
Early Results from Characterizing Verification Tools through Coding Error Candidates
Reported in Space Flight Software

Ralf Gerlich, Rainer Gerlich

Dr. Rainer Gerlich BSSE System
and Software Engineering

Immenstaad, Germany
e-mail: Ralf.Gerlich@bsse.biz,

Rainer.Gerlich@bsse.biz

Anton Fischer, Mário Pinto
etamax space GmbH

Braunschweig, Germany
e-mail: A.Fischer@etamax.de,

m.pinto@etamax.de

Christian R. Prause
Deutsches Zentrum für Luft- und

Raumfahrt e.V. (DLR)
Bonn, Germany

e-mail: Christian.Prause@dlr.de

Abstract—Six software verification tools have been applied to
space flight software and the findings reported by each tool
have been compared in order to derive footprints of the tools
regarding capabilities of fault identification. Currently
available results are provided in this paper: sensitivity and
precision of individual tools and combinations of pairs of tools
out of the set. A reader should bear in mind that the results as
presented here depend on the spectrum of fault types as
present in the reference software and on the configuration of
tools towards real defects and fault types which are of interest
for embedded systems and space flight software.

Keywords: tool footprints, verification tools, false positives,
false negatives, software faults, fault identification, fault
coverage, fault report evaluation, software verification,
verification efficiency, software verification plan

I. INTRODUCTION
In [1] the basics of tool characterization regarding fault

identification were defined and discussed.
In this paper we provide early evaluation results having

applied the 6 tools to the chosen flight software and having
recorded and assessed the tools’ reports.

The evaluation was performed in the context of software
which can be characterized as embedded software with

• real-time operations,
• file system operations,
• use of communication channels such as a bus, and
• direct hardware interfaces, e.g., to sensors and

actuators.

The tools were selected according to the following
analysis methods and capabilities for automated analysis of
software:

• symbolic execution,
• abstract interpretation, and
• automated testing.

The paper is structured in the following manner:

Sect. II provides a definition of the terms being part of
the analysis and evaluation process. Sect. III addresses
lessons learned. In Sect. IV the evaluation approach is
described and the evaluated tools are characterized. The
results of evaluation are provided in Sect. V. Final
conclusions are given in Sect.VI.

II. DEFINITION OF TERMS

A. Defect, Fault, Error, Failure
To get a clear understanding on the terms used later we

repeat briefly definitions already explained in [1].
In the context of this paper a message issued by a tool on

a defect is called a “report”.
A defect commonly refers to troubles with a software

product, with its external behavior or its internal features
(e.g., its maintainability). This includes consideration of the
risk of faults by potential changes of the context.

In this terminology, faults are considered as a subset of
defects. A fault may cause an undesired, observable behavior
of a system. A defect, which is not a fault, will not, but it still
addresses issues to be considered1.

Note that an error can be encountered either while
abstractly reasoning about the software, e.g. in the context of
the virtual semantics of a programming language, or during
actual execution.

From these definitions the following chain of causality
results as shown in Fig.II-1.

Term Scope
Fault Mistake in code

 ⇓ ⇓
Error Bad state of a system

 ⇓ ⇓
Failure Unexpected observed behaviour

Fig.II-1: Causality Chain Fault, Error, Failure

The term fault coverage describes the degree to which
defects present in the software are or were detected, or are
detectable in the course of the defined verification process. It
is usually represented by the ratio of the number of defects
recognised and the number of defects present.

Be aware that the number of defects present is an
unknown figure. Therefore, a percentage cannot be derived,
in principal, but approximated only.

1 As the term “fault” is widely used, e.g. in context of

“fault coverage”, this term is kept, although “defect
coverage” would be the proper term following the
terminology of this paper. Similarly, „criteria for fault
identification“ need to be re-considered as “criteria for defect
identification”, and “fault types” as “defect types”.

The term code coverage describes the degree to which
the code of the software under test is or was executed during
test. In the simple case, it is represented by the ratio of the
number of code instructions executed and the total number of
instructions. There are different kinds of code coverage such
as statement coverage, block coverage, decision or branch
coverage, or Modified Conditional/Decision Coverage
(MC/DC).

B. Tool Reports
A report is a message issued by a tool on a supposed

defect found in the software according to its defect
identification approach.

A tool may fail to report a defect or may report a defect
where no defect is present. There are 4 distinct cases
depending on whether a defect exists or not and whether a
tool reports a defect or not (Fig.II-2).
 Code

Defect present Defect NOT present

Result
Defect Reported true positive false positive
Defect NOT reported false negative true negative

Fig.II-2: Classification of Tool Reports on Defects

The following abbreviations are used for the 4 cases:

TP true positive, FP false positive
TN true negative, FN false negative

Sensitivity or recall – as used in information retrieval
theory – is defined as the quotient TP / (TP+FN). Fault
coverage can now be expressed by the sensitivity as the ratio
of true positives and the sum of true positives and false
negatives.

Precision is defined as the quotient TP / (TP+FP) and
represents the portion of reported defects that are actual
defects.

Fig. II-3: Sensitivity and Precision

Fig. II-4: TP, FP and FN Examples for Two Tools

In practice, the number of defects is not known, only the
subset spawned by the true positives found. Therefore
sensitivity can only be approximated by taking the number of
true positives found by all tools or by analysis, which is an
upper bound of the real sensitivity (Fig. II-4). Fig. II-4
illustrates how FNs can be detected when applying more
than one tool – or not.

C. The Evaluation Process
In a first step every tool was applied to the software and

the reports were extracted. Then in a second step all reports
were merged into a single stream, correlating reports from
different tools about the same alleged defect (Fig. II-5).

Fig. II-5: The Evaluation Process

The combined reports in this consolidated list were then
analysed and classified as either true or false positives. This
analysis was executed twice for each report. In one case,
caller context was not considered (“without context”), while
in the other case, caller context within the available code
base was taken into account (“with context”). The details of
these two analysis approaches are discussed in the following
Sect. II.D.

D. Context
The possibility of a defect resulting in an error depends

on the set of possible values for variables and parameters at
the location of the defect.

This set may be constrained to an actual subset of the
values allowed by the respective variable and parameter
types due to initial conditions (e.g. values of global variables
and parameters), conditional execution or operations yielding
only a specific set of outcomes.

Thus, while an error may be possible in one context, it
may be impossible in another context. As a consequence, a
report about a possible error may be considered a false
positive or a true positive depending on the context
considered.

This also means that the performance of a tool in any
given situation may strongly depend on its strategy regarding
the context considered.

For example, tools may differ in whether they consider a
function in the context of calls present in the code or only
stand-alone. In the latter case, there are usually less

constraints on the set of values possible at a given point,
possibly leading to more reports.

Values of parameters and global variables may be further
constrained artificially, e.g. by pre-defining allowed ranges
which are real subsets of the ranges allowed by their formal
types.

Initialization of global variables may be assumed to
establish fixed initial conditions for their values, or they may
be considered to be modifiable, including their full or pre-
constraint value set in the set of values examined.

Even global variables declared to be constant may be
considered variable, e.g. when analyzing the sensitivity to
changes in these initial values representing possible
differences in configuration of the software.

