

14.7 

Coefficients: 
Estimate Std. Error z value Pr(>|z|) 

(Intercept) -0.09166 1.47135 -0.062 0.9503 
RE.TA -0.08229 0.04230 -1.945 0.0517 . 
EBIT.TA -0.26783 0.15854 -1.689 0.0912 . 
BVE.BVL -1.21810 0.76536 -1.592 0.1115 

Signif. codes: 
0 '**•' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

N u l l d e v i a n c e : 67.9080 on 48 d e g r e e s of freedom 
R e s i d u a l d e v i a n c e : 9 .3841 on 45 d e g r e e s of freedom 
AIC: 17 .384 

The Wald statistics are at first glance surprisingly small for a model with such 
strong fit, but this is actually not uncommon. The estimated standard error 
used in the denominator of the statistic is known to become too large when 
an alternative hypothesis far from the null is actually true because of the use 
of parameter estimates rather than null values (Mantel, 1987)? which deflates 
the statistic. The likelihood ratio test for the significance of each variable 
does not suffer from this difficulty, and each of these (not reported here) is 
highly statistically significant. All three coefficients are negative, as would be 
expected. Exponentiating the slopes gives odds ratios, given the other vari-
ables are held fixed; for example, e - , ° 8 2 = .92, implying that a one percentage 
point increase in RE/TA is associated with an estimated 8% decrease in the 
odds of a firm going bankrupt, given E B I T / T A and BVE/BVL are held fixed. 
Regression diagnostics do not indicate any outliers, although there are two 
leverage points, IDT Corporation and eGlobe, the former of which also has a 
relatively large Cook's distance (see Figure 8.6). Given the strength of the re-
gression, it is not surprising that omitting these observations does not change 
the implications of the modeling in a fundamental way. 
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GURE 8 . 6 Diagnostic plots for the three-predictor model fit to the bankruptcy 
data with 36oNetworks omitted. 

A classification table for this fitting is given below. Forty-seven of 49, or 
95.9%, of the firms were correctly classified, far higher than 

and Cry 

Cpro = (1.25)[(.4898)(.4898) + (.5102)(.5102)] = 62.5% 

= 51.0%, reinforcing the strength of the logistic regression. 
Predicted result 

Bankrupt Not bankrupt 
1 24 Actual B a n k ™Pt 

result Not bankrupt 
23 
1 

1 
24 25 

24 25 
Since this is a retrospective study, the estimated probabilities of bankrupt-

cy are not appropriate for prospective modeling, but prospective probabilities 
can be obtained by adjusting the constant term of the regression using prior 
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probabilities of bankruptcy. Say a 10% bankruptcy prior probability is used, 
which is roughly consistent with what would be expected for firms with a 
corporate bond rating of B. This then yields the adjusted intercept 

A) = A) + log 
(.10)(25) 

_(.90)(24)J 

which would be used in (8-2). 

8 . 6 Summary 

= /?o - 2.1564 = -2.2481, 

In this chapter we have discussed the application of logistic regression to the 
modeling of binary response data. Hosmer and Lemeshow (2000) provides 
a much more detailed discussion of logistic regression, and the discussion in 
Chapter 9 of Simonoff (2003) ties this material more closely to the broader 
analysis of categorical data. 

In recent years increased computing power has allowed for the possibil-
ity of replacing the standard asymptotic inference tools with exact methods. 
Such tests and estimates are based on a conditional analysis, where inference 
proceeds conditionally on the sufficient statistics for parameters not of direct 
interest. Rather than appealing to approximate normal and \2 distributions, 
permutation distributions from the conditional likelihood are used, which 
can require a good deal of computing power and special software. Simonoff 
(2003) provides further discussion of these methods for categorical data infer-
ence. 

Logistic regression is of course based on the assumption that the response 
yi follows a binomial distribution. This is potentially problematic for data 
where there are replications for the ith observation (that is, n^ > 1). In that 
case the binomial assumption can be violated if there is correlation among the 
rii individual responses, or if there is heterogeneity in the success probabilities 
that hasn't been modeled. Each of these violations can lead to overdisper-
sion, where the variability of the probability estimates is larger than would 
be implied by a binomial random variable. In this situation methods that cor-
rect for the overdispersion should be used, either implicitly (such as through 
what is known as quasi-likelihood) or explicitly (fitting a regression model 
using a response distribution that incorporates overdispersion, such as the 
beta-binomial distribution). Simonoff (2003) provides further discussion, and 
the corresponding problem for count data regression will be discussed in more 
detail in Section 10.4. 

Logistic regression for binomial data and (generalized) least squares re-
gression for Gaussian data are both special cases of the family of generalized 
linear models. Such models also have direct applicability in the regression 
analysis of count data, and will be discussed further in Chapter 10. 
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KEY TERMS 
Area under the ROC curve: A measure of the ability of a model to separate 
successes from failures. It is (literally) the area under the ROC curve, and 
ranges from 0.5) (no separation) to 1.0 (perfect separation). It is equivalent to 
Somers' D through the relationship AUR — D/2 + .5. 
Case-control design: A study in which sampling of units is based on the 
response categories that are being studied. This is also referred to as a retro-
spective sampling scheme. 
Cohort design: A study in which sampling of units is not based on the out-
come responses, but rather either randomly from the population or perhaps 
based on predictor(s). Such studies sometimes follow units over long peri-
ods of time, observing outcome(s) as they manifest themselves. This is also 
referred to as a prospective sampling scheme. 
Complete separation: The condition when a classification procedure cor-
rectly identifies all of the observations as successes or failures. This can indi-
cate a model that is overspecified, since a simpler model that correctly classi-
fies the vast majority (but not all) of the observations is often a better repre-
sentation of the underlying process. 
Deviance: A measure of the fit of a model fitted by the maximum likelihood 
method. The deviance equals twice the difference between the log-likelihood 
for the saturated model (the model with maximum log-likelihood) and that 
of the fitted model. Under certain conditions it has an asymptotic x2 distri-
bution with appropriate degrees of freedom and can be used as a measure of 
goodness-of-fit, but is not applicable for this purpose when the number of 
replications per observation is small. 
Expit function: The inverse of the logit function giving the relationship 
between the probability ir and the logit £, ir = exp(f)/[exp(f) + 1]. 
Goodness-of-fit statistic: A hypothesis test of whether an observed model 
provides an adequate fit to the data. 
Hosmer-Lemeshow goodness-of-fit statistic: A goodness-of-fit test statistic 
designed for the situation when the number of replications for (some) obser-
vations is small. 
Likelihood ratio test: A test in which a ratio of two likelihoods (or more 
accurately the difference between two log-likelihoods) is used to judge the va-
lidity of a statistical hypothesis. Such tests can be used to test a wide range 
of statistical hypotheses, often analogous to those based on F-tests in least 
squares regression. Under certain conditions it has an asymptotic x2 distribu-
tion with appropriate degrees of freedom. 
Logistic regression: A regression model defining a (typically linear) relation-
ship between the logit of the response and a set of predictors. 
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Logit function: The inverse of the expit function giving the relationship 
between the logit £ and the probability 7r, £ = log[71-/(1 — TT)) (that is, the log 
of the odds). 
Maximum likelihood estimation: A method of estimating the parameters 
of a model in which the estimated parameters maximize the likelihood for 
the data. Least squares estimation is a special case for Gaussian data. Maxi-
mum likelihood estimates are known to possess various asymptotic optimal-
ity properties. 
Odds ratio: The multiplicative change in the odds of an event happening 
associated with a one unit change in the value of a predictor. 
Pearson goodness-of-fit statistic: A goodness-of-fit test statistic based on 
comparing the model-based variability in the data to its inherent variability. 
Under certain conditions it has an asymptotic x2 distribution with appro-
priate degrees of freedom, but is not applicable for this purpose when the 
number of replications per observation is small. 
Prior probabilities: The true (unconditional) probabilities of success and 
failure. These are required in order to convert estimated probabilities of suc-
cess from a retrospective study into estimated prospective probabilities. 
Probit regression: A regression model for binary data that uses the cumula-
tive distribution function of a normally distributed random variable to gener-
ate S-shaped curves, rather than the expit function used in logistic regression. 
Prospective design: A study in which sampling of units is not based on 
the outcome responses, but rather either randomly from the population or 
perhaps based on predictor(s). Such studies sometimes follow units over long 
periods of time, observing outcome(s) as they manifest themselves. This is 
also referred to as a cohort design. 
Retrospective design: A study in which sampling of units is based on the 
response categories that are being studied. This is also referred to as a case-
control design. 
ROC (Receiver Operating Characteristic) curve: A plot of the fraction 
of observations classified as successes by a model that are actually successes 
(the true positive rate) versus the fraction of observations classified as failures 
that are actually failures (the true negative rate), at various classification cutoff 
values. 
Simpson's paradox: A situation where the marginal direction of association 
of a variable with a binary response variable is in the opposite direction to the 
conditional association taking into account membership in groups defined by 
another variable. 
Somers' D: A measure of the ability of a model to separate successes from 
failures. It is the difference between the proportion of concordant pairs and 
the proportion of discordant pairs calculated from pairs of estimated suc-
cess probabilities where one member of the pair is a success and the other 
is a failure, and a concordant (discordant) pair is one where the estimated 
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probability of success for the actual success is larger (smaller) than that for 
the actual failure. D ranges from 0 (no separation) to 1 (perfect separation), 
and is equivalent to the area under the ROC curve through the relationship 
D = 2 xAUR-1. 
Wald test statistic: A test statistic for the significance of a regression coeffi-
cient based on the ratio of the estimated coefficient to its standard error. For 
large samples the statistic can be treated as a normal deviate. 
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9.1 Introduction 

The formulation of logistic regression in the previous chapter is appropri-
ate for binary response data, but there are situations where it is of interest 
to model a categorical response that has more than two categories; that is, 
one that is polytomous. For example, in a clinical trial context for a new 
drug, the responses might be "No side effects," "Headache," "Back pain," and 
"Dizziness," and the purpose of the study is to see what factors are related to 
the chances of an individual experiencing one of the possible side effects. An-
other common situation is the modeling of so-called Likert-type scale vari-
able, where (for example) a respondent is asked a question that has response 
categories "Strongly disagree" - "Disagree" - "Neutral" - "Agree" - "Strongly 
agree," and the purpose of the study is to see if it is possible to model a per-
son's response as a function of age, gender, political beliefs, and so on. 

Handbook of Regression Analysis. By Samprit Chatterjee and Jeffrey S. Simonoff I J J 
Copyright © 2013 John Wiley & Sons, Inc. 
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A key distinction in regression modeling of variables of this type com-
pared to the models discussed in the previous chapters is that in this case the 
response is explicitly multivariate. If the response variable has K categories, 
the goal is to model the probability vector ir — {TTI, . . . , TTK} as a function of 
the predictors, so there are K—1 numbers being modeled for each observation 
(the probabilities must sum to 1, so the Kth probability is determined by the 
others). In this chapter we examine models that generalize logistic regression 
(which has K = 2) to the multiple-category situation. This generalization is 
accomplished in two distinct ways, depending on whether or not there is a 
natural ordering to the categories. 

9 . 2 Concepts and Background Material 

Consider the ith observed response value y* of a if-level categorical variable. 
The value yik is the number of replications of the ith observation that fall in 
the fcth category in rii replications. Just as the binomial random variable was 
the key underlying distribution for binary logistic regression, in this situation 
the multinomial distribution is key. This is represented y^ ~ M u l t ^ , ^ ) . 
The m = 1 case is naturally thought of as the situation where the observa-
tion has a single response corresponding to one of the categories (for example, 
"Strongly agree"), while rii > 1 refers to the situation where there are repli-
cations for a given set of predictor values and the observation is a vector of 
length K of counts for each category. Note, however, that in fact yi is a vec-
tor in both situations, with one entry equal to 1 and all of the others equal to 
0 when rii — 1. 

