

-1-

Characterizing Verification Tools through Coding Error Candidates
Reported in Space Flight Software

Christian R. Prause

Deutsches Zentrum für Luft- und
Raumfahrt e.V. (DLR)

Bonn, Germany
e-mail: Christian.Prause@dlr.de

Ralf Gerlich, Rainer Gerlich
Dr. Rainer Gerlich BSSE System

and Software Engineering
Immenstaad, Germany

e-mail: Ralf.Gerlich@bsse.biz,
Rainer.Gerlich@bsse.biz

Anton Fischer
etamax space GmbH

Braunschweig, Germany
e-mail: A.Fischer@etamax.de

Abstract—Mastering the continuously increasing amount of
software requires identification of more efficient strategies for
software verification. Currently, fault coverage is only
indirectly addressed, e.g. by code coverage. The idea as
presented in this paper is to get a better understanding of fault
coverage by a systematic classification of software fault types,
derivation of footprints of verification tools regarding coverage
of such fault types, and recording of required effort. A number
of issues regarding fault identification and classification are
discussed in this context.

Keywords: software faults, fault identification, fault
coverage, software verification, verification tools, verification
efficiency, ECSS, DO178, EN 50128

I. INTRODUCTION
The objective of software verification is driven by two

goals
• to demonstrate that a software product performs as

intended, and
• to identify sources which could prevent the product

from performing as intended.
Such sources are called defects, bugs, faults, errors or

failures. Definitions of such terms are given below in
Section A.

If both goals could be fully covered, only one of both
would be sufficient. However, in practice it is impossible –
especially for complex systems – to achieve full coverage for
both. Therefore both goals must be tackled in parallel during
the verification process.

For software products of high complexity or large size,
tools need to be used in the verification process. Such tools
are also software products and their output might be wrong
or incomplete.

In this paper, we present a planned activity addressing
the capabilities of verification tools regarding identification
of faults – the Fault Coverage – and related reporting,
targeting an evaluation of the efficiency of fault
identification, also considering the required effort.

A. Definition of Terms
In the context of this paper the following definitions

apply to the terms fault, error, failure and defect (as used in
ECSS-Q-HB-80-03A[1]:

• An error is a bad or undesired state in a software
system.

• A fault is the cause of an error having its origin in the
code which may be called a mistake.

• A failure is a non-compliance regarding external
behavior being recognized between expected and
observed properties of the software product as a
consequence of an error.

• A defect commonly refers to troubles with a software
product, with its external behavior or its internal
features (e.g., its maintainability). This includes
consideration of the risk of faults by potential changes
of the context.

In this terminology, faults are considered as a subset of
defects. A fault may cause an undesired, observable behavior
of a system. A defect, which is not a fault, will not, but it still
addresses issues to be considered1.

Note that an error can be encountered either while
abstractly reasoning about the software, e.g. in the context of
the virtual semantics of a programming language, or during
actual execution.

From these definitions the following chain of causality
results as shown in Fig.I-1.

Term Scope
Fault Mistake in code

 ⇓ ⇓
Error Bad state of a system

 ⇓ ⇓
Failure Unexpected observed behaviour

Fig.I-1: Causality Chain Fault, Error, Failure

The term fault coverage describes the degree to which
defects present in the software are or were detected, or are
detectable in the course of the defined verification process. It
is usually represented by the ratio of the number of defects
recognised and the number of defects present.

Be aware that the number of defects present is an
unknown figure. Therefore, a percentage cannot be derived.

1 As the term “fault” is widely used, e.g. in context of

“fault coverage”, this term is kept, although “defect
coverage” would be the proper term following the
terminology of this paper. Similarly, „criteria for fault
identification“ need to be re-considered as “criteria for defect
identification”, and “fault types” as “defect types”.

Paper presented at DASIA‘2015, 20.05.2015, Barcelona, Spain

-2-

Hence, the absolute number of identified defects is of
relevance.

The term code coverage describes the degree to which
the code of the software under test is or was executed during
test. In the simple case, it is represented by the ratio of the
number of code instructions executed and the total number of
instructions. There are different kinds of code coverage such
as statement coverage, block coverage, decision or branch
coverage, or Modified Conditional/Decision Coverage
(MC/DC).

B. Verification Issues
Due to the increasing amount of software, its increasing

complexity and its criticality, verification tools shall help to
decrease the effort and to increase the fault coverage.

Standards such as ECSS (space domain), DO178
(aviation domain) or EN 50128(railway domain) require the
definition of a verification process, by which a software
supplier shall demonstrate that the software has the required
properties and – in addition – does not have undesired
properties.

The desired properties are usually expressed by explicit
requirements, while the undesired ones are a matter of
generic requirements, valid for every line of code, in
principle. This makes it difficult to address all verification
issues on undesired properties.

Examples of requirements which mainly focus on the
undesired properties are the so-called RAMS requirements
on reliability, availability, maintainability and safety.

The current approach to demonstrate compliance
between properties of a software product and requirements is
to analyze the source code for non-compliances – e.g.
violation of given rules – and to run tests, aiming to cover
both, compliance and non-compliances. Such activities are
supported by verification tools.

Bearing in mind that also verification tools can have
faults and may not accurately report defects, a verification
process based on just applying a tool and believing in its
reports is not sufficient. Without further quantifying or
qualifying the expected reduction in risk, the result of this
application is nothing more than a good feeling.

E.g. a tool may fail to report a defect or may report a
defect where no defect is present. There are 4 distinct cases
depending on whether a defect exists or not and whether a
tool reports a defect or not (Fig.I-2).

 Code
Defect present Defect NOT present

Result
Defect Reported true positive false positive
Defect NOT reported false negative true negative

Fig.I-2: Classification of Tool Reports on Defects

These terms are discussed in detail in Sect. III.A.
Fault coverage can now be expressed as the ratio of true

positives and the sum of true positives and false negatives. In
information theory synonyms for fault coverage are
sensitivity or recall. Similarly, the precision by which a tool
does detect true positives in presence of false positives can

be expressed as the ratio of true positives and the sum of true
positives and false positives (Fig. I-3).

Fig. I-3: Sensitivity and Precision

Even if a certain defect was already successfully
identified by a tool, this does not imply that all similar
defects have been reported, apart from the fact that other
defects might not be addressed at all. Consequently, an
unknown, but possibly non-negligible risk still remains.

This suggests that more knowledge about identification
capabilities of verification tools is required.