A variety of possibilities does exist for the assumptions a
tool makes on the context when assessing the fault potential
of a piece of code.

The assessment whether a finding is a TP or FP depends
on the context considered. Therefore two principal cases
were applied for assessment:

a. consideration of the function containing the alleged
defect as standalone, allowing the full range of values
for parameters and modifiable global variables
(“without context”), and

b. consideration of the function within the context set up
by its callers (“with context”).

In the latter case, the whole call tree up to the main entry
point into the software is considered, if necessary.

E. Fault Identification Strategies
Two different views on fault identification exist:
• the system view, and
• the library view or view of module testing.

The system view requires considering the context as it is
formed during execution of the system. It avoids reports
about pieces of code with fault potential which cannot be
activated in context of the current configuration of the source
code.

This implies intentionally ignoring faults because they
cannot compromise system operations in the current version
of the system. This approach also implies minimization of
analysis and maintenance effort.

In contrast, the library view does consider any function
as standalone. If a function may be put in any context, no
assumption on the context would be valid. As the term is
indicating this happens for a function of a library. It is also
true in case of module testing, when interface functions are
tested independently, intentionally ignoring the system
context. This approach leads to a higher rate of detected
defects, but may imply later a reduced effort for
maintenance.

F. Analysis Approaches Applied
As a consequence of these two views, a tool may benefit

if a report results in a TP depending on the conditions of the
chosen assessment type (context or not), or it may be
depreciated if its reports are classified as FN or FP, while the

reason for upgrading or downgrading are not really visible
for the reader of the final defect classification.

Therefore it has been decided to derive two sets of
results, based on consideration of the context (again,
whatever it is for a given tool) or not.

G. Analysis Approaches by Tools
The context as described in Sect. II.D is not the only

aspect which may result in a disadvantage or an advantage
for a tool. Another aspect is the dynamic modification of the
context depending on previous faults or defects found.

This aspect shall be explained by Fig. II-6.
No context shall be considered here, i.e. the full spectrum

of parameter values may be possible. The focus shall be put
on the length of src and dest (excluding for sake of
simplicity consideration of possible NULL-pointers).

Fig. II-6: Dynamic Modification of Assumptions on Context

Due to the missing context the lengths of src and dest are
suspicious. Presumably, a tool should issue a report for any
index>0 (if NULL is excluded, assuming a minimum length
of 1 could be acceptable, although even a non-NULL-pointer
may point to non-allocated memory).

During the evaluation one tool did issue a report for the
first access dest[3], but not for dest[2] and dest[1], while the
other tools did.

According to the process description in Sect. B, the lack
of reports for the latter two would be counted as false
negatives towards the first tool, thereby depreciating it in
terms of sensitivity in relation to the other tools.

The other tools are not necessarily wrong: Although the
result of the operation writing to dest[3] is undefined
according to the C-Standard [2], there is no guarantee that
the access will lead to abortion of execution.

The first tool is not necessarily wrong either: When it
detects that index 3 may be invalid, it produces a report and
discards the erroneous case for further analysis. In
consequence, when it reaches the line with dest[2] it has
made the assumption that the previous code is correct, i.e.
that dest has 4 elements at least. Therefore no fault is
flagged in the following lines as the indices 0 – 2 cannot be
invalid under this assumption.

Another example of a defect where its status as FP or FN
is debatable is shown in Fig. II-7.

Fig. II-7: Views on Pointer Dereferencing
Although the expression used as parameter to myFunc in

the first line includes an array subscript expression, the array

void myFunc(char *dest, const char *src) {
 dest[3]=src[0];
 dest[2]=src[1];
 dest[1]=src[2];
 dest[0]=src[3];
 return;
}

myFunc(&myPtr[ind]) original source code

myFunc(myPtr+ind) expression expanded by compiler

is not actually accessed. The address operator (‘&’) indicates
that only an address calculation operation is executed [2].
The functionally equivalent expression is shown in the
second line.

Such an address calculation cannot directly lead to a
memory access violation. That violation would only occur
when the resulting address is actually accessed. Thus, it may
be considered valid for a tool not to report a fault at this
location but rather at the code location where the actual
access occurs (here: inside myFunc). A report at this
location could therefore be considered a false positive, as no
memory access occurs.

However, the semantics of the additive operators (‘+’,
‘-‘) in context of pointer arithmetic state that unless the
resulting address falls within the object pointed to by the
base pointer (here: myPtr) or one past its end, the result of
the address calculation itself is undefined.

Thus, from the perspective of the language standard, both
expressions shown in the example would be faulty if the
index would be allowed to be out of range.

As a consequence, it could be argued that failure to report
this at the location of the address calculation implies a false
negative.

Such aspects have to be considered when comparing tool
reports in order to get a fair evaluation.

Of course, reporting the issue only at the location where
the pointer is dereferenced may make it more difficult to
detect the root cause of the error, which is ultimately the
invalid address calculation at the point of call.

H. Analysis Methods
The analysis methods as applied by the selected tools are

briefly discussed here.
Symbolic Execution is a method used for analysis where

the software to be analysed is executed symbolically: Instead
of concrete values, symbolic variables are used. Similar to
actual execution, only a specific path through the software is
executed.

The immediate result of symbolic execution is a set of
assignments and conditions in terms of the original input
which represents the conditions under which the analysed
path will be executed in the real system.

An analysis tool can use this information to determine
whether a given condition can be fulfilled at the end of the
given path. Such a condition could be, e.g., the presence of a
NULL-pointer dereference or a division by zero.

In order to prove absence of a defect at a given point in
the code, all paths by which this point is reachable have to be
enumerated, similar to testing. As a consequence, if complete
enumeration is not possible, the method may miss present
defects, leading to false negatives.

Abstract Interpretation[4] is used to approximate the
semantics of a computer program in order to soundly prove
certain characteristics of the program, e.g. the absence of
certain defect types. The set of possible program behaviours
is conservatively approximated, i.e. all possible behaviours
are included in the approximation, but not all behaviours
included in the approximation are possible.

Thus, if a given (faulty) behaviour is not included in the
approximation, the program does not have information on
the behaviour. Thus it is possible to prove the absence of
faults. The converse is, however, not possible. As a
consequence, the method may produce false positives.

By introducing an additional optimistic approximation,
some of the reports may be automatically pre-determined to
be true positives. The optimistic approximation represents a
subset of the possible behaviours of the program. Thus, if a
faulty behaviour is present in the optimistic approximation,
the presence of the fault in the program can be proven.

For Automated Testing the software is actually executed,
either on the target, on a simulated target or in a version
ported to a host platform. The software is automatically
stimulated with inputs and its behaviour is monitored, e.g. by
instrumentation. As not all possible combinations of inputs
can be provided to the software – either because that set is
infinite or too large for practical consideration – the method
may miss present defects, leading to false negatives.

However, any input that leads to an error occurring in the
software is a witness for the presence of the respective fault
in the code. False positives are only possible if the
representativity of the test platform is not ensured. Some
reports may be considered irrelevant in context (see Sect. D).