As was noted in Section 8.2 for binary response data, there are two aspects 
of a regression model for a categorical response that need to be addressed: 
the underlying probability distribution for the response, and the model for 
the relationship between the probability of each response category and the 
predictors. The multinomial distribution provides the distribution, but the 
usefulness of models for the relationship with predictors depends on whether 
or not there is a natural ordering to the response categories, as is described in 
the next two sections. 

9.2.1 NOMINAL RESPONSE VARIABLE 

Consider first the situation where the response variable is nominal; that is, 
there is no natural ordering to the categories. The logistic regression model in 
this case is the natural generalization from the two-category situation to one 
based on K — 1 different logistic relationships. Let the last (Kth) category 
represent a baseline category; the model then states that the probability of 
falling into group k given the set of predictor values x satisfies 

log —- ) = /?ofc + /?ifc#i H f- PpkXp, k = l , . . . , i f - 1. (9.1) 
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The model is based on K — 1 separate equations, each having a distinct set of 
parameters f3k. Obviously, for the baseline category K, (3$K = P\K = • • • — 

The logit form of (9.1) implies that (as before) exponentiating the slope 
coefficients gives odds ratios, now relative to the baseline category. That is, 
e^jk is the multiplicative change in the odds of being in group k versus being 
in group K associated with a one unit increase in Xj holding all else in the 
model fixed. In a situation where there is a naturally defined reference group, 
it should be chosen as the baseline category, since then the slopes are directly 
interpretable with respect to that reference. So, for example, in the clinical 
trial context mentioned earlier, the reference group (and therefore baseline 
category) would be "No side effects," and the slopes would be interpreted 
in terms of the odds of having a particular side effect versus having no side 
effects. 

Despite this interpretation of odds ratios relative to the baseline category, 
the choice of baseline is in fact completely arbitrary from the point of view 
of the implications of the model. Say category M is instead taken to be the 
baseline category. From (9.1), 

log 7Tfc(x) 

|_7TM(x)J 
log 

- l o g 

7rfc(x)/7rx(x) 
7rM(x)/7rx(x) 

- l o g 7 T M ( X ) 

7Tx(x)J L ^ M J 
(Pok + PikX± H h PpkXp) 

- (POM + PIMXI H 1- PpMXp) 

(Pok ~ POM) + (Pik ~ PIM)X\ + • • • + (PPk PpM)xp-
(9-2) 

That is, the logit coefficients for level k relative to a baseline category M (both 
intercept and slopes) are the differences between the coefficients for level k 
relative to baseline K and the coefficients for level M relative to baseline K. 
Note that there is nothing in this derivation that requires category M to be a 
baseline category; equation (9.2) applies for any pair of categories. 

Note that (9.2) also implies that no matter which category is chosen as 
baseline, the probabilities of falling in each level as a function of the predic-
tors will not change. Model (9.1) implies the familiar S-shape for a logistic 
relationship, 

7Tfc(x) 
exp(pok + PikXi + ' PpkXp) 

^K E m = l exP(A)m + PlmXl H h PpmXp) 
(9.3) 

Equation (9.2) shows that for this model the (log-)odds of one category 
of the response versus another does not depend on any of the other cate-
gories; that is, other possible outcomes are not relevant. This is known as 
independence of irrelevant alternatives (IIA). This is often reasonable, but 
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in some circumstances might not be. Consider, for example, a discrete choice 
situation, where an individual must choose between, for example, different 
travel options. A well-known discrete choice example, the so-called "red bus 
/ blue bus" example, illustrates the problem. Suppose a traveler must choose 
between three modes of transportation: red bus, car, or train. Further, say 
that the traveler had individual characteristics (income, age, gender, etc.) such 
that he or she has no preference between the three choices, implying that the 
traveler's probability of choosing each is 1/3. Now, say an indistinguishable 
alternative to the red bus, a blue bus, becomes available. It seems reasonable 
that the two types of buses would be of equal appeal to the traveler, result-
ing in probability 1/6 of being chosen for each, while the probabilities of the 
other two possible choices would not change. This, however, is a violation 
of IIA, since adding the supposedly irrelevant alternative of a blue bus has 
changed the odds of a traveler choosing the red bus versus a car or a train. 
For this reason, the nominal logistic regression model should only be used 
in situations where this sort of effect is unlikely to occur, such as when the 
different response categories are distinct and dissimilar. 

9.2.2 ORDINAL RESPONSE VARIABLE 

In many situations, such as the Likert-scaled variable described earlier, there 
is a natural ordering to the groups, and a reasonable model should take that 
into account. An obvious approach is to just use ordinary least squares regres-
sion, with the group membership numerical identifier as the target variable. 
This will not necessarily lead to very misleading impressions about the rela-
tionships between predictors and the response variable, but there are several 
obvious problems with its use in general: 

i. An integral target variable clearly is inconsistent with continuous (and 
hence Gaussian) errors, violating one of the assumptions when construct-
ing hypothesis tests and confidence intervals. 

2. Predictions from an ordinary regression model are of course nonintegral, 
resulting in difficulties in interpretation: what does a prediction to cate-
gory 2.763 mean, exactly? 

3. The least squares regression model doesn't address the actual underlying 
structure of the data, as it ignores the underlying probabilities IT com-
pletely. A reasonable regression model should provide direct estimates of 
7T(x). 

4. The regression model implicitly assumes that the numerical codings (for 
example, 1-2-3-4-5) reflect the actual "distances" from each other, in the 
sense that group 1 is as far from group 2 as group 2 is from group 3. It 
could easily be argued that this is not sensible for a given data set. For 
example, it is reasonable to consider the possibility that a person who 
strongly agrees with a statement (i.e., group 5) has a somewhat extreme 
position, and is therefore "farther away" from a person who agrees with 
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9 .1 Graphical representation of the latent variable model for regression 
with an ordinal response variable. 

the statement (group 4) than a person who agrees with the statement is 
from a person who is neutral (group 3). A reasonable regression model 
should be flexible enough to allow for this possibility. 

A way of constructing such a model is through the use of a latent vari-
able. The idea is represented in Figure 9.1 in the situation with one predictor, 
but it generalizes to multiple predictors in the obvious way. Consider the 
situation where the observed response is a Likert-scaled variable with K cat-
egories. The latent variable y* is an underlying continuous response variable 
representing the "true" agreement of the respondent with the statement. This 
variable is not observed, because the respondent is restricted to choosing one 
of K response categories. To account for this we assume that there is a grid 
{ a 0 , . . . , OLK}> with -00 — a0 < ai < • • • < ax = 00, such that the observed 
response y satisfies 

y = kif ak-i < y* < ak. 

That is, we observe a response in category k when the underlying y* falls in 
the kth interval of values. 

Note that Figure 9.1 also highlights the linear association between the 
latent variable y* and the predictor x. The plotted density curves represent 
the probability distributions of y* for specified values of x (#i, X2, and £3, re-
spectively). These curves are centered at different values of y* because of that 



I g 2 CHAPTER 9 Multinomial Regression 

linear association. It is this association that ultimately drives the relationship 
between the probabilities of falling into each of the response categories of y 
(the observed categorical response) and the predictor, as 7Tk(x) is simply the 
area under the density curve between ctk-i and ak for given x. 

It turns out that if the assumed density of y* given x follows a logistic dis-
tribution, this representation implies a simple model that can be expressed in 
terms of logits. (The logistic density is similar to the Gaussian, being symmet-
ric but slightly longer-tailed; its cumulative distribution function generates 
the expit curve.) Define the cumulative logit as 

Ck{x) = logit [Fk(x)] = log 
Fk{x) 

Ll-Pfc(rr)J 
, # ■ 

where Fk(x) = P{y < k\x) = ] C m = 1
 7rm(^) is the cumulative probability for 

response category k given x. That is, Ck{x) is the log odds given x of observ-
ing a response less than or equal to k versus greater than k. The proportional 
odds model then says that 

Ck(x) = ak + /3x, k = 1 , . . . , K - 1. 

Note that this means that a positive (3 is associated with increasing odds of 
being less than a given value fc, so a positive coefficient implies increasing 
probability of being in lower-numbered categories with increasing x; for this 
reason some statistical packages reverse the signs of the slopes so that a pos-
itive slope is consistent with higher values of the predictor being associated 
with higher categories of the response. This generalizes in the obvious way 
to multiple predictors, 

£fc(x) = ak + fcxi H h PpXp, k = 1 , . . . , K - 1. (9.4) 

The model is called the proportional odds model because it implies that hold-
ing all else fixed a one-unit increase in Xj is associated with multiplying the 
odds of being less than or equal to category k versus being greater than that 
category by e@j for any category k. 

9 . 3 Methodology 

9.3.1 ESTIMATION 

Estimation of the underlying parameters for either of these classes of models 
can be estimated using maximum likelihood. The log-likelihood is 

K 

k=l yi=k 

where the second summation is over all observations i with response level k, 
and 7Tfc(i) is the probability (9.3) for the nominal logistic regression model or 
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the probability implicitly implied by (9.4) for the proportional odds model, 
respectively, substituting in the predictor values for the ith observation. The 
resultant estimates of j3 are efficient for large samples. Note that although the 
nominal logistic regression has the structure of K — 1 separate binary logistic 
regressions, the underlying relationships are fitted simultaneously. 

9.3.2 INFERENCE, MODEL COMPARISONS, AND STRENGTH 
OF FIT 

Many of the inferential and descriptive tools described in Section 8.3.2 for 
binary logistic regression also apply in the multiple-category case. Output 
from the fitting of a nominal logistic regression looks very much like a set 
of binary logistic regression outputs, since the model is defined as a series of 
logistic regressions with the same baseline category. That is, if for example 
the baseline category is category K, the output will provide summaries of 
models for logistic regressions of category 1 versus category K, category 2 
versus category K, and so on, resulting in (K — l)(p -f 1) regression param-
eters. For the logistic regression comparing the kth category to the baseline 
category Wald tests can be constructed to test the significance of an individual 
regression coefficient, testing the hypotheses 

Ho : 0jk = 0 

versus 
Ha : pjk ^ 0. 

It is also possible to construct a test of the significance of a predictor xj in all 
of the regressions, testing 

H0 : Pji = ■ • • = PjK = 0 

versus the alternative that at least one of these coefficients is not zero. The 
likelihood ratio statistic for testing these hypotheses is the difference between 
—2L for the model that includes Xj and —2L for the model that does not, 
and can be compared to a \2 critical value on K — 1 degrees of freedom. 
A test for whether all of the slope terms equal zero is a test of the overall 
significance of the regression, and can be constructed as a likelihood ratio 
test comparing the fitted model to one without any predictors. If one model 
is a subset of another model a test of the adequacy of the simpler model is 
constructed based on the difference between the two — 2L values, referenced 
to a x2 distribution with degrees of freedom equal to the difference in the 
number of estimated parameters in the two models. Different models also 
can be compared using AIC or AICC. 

The proportional odds model has a more straightforward representation, 
being based on a set of K — 1 intercepts and a single set of p slope parameters. 
Wald test statistics can be constructed for the significance of each of these pa-
rameters, and a test for whether all of the slope terms equal zero is a test of the 
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overall significance of the regression. Clearly the nominal logistic regression 
model can be applied to ordinal response data as well, and can provide a check 
of the validity of the ordinal model, since it is a more general model. For 
K > 2 the proportional odds model is simpler (has fewer parameters) than 
the nominal logistic regression model, so if it is a reasonable representation 
of the underlying relationship it would be preferred. The two models can be 
compared using AIC or AICC, and also using a likelihood ratio test. A gen-
eralization of (9.4) from constant slopes (J3j) to different slopes for different 
categories (J3jk for the /cth category) corresponds to an interaction between 
the variable Xj and the category; comparing the fits of the two models using 
a likelihood ratio test is a test of the proportional odds assumption. 

Measures of association such as Somers' D (Section 8-3-4) c a n be con-
structed for ordinal response models, since in that case the concepts of con-
cordance and discordance are meaningful. A pair of observations from two 
different categories are concordant if the observation with the lower ordered 
response value has a lower estimated mean score than the observation with 
the higher ordered response value, and D is the difference between the con-
cordant and discordant proportions. 

