Influences of different heating concepts for the energy demand of an airfield luggage tug

4. VDI-Fachkonferenz

Thermomanagment für elektromotorisch angetriebene PKW

Agenda

- **Motivation**
- **Approach of heating concepts**
 - Total vehicle simulation model in Dymola
 - Design and validation of thermal cabin model
 - Driving cycle
 - Power and energy demand
 - Simulation results of different heating concepts
- **Summary and Conclusion**

Motivation

The aim in this project is to design a FC luggage tug based on a powertrain of the BEV DLR: Develop and analyzes of different heating concepts for the cabin

Status quo: Battery Electric Vehicle (BEV)

- Dead weigh: 4 t
- 50 kWh lead-acid battery
- P_{EM,peak} = 30 kW
- $v_{max} = 30 \text{ km/h}$
- P_{PTC,peak} = 1.5 kW

Aim: Fuel Cell powered luggage tug (FCV)

- 8 kWh li-ion battery
- 20 kW fuel cell
- 3 kg hydrogen
- Same power train as BEV
- Usage of the waste heat from the FC

Simulations models of the DLR-AlternativeVehicles (blue) and the thermal cabin model (red)

Thermal cabin as used in simulation (flatplan) and for imagine in 3D-design

Approach: Design and validation of thermal cabin model

Measuring of heating-up power, air temperature and air mass flow with the cabin mockup

Measurement concept:

- According to DIN 1946
- Additional requirements

Sensor integration:

- Air temperature
- Air mass flow rate
- Power PTC heater

Approach: Design and validation of thermal cabin model

Comparison of the simulation results and the measured temperatures in the cabin

 2 K Variation of real and simulated temperatures cause of the temperature stratification

 Inlet of heated air in head space outlet to air heater in footwell

Approach: Driving cycle

Define of a real life driving cycle for a luggage tug of measured speed profiles

20

Raw data:

 Project eFleet, electric apron vehicles at the airport Stuttgart

 Measuring of energy consumption of different apron vehicles

Define speed cycle for luggage tug:

Distance: 3.2 km

• Duration: 1300 sec

• $v_{mean} = 18 \text{ km/h}$

• $v_{max} = 29.5 \text{ km/h}$

48.692

Approach: Power and energy demand

Energy demand for one driving cycle and for the 8h shift operation

Simulation results for one cycle:

- E_{tract} ~ 1.1 kWh
- $E_{\text{spec.,tract}} \sim 34.4 \text{ kWh/}100\text{km}$
- P_{mean,tract} ~ 3 kW
- Max Charge: ~ 5.5 C

Calculated energy for 8h shift operation:

- E_{tract} ~ 23.3 kWh
- E_{waste heat} ~ 25 kWh

Functional design and the simulated results for the heating power and cabin temperature

Functional design and the simulated results for the heating power and cabin temperature

Power of PTC, of HEX and the cabin temperature for all different heating strategies

Resulting energy demand of all four heating concepts for one shift operation (8h)

Lowest energy consumption:

HEX

Controllability:

PTC

Cabin temperature:

• PTC+HEX+60I

Summary and Conclusion

Summary:

- Virtual luggage tug created using "Alternative Vehicles" library in Modelica
- Cabin model validated
- Thermal management system designed and calculated in 4 cases
- Energy demand for shift working derived

Conclusion:

- Usage of fuel cell waste heat lead to:
 - lower energy demand for electric heating
 - → less hydrogen consumption
 - higher average cabin temperature using a 60 liter enthalpy storage system

Deutsches Zentrum für Luft- und Raumfahrt

German Aerospace Center

Institute of Vehicle Concepts

Michael Schmitt

0711 6862-8126

michael.schmitt@dlr.de