I. Tool Configuration
Every tool provides an own and specific set of

configuration options. Of course, the chosen set of such
options impacts the issued reports.

The selection of a proper set is driven by the following
goals:

1. the reports shall be related to the defect types of
interest, none such report shall be suppressed,

2. reports not of interest shall be suppressed, to reduce
the evaluation effort and to avoid that reports of
interest are not visible within a large set of issued
reports.

As a remark to (2):
One of the tools is very strong in detecting non-

conformances regarding lexical guidelines and standards. It
supports a large variety of such checks. With all options
activated about 95.000 reports were issued for 42 KLOC,
while only a very small part of this set was related to non-
lexical, dynamic issues. Therefore all options related to
lexical non-conformances were deactivated.

J. Use of a Fault Database
In the course of the project a fault database was used to

investigate the behaviour of tools on concrete examples, if a
tool report was not sufficiently understood. When required,
existing examples were varied to get different responses
from the tool.

The fault database provides source code for about 100
defect types which were identified in the course of defect
analysis in space flight software in the past years. It also
contains counter-examples, i.e. the respective corrected
source code, for a number of defect types, to assess whether
no defect is reported in the correct case. The decision for
providing a counter-example depends on some (felt)

uncertainty whether a tool does really only report in case of a
defect. The example described in Sect. III.A is part of this
database. More examples follow in Sect. III to explain some
observations by anonymized code.

III. LESSONS LEARNED
A number of lessons had to be learned on the defect

identification mechanisms and the reporting approaches of
the tools.

To one part such lessons are related to unexpected
behaviour of tools, regarding stability of results, validity of
reported code coverage, and expressiveness of reported
defect location.

To the other part it is a matter of the principal difference
between getting a report and checking whether it is of
relevance or not, and comparison of reports from different
tools and classification of received reports as TP or FP and
missing reports as FN.

Some of these issues are discussed below.

A. Conflicting Tool Conclusions
When possible, the depth of the analysis was varied. This

led to an unexpected result in case of an example from the
fault database, which represents a typical defect related to a
mix of signed and unsigned expressions. msgLen is of type
signed char and the signed bit is set., which is expanded in
the call to 32bit. The resulting value is interpreted by
memcpy as 4GB-128. One report on the validity of a memory
range out of three reports (2 on memory range, 1 on
initialization) is wrong in one case, It is in conflict with the
other (correct) report on memory range, although the context
is identical.

Fig. III-1: Unexpected Result Dependency on Analysis Depth

A systematic investigation over the verification levels
yielded the results shown in Fig. III-2. Surprisingly, the
report is correct for lower verification levels, but wrong for
higher levels.

Fig. III-2: Occurrence of Correct and Wrong Reports vs. Verification
Levels

B. Classification of Criticality
A tool may classify reports already as highly or less

critical. But the classification details usually differ from tool
to tool. Then good knowledge on the analysis and
classification approach of the tool is required to fairly
compare the reports.

Reports of higher criticality can be prioritized if a tool
already does classification of criticality inherently. However,
it happenned twice that defect types of medium criticality
were put in a set of uncritical defect types by a tool.

Excluding such sets which are considered as obviously
uncritical, will result in FNs for this tool regarding defects
which are expected in another set.

Also, the classification for either highest criticality
(critical, error) or medium criticality (warning) may depend
on the programming style and/or the chosen configuration
options.

 In case of the code shown in Fig. III-1 the defect related
to the third argument may be reported as critical / error or
warning.

If the contents of global data may be varied over the full
range, the classification is “warning”, as the critical value
128 (or -128) of msgLen in TyESVWMsg23 is only one out
of 256 possible values.

If not, then the defect is classified as “error” / “critical”as
it will always occur because no other value than the one of
the initializer will be considered.

If the contents may be varied, but const is added to the
declaration of msgLen in TyESVWmsg23, then the
classification is “error” / “critical” again, because global data
are still varied, but not if being declared const.

In consequence, the programming style and configuration
options must be considered for the classification of a defect
inherently performed by a tool.

C. Percentage Figures Based on an Unknown Reference
A tool may provide summary figures, also in terms of

percentage. Then the essential question is, what is the
reference figure?

We compared two cases with and without defects for the
same function while preserving the code structure.

For the correct version 62 items are reported as reference
figure (whatever an item is, possibly an applied check), but
the reported reference figure for the faulty is only 38.

In case of the faulty version 36 items were considered as
proven, 62 for the correct version. Therefore the report for
the wrong case suggests that 94.7% of the checks were

#define ESVW_MAXLEN 128
typedef struct TyESVWMsg23 {
 char msgLen;
 char msgData[ESVW_MAXLEN];
} TyESVWMsg23;
TyESVWMsg23 ESVWtheMsg23={128,{0}};
char ESVW_23_buf [ESVW_MAXLEN];
memcpy(ESVW_23_buf,
 &ESVWtheMsg23.msgData[0],
 ESVWtheMsg23.msgLen);

Low:
Destination may be out-of-range of the area given by size
Source may be out-of-range of the area given by size
Size is correctly initialized

Medium to high:
Destination may be out-of-range of the area given by size
Source is in the area given by size
Size is correctly initialized

proven, referring to 38 checks. The report for the correct case
referred to 62 proven checks.

For the wrong case the true percentage of checks with
positive result is 58.1% only instead of 94.7% as reported.

In consequence, as far as defects are present reported
figures may be misleading.

D. Deferred Reports
A report may not be issued at a location where it could be

expected as already explained in Fig. II-7 of Sect. II.G. A
more detailed example is shown in Fig. III-3. A report
would be expected for &buffer[start] in the call of read32.

A number of such cases were observed and considered
for comparison of tool reports.

Fig. III-3: Deferred Dereferencing of a Pointer

This example will also be used for further discussions.

E. TP or FP or None – Impact of Context
The context impacts a decision on the classification as TP

or FP which will be explained by Fig. III-3.
If it is a library function which can be called in any

context, then no assumption can be made on its parameters,
in contrast to a function which is called from another
function, possibly being a member of a call tree, defining a
context, e.g. constraints on parameter ranges or pointer
values.

If called on top-level – without context – then the values
of its pointer parameters may become NULL. Therefore the
error branch at the entry point of the function may be
reached.

However, if the function is called within a context of
which the source code can be analyzed and in all cases valid
pointers are passed, e.g. pointers to an array, then the error
handling part will never be reached, and a tool should report
an invariant condition for the checks on buffer and tc.

The following, quite different conclusions for this case
can be drawn regarding a potential report on an unreachable
error handling branch:

If a tool issues
• a report “unreachable” while not considering context, it

is a FP.
• a report “unreachable” while considering context, it is a

TP.

• no report – meaning it is reachable – without
considering context, it is a TN.

• no report – meaning it is reachable – while considering
context it is a FN.

Considering the context usually requires significant effort
for manual analysis of the constraints occurring along a call
graph.

F. Grouping of Reports
Grouping may be applied by a tool to reduce the number

of reports. Reports may be grouped when by a fix of one of
the reported defects all (potential) defects (of that group) will
disappear. An example for this case is given in Fig. III-4:

Fig. III-4: Grouping of Reports Possible
In this case an index check at the beginning – as shown

as comment – will suppress all reports for the following
index expressions: such reports may be grouped.