If it was desired to classify observations, they would be assigned to the cat-
egory with largest estimated probability. A classification table is then formed 
in the same way as when there are two groups (Section 8-3-4)> a n d the two 
benchmarks Cmax and Cpro are formed in an analogous way. 

9.3.3 LACK OF FIT AND VIOLATIONS OF ASSUMPTIONS 

The Pearson (8.6) and deviance (8.7) goodness-of-fit test statistics also general-
ize to multiple-category regression models. The Pearson statistic is now 

*2 = £ £ 
2 = 1 fc=l 

while the deviance is 
n K r 

(Vik ~ njKik)2 

G2 = 2 £ £ 
2 = 1 fc=l 

i / Vik 
Vik log 7— 

riiTTik 

Each of these statistics can be compared to a \2 distribution on n(K—1) — p— 1 
degrees of freedom, but only if the n2- values are reasonably large (note that 
as in Chapter 8> n is the number of replicated observations, not the total 
number of replications). When the number of replications is small, or there 
are no replications at all (rii = 1 for all i), the Pearson and deviance statistics 
are not appropriate for testing goodness-of-fit, but Pigeon and Heyse (1999) 
proposed a test that generalizes the Hosmer-Lemeshow test. 

The multivariate nature of the response variable y results in some difficul-
ties in constructing diagnostics for the identification of unusual observations, 
since there are K different residuals y^ — n^ik for each observation. In the 
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situation with replications it is possible to see whether for any observation 
any categories have unusually greater or fewer replications than would be ex-
pected according to the fitted model. When there is only a single replication, 
it can be noted that an observation has low estimated probability of falling in 
its actual category, but for nominal data there is no notion of how "far away" 
its actual category is from its predicted one. Unusualness for ordinal data is 
easier to understand, as (for example) an individual with response "Strongly 
agree" is clearly more unusual if they have a high estimated probability of 
saying "Strongly disagree" than if they have a high estimated probability of 
saying "Agree." 

9 . 4 Example — City Bond Ratings 

Abzug et al. (2000) gathered data relating the bond rating of a city's general 
obligation bonds to various factors as part of a study of what types of or-
ganizations dominate employment in cities. We focus here on four potential 
predictors of bond rating: logged population (using natural logs), average total 
household income, the number of nonprofits among the top ten employers 
in the city, and the number of for profits among the top ten employers in the 
city, for 56 large cities that issued general obligation bonds. The bond rating 
for each city falls into one of the classes A A A, A A, A, or BBB. These classes 
are ordered from highest to lowest in terms of credit-worthiness. 

Figure 9.2 gives side-by-side boxplots of each predictor separated by rating 
class. There isn't any obvious relationship between logged population and 
rating or the number of for profit institutions among the top ten employers 
in the city and rating, while lower average household income and a lower 
number of nonprofits among the top ten employers are associated with higher 
credit-worthiness. 

The output below summarizes the result of a nominal logistic regression 
fit based on all four predictors, with the lowest (BBB) rating class taken as the 
baseline category. 

Logit 1: AAA versus BBB 
(Intercept) 
Logged.population 
Household.income 
Nonprofits.in.top.10 
For.profits.in.top.10 

Logit 2: AA versus BBB 
(Intercept) 
Logged.population 
Household.income 
Nonprofits.in.top.10 

Estimate 

12.7268 
-0.13988 
-0.00012 
-1.58691 
-0.15720 

27.6381 
-1.6257 
0.00005 
-1.5765 

Std. Err 

15.025 
1.3849 

0.000166 
0.74459 
0.38536 

11.112 
0.91953 
0.000107 
0.54870 

z P 

0. 
-0. 
-0, 
-2. 
-0, 

2, 
-1. 
0, 

-2, 

.85 

.10 

.74 

.13 

.41 

.49 

.77 

.47 

.87 

r(>|z|) 

0. 
0. 
0. 
0. 
0, 

0. 
0. 
0. 
0. 

.397 

.920 

.456 

.033 

.683 

.013 

.077 

.637 

.004 
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9 .2 Side-by-side boxplots for the bond rating data. 

F o r . p r o f i t s . i n . t o p . 1 0 

L o g i t 3 : A v e r s u s BBB 
( I n t e r c e p t ) 
L o g g e d . p o p u l a t i o n 
Househo ld . income 
N o n p r o f i t s . i n . t o p . 1 0 
F o r . p r o f i t s . i n . t o p . 1 0 

- 0 . 4 2 3 9 

7.5600 
- 0 . 2 6 6 1 

- 0 . 0 0 0 0 0 3 
- 0 . 4 9 1 7 
- 0 . 3 2 3 9 

0 .31629 

10 .511 
0 .88151 

0.000110 
0.52392 
0 .31626 

-1 .34 0 .180 

0.72 0 .470 
-0 .30 0 .763 
-0 .02 0 .981 
-0 .94 0 .348 
-1 .02 0 .306 

Most of the Wald statistics are not statistically significant, with only the 
number of nonprofits among the top ten employers in the city showing up 
as statistically significant at a .05 level in the comparisons of the cities with 
AAA ratings versus BBB ratings and those with AA ratings compared to those 
with BBB ratings. The interpretation of the coefficients is the same as in 
binary logistic regressions; for example, the slope coefficient for the number 
of nonprofits in the AAA versus BBB model implies that holding all else 
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fixed an increase of one nonprofit among the top ten employers in a city is 
associated with multiplying the odds of the city having an AAA rating versus 
having a BBB rating by e~1 5 8 7 = 0.20, or an estimated 80% decrease. All of 
the estimated coefficients for this predictor are negative, which is consistent 
with the marginal relationship that more nonprofits is associated with less 
chance of having a higher credit rating. 

This model seems to be overspecified and should be simplified. Since 
there are four predictors, there are 24 — 1 = 15 different possible regression 
models that include at least one predictor. Comparison of all of these models 
via AICC (not shown) implies that only two models should be considered: the 
model using the number of nonprofits among the top ten employers alone, or 
the model that also includes logged population. While the simpler model has 
smaller AICC, the model that adds logged population has smaller AIC, and 
the likelihood ratio test comparing the two models weakly rejects the simpler 
model (LR = 7.35, df = 3, p = .06). The output below summarizes the fit 
based on the two-predictor model. 

Estimate Std. Err z Pr(>|z|) 

Logit 1: AAA versus BBB 
(Intercept) 
Logged.population 
Nonprofits.in.top. 

Logit 2: AA versus 
(Intercept) 
Logged.population 
Nonprofits.in.top . 

Logit 3: A versus 
(Intercept) 
Logged.population 
Nonprofits.in.top. 

10 

> BBB 

10 

BBB 

.10 

17.8415 
-1.00619 
-1.70719 

23.2681 
-1.28134 
-1.44526 

5.85505 
-0.269707 
-0.454743 

12.4327 
0.818426 
0.697162 

9.74556 
0.624626 
0.517454 

9.42789 
0.595171 
0.496228 

1. 
-1. 
-2. 

2, 
-2, 
-2, 

0, 
-0, 
-0. 

.44 

.23 

.45 

.39 

.05 

.79 

.62 

.45 

.92 

0. 
0, 
0, 

0, 
0, 
0, 

0. 
0, 
0, 

.151 

.219 

.014 

.017 

.040 

.005 

.535 

.650 

.359 

The slopes for the number of nonprofits variable do not change greatly from 
the model using all four predictors. The only Wald statistic that is statisti-
cally significant for the logged population variable is for the comparison of 
A A versus BBB rating classes, with a larger population associated with less 
credit-worthiness. Note that since the predictor is in the natural log scale, the 
slope is an elasticity for the odds; that is, holding the number of nonprofits 
fixed, a 1% increase in population is associated with an estimated 1.28% de-
crease in the odds of a city being rated A A versus BBB. The overall statistical 
significance of the model is high, with LR = 20.6 (df = 6, p — .002). 

This analysis, of course, does not take into account the natural ordering 
of the rating classes. Here is output for a proportional odds fit to the data 
based on all four of the predictors: 
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alpha (1) 
alpha (2) 
alpha(3) 
Logged.population 
Household.income 
Nonprofits.in.top. 
For.profits.in.top 

10 
.10 

10 
14 
16 
-0 
0 

-1 
-0 

Coef 
9797 
8816 
7583 
8075 
0000 
.0773 
0845 

5 
5 
5 
0 
0 
0 
0 

S.E. 
2474 
4321 
.5639 
.4459 
.0000 
.2798 
.1557 

2 
2 
3 

-1 
-0 
-3 
-0 

Z 
09 
74 
01 
81 
02 
85 
54 

Pr 
0 
0 
0 
0 
0 
0 
0 

(>|Z|) 
0364 
0062 
0026 
.0701 
.9815 
.0001 
.5874 

Note that the software fitting this model reverses the signs, so (for ex-
ample) the negative coefficient for the number of nonprofits among the top 
ten employers implies that more nonprofits are associated with a lower credit 
rating (holding all else fixed). The only two variables close to statistical sig-
nificance are again logged population and the number of nonprofits among 
the top ten employers. Comparison of all of the possible models via AICC 

implies that the only model supported is that based on logged population and 
the number of nonprofits among the top ten employers: 

alpha (1) 
alpha(2) 
alpha(3) 
Logged.population 
Nonprofits.in.top.10 

10 
14 
16 
-0 
-1 

Coef 
.7301 
.6202 
.4908 
.8205 
.0670 

4 
5 
5 
0 
0 

S.E. 
.8965 
0974 
2338 
3384 
.2744 

2 
2 
3 

-2 
-3 

Z 
19 
87 
15 
42 
89 

Pr 
0 
0 
0 
0 
0 

(>|Z|) 
0284 
0041 
0016 
0153 
0001 

The overall regression is highly statistically significant (LR = 19.7, df = 2, 
p < .0001). The implications of the model are similar to those of the nomi-
nal model (higher population and more nonprofits are associated with lower 
credit rating holding all else fixed), but this model is much more parsimo-
nious, being based on only 5 parameters rather than 9. This is reflected in the 
AICC values (AICC for the ordinal model is 10.5 lower than that of the nom-
inal model), and also in the likelihood ratio test comparing the two models, 
which does not come close to rejecting the simpler ordinal model (LR = 0.9, 
df = 4, p = 0.93). 

Somers' D = 0.52 for this model, suggesting moderate separation be-
tween the rating classes. This is also reflected in the classification table (the 
corresponding table for the nominal logistic regression model based on these 
two variables is unsurprisingly very similar). 

Predicted result 

6 
12 
33 
5 

Actual 
result 

BBB 
A 
AA 
AAA 

BBB 
2 
0 
0 
0 

A 
2 
6 
2 
0 

AA 
2 
6 
31 
5 

AAA 
0 
0 
0 
0 

2 10 44 0 
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The model correctly classifies 69.6% of the cities, which is only mod-
erately greater than Cmax = 58.9% and Cpro = 63.1%. Two of the cities are 
misclassified to two rating classes higher than they were (Buffalo and St. Louis 
both had ratings of BBB but were classified to an AA rating, because of a low 
number of nonprofits among the top ten employers [Buffalo] and a large pop-
ulation [St. Louis], respectively). Even more troubling, none of the cities are 
classified to the AAA group. 

Omitting Buffalo and St. Louis from the data does not change the fitted 
models very much. The proportional odds model based on logged popula-
tion and number of nonprofits among the top ten employers does now clas-
sify one city to the AAA rating class, but it is an incorrect classification, so 
that is not a point in its favor. An alternative approach could be based on 
Simonoff (1998b), in which a smoothed version of the cross-classification of 
bond rating and number of nonprofits is used to argue that the relationship 
between rating and nonprofits is not monotone (both less and more nonprof-
its than one among the top ten employers being associated with lower bond 
rating). This suggests accounting for this pattern in the regression by fitting 
a quadratic relationship with number of nonprofits, and if that is done the 
squared predictor is in fact statistically significant. Classification accuracy 
does not improve based on this model, however. 