Therefore the Space Administration of the German
Aerospace Center (DLR) has initiated an activity for a
systematic investigation of fault/defect identification
capabilities of verification tools, aiming to derive footprints
of tools.

The focus is put on tools which do not require manual
intervention for error identification, apart from configuration
of the tool.

A number of criteria for fault/defect identification are
known, e.g., violation of layout rules, aiming to obtain good
readability in context of reviews and code inspection, or out-
of-range conditions, addressing actual run-time errors.

However, when selecting criteria and tools, it is not
exactly known today which fault/defect coverage can really
be achieved at the end for the following reasons:

• the defects in the software are not known at all,
• even if a tool claims to support defect identification for

certain defects, it is left open whether all such defects
will be reported and if a user will recognize and be able
to handle all such reports at the end,

• even if reports are provided and recognized it is left
open whether a user can remove all real defects due to
limited effort and time and possibly at presence of
irrelevant reports(false-positives, for details see Sect.
III.A)

In the past, a number of tool evaluations
[1][10][11][12]indicate discrepancies between expectations
and achieved results: identification support might not be as
advertised, or practical difficulties may keep reported defects
from being recognised by a user. These evaluations can be
considered as a first step towards an analysis of tool
characteristics.

However, they neither do cover tools as used in space
and/or safety critical domains nor do they fully and/or
systematically characterise a tool. This situation should be
improved by the following measures:

Firstly, defects need to be characterised and classified
into defect types.

Secondly, it should be known which defect types a tool
does reliably cover and in which context a defect is reported
and can well be recognised by a user.

-3-

Thirdly, an effort figure should be derived, allowing to
optimise the use of tools and to define a sequence on the
order they shall be applied, aiming to reduce the overall
effort while increasing the risk arising from defects not being
addressed.

In consequence, a footprint of a verification tool should
be available if it is considered as a candidate for use in a
project. Footprints shall enable planning which defects be
tackled regarding a project’s criticality issues and to ensure
or at least improve the chance that they will be found.

In Ch. II we discuss verification issues in context of
standards from space, aviation and railway domains and
identify drivers for fault/defect identification.

In Ch. III we consider classification of defect types,
criticality issues and their relevance to tools. A major issue
regarding assessment of fault identification capabilities is the
classification of defects according to Fig.I-2. As we will see,
the classification for true and false positives depends on the
verification issues. Therefore we discuss such issues in detail
to get a solid base for tool assessment.

In Ch. IV the contents of the planned activity is described
aiming to derive tool footprints.

Finally, conclusions are drawn in Ch. V together with an
outlook on the next steps planned.

II. CURRENT PRACTICES OF SOFTWARE VERIFICATION
Common to standards in several domains is the definition

of a software verification plan. The verification plan shall
describe how compliance can be demonstrated and how
defects will be identified. However, there is no requirement
to state which defects will be covered and to which degree. It
is sufficient to define a process as such. This is unsatisfying
from a principal point of view.

In this chapter we will discuss a number of issues related
to improvement of the current verification process and
consider the position expressed in the standards regarding
such issues.

Issues arising from insufficient knowledge on tool
footprints are addressed in Section A. In Section B issues on
verification in context of current practices are discussed.

In SectionC.1)the verification approaches of the
standards ECSS, DO178 and EN 50128 are considered
regarding issues on capabilities of fault identification of
tools.

A. Issues on the Software Verification Plan
The Software Verification Plan (SVP) defines the

verification procedures to satisfy the software verification
process objectives. Such objectives depend on the
application domain and the standards applicable for a certain
domain. Therefore we consider standards from three
domains.

In general, the standards demand that a contractor
describes in the SVP how the objectives of the project can be
reached and the risks can be minimised. The content of a
SVP may be subject to negotiation between customer and
contractor like it is for ECSS or not as in case of EN 50128.

In an SVP, procedures are defined and tools are selected
which shall allow to achieve a sufficient level of confidence

in the software product. The selection of tools is driven by
what is available on the market, in use in projects and what is
considered as adequate to manage the expected risks.

Instead of fault coverage, code coverage is put in the
focus, hoping that sufficient code coverage will result in
sufficient fault coverage.

But still a number of questions are left open. The use of a
static analyser and execution of tests – with appropriate code
coverage – are considered as sufficient, while it remains
unclear whether they actually are sufficient due to
insufficient knowledge

1. regarding defect identification
a. To which degree is identification of the defects, for

which identification is expected, supported, and can
such defects really be found?

b. For which defect types are tools complementary?
In this case the fault coverage could be improved by
benefitting from different tool capabilities resulting
in better fault coverage.

c. For which defect types are tools equivalent?
If equivalent, false negatives related to a certain tool
in the chosen set of verification tools, could be
compensated by true positives by another,
equivalent tool in the set.

d. Do the remaining risks, which result from
incomplete fault coverage, comply with the
expectations?

2. regarding effort
a. Which tool is the most efficient for identification of

certain defect types?
b. In case of several complementary or overlapping

tools, which is the best order of sequence to achieve
minimum overall effort?

While the verification process is clearly defined, the
resulting quality of the software product itself in terms of
still hidden defects remains unclear, because it is left open
which of the – known – defect types are actually covered.

More detailed information on the fault identification
capabilities of tools shall allow closing this gap and tailoring
the verification process regarding minimization of risks and
effort.

B. Verification and Risk Issues
Manifestation of a fault as an error is subject to fault

activation conditions (see Section III.A).In the course of a
development and verification process, such activation
conditions may differ at different stages of integration.

Subject to discussion is, for example, whether a is of
relevance when its activation condition is raised during
module/unit testing, but cannot be raised during integration
or system-level testing.

Then we may ask: Is such an identified fault a true
positive or a false positive? And the project manager may
ask: Does module testing impose an overhead on the project?

We are addressing this issue because it is of relevance for
tool evaluation regarding fault identification capabilities.

A simple, abstract example for such a case is given in
Sect. III.C. In general, what is addressed here is:

-4-

• a function receives a valid input vector during module
testing,

• in turn it provides a wrong output vector or shows
other unintended behavior like an abort,

• it is confirmed that this input vector cannot occur in the
system context.

In this case the activation condition for the fault does
never occur in the system context.

It may even happen that a function provides the expected
output vector and no unintended behaviour for all (valid)
input vectors occurring in system context. However, there
may be further input vectors in the context of module testing,
for which it provides a wrong output vector or shows
unintended behaviour, so that an error occurs.

In both of the above cases, the system is not affected at
all, although in the context of module testing, a defect is
identified. Shall such defects be fixed? Or should they even
not be reported?