However, grouping is not possible for the example
shown in Fig. III-5

All the reports on a potentially invalid index do not have
a common origin. For every index expression an independent
check is required to suppress a report.

Fig. III-5: Grouping of Reports Not Possible

errorCode_t enableMonitoring(const byte_t * buffer,
 const uint32_t buffer_size, enableMonitoring_t * tc) {
 uint32_t start = 0;
 if ((buffer == NULL_POINTER) || (tc == NULL_POINTER))
 <error>
 else {
 if (buffer_size < 1) // wrong check!!
 <error>
 else {
 tc->elemNo = buffer[start];
 start += 1; // invariant expression !!
 upLim = tc->elemNo;
 if (upLim>PARA_MAX)
 upLim=PARA_MAX;
 ii=0;
 while (upLim > ii){ // PARA_MAX elements
 read32(&buffer[start], &tc->para[ii].elem); // buffer+start
 start += 4;
 ii++;
 }
 }
 return ret;
}

Performed Checks: Pointer is initialized , Local variable is initialized

int myFunc(unsigned int ind, int arr [4]) {
 int ret;
// if (ind<0 || ind>3) <error> possible check
 if (arr[ind] == 0) ret=0;
 else if (arr[ind] == 1) ret = 1;
 else if (arr[ind] == 2) ret = 2;
 else if (arr[ind] == 3) ret = 3;
 else ret = -1;
 return ret;
}

int myFunc(int *arr) {
 int ret=-1, ind = 0, ii, jj, upLim;
 upLim = arr[0];
 jj = 0;
 for (ii==0;ii<upLim;ii++) {
 jj+=arr[jj];
 if (arr[jj] == 0) ret=0;
 jj+=arr[jj];
 if (arr[jj] == 1) ret=1;
 jj+=arr[jj];
 if (arr[jj] == 2) ret=2;
 jj+=arr[jj];
 if (arr[jj] == 3) ret=3;
 }
 return ret;
}

The exclusion of multiple reports as described in context
of Fig. II-6 may also be considered as some kind of
grouping, because a report is issued once only for a set of
issues having the same root cause.

If one tool supports grouping and another one does not,
the figures on TP, FN and FP may be not comparable. A
tool issuing less reports may have a disadvantage when the
suppressed reports may result in TPs. Vice versa, if they
would result in FPs, it would get an advantage.

We tried to compensate such side effects by manual
modification of the raw data, but decided at the end that the
unmodified raw data should be more representative, because
manual modification may introduce unfair conditions for one
or the other tool, when trying to be fairer to a certain tool.

For completeness and to show the potential impact of
grouping – affected by (partial) manual modification of raw
data – we provide figures on the grouped and not grouped
cases for some tables in Sect. V.

G. File Contents
As the application included file operations (open,

close), examples in the fault database were established to
explore the impact of file contents on defect identification
directly.

None of the static analysers, but the test tool did consider
the file contents. The missing context may lead to false
positives or negatives.

H. Defects Not Yet or Hardly Detectable by a Tool
Two examples are provided referring to defects which

cannot be detected by static analysis, because the wrong
logic is not subject to their checks. In case of dynamic
analysis invalid values may be detected. But it depends on
the actual context.

Both cases refer to Fig. III-3. Therefore only code
snippets are shown here.

1) Wrong Check on Buffer Size
The check on buffer_size

if (buffer_size < 1)

is not what is intended. This check shall ensure that the
size of the total data stream in buffer is compliant with the
number of elements extracted from buffer[0]. Therefore
the correct check should be:

if (buffer_size < (1+buffer[0]*4))

The correlation between buffer_size and the
contents of buffer[0] is not visible to a tool. What is only
of relevance for the static analyzers is whether
buffer_size may be less than 1, and 0 does fulfil this
condition (as it is of type unsigned this is the only possible
value).

In contrast, the test tool does have the information on the
real size of buffer, and can issue a defect report if
buffer[start] points to an invalid address.

However, in any case no tool can detect that the check
does not do what is intended. The static analyzers can only

highlight a potential risk, and the test tool can report an
invalid index.

2) Wrong Error Handling
Fig. III-6, upper part, is an extension of the example shown
in Fig. III-3. Instead of one loop for decoding of the data
stream, two nested loops are executed. In this case the error
handling mechanism of checking whether the upper limit
PARA_MAX is exceeded and resetting upLim to the
maximum value does not imply proper error handling for the
inner loop.

Limiting the inner loop to PARA_MAX elements, while
more elements will follow, implies that the outer loop will
start its next cycle at the wrong offset. The best case is that
decoding will fail in read4byte_87 and an error is
detected. But it is most likely – as in both cases the same
structure is expected – that data are moved to the wrong
location.

Fig. III-6: Tail of Data Stream Not Skipped

None of the tools detected this (logical) defect. It was
detected by review due to another report of the test tool on an
invalid index for buffer.

I. Possible False Negatives
In many cases where initially an FN was presumed it

could be proven at the end of the analysis that it is not an FN,
at least according to the internal logic of the tool not
reporting it.

However, so far we were unable to find a similar
justification for the lack of a report in two cases.

 tc->elemNo_2 = buf[ind];
 ind += 1;
 upLim2= tc->elemNo_2;
 if (upLim2>LENGTH_87)
 upLim2=LENGTH_87;
 idx2=0;
 while (upLim2 > idx2){
 read4Byte_86(&buf[ind], &tc->elem[idx2].elem0);
 ind += 4;
 tc->elem[idx2].elemNo_1 = buf[ind];
 ind += 1;
 upLim1= tc->elem[idx2].elemNo_1;
 if (upLim1>LENGTH_87)
 upLim1=LENGTH_87;
 idx1=0;
 while (upLim1 > idx1){
 read4Byte_87(&buf[ind], &tc->elem[idx2].elem_1[idx1].elem_1);
 ind += 4;
 indx1++;
 }
 }
 indx2++;
 }

 upLim1= tc->elem[idx2].elemNo_1;
 idx1=0;
 while (upLim1 > idx1){
 if (idx1 < LENGTH_87)
 read4Byte_86(&buf[ind], &tc->elem[idx2].elem_1[idx1].elem_1);
 ind += 4;
 indx1++;
 }
 }
 indx2++;
 }

In both of the following 2 examples the functions are
called on top level, i.e. there are no constraints from context.

The relevant code is a variation of the code already
shown in Fig. III-3 and Fig. III-6. Therefore a snippet is
shown only in Fig. III-7.

Fig. III-7: Possible False Negative / Case 1

At the beginning of this sequence, start is 0, so the
value of start is 3 after start+=2 in the fifth line. The
array subscript expression in line 6 thus refers to index 3 of
the array buffer.

A check not shown in the example code of Fig. III-7
(but in Fig. III-6) ensures that buffer cannot be NULL. The
code also includes a check for whether a parameter called
buffer_size – apparently intended to be set to the size of
the area pointed to by buffer – has a large enough value,
similar to the one seen in Fig. III-3.