9 .S Summary 

In this chapter we have generalized the application of logistic regression to 
response data with more than two categories. Nominal logistic regression is 
based on the principle of choosing a baseline category and then simultane-
ously estimating separate (binary) logistic regressions for each of the other 
categories versus that baseline. This is a flexible approach, but can involve a 
large number of parameters if K is large. 

The nominal logistic regression model requires the assumption of inde-
pendence of irrelevant alternatives, an assumption that can easily be violated 
in discrete choice models. There is a large literature on tests for IIA and ex-
tensions and generalizations of multiple category regression models that are 
appropriate in the discrete choice framework. See Train (2009) for more de-
tails. 

If the response variable has naturally ordered categories, it is appropriate 
to explore models that take that into account, as they can often provide par-
simonious representations of the relationships in the data. These models are 
generally underutilized in practice, as analysts tend to just use ordinary (least 
squares) linear regression with the category number as the response value to 
analyze these data. This is not necessarily a poor performer if the number 
of categories is very large, but can be very poor for response variables with a 
small number of categories. The proportional odds model is a standard first 
approach, but it is not the only possibility. Other possible models include 
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ones based on cumulative probits, adjacent-categories logits, or continuation 
ratios rather than cumulative logits. Chapter 10 of Simonoff (2003) provides 
more extensive discussion of these models. 

KEY TERMS 
Cumulative logit: The logit based on the cumulative distribution function, 
representing the log-odds of being at a specific level or lower versus being at a 
higher level. 
Independence of irrelevant alternatives (IIA): The property that the odds 
of being in one category of a multiple-category response variable versus an-
other category of the variable depends only on the two categories, and not on 
any other categories. 
Latent variable: An underlying continuous response variable representing 
the "true" agreement of a respondent with a statement, which is typically un-
observable. More generally, any such variable that is only observed indirectly 
through a categorical variable that reports counts falling into (unknown) in-
tervals of the variable. 
Likert-type scale variable: A variable typically used in surveys in which 
a respondent reports his or her level of agreement or disagreement on an 
ordered scale. The scale is typically thought of as reflecting an underlying 
latent variable. 
Multinomial random variable: A discrete random variable that takes on 
more than two prespecified values. This is a generalization of the binomial 
variable, which takes on only two values. 
Nominal variable: A categorical variable where there is no natural ordering 
of the categories. 
Ordinal variable: A categorical variable where there is a natural ordering of 
the categories. 
Polytomous variable: A categorical response that has more than two cate-
gories. 
Proportional odds model: A regression model based on cumulative logits of 
an ordinal response variable that hypothesizes an equal multiplicative effect 
of a predictor on the odds of being less than or equal to category k versus 
being greater than that category for any category &, holding all else fixed. It 
is consistent with an underlying linear relationship between a latent variable 
and the predictors if the associated error term follows a logistic distribution. 
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10.1 Introduction 

The previous two chapters focused on situations where least squares estima-
tion is not appropriate because of the special nature of the response vari-
able, with Chapter 8 exploring binary logistic regression models for binomial 
response data and Chapter 9 outlining multiple-category logistic regression 
models for multinomial response data. Another situation of this type is the 
focus of this chapter: regression models when the response is a count, such 
as (for example) attempting to model the expected number of homicides in a 
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small town for a given year or the expected number of lifetime sex partners 
reported by a respondent in a social survey. 

Just as was true for binary data, the use of least squares is inappropriate 
for data of this type. A linear model implies the possibility of negative es-
timated mean responses, but counts must be nonnegative. Counts can only 
take on (nonnegative) integer values, which makes them inconsistent with 
Gaussian errors. Further, it is often the case that count data exhibit het-
eroscedasticity, with larger variance accompanying larger mean. 

In this chapter we examine regression models for count data. The work-
horse random variable in this context is the Poisson random variable, and we 
first describe its properties. We then highlight the many parallels between 
count regression models and binary regression models by showing how both 
(and also Gaussian-based linear regression) are special cases of a broad class of 
models called generalized linear models. This general formulation provides 
a framework for inference in many regression situations, including count re-
gression models. 

Although the Poisson random variable provides the basic random struc-
ture for count regression modeling, it is not flexible enough to handle all 
count regression problems. For this reason we also discuss various general-
izations of Poisson regression to account for more variability than expected 
(overdispersion), and greater or fewer observed specific numbers of counts 
(often greater or fewer zero counts than expected), which can be useful for 
some data sets. 

10 .2 Concepts and Background Material 

10.2.1 THE POISSON RANDOM VARIABLE 

The normal distribution is not an appropriate choice for count data for the 
reasons noted earlier. The standard distribution for a count is a Poisson dis-
tribution. The reason for this is that the Poisson is implied by a general 
model for the occurrence of random events in time or space. In particular, if 
v is the rate at which events occur per unit time, under reasonable assump-
tions for the occurrence of events in a small time interval, the total number 
of independent events that occur in a period of time of length t has a Pois-
son distribution with mean fi = vt. The Poisson distribution, represented 
as y ~ Pois(/i), is completely determined by its mean /i, as its variance also 
equals /i. 

The Poisson random variable is closed under summation, in the sense that 
a sum of independent Poissons is itself Poisson with mean equal to the sum of 
the underlying means. Since this means that a Poisson with mean /i is the sum 
of \i independent Poissons of mean 1, the Central Limit Theorem implies that 
as ii gets larger a Poisson random variable is approximately normal. 
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The Poisson distribution also has important connections with two other 
discrete data distributions. If the number of successes in n trials is binomially 
distributed, with the number of trials n —> oc and the probability of success 
p —» 0 such that np —► /i, the distribution of the number of successes is 
approximately Poisson with \i. This means that the Poisson is a good choice 
to model the number of rare events; that is, ones that are unlikely to occur in 
any one situation (since p is small), but might occur in a situation with many 
independent trials (that is, n is large). 

The Poisson random variable also has a close connection to the multino-
mial. If K independent Poisson random variables { n i , . . . , TIK} are observed, 
each with mean /i^, their joint distribution conditional on the total number 
of counts ^2j^j is multinomial with probability 71̂  = fJ>i/(52j Vj)- This 
connection turns out to be particularly important in the analysis of tables of 
counts (contingency tables). 

IO.2.2 GENERALIZED LINEAR MODELS 

As was noted in Section g.2, a regression model must specify several things: 
the distribution of the value of the response variable yi (the so-called random 
component)^ the way that the predicting variables combine to relate to the 
level of yi (the systematic component), and the connection between the ran-
dom and systematic components (the link function). The generalized linear 
model is a family of models that provides such a framework for a very wide 
set of regression problems. Specifically, the random component requires that 
the distribution of yi comes from the exponential family and the systematic 
component specifies that the predictor variables relate to the level of y as a lin-
ear combination of the predictor values (a linear predictor). The link function 
then relates this linear predictor to the mean of y. 

The Gaussian linear model (1.1) is an example of a generalized linear 
model, with identity link function and a normal distribution as the random 
component. Logistic regression is also an example of a generalized linear 
model, with the binomial distribution being the random component and the 
logit function {%.\) defining the link function. 

The Poisson regression model is also a member of the generalized linear 
model family. Since the mean of a Poisson random variable must be nonneg-
ative, a natural link function in this case (and the one that is standard) is the 
log link, 

log Hi = log[E(yi)] = /?o + Pixu H + PpXpi. 

Thus, the Poisson regression model is an example of a log-linear model. By 
convention natural logs are used rather than common logs. Note that this is 
a semilog model for the mean of y, 

,. — ^AD+^I^IH \-(3pXpi 
'I c 1 (10.1) 
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so the slope coefficients have the usual interpretation as semielasticities, with 
a one unit change in Xj associated with multiplying the expected response by 
e^, holding all else in the model fixed. 

1 0 . 3 Methodology 

10.3 .1 ESTIMATION AND INFERENCE 

Maximum likelihood is typically used to estimate the parameters of gen-
eralized linear models, including the Poisson regression model. The log-
likelihood takes the form 

n 

i=l 

where [ii satisfies (io. i). Just as was true for logistic regression, the maximizer 
of this function (the maximum likelihood estimate) takes the approximate 
form of a weighted least squares (IRWLS) estimate with weight and corre-
sponding error variance for each observation that depends on the parameter 
estimates. 

Inference proceeds in a completely analogous way to the situation for 
logistic regression. Specifically: 

A test comparing any two models where one is a simpler special case of 
the (more general) other is the likelihood ratio test LR, where 

■L'-K' ^v-^general -^simpler) • 

This is compared to a Xd critical value, where d is the difference in the 
number of parameters fit under the two models. This applies also to a 
test of the overall significance of the regression, where the general model 
is the model using all of the included predictors, and the simpler model 
uses only the intercept. 
Assessment of the statistical significance of any individual regression co-
efficient /3j also can be based on a LR test, but is more typically based on 
the Wald test 

• . 

Zi = 

• 

s.e.(&) 
Similarly, an asymptotic 100 x (1 — a)% confidence interval for j3j has 
the form J3j ± za/2s^e.(/3j). 
Models can be compared using AIC, with 

AIC = - 2 L + 2Q9+1). 

As before, the corrected version has the form 

AICc = AIC+
2{p + 2)iP + "\ 

n — p — 3 
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Note that (as was true for logistic regression models) the theory under-
lying AICC does not apply to Poisson regression, but the criterion has 
proven to be useful in practice. 
If the values of E(yi) are large, the Pearson (X2, the sum of squared 
Pearson residuals) and deviance (G2) goodness-of-fit statistics can be used 
to assess goodness-of fit. Each is compared to a x2 distribution on n—p— 1 
degrees of freedom. In the Poisson regression situation 

x2 = V ^Vi" ^ 2 

i= i * 

and 
n r 

& = 2J2\vilog(^) -fa- iH) 

• Diagnostics are approximate, based on the IRWLS representation of the 
maximum likelihood regression estimates. 

10.3 .2 OFFSETS 

The Poisson regression model is based on modeling the expected number of 
occurrences of some event as a function of different predictors, but sometimes 
this is not the best choice to model. In some situations what is of interest is 
the expected rate of occurrence of an event, rather than the expected number 
of occurrences. Here the rate is appropriately standardized so as to make the 
values comparable across observations. So, for example, if one was analyzing 
marriages by state, the actual number of marriages would not be of great 
interest, since its strongest driver is simply the population of the state. Rather, 
it is marriage rate (marriages per 100,000 population, for example) that is 
comparable across states, and should therefore be the focus of the analysis. 
This means that the appropriate model is 

Vi ~ Pois[fei x exp(/30 + Pixu H \- PPxpi)}, 

where ki is the standardizing value (such as population) for the ith observa-
tion, and 

exp(/?o + Pixu H h PpXpi) 

now represents the mean rate of occurrence, rather than the mean number of 
occurrences. Equivalently, the model is 

Vi ~ Pois{exp[/30 + fi\xu H V ppxpi + log(fci)]}. 

This means that a Poisson rate model can be fit by including log(fci) (the so-
called offset) as a predictor in the model, and forcing its coefficient to equal 
one. 



196 CHAPTER 10 Count Regression 

1 0 . 4 Overdispersion and Negative Binomial 
Regression 

As was noted earlier, the Poisson random variable is restrictive in that its vari-
ance equals its mean. Often in practice the observed variance of count data 
is larger than the mean; this is termed overdispersion. The most common 
cause of this is unmodeled heterogeneity, where differences in means between 
observations are not accounted for in the model. Note that this also can occur 
for binomial data (and hence in logistic regression models), since the binomial 
random variable also has the property that its variance is exactly determined 
by its mean. There are specific tests designed to identify overdispersion, but 
often the standard goodness-of-fit statistics X2 and G2 can identify the prob-
lem. The presence of overdispersion should not be ignored, since even if 
the form of the fitted log-linear model is correct, not accounting for overdis-
persion leads to estimated variances of the estimated coefficients that are too 
small, making confidence intervals too narrow and p-values of significance 
tests too small. In particular, the estimated standard errors of the estimated 
coefficients are too small by the same factor as the ratio of the true standard 
deviation of the response to the estimated one based on the Poisson regres-
sion. So, for example, if the true standard deviation of y is 20% larger than 
that based on the Poisson regression, the estimated standard errors should 
also be 20% larger to reflect this. 