It is important to be aware of that the missing activation
of a fault in system context just represents a snapshot. In case
of reuse or maintenance the conditions may change –
possibly silently – and the fault may be activated.

In case of such a latent fault, verification of the system
must be repeated after every change, which may be costly.
The safest and probably cheapest approach is to identify such
latent faults and to fix them.

Whether a fault should be removed or not is a matter of
risk assessment.

Risk assessment has to estimate the probability that a
software product may not perform as intended when being
operated under conditions defined as valid, and the costs of
such an occurrence. Classification of such a risk regarding its
criticality requires knowledge about the conditions under
which the risk may be realized. Consequently, a hidden fault
implies an unknown risk.

It may happen that the risk is considered as low or
negligible once the fault has been identified. Therefore, from
the view of risk reduction, it is highly desirable to identify as
many faults as possible to allow for their assessment.

The lack of information about the actual valid input
domain may lead to tools flagging possible faults in the code
at unit level, although in an integrated setting, the users of
the unit properly take care that no invalid values are passed.

Unfortunately, this scenario is often unavoidable, as most
relevant programming languages allow the definition of the
input domain only as an orthogonal set, i.e. as a set of tuples
where each parameter may take any value from its type
independently of the other parameters. However, the set
describing the valid input domain often is non-orthogonal,
imposing interdependencies on the parameters and thereby
limiting the combinations.

Given enough information, a tool may theoretically avoid
flagging such possible faults and instead focus on the faults
affecting the handling of valid inputs. In practice,
consideration of extensive context information may be
beyond the capacities of the computing hardware of the
verification tool, therefore making verification at integration
or system level impractical.

However, assessment of robustness is also a valid goal. If
only valid inputs are provided, aspects of robustness are not
addressed. Although invalid values might not be expected,
they may occur due to fault propagation, also in the system
under operation. From this point of robustness, reports on
faults which are expected to be dormant should be of
relevance, too.

C. Position of Standards
1) ECSS

Software verification is intended to confirm that the
product is built right. The verification process therefore aims
at the correctness and consistency of outputs of software-
related activities with respect to their inputs. It occurs in
parallel to the actual development, and consists of (i) a
process implementation that creates and deploys a
verification plan, and (ii) the actual verification activities
according to this plan (ECSS-E-ST-40C[1], ECSS-E-HB-
40A[3], ECSS-Q-ST-80C[4], ESA ISVV Guide[5]).

ECSS-E-ST-40C does not make universally valid
prescriptions about software verification efforts, the
identification of risks and the degree of independence of
coders and testers. It recognizes, however, that efforts can
differ and that there are varying degrees of separation
between developing and verifying organizations, ranging
from no separation (same person) to Independent Software
Verification and Validation (a person in a different
organization, ISVV)[5]. The standard therefore demands that
a determination shall be made regarding verification effort,
the identification of risks and the degree of independence to
be applied in different verification activities (ECSS-E-ST-
40C). Another example is test coverage: While 100% code
coverage is required for higher criticality levels, lower
coverage values can be negotiated for less critical software.

The verification activities are therefore a point of
negotiations between software suppliers and customer. The
verification approach must be defined in the Software
Verification Plan.

For example, independent verification has considerably
higher costs but increases confidence in development results.
A better understanding of the characteristics of different
software verification tools – regarding overlapping/
equivalent and complementary features – with respect to
flight software is therefore important for customers and
suppliers alike: the more is known about fault identification
capabilities of tools, the more efficient verification is, and
the higher is the confidence.

Verification activities typically address the areas of the
requirements baseline, technical specification, architectural
design, detailed design, unit testing plan and test results,
coding and the verification of the software validation, and
related documentation

In particular, the verification of code may cover, for
example, correctness of data and control flow, error
handling, controlling of the effects of run-time errors,
memory leaks, numerical protection mechanisms, code
coverage of tests, and the verification of source code
robustness (e.g. resource sharing, division by zero, pointers).

-5-

The use of static analysis tools is explicitly recommended by
the standard ECSS-E-ST-40C.

The objectives of software verification depend on
criticality levels (A-D, with A highest) based on the severity
of the consequences of system failures as defined in ECSS-
Q-ST-80. Knowing tool characteristics can help to choose
the right tools or combinations of tools for the respective
criticality levels.

Tailoring of the standard is possible. As with all ECSS
standards, tailoring is explicitly recommended on a case-to-
case base or as a matter of negotiations. The standard even
comprises an appendix with a table that contains a proposed
tailoring according to software criticality.

2) DO178C
DO-178C (and its nearly identical European counterpart

ED-12C) distinguishes between validation and verification in
much the same way as the ECSS does.

The purpose of the verification process is to detect and
report faults (called “unintended functionality” there, which
indicates that faults and not defects are in the focus) that
might have slipped into the software during development.
While testing takes a major role in the verification chapter,
verification is seen as more than simply testing. The reason
is that testing, in general, cannot show the absence of errors.
Consequently, combinations of reviews, analyses and tests
are applied to verify the software. The standards note that
removal of errors is part of the activities in the software
development processes.

Interesting about the verification approach in DO-178C is
its discrimination between high- and low-level requirements,
and furthermore that diverse kinds of coverage values are the
drivers of the process: Test Coverage Analysis,
Requirements-Based Test Coverage Analysis, Structural
Coverage Analysis, and Structural Coverage Analysis
Resolution.

DO178 recommends addressing certain fault types, of
which examples like invalid data are provided, in a non-
exhaustive list.

A verification tool is subject to qualification by which
correct behavior must be demonstrated. The procedures of
qualification are defined in a separate supplement
(DO330)[7].

The verification approach shall be document in the Plan
for Software Aspects of Certification (PSAC).

The objectives of software verification depend on
criticality levels (A-E, with A highest) based on potential
failure conditions.

3) EN 50128
To get a broader view on the position of standards we

also consider a standard outside the aerospace domain: EN
50128 which is applicable in the railway domain.

There are clear rules regarding the verification activities.
Tailoring common objectives of this standard is not possible
while it is for ECSS. Verification characteristics and the
respective objectives of processes and documentation depend
on the Safety Integrity Levels (SIL, 0-4 with 4 as highest),
based on (numerical) probability-to-failure figures)
Similarly, to ECSS and DO178 the verification approach

must be documented in a plan (Software Verification Plan,
SVP) early in the requirements engineering process. The
SVP needs to provide all information regarding criteria,
methods, techniques and also tools planned to be used within
the different phases of safety critical railway software
verification.