However, besides the apparent intention, there is no
direct semantic correlation between buffer and
buffer_size, so that even with this check present, the
minimum length of the area pointed to by buffer is not
conclusively established.

For none of the array subscript expressions in line 2 and
line 6 a report is issued. The lack of a report for the first
could be due to a possible implicit assumption that
dereferencing a non-NULL-pointer (i.e. at index 0) is always
allowed. That assumption is not valid in general, but may be
considered reasonable.

However, the same assumption does not explain the
absence of a report for the access in line 6. There is no
information available to the tool that would imply that the
memory area pointed to by buffer contains at least 4
elements.

A similar issue arises for the accesses to bin shown in
Fig. III-8.

It seems that the tool implicitly assumes any non-NULL
pointer to have sufficient length even if there is no context to
justify such an assumption. Whatever the reason for the lack
of reports may be, in practice the respective array accesses
may lead to an error under the respective circumstances.
Consequently, the missing reports were classified as false
negatives.

It should be noted, however, that the C-language does not
provide any mechanism of checking the actual size of
memory available at a location given by an arbitrary pointer.
There also is no standard mechanism to establish whether a
non-NULL pointer actually points to allocated memory.

As a consequence, it is not possible for a developer to
provide the context required, e.g. in the form of appropriate
checks in conditional statements.

It may be subject to debate whether that actually justifies
implicit and possibly surprising assumptions on the side of
the analysis tools. The alternative would be explicit
annotations – in the source code or elsewhere – establishing
the relationship between the pointer and its associated length
parameter.

In contrast, the test tool has information on the size of
every item explicitly allocated on heap and stack or by
malloc and can conclude whether an address is valid or not –
except for objects implicitly allocated in the context of
initializers.

Fig. III-8: Possible False Negative / Case 2

J. Modification of the Planned Process
A major finding of this exercise is the difference between

understanding of a tool report aiming to fix the defect and
comparing it to reports from other tools, as was explained
above by many examples. The increase in effort was
considerable.

Also, more effort had to be spent on exercises with the
fault database in order to better understand a number of
reports sufficiently. The database had to be expanded
continuously by specific examples to have clean conditions
for a certain defect type to ease understanding of tool reports.
Also, variations of the code in the database were required to
get reports from different points of view.

For this reason the process described in [1] could not be
executed as originally planned due to schedule and budget
constraints.

start=0;
tc->elemNo = buffer[start];
start += 1;
read16(&buffer[start],&tc->elem);
start += 2;
tc->paraNo = buffer[start];
start += 1;

void getSize(const byte_t *buffer,
 const uint buffer_size, int *size)
{
 if (buffer_size > MAX_SIZE)
 <error>
 else {
 len= buffer[4] << 8 | buffer[5];
 *size=len + 1 + HEADER_SIZE;
 if (*size > MAX_SIZE)
 <error>
 }
}

The value returned for size remains unknown in binToAsc.
No conclusion on bin is possible that is not NULL and has sufficient
size.

void binToAsc(byte_t *bin, uint bin_size,
 const byte_t *asc, const uint asc_size)
{
 getSize(bin,bin_size_&size);
 if (size > bin_size)
 <error>
 else {
 asc[0]=’0’
 asc[1]=’x’;
 for (ii=0;ii<size;ii++) {
 low =bin[ii] & 0x0F;
 high=(bin[ii] & 0xF0) >> 4;
 merge(&asc[ii*2+2],low,high);
 }
 }
}

IV. THE EVALUATION APPROACH
Tool evaluation requires configuration of the tools

towards the identification of desired defect types and
harmonisation of reports from the tools towards a common
set of defect types.

A. Tool Configuration
We put the focus of our tool characterization in the

context of embedded software, especially on space flight
software, regarding defect types which will or may
compromise mission goals. Therefore defect types were
excluded – as far as possible – which are – “only” – related
to violation of lexical rules or layout of source code files.
Instead, priority was given to aspects of Reliability,
Availability, Maintainability and Safety (RAMS) issues.
Also, configuration options which are not relevant for C
code were turned off as the application software analysed
was written in pure C.

This limitation of configuration options may imply an
essential cut-off of capabilities of a tool, possibly in areas
where it is strong. This aspect has to be considered when
interpreting the evaluation results. Such results are only valid
for the chosen application area and the subset of functions
considered during evaluation. They may not be extended to
the full set of configuration options and software from other
application areas.

At the start of the project two evaluation phases were
planned:

• an initial phase for which the configuration options
were chosen according to existing knowledge on
tools, and

• an optimization phase for which the progress on
knowledge about the tools and feedback from report
evaluation and comparison of reports from different
tools should be considered.

However, the second phase was dropped for three
reasons:

Firstly, the unexpected higher effort for comparison of
reports did not allow a second phase within budget and
schedule constraints.

Secondly, the degree of variation for the configuration
options was not as high as assumed initially, and thus the
expected impact on the reports was considered as negligible.

Thirdly and finally, the driver for the second phase was
the intention of a fair evaluation: no tool should have a
disadvantage due to initially insufficient knowledge about it.
However, as already explained in Sect. II.C – II.G, the
increasing knowledge on the defect identification
mechanisms of the tools was already achieved in the first
step, also resulting in reruns for more specific analysis of the
issued reports and the related background.

However, after composing of the results, a comparison of
figures yielded unexpected low values for sensitivity of tool
4. A detailed check showed that reports on “unused results”
(see Tab. IV-1) which may result in true positives were
excluded as the related defect type was classified by the tool

as a type which was excluded in general initially (see
remarks in Sect. III.B), because most of these reports were
considered as not relevant regarding the safety issues
discussed above. Unfortunately, it was detected lately at the
end of evaluation by a review of the results, that two FPs
should have been considered for this tool.

Similarly, this also happened for Tool 2 regarding
“recursion”. Due to a high number of reports on MISRA-C
rules such reports were not considered as (potentially) safety
critical. However, rule 17 addressing recursion was also
excluded, unintentionally.

Further analyses yielded however, that the impact of the
missed TPs does not significantly impact the evaluation
results.

B. Spectrum of Principal Defect Types
Harmonisation of all reports ended up in a set of common

defect types onto which all reports can be mapped. In
addition, a criticality level was assigned to each such defect
type. Tab. IV-1 shows the common set of defect types and
Tab. IV-2 the chosen criticality levels. Probabilities of
defect activation or potential recovery were not considered.

Tab. IV-1: Common Set of Defect Types

Tab. IV-2: Criticality Levels

Criticality Level Comment
Critical The defect type does impact the correctness of system

operations if being activated, i.e. it manifests to an
error or a failure.

Warning The defect type highlights a possibly unintended
operation in the source code which may, but not
necessarily does manifest as a critical defect.

Uncritical The defect type is neither critical nor can it be
considered a warning.