1 0 . 4 a QUASI-LIKELIHOOD 

A simple correction for this effect is through the use of quasi-likelihood es-
timation. Quasi-likelihood is based on the principle of assuming a mean and 
variance structure for a response variable without specifying a specific distri-
bution. This leads to a set of estimating equations that are similar in form 
to those for maximum likelihood estimation, and hence a similar estimation 
strategy based on IRWLS. 

Consider a count regression model that posits a log-linear model for the 
mean (as is the case for Poisson regression), but a variance that is a simple 
multiplicative inflation over the equality of mean and variance assumed by 
the Poisson, 

^(2/i)=/Xi(l + a) . 

In this case the quasi-likelihood estimating equations are identical to the Pois-
son regression maximum likelihood estimating equations, so standard Poisson 
regression software can be used to estimate (3. Since 

y{yi) F \(yi-Vi)2] ., . 
— j^ = 1 + a, 

Mi L Vi J 
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a simple estimate of 1 + a is 

which is the Pearson statistic X2 divided by its degrees of freedom. Thus, 
quasi-likelihood corrects for overdispersion by dividing the Wald statistics 
from the standard Poisson regression output by v 1 + a = ^X2/(n — p—l). 

Model selection criteria also can be adapted to this situation. The quasi-
AIC criterion QAIC takes the form 

—2L 
QAIC=-—,r+2(p + l ) , 

1 + OL 

while the corresponding bias-corrected version is 

QAICC = QAIC+
2{P + 3){P+

A
4) 

n — p — 4 

(note that the correction in QAICC is slightly different than that for AICC, 
since a is estimated here). Applying these criteria for model selection is not 
straightforward. All of the QAIC (or QAICC) values must be calculated us-
ing the same value of a to be comparable to each other. One strategy is to 
determine a from the most complex model available, and then calculate the 
model selection criterion for each model using that value. Alternatively, a 
could be chosen based on the "best" Poisson regression model according to 
AIC (or AICC). 

10.4 .2 NEGATIVE BINOMIAL REGRESSION 

An alternative strategy to address overdispersion is to fit a regression model 
that is based on a random component that (unlike the Poisson distribution) 
allows for overdispersion. The most common such distribution is the nega-
tive binomial distribution. The negative binomial arises in several different 
ways, but one in particular is most relevant here. The standard Poisson re-
gression model assumes that yi ~ Pois(/^), with \ii a fixed mean value that 
is a function of the predictor values. If instead fii is a random variable, this 
results in unmodeled heterogeneity, and hence overdispersion. The negative 
binomial random variable arises if \ii follows a Gamma distribution, and its 
variance satisfies 

V(yi) =fjLi(l + afii). 

Note that unlike the quasi-likelihood situation discussed in the previous sec-
tion, here the variance is a function of the square of the mean, not the mean. 
The Poisson random variable corresponds to the negative binomial with a — 
0. Some statistical packages parameterize the negative binomial using 6 = 
1/a, so in that case as 6 —> 00 the negative binomial becomes closer to the 
Poisson. 
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The parameters of a negative binomial regression are estimated using 
maximum likelihood, based on the log-likelihood 

n 

L=J2^gr(yi + 0)-nlogr(0) 

n 

where T(-) is the gamma function 

/»oo 

T(z) = / e-Hz-xdt. 
Jo 

The usual IRWLS-based Wald tests and diagnostics apply here. AIC or AICC 

can be used to compare negative binomial fits to each other, as well as to 
compare negative binomial to Poisson fits, based on the appropriate log-
likelihoods and taking into account the additional a parameter. 

1 0 . 5 Example — Unprovoked Shark Attacks in Florida 

The possibility of an unprovoked attack by a shark was the central theme of 
the movie "Jaws>" but just how likely is that to happen? The Florida Program 
for Shark Research at the Florida Museum of Natural History maintains the 
International Shark Attack File (ISAF), a list of unprovoked attacks of sharks 
on humans around the world. The data examined here cover the years 1946 
through 2011 for the state of Florida, an area of particular interest since al-
most all residents and visitors are within 90 minutes of the Atlantic Ocean 
or Gulf of Mexico. The data for 1946 to 1999 come from Simonoff (2003), 
supplemented by information for later years given on the International Shark 
Attack File website. The response variable is the number of confirmed un-
provoked shark attacks in the state each year, and potential predictors are the 
resident population of the state and the year. 

Figure 10.1 gives scatter plots of the number of attacks versus year and 
population. As would be expected, a higher population is associated with 
a larger number of attacks. Also, there is a clear upwards trend over time. 
It is also apparent that the amount of variability in attacks increases with 
the number of attacks, as would be consistent with a Poisson (or negative 
binomial) random variable. 

The Poisson regression output is as follows. 

MfrdW^)-
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FIGURE 10.1 Scatter plots for the Florida shark attack data. 

Coefficients: 

(Intercept) 
Year 
Population 

Estimate Std. Error z value Pr(>|z| 
-2.092e+02 
1.077e-01 
-2.051e-07 

Signif. codes: 
0 '***' 0.001 

5.400e+01 
2.775e-02 
9.468e-08 

-3.874 0.000107 *** 
3.880 0.000104 *** 
-2.166 0.030327 * 

r' 0.01 '*' 0.05 0.1 

Null deviance: 640.2 
Residual deviance: 195.8 

on 65 degrees of freedom 
on 63 degrees of freedom 

Each of the predictors is statistically significant. The coefficient for Year 
implies that given population the expected number of attacks is estimated to 
be increasing 11% per year (e1 0 8 = 1.11). It should be clear, however, that 
given the great change in population in Florida since World War II this is 
a situation where modeling attack rates is more meaningful than modeling 
number of attacks. Figure 10.2 gives a plot of attack rate versus year, and it is 
apparent that there is still an increasing trend over time. 

Output for a Poisson regression model on year taking logged population 
as an offset is given below. 

Coefficients: 
Estimate Std. Error z value Pr(>|z|) 

(Intercept) -55.23413 5.30402 -10.414 < 2e-16 *** 
Year 0.02080 0.00266 7.819 5.34e-15 *** 
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FIGURE 10 .2 Plot of attack rate versus year for the Florida shark attack data. 

Signif . codes: 
0 ' * * * ' 0 . 0 0 1 ' * * ' 0 . 0 1 ' * ' 0 . 0 5 ' . ' 0 . 1 ' ' 1 

Null deviance: 254.89 on 65 degrees of freedom 
Residual deviance: 187.55 on 64 degrees of freedom 

The relationship is strongly statistically significant, and it implies an estimated 
2.1% annual increase in shark attack rates. Figure 10.3, however, indicates 
problems with the model. The time series plot of the standardized Pearson 
residuals gives evidence of a downward trend in the residuals for the last ten 
years of the sample (that is, 2002 through 2011), and the Cook's distances are 
noticeably larger for the last two years. 

This pattern is, in fact, not surprising. The ISAF Worldwide Shark At-
tack Summary (Burgess, 2012) noted that there were notable slow-downs in 
local economies after the September 11, 2001 terrorist attacks in the United 
States, which were exacerbated by the 2008-2011 recession and the very active 
tropical seasons in Florida in 2004, 2005, and 2006. As a result fewer people 
were entering the water during this time period. Further, extensive media 
coverage of the "do's and don't's" of shark-human interactions may have led 
to people reducing their interactions with sharks. 

This suggests that the shark attack rate pattern might be different pre- and 
post-9/1 l • This can be handled easily within the Poisson regression frame-
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F I G U R E 1 0 . 3 Diagnostic plots for the Poisson regression model for attack rate 
using Year as the predictor for the Florida shark attack data. 

work by adding an indicator variable for the post-9/ l J years and the product 
of that indicator and the year as predictors. The resultant output is as follows. 

Coefficients: 

(Intercept) 
Year 
Post.911 
YearrPost.911 

Estimate Std. Error z value Pr(>|z|) 
-85.486725 7.997612 -10.689 < 2e-16 *** 

0.036079 0.004024 8.967 < 2e-16 *** 
215.593383 49.542971 4.352 1.35e-05 *** 
-0.107741 0.024703 -4.361 1.29e-05 *** 

Signif. codes: 
0 '***' 0.001 **' 0.01 '*' 0.05 0.1 

Null deviance: 254.89 on 65 degrees of freedom 
Residual deviance: 146.31 on 62 degrees of freedom 
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F I G U R E 1 0 . 4 Diagnostic plots for the Poisson regression model for attack rate 
based on different relationships with time for the pre- and post-9/11 time periods for 
the Florida shark attack data. 

This model is a clear improvement over the pooled regression line, as all of the 
predictors are highly statistically significant. A likelihood-ratio test compar-
ing the pooled model to the model based on two separate lines is LR = 41.24 
on 2 degrees of freedom, which is very highly statistically significant. The 
model implies an estimated 3.7% annual increase in shark attack rates from 
1946-2001 (e0 3 6 = 1.037), but an estimated 6.9% annual decrease in attack 
rates from 2002-2011 (e

,0361~'1077 = .931). Diagnostic plots for this model 
(Figure 10.4) also do not indicate any systematic problems with the model. 

Unfortunately, the deviance of G2 = 146.3 on 62 degrees of freedom 
still indicates lack of fit (the Pearson statistic X2 = 145.8 is similar). Since 
(based on diagnostic plots) the lack of fit does not seem to come from mis-
specification of the expected shark attack rate, this suggests that it is reflect-
ing overdispersion, which would not be surprising given changes in tourism 



io. 5 Example — Unprovoked Shark Attacks in Florida 203 

patterns during this 65-year period. One approach to accounting for this is 
quasi-likelihood, in which the standard errors of the estimated coefficients are 
multiplied by A/145.8/62 = 1.53. If this is done all of the absolute Wald 
statistics for the slopes are still greater than 2.8 (corresponding to p-values 
less than .004), so while statistical significance is weaker, the existence of two 
different patterns for the pre- and post-9/11 time periods is still supported. 

Alternatively, a negative binomial regression model can be fit to the data. 
Output is given below. 

Coefficients: 
Estimate Std. Error z value Pr(>|z|) 

(Intercept) -76.600673 10.808080 -7.087 1.37e-12 *** 
Year 0.031600 0.005453 5.795 6.82e-09 *** 
Post.911 212.958313 94.149355 2.262 0.0237 * 
Year:Post.911 -0.106378 0.046933 -2.267 0.0234 * 

Signif. codes: 
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Null deviance: 124.824 on 65 degrees of freedom 
Residual deviance: 77.493 on 62 degrees of freedom 

Theta: 7.73 
Std. Err.: 3.00 

The resultant model has 0 = 7.73 (or equivalently a = 0.129), and even 
after accounting for the overdispersion still supports the existence of different 
patterns for the two time periods. Diagnostic plots (Figure 10.5) are similar 
to those for the Poisson regression fit, except that the residuals and Cook's 
distances are noticeably smaller for the negative binomial fit, indicating that 
the lack of fit has been addressed to a large extent. Here G2 = 77.5 (p = 
.09) and X2 — 71.7 (p = .19), each on 62 degrees of freedom, indicating a 
moderately reasonable fit. 