EN50128 is applicable for software engineering tools
(integrated development tools, verification and validation
tools, simulation tools, etc.). An “adequate” set of tools shall
be used for software engineering and a high degree of
automated testing and verification shall be reached.
Compared to other standards, EN 50128 states in a relatively
soft manner that software tools need to be available and
known “as soon as possible” within the project and that these
tools shall be suitable for the specific usage within the
software engineering project. Their suitability could be
proven by independent tool validation, appraisal and
permission for usage (comparable to DO-330). Currently,
tools with qualification and tools without qualification are
often used in parallel. EN50128 does not explicitly focus on
failure identification methods and techniques of verification
tools during tool qualification processes.

EN50128 focuses explicitly on the important step of
software-software integration test activities. Here special
emphasis shall be put on software module integration having
used different implementation and verification tools during
modules implementation, e.g. at different supplier premises
(refer to 11.4.5 in EN50128).

Taking all this information into account, verification tool
diversification as proposed within this paper could therefore
be an objective of the EN 50128 based software qualification
plan (see intro to appendix A of En 50128, in combination
with EN 50126). According to EN 50128 a third party
certification authority is able to choose additional approaches
for adequate verification. Especially during system
integration with multiple customer-supplier-relations in the
value chain this shall be mandatory to cover different failure
detection approaches of verification tools in order to detect
most of the common failure types and potential failure
conditions.

EN 50128 also focuses on the phase of software
maintenance (chapter 16). Tools used in maintenance and
evolution phases shall fit to the ones used for
implementation. In practice, special attention shall be given
to substitution actions (changes in tool chains) during
operational software usage.

D. Summary on Standards
All standards require definition of a verification process

which shall be proposed by the software supplier and shall
be agreed by the customer. This process shall sufficiently
identify the measures to demonstrate that the software will
behave as expected, including measures for fault
identification.

A major driver for detailed testing on module level is the
so-called RAMS requirements (Reliability, Availability,
Maintainability, Safety). The knowledge on imperfectness of

-6-

verification, especially in a complex system context,
suggests a bottom-up approach applying the outmost degree
of verification on every level, starting with units or modules
– the functions.

If tools for fault identification are applied in this context,
qualification of such a tool is required demonstrating that
expected properties, e.g. fault or code coverage, will be
achieved based on a representative scenario. So far, every
project performs tool qualification on its own, tailored to the
project’s specific conditions.

Use of tools with overlapping and complementary
features to increase confidence in the verification process is
not addressed, probably because there is lack of information
on tool characteristics, so far.

This situation should improve when footprints are
available.

III. ISSUES ON FAULT/DEFECT IDENTIFICATION
Recently, a paper on the software verification approach

of the Mars rover Curiositystated: “Before we can do so [to
reduce the likelihood of faults], though, we have to know
what types of mistakes occur”[13].

A first step towards such a strategy is to identify sets of
similar defects, called defect types.

In this sense, defects are instances of defect types. An
out-of-range-condition may occur at a number of locations
in a software system, but typically all of these can be found
by a small set of common detection mechanisms. For
example, out-of-range-conditions can be found by index
checking or detection of corrupted memory. While index
checking targets the source of an error, memory corruption
targets its further consequences.

In general, it is possible to detect faults by generic and
non-specific detection mechanisms, such as watching for
run-time-exceptions or memory corruption.

Sometimes finding such defects may depend on chance.
For example, using an invalid index to access an array may
lead to memory corruption by accessing a memory area that
is otherwise unused and thus trigger an exception or memory
corruption detection mechanisms.

A wrong index, however, may also lead to an access to
an unintended, although valid address, e.g. if the accessed
address is part of another object in memory. In these cases
neither an exception nor the memory-corruption detection
mechanism would be triggered directly. The corruption of
the other object may lead to another error elsewhere in the
software, however, neither is occurrence nor visibility of this
follow-on error guaranteed.

These generic detection mechanisms may sometimes
miss specific errors. Once such an error has been found, it
may be possible to find a more specific mechanism that may
have a higher chance of detecting these kinds of errors. In the
example, the introduction of explicit index checking would
be a more specific mechanism.

In this way, the capabilities of a verification tool can be
improved iteratively.

Having defined defect types, the verification tools can be
characterized accordingly.

A further consequence of such a classification is that it
shall be possible to identify for which defect types tools are
complementary and/or equivalent. This will allow to define
a set of tools covering a well-defined / well-known and
possibly broader set of defect types.

A. Considerations on Fault/Defect Identification
An approach for fault identification needs to consider the

imperfection of verification. This imperfection increases the
risks remaining after the verification process. The question
is: Can such risks be reduced at affordable effort and costs?

Improving the knowledge about such imperfection is a
necessary pre-condition to achieve this goal.

Therefore in this section we further consider the
mechanisms of fault activation and fault identification by
tools.

Regarding the software or the source code respectively,
identification of faults may happen in two different ways by

1. analysis of the source code
called “Static Analysis”, and/or

2. execution of the source code,
called “Dynamic Analysis” or testing.

It is well-known that testing cannot prove absence of
defects, only the presence of defects. Regarding static
analysis it is broadly believed that tools would identify
defects which they ought to detect. However, this is not true
in general. Static analysers may also miss violation of rules.

In general, to detect a defect, certain conditions must be
fulfilled.

In case of static analysis the principal conditions are:
A1. The location of the defect in the source code must be

subject of analysis by the tool.
A2. Identification of the defect type must be supported by

the tool.
A3. The defect must be identified in its actual context and

reported by the tool.
A4. The defect report must be recognized by the user.
A1considers that the faulty statement may not be

analysed at all due to limited resources like time or memory.
Regarding A1 and A2 a validated footprint of the chosen tool
is a pre-condition to success. If unknown, one should not
expect to get a message on such a defect. A3 states that
identification may depend on the context in the source code.
E.g. a fault in the tool itself or a missing consideration of that
context may prevent identification and reporting. A4
addresses visibility / usability issues: a relevant message may
not be recognised amongst thousands of messages.

In case of dynamic analysis / testing the following
conditions must be fulfilled:

T1. The statement must be executed.
T2. The fault’s activation condition must occur.
T3. The fault must manifest as an (observable) error

e.g., by observation of an exception or an out-of-
range condition, or comparing expected with
observed output.