Defect Type Criticality Level
Array Index Out-of-Bounds Critical
Dereference of Invalid Pointer Critical
Dereference of NULL-Pointer Critical
File Access Error Critical
Invalid function pointer Critical
Non-terminating Loop Critical
Passing invalid argument to standard library routine Critical
(Possible) Recursion Critical
Resource Leak Critical
Undefined Result of Arithmetic Operation Critical
Uninitialized Variable Critical
Arithmetic Operation on NULL Pointer Warning
Invariant Condition Warning
Invariant Expression Warning
Parameter Type Mismatch in Function Call Warning
Timeout during execution Warning
Unnecessary loop construct Warning
Unreachable Code Warning
Unused Result Warning
Multiple return paths Uncritical

Defect Type
TP Selected for

Evaluation with w/o
Array Index Out-of-Bounds 120 126 x
Dereference of Invalid Pointer 31 47 x
Dereference of NULL-Pointer 3 8 x
File Access Error 1 1 x
Invalid function pointer 2 2 x
Non-terminating Loop 1 1 x
Passing invalid argument to standard library
routine 1 1 x

(Possible) Recursion 1 1 x
Resource Leak 2 2 x
Undefined Result of Arithmetic Operation 2 2 x
Uninitialized Variable 14 15 x
Arithmetic Operation on NULL Pointer 0 3
Invariant Condition 16 12 x
Invariant Expression 44 44
Parameter Type Mismatch in Function Call 2 2 x
Timeout during execution 1 2 x
Unnecessary loop construct 1 1
Unreachable Code 61 45 x
Unused Result 58 58 x
Multiple return paths 12 12
Total 373 385

C. Characterization of the Software
The software package chosen for this exercise is

middleware for use on-board of a spacecraft. It consists of a
common kernel and several dedicated additional application
sets for data management including TM/TC handling, input-
output handling, event handling, file operations, etc.

The middleware can be configured for 3 operating
systems: Linux[5], Pike OS[6], VxWorks[7].

The largest application set (data management) together
with the kernel was selected and configured for Linux.

Infinite loops – like “while (1)” typical for waiting on
events in task bodies – were replaced by a finite number of
iterations to enforce termination during test.

Tab. IV-3: Characterization of the Chosen Software Package

Tab. IV-3 shows its properties and Tab. IV-4 the
spectrum of the fault types in terms of numbers as observed
in the evaluated subset of functions. The software was
provided in 49 files, but only 39 files provided function
bodies.

The evaluated functions were selected in two ways:
• Subset 1 was chosen according to the number of

reports per function, giving priority to the highest
number, resulting in 26 functions.

• Subset 2 was chosen by random selection from the full
set. By chance it contains 5 functions also contained in
Subset 1. The size of this set was constrained by an
upper limit on the evaluation effort, resulting in 39
functions.

The results from both sets were merged for final
evaluation. In total, reports from 60 functions out of 610
were considered. Tab. IV-5 shows the number of reports for
the different combinations which were subject of evaluation
and Tab. IV-6 the number of reports issued for all functions.

The set of defect types marked by an “x” in Tab. IV-4 is
called “weighted” and is later referred to when the results are
presented in Sect.V. For this set four defect types were
dropped because they are not considered as such critical as
the other ones.

The Application Interface (API) of the middleware
consists of 376 functions out of the full set of 610 functions.
For evaluation no assumption on the context shall be made
for the API functions, while for the low level functions the
context as provided by the API functions may be considered.
No contract constraining the input of the API functions is
visible.

Tab. IV-4: Spectrum of Observed TP in the Application Software (not
grouped

Tab. IV-5: Number of Reports Considered

Tab. IV-6: Number of Reports Issued by the Tools

In part, the API functions are checking the validity of the
inputs, e.g. NULL-pointers and insufficient size of buffers.
But to some part such checks do not fully reject invalid data.

About 96 functions (as far as could be identified by
manual inspection), i.e. about 15%, were auto-coded, at
least. During analysis of reports it was soon recognised that
the code generator did not produce code as intended in some
cases, i.e. the auto-code was faulty in part and the same fault
patterns repeated in a subset of the auto-coded functions.

This had to be considered when defining the subsets for
evaluation in order not to get too many faulty auto-coded
functions disturbing the statistics.

Property Quantity %
Size / KLOC 42 -

Functions, total 610 -
API Functions 376 61,64
c-Files 39 / 49 -

h-files 96 -
Functions, evaluated 60 9,84
Files of evaluated functions 22 56,41

Size of evaluated functions / KLOC 3 7,15

Report Grouping

Number of Reports (Set 1)

TP+FP
TP FP

with
ctxt

w/o
ctxt

with
ctxt

w/o
ctxt

Non-
Grouped

all defect types 500 369 381 131 119
weighted 439 311 320 128 119

Grouped
all defect types 270 195 201 75 69
weighted 231 159 162 72 69

Tool 1 2 3 4 5 6
Reports 146 742 1481 4995 2106 9

D. Characterization of the Tools

The spectrum of analysis approaches represented by the
tools is quite broad, and defect identification by the different
tools is based on a number of independent methods and
implementations (Tab. IV-7).

Tools 1, 2, 4 and 5 are static analyzers, Tool 3 applies
dynamic analysis (automated built of the test and stimulation
environment), tool 6 is the gcc – added for comparison.

Tab. IV-7: Characteristics of Tools

The tools were configured with focus on options
regarding reporting of safety aspects. The gcc was run with “
–Wall”, but not with “-On”.

V. EVALUATION RESULTS

A. Complementarity of Tools
Tab. V-1 gives summary information on the

complementarity of the tools, i.e.,the unique contribution by
the tool in terms of the number of TP as compared to the

overall number of TP. For column ‘all’ contributions to all
defect types were considered, for column ‘weighted’ 4 defect
types were removed.

Tab. V-1: Unique TP Contribution to a Defect Type per Tool

It is surprising, that the sum of all unique contributions is in
the range of 58% to 68%, i.e. only about 1/3 of the TP are
reported by more than one tool.

B. Sensitivity and Precision of Tools and Tool
Combinations

Figures on a single tool and combinations of two tools are
provided in Tab. V-2 and Tab. V-3.

The rational for providing combined figures is: No tool does
cover all considered defect types. Therefore a user may want
to know: When I am already using tool A, what do I gain by
adding tool B?

Tool

Criticality Level (with context, not grouped)

critical warning All (weighted)

TP+
FP S P TP+

FP S P TP+
FP S P

1 9 0,04 0,78 21 0,16 1,00 30 0,09 0,93
2 138 0,40 0,51 27 0,20 1,00 165 0,32 0,59
3 101 0,44 0,78 85 0,31 0,48 186 0,39 0,65
4 55 0,30 0,98 43 0,29 0,91 98 0,30 0,95
5 100 0,44 0,78 71 0,53 1,00 171 0,48 0,78
6 0 0 n/a 2 0,02 1,00 2 0,01 1,00

Tab. V-2: Sensitivity and Precision vs. Criticality Levels

In Tab. V-3 the figures of a single tool can be found on the
diagonal of the matrix. In both tables, cells are highlighted
for the best values regarding sensitivity.