In all but one year after 1955 there was at least one unprovoked shark 
attack in Florida, meaning that a direct fitting of a log-linear model for at-
tack rates is possible by taking logs of the attack rate variable and using least 
squares. This attempt to avoid count regression, while incorrect, results in 
estimated coefficients not very dissimilar from the Poisson and negative bi-
nomial fits, although implications of inference are different. This is not even 
a consideration, however, in a situation where there are many zero counts 
among the responses. Consider, for example, modeling the number of annual 
fatalities from unprovoked shark attacks in Florida. In this case the response 
only takes on the values 0, 1, or 2, and in more than 80% of the years there 
were no fatalities. Taking logs is not feasible here, but a log-linear count 
regression model can be easily fit. Here is output for a Poisson regression 
model for per capita fatality rate on year and the number of attacks in that 
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0 . 5 Diagnostic plots for the negative binomial regression model for at-
tack rate based on different relationships with time for the pre- and post-9/11 time 
periods for the Florida shark attack data. 

year (there is no evidence of different patterns pre- and post-9/11, which is to 
be expected, since lower tourism rates are already reflected in fewer attacks): 

Coefficients: 
Estimate Std. Error z value Pr(>|z|) 

(Intercept) 95.84120 52.15408 1.838 0.0661 . 
Year -0.05772 0.02657 -2.173 0.0298 * 
Attacks 0.07022 0.04164 1.686 0.0917 . 

Signif. codes: 
0 '***' 0 .001 '*•' 0.01 0.05 ' .' 0.1 ' 

Null deviance: 47.586 on 65 degrees of freedom 
Residual deviance: 42.419 on 63 degrees of freedom 
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0 . 6 Diagnostic plots for the Poisson regression model for fatality rate 
based on year and number of attacks for the Florida shark fatalities data. 

The model implies more fatalities in years with more attacks, and given 
the number of attacks, a decreasing trend in fatality rate of roughly 5.6% 
annually (e~*0577 = .944), perhaps reflecting more understanding of how to 
handle shark attacks among residents and tourists. Diagnostic plots (Figure 
10.6) indicate one pronounced outlier (1976, in which there were 2 fatalities 
in 5 attacks), and omitting that observation strengthens the observed relation-
ships slightly: 

Coefficients: 
Estimate Std. Error z value Pr(>|z|) 

(Intercept) 116.55824 59.28918 1.966 0.0493 * 
Year -0.06843 0.03022 -2.264 0.0235 * 
Attacks 0.09389 0.04578 2.051 0.0403 * 
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Signif . codes: 
0 '*** ' 0.001 ' ** ' 0.01 ' * ' 0.05 ' . ' 0.1 ' ' 1 

Null deviance: 41.163 on 64 degrees of freedom 
Residual deviance: 35.200 on 62 degrees of freedom 

10 .6 Other Count Regression Models 

In this section we briefly mention some useful generalizations of these mod-
els. It is often the case that more observations with zero counts than expected 
occur in the observed data. This can be represented through the use of a mix-
ture model, where an observed yi is modeled as coming from either a point 
mass at zero (a constant zero) or the underlying count distribution (for ex-
ample Poisson or negative binomial). These are termed zero-inflated count 
regression models. In the zero-inflated Poisson (ZIP) model, for example, 
a count is generated from one of two processes: the usual Poisson random 
variable with mean //$ = exp(x^/3) with probability 1 — ^ , and zero with 
probability ^ . Note that this means that an observation with yi = 0 can 
come from either the underlying Poisson random variable or from the point 
mass at zero. 

The model allows ipi to vary from observation to observation, with the 
probability modeled to satisfy 

î = F(zfr), 

where F(-) is a cumulative distribution function, ẑ  is a set of predictors for 
the probability of coming from the point mass distribution, and 7 is a set of 
parameters corresponding to the predictors. The distribution function F is 
typically taken to be either the standard normal distribution (a probit model) 
or the logistic distribution (a logit model). The z variables can include some 
(or all) of the x's, and can include other variables. The parameters (3 and 7 
can be estimated using maximum likelihood. The conditional mean of the 
target variable is 

E(yi\xi,Zi) = fJLi(l -fa), 

while the conditional variance is 

V(yi\xi,Zi) = / / i ( l - ^ i ) ( l + Mi^t)5 

implying overdispersion relative to the Poisson if ^ > 0. The need for the 
ZIP regression model over the Poisson regression model can be assessed using 
an information criterion, such as AICC. One simple variation of the model 
takes the z's to be identical to the x's, and assumes 7 = r/3 for some r. 

If the z and x predictors overlap, interpretation of the estimated parame-
ters J3 is not straightforward. For example, if a (3 coefficient corresponding to 
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a particular predictor is positive, then larger values of that predictor are asso-
ciated with a larger mean in the Poisson part of the distribution. If, however, 
this variable has a positive 7 coefficient, then larger values are associated with 
a higher probability of coming from the point mass distribution, lowering 
the overall expected value of the target variable. These two tendencies can 
combine in complex ways. If a ZIP formulation with two distinct (nonover-
lapping) processes for y is a reasonable representation of reality, things are 
easier, as then the (3 coefficients have the usual log-linear interpretation, only 
now given that the observation comes from the Poisson part of the distribu-
tion. These models also can be generalized to incorporate inflation at count 
values other than zero in the analogous way. 

Negative binomial regression also can be modified to allow for zero-count 
inflation. The zero-inflated negative binomial (ZINB) model uses a negative 
binomial distribution in the mixture rather than a Poisson, but otherwise the 
formulation is the same. The conditional mean of the response is identical to 
that for the ZIP model, 

E(yi\xi,Zi) = fJLi(l - ^ i ) , 

while the conditional variance is 

V(yi\xi, Zi) = ^(1- -0i)[l + Hi^i + a)]. 

If tpi = 0 this is the standard negative binomial regression model variance, 
but overdispersion relative to the negative binomial occurs if ipi > 0. The 
ZIP model is a special case of the ZINB model (with a — 0), so the usual tests 
can be constructed to test against the one-sided alternative a > 0. It should be 
noted that misspecification of the nondegenerate portion of the model (that 
is, Poisson or negative binomial) is more serious in the zero-inflated context 
than in the standard situation, since (unlike in the standard case) parameter 
estimators assuming a Poisson distribution are not consistent if the actual 
distribution is negative binomial. 

A different situation is one where the observed count response variable 
is truncated from below, with no values less than a particular value observed. 
This most typically occurs where truncation occurs at zero. An example of 
this would be where the response variable is the number of items purchased 
by a customer among a set of customers on a given day; in this case only 
customers that purchased at least one item appear in the data, so yi — 0 is not 
possible. In this case the zero-truncated Poisson regression is based on the 
density 

/(»;/*) = ^ f f i , w = i,2,..., 
with fa following the usual logarithmic link with predictors # i , . . . , xp. The 
mean of the target variable is 

E{Vi) = j - ^ — , 1 — e ^i (10.2) 
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while the variance is 

V(yi) = 
1 - e-^ 

1 - fiie 
1 - e-^i 

The estimates of fii (or equivalently, of (3) are not consistent if the Pois-
son assumption is violated (even if the link function and linear predictor 
are correct), because the expected value depends on correct specification of 

The interpretation of regression coefficients for this model is more com-
plicated than that for nontruncated data. If the population of interest is ac-
tually the underlying Poisson random variable without truncation (if, for 
example, values of the target equal to zero are possible, but the given sam-
pling scheme does not allow them to be observed), the coefficients have the 
usual interpretation consistent with the log-linear model [since in that case 
E(y) = exp(x//3)]. If, on the other hand, observed zeroes are truly impos-
sible, (3j no longer has a simple connection to the expected multiplicative 
change in y. Rather, the instantaneous expected change in y given a small 
change in xj, holding all else fixed, is 

dE(yi\xi;yi > 0) 
ox a PjVi 

l - e x p ( - / ^ ) ( l + /Xi) 
[1 - exp(-fii)}2 } (10.3) 

For nontruncated data the right-hand side of (10.3) is simply f3jfii (reflecting 
the interpretation of (3j as a semielasticity), so the truncation adds an addi-
tional multiplicative term that is a function of the nontruncated mean and the 
nontruncated probability of an observed zero. The right-hand side of (10.3) 
divided by Hi represents the semielasticity of the variable for this model. 

If the target variable exhibits overdispersion relative to a (truncated) Pois-
son variable, a truncated negative binomial is a viable alternative model. The 
mean of this random variable is 

while the variance is 

v(yi) 

E(Vi) = 

Hi 

Vi 
l - t l + a / i * ) - 1 / * ' 

l - ( l + a / i 0 - 1 / a 
1 + a/ii 

l - ( l + a / ^ ) - 1 / c * 

10 .7 Poisson Regression and Weighted Least Squares 

We have previously discussed how nonconstant variance related to group 
membership in an ordinary least squares fit can be identified using Levene's 
test, and handled using weighted least squares with the weights for the mem-
bers of each group being the inverse of the variance of the residuals for that 
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group. Another way to refer to nonconstant variance related to group mem-
bership is to say that nonconstant variance is related to the values of a predic-
tor variable, where that predictor variable happens to be categorical. It is also 
possible that the variance of the errors could be related to a (potential) predic-
tor variable that is numerical. Generalizing the Levene's test for this situation 
is straightforward: just construct a regression with the absolute residuals as 
the response and the potential numerical variable as a predictor. Note that 
this also can be combined with the situation with natural subgroups by run-
ning an ANCOVA model with the absolute residuals as the response and both 
the grouping variable(s) and the numerical variable(s) as predictors (of course, 
the response variable should not be used as one of the predictors). 

Constructing weights for WLS in the situation with numerical variance 
predictors is more complicated. What is needed is a model for what the re-
lationship between the variances and the numerical predictor is. An expo-
nential/linear model for this relationship is often used, whose parameters can 
be estimated from the data. This model has the advantage that it can only 
produce positive values for the variances, as is appropriate. The model for the 
variance of Si is 

V{si) = a2 = a2 exp ^ XjZij , (10.4) 

where z^ is the value of the j th variance predictor for the ith case and a2 is 
an overall "average" variance of the errors. 

Poisson regression can be used to estimate the A parameters, as is pro-
posed in Simonoff and Tsai (2002). The key is to recognize that since a2 — 
E{e2\ by (10.4) 

log E(s2) = log a2 + ] T XjZij = A0 + ] P XjZij. 
3 3 

This has the form of a log-linear model for the expected squared errors, so 
a Poisson regression using the squared residuals (the best estimates of the 
squared errors available from the data) as the response provides an estimate of 
A, and hence estimated weights for a WLS fit to the original y. Since (10.4) 
is a model for variances, the weight for the ith observation is the inverse of 
the fitted value from a Poisson regression for that observation. The squared 
residuals are not integer-valued, so it is possible that the Poisson regression 
package will produce an error message, but it should still provide the weights. 

10.7.1 EXAMPLE - INTERNATIONAL GROSSES OF MOVIES 
(CONTINUED) 

Recall the ANCOVA model fitting for logged international grosses of movies 
discussed in Section 7.3. The chosen model in that analysis was based on 
logged domestic grosses and MPAA rating, with different slopes and inter-
cepts for the different rating levels. As was noted on page 145, however, there 
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is nonconstant variance related to logged domestic grosses apparent in the 
residuals, with movies with lower domestic revenues having higher variabil-
ity in international revenues. This suggests fitting a weighted least squares 
model to these data, with weights based on logged domestic grosses. A Pois-
son regression fit to the squared standardized residuals is 

(e*)2 = 2.476 - 1.606 x Log.domestic.gross. 