T4. The defect report must be recognized by the user.
T1addresses coverage issues and is a trivial, but

necessary condition. T2 reminds us that covering a statement

-7-

once only may not be sufficient to detect a defect. This
explains why code and fault coverage are not identical. T3
requires that a tool must be sensitive for that defect type
(must communicate an observed defect). Finally, T4 is
equivalent toA4.

Fig. III-1: Conditions for Fault Identification

These considerations demonstrate that fault identification depends on 4
principal conditions (

Fig. III-1). In consequence, just to know that a tool aims
to support identification of a certain defect type is not
sufficient.

Moreover, we have to face the possibility that a tool
wrongly reports a defect. The following two cases may
occur:

• a report is provided,
called the positive case because something is provided,
or

• no report is provided,
called the negative case, because nothing is provided.

Each such case may be correct or wrong, i.e.,true or
false.

According to Fig.I-2 there are 4 combinations to be
considered:

• true positive
a tool flags a defect and it is an actual defect

• true negative
a tool flags no defect, and there is no defect

• false positive
a tool flags a defect, but it is not a defect

• false negative
a tool misses an actual defect

The cases with true are desired, the others are undesired.
False positives increase the effort required for analysis of the
reports without providing payback in the form of detection
and possibly eradication of a defect. False negatives mean
that a possibly critical fault remains undetected.

A final decision on true positive or false positive eis
usually only possible by manual inspection of the source
code (which is also required to fix the defect). To decide
whether true negative and false negative did occur, reports
from at least two tools are required (or another additional
information sources).

True negatives are trivial in principle, but become a
positive property of the tool when another tool reports a
defect. Conclusions on false negatives can only be drawn
when information on a confirmed defect is available.

B. Relevance to Tool Assessment and Selection
Classification of defect types, understanding of fault

identification conditions (A1-A4 and T1-T4) and
classification of defect reports as shown above and in Fig.I-2
are pre-conditions to deriving footprints on verification tools,
i.e., to characterize a tool regarding its fault identification
properties.

Knowing a tool’s footprint, including the effort required
to identify the source of a defect, will help to improve the
verification strategy: weaknesses of one tool may be
compensated by another one, and overall effort can be
minimized by choosing the most efficient tool or set of tools
being applied in an optimized sequence.

Such an optimization strategy shall consider:
1. Start with tools which allow efficient identification of

defects for the/a major part of defect types, though they
may not cover all defect types.

2. Then continue with tools covering the remaining defect
type. Theymay require a higher (manual) evaluation
effort per defect, but it is likely that only a few defects
occur for such defect types.

C. Conflicting Verification Issues
A major issue of verification arises regarding the benefits

of identifying a defect and the related effort and costs.
Different steps of verification – as driven by the standards –
address different verification issues. This may imply that
verification objectives e.g., on the level of module testing
must be fulfilled, which do not contribute to the reliability of
the system at all.

From the system’s point of view – and from the project’s
costs – full tests seem to imply an overhead. However, as far
as the environment does not accurately specify what is
required, the goals of module testing – as understood today –
must be kept.

The following exaggerated example shall illustrate this
conflict:

// Module Level:
float sin(float x){ return 0.0; }

// System Level:
y=sin(float(n)*π); // n an integer value

Fig.III-2: Wrong Implementation, No System Failure

As the module sin is called for multiples of π in system
context, only, it returns the expected values: although the
code is faulty, no error manifests and no failure will be
observed on higher levels.

This example is more relevant than it may seem at first
look: in practice (see Sect. III.F), we have observed such
cases in all analysed software packages, at higher
complexity, of course. The implemented algorithm was

http://www.dict.cc/englisch-deutsch/exaggerated.html

-8-

wrong, but for the parameters passed during operation, the
output was correct.

Do such defects matter at all, when they do not cause any
failure? Does the implementation violate the module’s
specification? If yes, does it matter? Does the (successful)
identification of a defect imply a cost overhead, which
should be avoided from the perspective of a project
manager? Is such a defect a false positive?

The essential point is that the conditions (usually) are not
known for which a module is used in context of the system.
Consequently, this requires the test of the full functionality in
context of module testing. If the conditions would be known,
the module tests could be limited, even the implementation
could be simpler.

In practice, such information is not available, today. But
is it desirable at all to provide it?

Firstly, the effort and costs would increase due to the
required documentation. Secondly, risks would increase
regarding reuse and maintenance because a module with
limited functionality – less than expected – may wrongly be
used by ignoring the limitations and the documentation and
passing the full spectrum of inputs.

D. Fault Identification vs. Fault Activation
Above discussion leads to the following principal
classification on fault activation conditions:

F1. inherently risky
F2. temporarily disabled
F3. permanently disabled.

Inherently risky means that an activation condition may
occur any time when the system is being operated, even if
the probability may be low.

Temporarily disabled means that an activation condition
may not occur currently when the system is being operated,
but it may occur when the operational context is changed.

Permanently disabled means that actually no fault is
present and even a change of context will not introduce one.

When the context of fault activation changes, e.g. due to
maintenance, the type of activation may change from
inherently risky to temporarily disabled and vice versa. In
the latter case, knowledge about such a (potential) fault is
important. The only way to avoid a silent conversion from
disabled to risky is to fix the fault early enough.

The critical point is that the risk is not known as long as
the fault is not identified. In consequence, for matters of risk
reduction, as many faults as possible should be identified,
even when after analysis they turn out to be temporarily
disabled.

From this point of view, it is desirable to identify
temporarily disabled faults, because these are candidates for
silent activation.

A project may need to make a trade-off between risk
reduction and effort imposed by evaluation of such faults.
But as long as the fault report is not evaluated or is not
available at all, no conclusion about the relevance of such a
fault is possible.

In consequence, two types of false positives exist:
• those which may become true positives, and

• those which cannot become true positives, at all.
Only latter ones shall be considered as a fault of a tool.

E. Issues on Defect Reporting and Report Evaluation
Efficiency of fault identification depends to a major part

on the correct tool reports as discussed above and shown in
Fig.I-2. In previous projects major discussions were raised on
false positives.

The number of false positives significantly impacts the
efficiency of a tool and its application. Therefore, a detailed
risk assessment is required when deciding whether a defect is
considered a false positive or not.

Minimization of risks requires minimization of false
negatives. While (real) false positives cause an overhead,
false negatives increase the risks. Mastering of risks requires
good knowledge on false negatives.