Tool A
in Use

Sensitivity if Tool B added
 (weighted, with context, not-grouped)

1 2 3 4 5 6
1 0,09 0,34 0,44 0,33 0,54 0,10
2 0,34 0,32 0,57 0,52 0,68 0,32
3 0,44 0,57 0,39 0,61 0,77 0,39
4 0,33 0,52 0,61 0,30 0,65 0,31
5 0,54 0,68 0,77 0,65 0,48 0,49
6 0,10 0,32 0,39 0,31 0,49 0,01

Tab. V-3: Sensitivity for Combinations of 2 Tools and Set “Weighted”
(context, not-grouped)

Tool A
in Use

Sensitivity if Tool B added
(critical, with context, not-grouped)

1 2 3 4 5 6
1 0,04 0,41 0,46 0,33 0,46 0,04
2 0,41 0,40 0,69 0,67 0,65 0,40
3 0,46 0,69 0,44 0,71 0,74 0,44
4 0,33 0,67 0,71 0,30 0,54 0,30
5 0,46 0,65 0,74 0,54 0,44 0,44
6 0,04 0,40 0,44 0,30 0,44 0,00

Tab. V-4: Sensitivity for Combinations of 2 Tools and Criticality Level
“critical” (context, not-grouped)

Sensitivity is increased for Tools 2 and 3 when
considering the “critical” subset only, compared to
“weighted”, while sensitivity for Tools 1 and 5 decreases
slightly, but increases for “warning”. The sensitivity of Tool
4 does not (much) vary.

The figures vary slightly for other combinations of
(context, grouping). Tab. V-5 and Tab. V-6 show the
results for the grouped case.

Tool

Unique TP Contributions
All (non-weighted) weighted
ctxt w/o ctxt ctxt w/o ctxt

TP % TP % TP % TP %
1 1 0,27 1 0,26 1 0,32 1 0,31
2 29 7,86 29 7,61 29 9,32 29 9,06
3 65 17,62 56 14,70 65 20,90 56 17,50
4 27 7,32 27 7,09 27 8,68 27 8,44
5 126 34,15 131 34,38 69 22,19 71 22,19
6 2 0,54 2 0,52 2 0,64 2 0,63

Uniq 250 67,75 246 64,57 193 62,06 186 58,13
Total 369 381 311 320

Tool Type Analysis Approach
1 static symbolic execution, data flow
2 static abstract interpretation
3 dynamic auto-stimulation
4 static symbolic execution, dataflow
5 static dataflow
6 compiler syntax, type checking

Tool A
in Use

Sensitivity if Tool B added
 (weighted, with context, not-grouped)

1 2 3 4 5 6
1 0,11 0,44 0,43 0,19 0,61 0,12
2 0,44 0,40 0,60 0,43 0,79 0,40
3 0,43 0,60 0,38 0,40 0,81 0,38
4 0,19 0,43 0,40 0,14 0,64 0,14
5 0,61 0,79 0,81 0,64 0,56 0,57
6 0,12 0,40 0,38 0,14 0,57 0,01

Tab. V-5: Sensitivity for Combinations of 2 Tools and Set “Weighted”
(context, grouped)

Tool A
in Use

Sensitivity if Tool B added
(critical, with context, not-grouped)

1 2 3 4 5 6
1 0,07 0,72 0,46 0,15 0,47 0,07
2 0,72 0,69 0,88 0,72 0,81 0,69
3 0,46 0,88 0,42 0,47 0,63 0,42
4 0,15 0,72 0,47 0,11 0,49 0,11
5 0,47 0,81 0,63 0,49 0,46 0,46
6 0,07 0,69 0,42 0,11 0,46 0,00

Tab. V-6: Sensitivity for Combinations of 2 Tools and Criticality Level
“critical” (context, grouped)

In the grouped case Tool 2 gets an advantage for the
“critical” subset. However, as was already mentioned that
grouping had to be done manually for all tools except Tool 5,
to make the data comparable. But the modified data may not
not exactly represent the basic properties of the tools (except
Tool 5) due to manual intervention, thereby possibly
overcompensating the figures for Tool 2. Therefore we
consider the non-grouped case as more representative, as it
refers to the raw data as delivered by a tool, and provide the
figures on the grouped case for information only, indicating
potential deviations and impact by manual modifications.

Tool 4 is rather strong regarding precision, but weaker
for sensitivity. The gcc gets also good precision figures, but
achieves very poor sensitivity, or because of the low
sensitivity. This may be higher if higher optimization options
will be activated, which may be done in another future
exercise.

VI. CONCLUSIONS

A. Sensitivity and Precision of a Tool
Sensitivity of a single tool reaches nearly 50%, and 70%

for the grouped case which however is considered as an
artificial case due to manual modification of the raw data.

The precision of tools, i.e. the figure indicating an
analysis overhead due to false positives, is in the range of
60% to 100% regarding all defect types.

The sensitivity figures vary slightly for different sets of
defect types, indicating that a tool is stronger or weaker
regarding certain defect types.

B. Unique Contributions
The unique contribution of a tool to the overall set of true

positives may be considerably high. Surprisingly, the unique

contributions from all tools amount to about 65%, i.e. only
about 1/3 of the found true positives are reported by more
than one tool, but about 2/3 are reported by one tool only.

C. Tool Combinations
When combining two tools the maximum sensitivity

increases to about 80%, while precision is slightly depending
on context and grouping.

But even for the best combination of two tools yielding a
sensitivity of about 80% (not grouped), about 20% of defects
will remain undetected.

D. Dependencies
Considering the sensitivity for a single tool, the impact

by context – with and without – is marginal. In contrast, the
impact by grouping – grouped or not grouped – is slightly
higher (5% up to 20%) because the number of reports varies
significantly.

In most projects one tool only is applied – for cost
matters – together with functional testing. The open question
is – to answer it was out-of-scope of the project – whether
the remaining 50% defects could be found by functional
testing.

In general, it seems, the lower the number of true
positives, the better the precision. This is not surprising: the
lower is the number of issued reports, the lower is the chance
for a false positive.

The derivation of summary figures for all defect types
depends on the defect profile of the application. Defect types
with a high number of true positives get a higher weight
compared to others with a low number.

We have chosen this approach because it seemed to be
the most fair one, but any weights may be applied if desired.

As an example, resource leaks may be higher weighted
due to criticality considerations compared to their occurrence
in the application, which is rather low.

E. Convergence and Completeness of Defect Identification
A higher analysis depth does not necessarily imply a

higher quality of the reports, and a monotonically increasing
analysis depth does not imply that the true positives also
converge to the final set.

Support of a certain defect type does not imply that a tool
will find all defects of that type.

F. Impact on Software Verification Plan
Knowledge about profiles of tools regarding sensitivity,

precision, complementarity of tools and the benefit of tool
combinations should be useful when writing the verification
plan.

By recent discussions with tool vendors we learned, that
not all tool vendors put the focus on the sensitivity only, but
on the response time, too. Therefore a user should be aware
of different strategies.

A tool vendor may prefer a compromise between
sensitivity and response time: being not complete in
reporting, but allowing by a fast response fixing of a number
of issues immediately (see Fig. VI-1).

In contrast, high sensitivity may imply a longer response
time, and address more complex, but fewer defect types.

Such aspects should be considered in advance by a user
when selecting a verification tool or a set.

Believing that every tool will aim to achieve the highest
sensitivity figure at low response times or not knowing
which defect types are supported by a tool may result in a
degradation of the verification approach.