A WLS fit (not given) finds "Avatar" to be a leverage point due to its very 
high domestic gross, which corresponds to low variance and therefore high 
weight. Omitting "Avatar" gives the following fit for the WLS model with 
different slopes for different rating classes: 

Response: Log.international.gross 
Sum Sq Df F value Pr(>F) 

(Intercept) 0.0991 1 0.3977 0.5295 
Log.domestic.gross 5.4982 1 22.0652 7.184e-06 *** 
Rating 1.3839 3 1.8513 0.1417 
Log.domestic.gross:Rating 1.0044 3 1.3436 0.2636 
Residuals 29.4034 118 

Signif. 
codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 0.4992 on 118 degrees of freedom 
Multiple R-squared: 0.6625, Adjusted R-squared: 0.6425 
F-statistic: 33.1 on 7 and 118 DF, p-value: < 2.2e-16 

The interaction term is not statistically significant in the WLS fitting. Omit-
ting it and fitting a constant shift model yields an insignificant F-test for 
MPAA rating, and the best model (in terms of minimum AICC, for exam-
ple) is the simple linear regression on logged domestic grosses only: 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) -0.77623 0.18003 -4.312 3.27e-05 *** 
Log.domestic.gross 1.34107 0.09107 14.726 < 2e-16 *** 

Signif. 
codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 0.5056 on 124 degrees of freedom 
Multiple R-squared: 0.6362, Adjusted R-squared: 0.6333 
F-statistic: 216.8 on 1 and 124 DF, p-value: < 2.2e-16 

Residual plots (Figure 10.7) show that the heteroscedasticity in the OLS fit 
has been addressed, and the model fits reasonably well. 

In addition to resulting in different models with different implications (a 
single fitted line versus four different lines), WLS and OLS can produce very 
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G U R E 1 0 . 7 Diagnostic plots for WLS model for 2009 international grosses data. 

different prediction intervals for some movies. For example, the 2010 movie 
"From Paris With Love" had a low domestic gross (and hence high estimated 
variability), which is reflected in the difference between the OLS prediction 
interval for international gross of (0.73,67.87) (in millions of dollars) and 
the WLS interval (0.86,166.41). By contrast, "Shutter Island" has an OLS 
interval of (15.15,1569.77) and a WLS interval of (25.68,489.68), reflecting 
its high domestic gross and implied lower variability of international grosses. 

10.8 Summary 

In this chapter we have used the generalized linear model framework to ex-
tend Gaussian-based least squares regression and binomial- and multinomial-
based logistic regression to count data regression models. The central distri-
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bution for count regression is the Poisson distribution, with generalizations 
such as the negative binomial, zero-inflated, and zero-truncated distributions 
available to handle violations of the Poisson structure. Further discussion of 
generalized linear models can be found in McCullagh and Nelder (1989) and 
Myers et al. (2002), and more details on count data modeling can be found in 
Simonoff (2003). 

Poisson regression models also can be fit based on categorical predictors. 
In the situation where all of the predictors are categorical the data take the 
form of a contingency table (a table of counts), and Poisson- and multinomial-
based log-linear models have long been the basis of contingency table analyses. 
Extensive discussion of the analysis of such tables can be found in Agresti 
(2007), Agresti (2010), and Simonoff (2003). 

The situation when the expected counts are small is termed sparse cate-
gorical data. In this situation the theory underlying standard methods does 
not apply, and those methods can provide misleading results. There is an ex-
tensive literature for this situation. One approach that is particularly appro-
priate for data with ordered categories is to use smoothing methods, which 
borrow information from nearby categories to improve estimation in any 
given category. Further discussion can be found in Chapter 6 of Simonoff 
(1996). 

KEY TERMS 
Generalized linear model: A generalization of ordinary (least squares) re-
gression that allows for a non-Gaussian response variable and a nonlinear 
link between the weighted sum of the predictor variables and the expected 
response. Least squares, logistic, and Poisson regression are all examples of 
generalized linear models. 
Negative binomial random variable: A discrete random variable that pro-
vides an alternative to the Poisson random variable for count regression mod-
els. One mechanism generating a negative binomial random variable is as a 
Poisson random variable with a random, rather than fixed, mean. It is useful 
for the modeling of overdispersion, as its variance is larger than its mean. 
Offset: A variable included in the mean function of a generalized linear 
model with a specified coefficient. When in a count regression model the 
offset is the log of a standardizing variable such as population, and the coeffi-
cient is set to 1, this results in a model for expected rates rather than expected 
counts. 
Overdispersion: The situation where the observed variance of a random 
variable is larger than would be expected given its mean. The most common 
example of this is for Poisson fitting of count data, since in that case the 
variance is assumed to equal the mean. 
Poisson random variable: The most commonly-used discrete random vari-
able used to model count data. Standard assumptions generate the Poisson 
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random variable as appropriate for modeling the number of events that occur 
in time or space. 
Quasi-likelihood estimation: An estimation method based on the princi-
ple of assuming a mean and variance structure of a response variable without 
specifying a specific probability distribution. This sometimes, but not always, 
leads to an estimation scheme identical to likelihood estimation for some dis-
tribution. 
Zero-inflated count regression model: A generalization of count regression 
models such as those based on the Poisson and negative binomial distributions 
that allows for more zero counts than would be expected. 
Zero-truncated count regression model: A generalization of count regres-
sion models such as those based on the Poisson and negative binomial distri-
butions that does not allow for any zero counts by truncating the distribution 
above zero. 
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11.1 Introduction 

In all of the models discussed in the previous chapters the model parameters 
entered linearly into the model. In those situations when it was believed that 
this was inappropriate we considered the use of a transformation to linearize 
the model. There are occasions, however, when that cannot (or should not) 
be done. For example, consider pharmacokinetic models, which are designed 
to model the course of substances administered to a living organism, such as 
drugs, nutrients, and toxins. A simple model for the concentration (C) in 
the blood of a substance as a function of time is a one-compartment model, 
which implies exponential decay, 

E[c(t)] = e^K (n . i ) 

This model is consistent with assuming that a substance in the blood is in 
rapid equilibrium with the substance in other tissues, with the rate of change 
of concentration being directly proportional to the concentration remaining. 
That is, once introduced the substance mixes instantaneously in the blood and 
distributes throughout the body rapidly. This is simply the semilog model 
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(4.5), and is of course linearizable, since 

log{E[C(t)]} = logO1+02t. 

Many substances, however, do not follow this pattern. Instead, the course 
of the substance can be thought of as being consistent with the body being 
made up of two compartments: the vascular system, including the blood, 
liver, and kidneys, where it is distributed quickly, and poorly perfused tissues, 
such as muscle, lean tissue, and fat, where the substance is eliminated more 
slowly. Such a process is consistent with a two-compartment model, 

E[C{t))=01e
e*t + 6zee±t. (11.2) 

This model is not linearizable by a transformation, so nonlinear regression 
methods are required to fit it. 

Another example is the logistic model for population growth, sometimes 
referred to as the Verhulst-Pearl model, which is based on a differential equa-
tion. Let P(t) be the population at time t, P$ the population at the base 
period, M the limiting size of the population (termed the carrying capacity), 
and k the growth rate. Ignoring random error for the moment, under the 
assumption that the rate of population change is proportional to both the ex-
isting population and the amount of available resources (the room to grow), 
the population satisfies the differential equation 

dt V MJ 

The solution to this differential equation is 

MPpexp(fct) 
[) M + P 0 [ e x p ( H ) - l ] ' 

which cannot be linearized by a simple transformation. There are many pro-
cesses in the physical sciences that arise from nonlinear differential equations, 
and in general nonlinear regression methods are required to fit them. 

In this chapter we discuss the nonlinear regression model. Even though 
the model is based on least squares, the nonlinearity of the model means 
that the derivation and properties of inferential methods and techniques are 
similar to those of Chapters 8 through 10. 

1 1.2 Concepts and Background Material 

The nonlinear regression model satisfies 

Vi = / ( x i , 0 ) + £ i . (11.3) 
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The errors e are taken to be independent and identically normally distributed, 
which justifies the use of least squares. The linear model (1.1) is a special case 
of this model, but (11.3) is obviously far more general. Note that x is a p x 1 
vector, while 0 is a q x 1 vector, and p need not equal q (for example, in the 
two-compartment pharmacokinetic model (11.2), p = 1 and q = 4). 

There are four key distinctions between nonlinear regression and the 
linear regression models discussed in earlier chapters, two of which can be 
viewed as advantages and two of which can be viewed as disadvantages. 

1. Nonlinear regression is more flexible than linear regression, in that the 
function / need not be linear or linearizable. If the relationship between 
the expected response and the predictor(s) is not linear or linearizable, 
nonlinear regression provides a tool for fitting that relationship to the 
data. The only formal requirement on / is that it be differentiate with re-
spect to the elements of 0, which implies the existence of the least squares 
estimates. 

2. Nonlinear regression can be more appropriate than the use of transfor-
mations and linear regression in situations where / is linearizable. The 
reason for this is the additive form of the nonlinear model (11.3). Con-
sider again the one-compartment semilog pharmacokinetic relationship 
(11.1). Fitting this relationship via the nonlinear regression model 

d = Oxe02** + ei 

is consistent with a relationship exhibiting constant variance. In contrast, 
the semilog regression model based logging the concentration variable, 

l o g ( C i ) = / ? i + # 2 t i + ei 

is equivalent to a relationship for d that exhibits nonconstant variance, 
since it implies multiplicative rather than additive errors: 

d = epl x e°2ti x e£i 

(this was noted earlier in Section 4.1). If the actual relationship does not 
exhibit heteroscedasticity, it is quite possible that fitting the model as a 
linear model for the logged concentration will result in a poor fit, since 
taking logs will induce heteroscedasticity that was not originally there. 
Further, the additive form (11.3) allows for the possibility of negative 
values of y even if / only takes on positive values; in contrast the logs 
of nonpositive values are undefined, so observations with y < 0 would 
simply be dropped from a linear regression fit for log y. 

3. Nonlinear regression requires knowledge of / before fitting proceeds, 
which implies a thorough understanding of the underlying process be-
ing examined. Linear regression models are often viewed as exploratory, 
being appropriate when a relationship between the response and the pre-
dictor^) is suspected but not precisely specified; the use of residual plots 
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to suggest potential transformations is consistent with that exploratory 
nature. Nonlinear regression, on the other hand, requires precise spec-
ification of the relationship between the response and the predictor(s), 
which might be difficult or impossible. 

4. If / is misspecified the fit of the regression can be extremely poor. Indeed, 
depending on the form of / , it is possible that the nonlinear regression 
can fit worse than no regression at all (that is, fit worse than using Y to 
estimate all values of y). The price that is paid for the flexibility of / 
noted above is a lack of robustness to a poor choice of / . 

1 1.3 Methodology 

Nonlinear regression methodology is based on the same principles of maxi-
mum likelihood described in Section 8-3-1. If the errors e are Gaussian, max-
imum likelihood corresponds to least squares, and estimation of 0 proceeds 
using nonlinear least squares. 

11.3.1 NONLINEAR LEAST SQUARES ESTIMATION 

As was true for linear models, nonlinear least squares is based on minimizing 
the sum of squares of the residuals, 

i=l 

The minimizer oiS,0, satisfies the set of q equations setting the partial deriva-
tives with respect to each entry of 0 equal to zero, but unlike for linear models 
it is not straightforward to find that value. Estimation and inference can pro-
ceed through the use of a (first-order) Taylor series approximation, wherein 
the function / is approximated at a particular value 6 using a linear function, 

/(*, 9)«/(*, 0°)+j^ a / y } & - g?). (11.4) 

Using this approximation for f in S turns the minimization problem 
into an (approximately) linear one, with the partial derivatives c?/(x$, 6°)/d0<j 
taking the place of the columns of X in linear regression. This is an iterative 
process, in which a current estimate of 0 is used as 6° in (11.4) and the residual 
sum of squares S based on this linear approximation is minimized, with the 
minimizer becoming the new estimate of 0. This process is continued until 
a stopping criterion is met, such as a small change in 5 or a small change 
in the estimated 9. There is no guarantee that this procedure will converge 
to the global minimizer of S; indeed, not only might it converge to a local 
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minimizer, it can even converge to a local maximizer. A good starting value of 
0 increases the chance of finding the true minimizer, and will also reduce the 
number of iterations needed for convergence, but still provides no guarantees. 
For this reason it is a good idea to try different sets of starting values to see if 
the same solution is obtained. 