1) Fault Potential of False Positives
A defect report may be considered as false positive either

because
• the tool reports a defect and cannot preclude that the

report is inherently risky (true positive) or temporarily
disabled due to missing information, or

• a tool erroneously reports a defect.
Temporarily disabled fault activation is mostly a matter

of consistency. Experience shows that there may be hidden
dependencies in the software, which may cause an
inconsistent context, e.g., due to incomplete maintenance as
a matter of unknown dependencies.

Such an inconsistency can already occur by use of a
constant number at different locations in the source code:
being used in the declaration of an array’s size and in a
corresponding for-loop for initialisation of array elements, an
inconsistency occurs when the number is changed only at
one location, either the upper limit of the loop or the size of
the array.

This example may seem manageable, but in previous
activities we found many cases where the dependency was
more complex and could have caused major impacts on
system operations after incomplete maintenance. An
example is provided in Sect. III.F.

In case the for-loop causes an out-of-range condition
(upper limit of the loop exceeds the number of elements), a
tool may detect this defect. In case the for-loop does not
cover initialisation of all array elements (upper limit of the
loop is less than the number of elements), it is more
complex. Detection of partial initialisation is currently not
sufficiently covered by available tools.

The challenging question is whether detection of such
fault potential is considered as a true positive or as a false
positive in case of a temporarily disabled activation
condition. Clearly, in a consistent context, the fault cannot be
activated at all and it may be argued that it was useless to
spend effort on the analysis of the defect report indicating an
inconsistency.

Indeed, it is wasted effort in the consistent context, but it
is not, if the context cannot be controlled such that change
into a critical state cannot be prevented.

-9-

Another aspect is that too many of such false positives
decrease the visibility of more critical faults, e.g., when it is
not possible to separate inherently risky faults from
temporarily disabled ones – automatically

However, in case of false positives of type temporarily
disabled a software supplier can reduce the number of such
reports by inherently preventing fault activation when
creating the source code. In consequence, the supplier and
probably the project management, too, must decide at stage
of development: more checks in the code and less risks, or
less checks and more risks and more evaluation effort.

Real false positives are clearly an issue of the tool or
method.

2) Mastering Risks of False Negatives
A risk is to believe faults are covered while they are not.

This risk results from misleading or misunderstood
descriptions of tool support. This is different from the case
when it is known in advance that certain defect types are not
supported by a tool.

If known in advance, another tool may be used instead or
in addition to achieve the required coverage of defect types
(Fig. III-3). Then risks can be mastered sufficiently.

Fig. III-3: Identifying False Negatives by A Set of Tools

Hidden risks remain in case a defect report is expected,
but when the tool does not issue a report. The detection of
this case is only possible by comparing the results of two or
more tools.

In consequence, availability of tool footprints implying
the possibility to compare tool characteristics supports
reduction of false negatives and reduces remaining risks.

3) The Risk of too many False Positives
The incapability of a tool to detect specific faults is one

reason for the occurrence of false negatives. Another may be
found in too many false positives.

As already discussed, false positives imply analysis
overhead without providing value. Of course, this only
applies to actual false positives, i.e. such positives that do not
merely refer to temporarily disabled faults.

If the number of reports gained from the set of tools
applied is larger than what can be handled within the planned
time frame of a project, there are two options available.

The first option is to extend the time frame of the project,
taking into account additional cost and time, thereby possibly
missing deadlines and postponing finalisation. This may be
necessary in some cases, most specifically in case of highly
safety critical software.

The second option is to prioritize the reports for analysis,
effectively analysing only a subset of reports. It is not known
in advance which of the reports to be analysed are true and
which of them are false positives. Therefore, there is a non-
negligible chance that some of the reports not analysed are
actually true positives. These effectively become false
negatives, because, although they are reported, they are not
considered.

In both cases, false positives are more than a mere
nuisance to the user, and in both cases, they have
considerable impact on the project. In the second case they
may even have critical impact on the software quality.

4) Fault Coverage vs. Code Coverage
All standards refer to code coverage as driver for fault

identification, but not to fault coverage. It is believed that
sufficient confidence can be achieved when sufficient code
coverage is reached, possibly complemented by additional
robustness tests.

ECSS-E-ST-40C [2] defines concrete figures for code
coverage only for the highest safety categories while in the
other cases the figures are subject to negotiation between
supplier and customer.

DO178 defines figures on code coverage depending on
safety categories. 100% coverage is required for
requirements. It suggests to add requirements when the
demanded code coverage cannot be achieved with the given
set of requirements (the specification). Robustness testing is
demanded. Similarly, EN 50128 also requires achievement
of given code coverage figures.

A percentage on fault coverage cannot be derived at all,
because the number of defects in a software package is
unknown. However, it is possible to measure fault coverage
in terms of defect types. This is an issue of the planned
activities.

5) Standards vs. Tools
DO178 and EN 50128 require tool qualification (e.g.,

following DO330), i.e., the proof that the tool does provide
the expected output regarding a certain issue for a
representative scenario agreed on by all parties.
Identification of false negatives is not a direct issue. Proving
of the output correctness for the given scenario should imply
that false negatives should not occur.

ECSS-Q-ST-80C [4] requires that the customer must
agree in the use of a tool selected by the supplier. Tool
qualification is not an explicit issue of the standard.

Nothing can be found in these standards on increasing hit
rate of defects and reducing risks by tool diversification.
Most probably, this is a matter that today characterization of
tools is not available, which is a pre-condition for tool
diversification.

However, tool diversity also is not disallowed because
the verification strategy can be defined within a certain scope
and is agreed between supplier and customer at the end.

So the work being done within the study shall also give
additional information to tool qualification approaches in
safety critical domains. It is useful knowing that a specific
tool works properly in the planned project scenario, but it is

-10-

also worth knowing which kind of defects can, will or may
not be found.

Knowing the characteristics and footprints of certain
tools means a concerted planning of different tools’ usage
within the verification processes in close harmonization with
certification authorities.

F. Practical Examples on False / True Positives
The following examples provide code which is inherently

risky at the level of module testing, but the fault may be

temporarily disabled at system level. However, these proofs
had to be derived manually by inspection of all the relevant
code.

These examples are derived from real code. The intention
is to show the problem and the fault potential. They are
representative for the original code, but not identical and not
complete in the sense that they are compilable.