In addition, the applied method or its implementation
may already limit the number of defect types which can be
detected by a tool. Therefore higher sensitivity should be
achieved by diversification of tools.

Fig. VI-1 shows indicatively the areas covered by the
tools in a sensitivity-response representation. There is no real
scale, the axes just should give an idea on how the tools do
cover sensitivity and response time.

Fig. VI-1: Tool Classification by Sensitivity and Response Time

As Fig. VI-1 indicates, the performance of a tool
depends on the spectrum of supported defect types and
intended completeness of reports in combination with the
response time.

G. Final Assessment
A user has to think about what is the best tool or tool

combination for the intended application and the quality goal
/ gate.

A considerable part of defects was found in defect
handling parts – as already observed during previous
activities. In some cases even defects were induced for
correct system states by the error handling part. Obviously,
such parts are not subject of extensive verification. This
raises the question whether defect handling is meaningful at
all if not sufficiently verified at the end.

Two cases for consideration of context were analysed –
with and without – to evaluate the impact on the sensitivity.
The differences are not as high as expected.

The gcc was added to investigate how well a compiler
already does verification. It seems that the focus of a
compiler – code generation – covers only a small part of the
scope of verification. However, its contribution may increase
if optimization is switched on.

Activation of lexical checks is meaningful only if the
corresponding rules were / should have been applied right
from beginning of development. Applying the checks to
software which was not developed under such constraints

may result in a huge number of useless reports
compromising the detection of critical reports – “useless”
because at this time in a project it is usually impossible to
apply modifications of this extent to the source code due to
schedule constraints.

After analysing about 500 reports our conclusion is:
The percentage of false positives is not such high as

expected and communicated. On the average it amounts to
about 25%.

Amongst the true positives we saw many reports which
would not have been issued if best practices would have
been applied. The development effort related to an increase
of quality by applying best practices is close to zero – in our
mind. But not doing so multiples of the effort saved at
development time need to be spent later for analysis of –
valid – tool reports.

The best report is a report not being issued at all i.e. not
giving any reason to issue a report. The programming style
may heavily affect the number of true positives. If
complaining about too many reports, the reason for the high
number should be investigated.

Once the acceptance criteria have been defined –
preferably before coding starts – checks on compliance with
these criteria should be performed periodically and as soon
as possible to obtain a feedback and being able to adapt
coding to the given and accepted rules.

A high number of reports may not be a matter of the
tools, but in many cases also a matter of coding and
compliance (or non-compliance) with given rules.

The obtained results presented in this paper may not be
valid in general. The focus was put on embedded systems,
critical defects (as defined by the authors) and middleware
foreseen for use in a space flight application. Therefore some
valuable features of a tool, e.g., regarding security, lexical
checks, might not have been considered during evaluation,
which may be of high interest in the scope of another
application domain.

H. Outlook
The evolution of results due to modification of the

following parameters may be subject of future work:
• the amount of evaluated reports,
• the type and size of an application package,
• the defect profile of an application package,
• the tools considered,
• stability and convergence of results regarding analysis

depth and configuration options.

Further, an extended evaluation of the database regarding
more aspects and correlations, e.g. require effort, and
derivation of graphics may be performed.

Figures on evaluation effort for true and false positives
for single tools and tool combinations have been recorded or
derived, but could not be considered due to schedule and
budget limitations.

Another field of evaluation may be whether
combinations of three or more tools provide any significant
additional benefit in comparison to the effort added for
analysis of the reports of these additional tools. Of course,

one possibility for reducing the effort in general is
standardization of reporting among tools so that automated
consolidation of reports becomes possible.

In future the support software for evaluation and
comparison of reports needs to be extended in order to
reduce the amount of manual effort and to allow evaluation
of more reports.

The obtained results shall also be discussed with tool
vendors / distributors.

Future work may address an extension of the database
and higher independency of the software applied for
evaluation by

• same software, but other tools,
• other software, but same tools (in part) and other

tools.

I. About the Tools
Tab. VI-1 gives the names of the tools as far as the

disclosure was approved by the tool supplier at the time of
finalizing this paper.

Id Status Name of
Tool Supplier

1 disclosure not decided yet
2 disclosure not decided yet
3 approved DCRTT BSSE

4 no explixcit approval
received

5 approval received QAC PRQA
6 open source gcc

Tab. VI-1: Evaluated Tools

REMARK
Details on the analysis approaches of the tools and the

classification criteria as well as a detailed discussion of the
results are out of scope of this paper.

ACKNOWLEDGMENT
The results presented above are an outcome of contract

DLR-50PS150 of the Space Administration of the German
Aerospace Center (DLR) on behalf of the German Ministry
of Economics and Energy (BMWi).

The authors also thank the vendors / distributors of tools
4 and 5 who provided evaluation licenses for their tools.

REFERENCES
[1] Ch.R.Prause, R.Gerlich, R.Gerlich, A.Fischer: „Characterizing

Verification Tools Through Coding Error Candidates Reported in
Space Flight Software”, Eurospace Symposium DASIA'15 "Data
Systems in Aerospace", 19 – 21 May, 2015, Barcelone, Spain

[2] C-Standard, ISO/IEC 9899:2011, Information Technology –
Programming Languages – C, 3rd edition, 2011

[3] MISRA :2012, www.misra.org.uk/MC2012
[4] P. Cousot, R.Cousot: “Abstract Interpretation: A Unified Lattice

Model for Static Analysis of Programs by Construction or
Approximation of Fixpoints”, Conference Record of the Fourth ACM
Symposium on Principles of Programming Languages, ACM, 1977,
pp. 238-252.

[5] Linux
[6] PikeOS, Sysgo, www.sysgo.com
[7] VxWorks, WindRiver, www.windriver.com/products/vxworks

	I. Introduction
	II. Definition of terms
	A. Defect, Fault, Error, Failure
	B. Tool Reports
	C. The Evaluation Process
	D. Context
	E. Fault Identification Strategies
	F. Analysis Approaches Applied
	G. Analysis Approaches by Tools
	H. Analysis Methods
	I. Tool Configuration
	J. Use of a Fault Database

	III. Lessons Learned
	A. Conflicting Tool Conclusions
	B. Classification of Criticality
	C. Percentage Figures Based on an Unknown Reference
	D. Deferred Reports
	E. TP or FP or None – Impact of Context
	F. Grouping of Reports
	G. File Contents
	H. Defects Not Yet or Hardly Detectable by a Tool
	1) Wrong Check on Buffer Size
	2) Wrong Error Handling

	I. Possible False Negatives
	J. Modification of the Planned Process

	IV. The Evaluation Approach
	A. Tool Configuration
	B. Spectrum of Principal Defect Types
	C. Characterization of the Software

	VI. Conclusions
	A. Sensitivity and Precision of a Tool
	B. Unique Contributions
	C. Tool Combinations
	D. Dependencies
	E. Convergence and Completeness of Defect Identification
	F. Impact on Software Verification Plan
	G. Final Assessment
	H. Outlook
	I. About the Tools
	Remark
	Acknowledgment
	References