Poor starting values far from the true solution are more likely to be prob-
lematic, so putting some thought into which values to try is worthwhile. For 
example, if a model is linearizable, the corresponding values based on a linear 
fit to transformed variables is a very reasonable candidate. Sometimes a spe-
cial case of a model (taking particular values of Oj equal to special values such 
as 0 or 1, for example) is linearizable, and estimates based on the linear fit to 
that special case can be worth using as starting values. It is sometimes the case 
that parameters have physical interpretations that can be exploited to choose 
starting values. For example, in the Michaelis-Menten model discussed in Sec-
tion 11.4, one of the parameters represents a theoretical maximum limit for 
the response, so the observed maximum is a reasonable starting value to use 
for that parameter. 

11 .3 .2 INFERENCE FOR NONLINEAR REGRESSION MODELS 

The Taylor series approximation used when estimating 0 is also the basis 
of large-sample inference for nonlinear regression models. Hypothesis tests 
and confidence intervals are based on the linear approximation, with the par-
tial derivative evaluated at the least squares estimate dffe, 6)/d0j taking the 
place of the j th predictor column. Since the linear approximation is only 
valid for large samples, approximate (Wald) tests and intervals for entries of 0 
should perhaps be based on a normal distribution rather than a ^distribution, 
although many packages use the t-distribution. Nested models (where one is 
a special case of the other) can be compared using a partial F-test, which 
approximately follows an F-distribution. Diagnostics such as standardized 
residuals, leverage values, Cook's distances, and variance inflation factors can 
also be based on the Taylor series linear approximation, although this is not 
always available in statistical packages that provide nonlinear regression fit-
ting. Note that this asymptotic approach is similar in spirit to the standard 
inferential methods for generalized linear models discussed in the previous 
three chapters. 

On the other hand, some concepts from linear regression do not translate 
in a straightforward way to nonlinear regression. Since variables do not have 
a one-to-one correspondence with parameters, they often cannot be omitted 
without fundamentally changing the form of / , meaning that variable selec-
tion is not necessarily meaningful. Collinearity is as serious a problem in 
nonlinear regression as it is in linear regression, resulting in instabilities in 
estimated coefficients. Since it corresponds to high correlations among the 
vectors of partial derivatives, however, it is not possible to simply omit pre-
dictors to reduce collinearity. Rather, it is necessary to completely reformu-
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late the model. Simonoff and Tsai (1989) describe how observed collinearities 
can be used to suggest an underlying partial differential equation that can be 
solved to yield a reformulation that does not exhibit collinearity, while still 
providing a good fit to the data. An example is provided in Niedzwiecki and 
Simonoff (1990), who showed that the two-compartment model (11.2) under 
collinearity is well-fit by the one-compartment model (11.1). 

1 1.4 Example — Michaelis-Menten Enzyme Kinetics 

The Michaelis-Menten model is a model for enzyme kinetics that relates the 
rate of an enzymatic reaction (the "velocity" V") to the concentration x of the 
substrate on which the enzyme acts. The model takes the form 

V(x,0) 
2+X 

(ignoring the error term). For this model 0\ represents the asymptotic max-
imum reaction rate as the substrate concentration x —» 00, while #2 is the 
so-called Michaelis constant, which is an inverse measure of how quickly the 
rate approaches 6\ (a smaller value of #2 implies that the rate is approached 
more quickly, indicating a higher affinity of the substrate for the enzyme). 

Figure 11.1 gives scatter plots and model fits based on data from Bates 
and Watts (1988)- The data come from an experiment relating the velocity of 
reaction (in counts per minute2 of radioactive product from the reaction) to 
substrate concentration (in parts per million) for an enzyme treated with the 
antibiotic puromycin. In order to fit the Michaelis-Menten model to data, first 
starting values for the algorithm must be found. The model is linearizable, 
since 

v olX o1 v<V 
This means that a linear regression of 1/V on 1/x gives (initial) estimates for 
0, since 6X = 1/fa and <92 = fa/Pi-

Figure 11.1(a) gives a scatter plot of 1/V versus 1/x, with the linear 
least squares line superimposed on the plot. It is clear that an OLS fit to 
the transformed data is not appropriate, as the transformation has induced 
strong heteroscedasticity. Still, the fitted least squares line 0i — 0.0051072, 
/32 = 0.0002472) does not look unreasonable. 

Despite this, when the linearized model is back-transformed into a fit 
for velocity [0\ = 195.80, #2 = 0.0484) the fit is poor for high concentrations 
(Figure 11.1 (b)]. These values still provide good starting values for a nonlinear 
least squares fit, however, which converges quickly (in five iterations): 
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G U R E 1 1.1 Scatter plots and model fits for the puromycin enzyme velocity data. 
(a) Scatter plot of inverse velocity versus inverse concentration, with linear least squares 
line superimposed, (b) Scatter plot of velocity versus concentration with fitted model 
based on the linear least squares model on transformed variables, (c) Scatter plot of 
velocity versus concentration with fitted models based on the nonlinear least squares fit 
using all of the data (solid line) and omitting an outlier (dashed line). 

Parameters: 

Estimate Std. Error t value Pr(>|t|) 

thetal 2.127e+02 6.947e+00 30.615 3.24e-ll *** 

theta2 6.412e-02 8.281e-03 7.743 1.57e-05 *** 

Signif. codes: 

0 '*•*' 0.001 0.01 0.05 0.1 

Residual standard error: 10.93 on 10 degrees of freedom 
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1.2 Residual plots for the puromycin enzyme velocity data, (a) Plot of 
residuals versus fitted values, (b) Normal plot of the residuals. 

The estimated coefficients [#i = 212.68, 02 = 0.0641) provide a much better 
fit to the data [Figure 11. i (c)]5 particularly in estimation of the asymptotic 
maximum reaction rate 0\. Using other starting values yields virtually identi-
cal estimates. There is some evidence of an outlier in the data, corresponding 
to a point with unusually high velocity for a concentration of 0.02 parts per 
million (Figure 11.2), but omitting this observation does not change the fitted 
model appreciably [it is given by the dashed line in Figure 11.1(c)]. 

These data are part of a larger experiment in which the relationship be-
tween velocity of reaction and concentration was examined when the enzyme 
is not treated with puromycin. The observations corresponding to untreated 
enzyme are given by xs in Figure 11.3. It was hypothesized that treatment by 
puromycin would affect the maximum velocity of reaction (#1) but not the 
affinity (#2) of the enzyme, and the effect on maximum velocity is apparent 
from the plot. 

The full data set corresponds to a situation with two natural subgroups in 
the data, and is thus amenable to an analysis based on incorporating an indica-
tor variable into the model, as was done in Section 2.4. Indeed, the linearized 
form of the Michaelis-Menten model (11.5) shows that a "pooled/constant 
shift/full" model approach is meaningful here, with the maximum velocity 
#1 taking the role of the intercept and the affinity #2 taking the role of the 
slope. If Treated is an indicator variable taking on the value 1 for an exper-
iment where the enzyme was treated and 0 otherwise, the "constant shift" 
model adds a parameter #3 to the model, 

Velocity = 
(#i + #3Treated)Concentration 

02 + Concentration 
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1.3 Scatter plots and model fits for the puromycin enzyme velocity data. 
Observations where the enzyme was treated with puromycin are represented by dots, 
while observations where the enzyme was untreated are represented by xs. The left plot 
is based on all of the data, while the right plot is based on the data after removing two 
outliers. The solid lines represent a model with different values of 0 for treated and 
untreated observations, while the dashed lines represent a model with different values 
of 6\ and identical values of #2 for the two groups. 

which allows for different maximum velocity values for the two groups. The 
full model adds a parameter #4, 

Velocity = 
(#i + @3 Treated) Concent r a t ion 

(#2 + 04 Treated) + Concentration' 

which allows for both different maximum velocity and different affinity de-
pending on whether or not the enzyme is treated with puromycin. 

The output below summarizes fits of the three models: 

Parameters: 
Estimate Std. Error t value Pr(>|t|) 

thetal 190.80632 8.76459 21.770 6.84e-16 *** 
theta2 0.06039 0.01077 5.608 1.45e-05 *** 

Signif. codes: 
0 '***' 0.001 '**' 0.01 '•' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 18.61 on 21 degrees of freedom 

Parameters: 
Estimate Std. Error t value Pr(>|t|) 

thetal 166.60406 5.80743 28.688 < 2e-16 *** 
theta2 0.05797 0.00591 9.809 4.37e-09 *** 
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theta3 42.02595 6.27214 6.700 1.61e-06 *** 

Signif. codes: 
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 10.59 on 20 degrees of freedom 

Parameters: 
Estimate Std. Error t value Pr(>|t|) 

thetal 1.603e+02 6.896e+00 23.242 2.04e-15 *** 
theta2 4.771e-02 8.281e-03 5.761 1.50e-05 *** 
theta3 5.240e+01 9.551e+00 5.487 2.71e-05 *** 
theta4 1.641e-02 1.143e-02 1.436 0.167 

Signif. codes: 
0 '**•' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 10.4 on 19 degrees of freedom 

The Wald (t) tests indicate that the "constant shift" model is a significant 
improvement over the pooled model (the test of 63 = 0 is t — 6.7), but the full 
model is not a significant improvement over the "constant shift" model (the 
test of 64 — 0 is t = 1.4). Just as was true for logistic regression and other gen-
eralized linear models (page 171), Wald tests are known to be less trustworthy 
than likelihood ratio tests (the likelihood ratio test for nonlinear regression 
models is a partial F-test). In this case the distinction is unimportant, since 
the partial F-tests (F = 44.9 on (1,20) degrees of freedom, p = 1.6 x 10~6, 
and F — 1.72 on (1,19) degrees of freedom, p = .206, respectively) also sup-
port the hypothesis of a different maximum velocity (estimated to be 166.6 
for untreated enzyme versus 208.6 for treated enzyme) but same affinity (esti-
mated Michaelis constant .058) for the treated and untreated groups. The left 
plot of Figure 11.3 gives the estimated velocity functions for the two groups 
based on the "constant shift" (dashed lines) and full (solid lines) models, and 
it is apparent that they are similar to each other. 

Residual plots (not presented here) reveal two potential outliers at a con-
centration of .02 parts per million (one in each group), but model fitting after 
omitting these observations still leads to the "constant shift" model as before 
(and as was originally hypothesized). The right plot of Figure 11.3 gives the 
estimated velocity functions for the two groups based on the "constant shift" 
(dashed lines) and full (solid lines) models (the "constant shift" model has an 
estimated maximum velocity of 170.2 for untreated enzyme versus 213.2 for 
treated enzyme and estimated Michaelis constant .066 for both groups). It is 
apparent that the estimated velocities are not very different from those based 
on all of the data. 
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1 1.5 Summary 

We have only briefly touched on the basics of nonlinear regression fitting in 
this chapter. Bates and Watts (1988) a n d Seber and Wild (1989) provide much 
more thorough discussion of such models, including more details on estima-
tion. They also discuss how differential geometry can be used to construct 
curvature measures (intrinsic curvature and parameter-effects curvature, re-
spectively) that quantify the extent to which the linear Taylor series approxi-
mation fails for a given data set and given model parameterization. 

As was noted earlier, nonlinear regression modeling requires the strong 
assumption that a known nonlinear relationship is appropriate. In the situ-
ation where it is suspected that a relationship might be nonlinear, but it is 
not known what that relationship might be, a different approach is necessary. 
If it is assumed that the true underlying relationship is smooth, smoothing 
methods are an appropriate tool. These methods estimate the regression re-
lationship locally, estimating f(x) at the value xo using data from a local 
neighborhood around XQ. See Simonoff (1996) for further discussion of these 
methods. 

KEY TERMS 
Nonlinear least squares: A method for estimating the parameters of a non-
linear regression model. It is appropriate when the additive error term is 
(roughly) normally distributed with constant variance, and requires an itera-
tive procedure to find the solution. 
Nonlinear regression model: A model for the relationship between a re-
sponse and predictor(s) in which at least one parameter does not enter linearly 
into the model. 
Taylor series approximation: A method of approximating a nonlinear func-
tion with a polynomial. The first-order (linear) Taylor series approximation is 
the basis of standard inferential tools when fitting nonlinear regression mod-
els. 
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