Code Comment

#define NUM_ELEMS 5

typedefenum {FALSE ,TRUE } TyBool ;

typedefenum {NOSUCC,SUCCESS} TyStatus ;

TyBoolelemList[NUM_ELEMS]={FALSE, FALSE, FALSE, FALSE, FALSE};

void myFunc(){

intelemId=0, freeElem = -1;

TyBoolfree_elem_found = FALSE;

TyStatus status;

 while ((free_elem_found == FALSE) && (elemId< NUM_ELEMS)){

 if (FALSE == elemList[elemId]){

freeElem = elemId;

elemList[elemId] = TRUE;

free_elem_found = TRUE;

 }

elemId++;

 }

 if (TRUE == free_elem_found){

 status = OSfunc(paraList);

 if (status!= SUCCESS){ /* fault handling */

elemList[elemId] = FALSE;

 }

 }

 return;

}

Here the fault manifests as an error when
OSfunc returns an error code !=SUCCESS.
The intention of myFunc is to search for a
free entry in table elemList which records
e.g. running tasks (the assignment of a
tasked to elemList is not shown /
considered here).
When the task was not started by OSfunc
then the entry found has to be released.
However, when this happens elemId was
already incremented in the loop above.
Therefore either a wrong entry is released or
an out-of-range condition occurs resulting in
memory corruption.
It is unclear whether static analysers can
detect this fault potential.
During testing this fault can be detected
automatically when the test environment
ensures that the last element is free only, an
error code !=SUCCESSis enforced and an out-
of-range check is performed.

Fig.III-4: Fault in Error Handling Part

Code Comment

intgetSize(intidx){

 if (idx>=0 &&idx<MAX_IDX)

 return (10+idx);

 else

 return -1;

}

The function indicates an error by returning -1
when idx is out-of-range

unsigned intmyMax=100;

unsigned intexpr,len;

#define MIN_MACRO(x,y) \

 ((x) < (y) ? (x) : (y))

void myFunc(intidx, char *src, char *dest){

len=MIN_MACRO((int)myMax,getSize(idx));
memcpy(dest,src,len);
}

Mix of signed and unsigned.
If getSize returns -1,
lengets the value 232-1 and memcpy writes to 4 GB.
Do static analysers flag the fault potential of the assignment?
During testing a crash will occur when enforcing an out-of-
range condition.

Fig.III-5: Potential for Memory Corruption by Mix of Signed / Unsigned

-11-

Code Comment

void myFunc(int limit, intincr) {
 for (int ii=0;ii<limit;ii+=incr)
;
}

Endless-loop when incr == 0
Here the challenge is to prove in system context that never 0 is
passed for incr.
Do static analysers flag this potential fault?
During testing an endless-loop will occur, when enforcing 0.

Fig.III-6: Potential for Endless-Loop

Code Comment

intgetErrMsg(char *errMsg){

interrCode;

errCode=getErrCode();

if (errCode!=0){

if (errMsg ==NULL)

errMsg =malloc(1024);

sprint(errMsg,”ERROR %d \n”,errCode);

 }

 }

return errCode;
}

getErrMsgexpects that malloc always returns a valid pointer.
Therefore no check on NULL is performed.
If malloc returns NULL, then an error already occurs here.
Do static analysers flag the potential change of the parameter
errMsg as pointer?

void myFunc() {

char *str=NULL;

interrCode;

errCode= getErrMsg (str);

if (errCode!=0)

printf(“%s \n”,str);

 ...

This function expects that getErrMsgensures valid memory for the
error message.
 However, the mistake is:
stris passed by value, and the new ptrallocated in
getErrMsgis not returned.
The fault is activated when getErrMsgreturns !=0, i.e. when an
error occurred. This may happen very sporadically.
When enforcing getErrCode to return !=0 for sure during
module testing, the fault potential will be detected.

Fig.III-7: Sporadic Inherent Risk due to Temporarily Disabled Fault

Code Comment

intmyFunc(short *buffer, intval,

unsigned short ind, unsigned short bitWidth) {

intindW=ind / 16;

intindM=ind % 16;

int shifts=16-indM-bitWidth;

int mask=((1 <<bitWidth) -1) << shifts;

val=val<< shifts;

 ...

}

Even if bitWidth is limited to 8 or 16 shifts
may take a negative value.
Shift operations with arguments <0 or >31 are
undefined.
The gcc masks the operand with 0x1f and performs
the operation. So the result is not what is expected if
the operand is out-of –range.
However, in this case no exception is raised and
silent fault propagation may occur.
mask and valwill both be 0 after the shift. A data
stream of 0 may be recognized during testing.
Do static analysers flag this fault potential?

Fig.III-8: Potential Risk for Wrong Result

-12-

Code Comment

file.c:
char buffer[1024];

int offset=0;

task1.c:
extern char buffer[];
extern int offset;
intmyWrite(char *buf, char *msg, intlen) {
memcpy(buf+offset,msg,len);
 offset+=len;
 return offset;
}
int taskBody1(char *msg, intlen) {
myWrite(buffer,msg,len);
 return 0;
}

task2.c:
extern char buffer[]:
extern int offset;
intmyRead(char *buf, char *msg) {
intlen;
len=msg[0];
memcpy(msg,buffer+offset,len);
 offset-=len;
 return len;
}
inttaskBody2(char *msg, intlen) {
myRead(buffer,msg,len);
 return 0;
}

Apart from some other issues not discussed here, the addressed fault
potential is related to an overflow of the buffer.
Obviously, the assumption is that an overflow cannot occur in
task1.c because a sufficient number of data is removed from
buffer by taskBody2.
Verification of this code requires knowledge on the synchronization
scheme, at least.

Fig.III-9: Potential for Buffer Overflow

Code Comment
file.c:

char buffer[1024];

task1.c:
extern char buffer[];
intmyTCminLength[]={x,y,z,2};
int taskBody1(char *tc, intlen) {
intret,len,id;
 id =tc[0];
len=tc[1];
 if (len<=myTCminLength[id])
 ret=-1;
 else {
 ret=0;
memcpy(buffer,tc,len);
 }
 return ret;
}

task2.c:
extern char buffer[];
int taskBody2(char *data) {
intlen;
len=tc[1];
memcpy(data,buffer+2,len-2);
 return 0;
}

A telecommand is received in taskBody1. Its length is checked
by its id and the contents of myTCminLength.
In taskBody2 it is expected that the telecommand is checked for
correctness in taskBody1. The data of the telecommand are
expected after the header (of length 2).
An inconsistency can occur if the length of the header is extended
e.g. to 3.
Now, if 2 is changed to 3 in taskBody2, but not in
myTCminLength, then the check may be passed, but
len-3< 0.
The result is documented in Fig.III-5.
A literal instead of the number 3 will fix this issue.

Fig.III-10: Potential Inconsistency

-13-

IV. THE PLANNED ACTIVITY
The goals of the activity are:
• identification and classification of defect types

starting with previously identified defects and
continuously extending this set with new findings,

• derivation of footprints of verification tools,
to better know what a tool can identify and does report
as a defect / error,

• investigation of context-dependent defect / error
identification,
and to provide a feedback to tool vendors,

• getting a clearer understanding of false positives which
may change to true positives when the context changes,

• identification of hidden false negatives and real false
positives.

The set of tools for evaluation shall cover the following
domains and fulfill the criterion defined in Sect. I.B (no
manual intervention required for fault identification apart
from tool configuration):

• symbolic execution
• static analysis
• compilation as a specific case of static analysis
• dynamic analysis.
The reports of all tools shall be merged into a

consolidated report at the end (Fig. IV-1).

Fig. IV-1: The Evaluation Process

The tools shall be applied to a representative space
software package (C and/or C++). The analysis will be
carried out without pre-existing knowledge of the defects
present. But it will be known which verification activities
were previously executed on the software package. This
package shall be extended by code examples including
known defects serving as a known defect base.

To consider context-dependencies of fault identification
(see A3-A4, T3-T4 above) the defects shall be inserted in a
complex context. In addition, evaluation shall also consider
the case when the defects are present in a simple context.

When applicable, configuration parameters shall be
modified to evaluate their impact on fault identification and
evaluation effort.

The effort required to identify the source of a defect in
the source code shall be recorded.

In a first step the results from every tool are recorded
separately. Information is not exchanged in this initial phase
(Fig. IV-2).

Fig. IV-2: Logic Flow of Defect Reporting

Then the results will be compared, and reports will be
analyzed for true or false positive status. False negatives
shall be approximately identified by cross-comparison of
reports. Further, the review of reports may lead to additional
findings of previously unreported defects, which will be
registered as well.

In a second – optimizing – step all defect reports will be
considered. In case of false negatives, the reason shall be
identified and, if possible, evaluated for whether a true
positive can be obtained by varying configuration
parameters.

To let each project decide which criteria for fault
identification are of relevance regarding true or false
positives, all false positives of type temporarily disabled are
considered as true positives because there is a non-zero
probability for fault activation in the sense that the software
may enter an invalid state.

Final results shall be available before end of 2015.

V. CONCLUSIONS
We expect a major step forward to achieve higher fault

coverage by knowing in advance which defects can be
identified by the chosen set of verification tools, resulting in
a more deterministic strategy for software verification and in
minimization of risks.

Minimization of risks requires minimization of false
negatives. False positives cause an overhead, which in turn
may convert true positives to false negatives because not all
positives may be considered within the project timeframe.
Mastering of risks therefore requires both minimization of
false positives and good knowledge on false negatives which
shall be achieved by diversification of verification methods
and tools.

The derived footprints also shall provide a feedback to
the tool vendors where they can improve fault identification
capabilities of tools and efficiency of report evaluation.

A systematic analysis of fault identification capabilities is
a pre-condition to improve tools and verification strategies in
the sense of DeMarco: “what you don’t measure, you can’t
control [and improve]”.

-14-

Due to classification of tools regarding identification of
defect types and the required effort, a strategy can be derived
how a high number of defects can be identified at a
minimum of effort.

In consequence, this should lead to a higher efficiency of
the software verification and quality assurance processes as
well as increased risk reduction, higher fault coverage and
higher quality at reduced costs.

The consideration of context dependency of fault
identification suggests that deeper knowledge on fault
activation conditions can be achieved by unit testing.
Although more defects may be identified than in the system
context, it may be worthwhile to know about such
conditions, especially regarding maintenance and reuse.
However, it is the decision of the project whether this is
considered as an overhead or useful information.

The effort for tool qualification should be reduced when
tool characteristics are provided in terms of footprints.

REMARK
The community is invited to contribute to the collection

of defect types and to suggest verification tools as candidates
for future evaluation which fulfil the criterion of Sect. I.B
(no manual intervention required for fault identification apart
from tool configuration).

REFERENCES
[1] ECSS-Q-HB-80-03A, Handbook on Space Software Dependability

and Safety
[2] ECSS-E-ST-40C, Space Engineering / Software
[3] ECSS-E-HB-40A, Software Engineering Handbook
[4] ECSS-Q-ST-80C, Software Product Assurance
[5] ESA ISVV Guide, ESA Guide for Independent Software Verification

and Validation
[6] DO178, Software Considerations in Airborne Systems and Equipment

Specification
[7] DO330, Software Tool Qualification Considerations
[8] EN 50128, Software for Railway Control and Monitoring Systems
[9] P. Emanuelsson, U. Nilsson, A Comparative Study of Industrial Static

Analysis Tools, Department of Computer and Information Science,
Linköping University, SE-581 83 Linköping, Sweden, Januar 2008

[10] P. Hellström, Tools for static code analysis: A survey, Department of
Computer and Information Science, Linköping University, SE-581 83
Linköping, Sweden, Februar 2009

[11] R.Gerlich, R.Gerlich, C.Dietrich: "Fault Identifcation Strategies",
Eurospace Symposium DASIA'09 "Data Systems in Aerospace", 26 –
29 May, 2009, Istanbul, Turkey.

[12] M.Temmermann, A Comparative Study of MISRA-C compliancy
Checking Tools, Karel de Grote University College, Antwerp, July
2013

[13] G.J.Holzmann, Mars Code, CACM, Feb. 2014, Vol. 57, No. 2, pp.
64-73

	I. Introduction
	A. Definition of Terms
	B. Verification Issues

	II. Current Practices of Software Verification
	A. Issues on the Software Verification Plan
	B. Verification and Risk Issues
	C. Position of Standards
	1) ECSS
	2) DO178C
	3) EN 50128

	D. Summary on Standards

	III. Issues on Fault/Defect Identification
	A. Considerations on Fault/Defect Identification
	B. Relevance to Tool Assessment and Selection
	C. Conflicting Verification Issues
	D. Fault Identification vs. Fault Activation
	E. Issues on Defect Reporting and Report Evaluation
	1) Fault Potential of False Positives
	2) Mastering Risks of False Negatives
	3) The Risk of too many False Positives
	4) Fault Coverage vs. Code Coverage
	5) Standards vs. Tools

	F. Practical Examples on False / True Positives

	IV. The Planned Activity
	V. Conclusions
	Remark
	References

