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Use of polarimetric SAR data for offshore pollutionmonitoring is relatively new and shows great potential for op-
erational offshore platformmonitoring. This paper describes the development of an automated oil spill detection
chain for operational purposes based on C-band (RADARSAT-2) and X-band (TerraSAR-X) fully polarimetric im-
ages, wherein we use polarimetric features to characterize oil spills and look-alikes. Numbers of near coincident
TerraSAR-X and RADARSAT-2 images have been acquired over offshore platforms. Ten polarimetric feature pa-
rameters were extracted from different types of oil and ‘look-alike’ spots and divided into training and validation
dataset. Extracted features were then used to develop a pixel based Artificial Neural Network classifier. Mutual
information contents among extracted features were assessed and feature parameters were ranked according
to their ability to discriminate between oil spill and look-alike spots. Polarimetric features such as Scattering Di-
versity, Surface Scattering Fraction and Span proved to be most suitable for operational services.
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1. Introduction

Operational detection and discrimination of oil spills over oceans
have received considerable attention due to their impact onmarine eco-
system from an environmental and political point of view. Space-borne
Synthetic Aperture Radar (SAR) has been proven to be indispensable for
operational offshore pollution monitoring and attracting significant re-
search interest (Fingas and Brown, 2014; Singha et al., 2013, 2014;
Solberg, 2012; Topouzelis, 2008; Brekke and Solberg, 2005). One
major focus regarding oil spillmonitoring concentrates on offshore plat-
forms, where operational discharge occurs regularly. As most of the off-
shore platforms reside in environmentally sensitive zones and also near
to coastal regions (e.g. North Sea and Bombay High platforms clusters),
it poses a major long-term threat to marine and coastal ecosystems
(Carpenter, 2016; Singha et al., 2014). Until now,most of the operation-
al andNear Real Time (NRT) oil spill detection techniques use single-po-
larization (mainly VV polarization and ground range projected)
intensity SAR images where oil spills appear as dark-spots. The sea sur-
face roughness responsible for SAR backscatter is primarily produced by
capillary and small gravity waves generated by local winds. Damping of
these waves by oil slicks reduces the backscatter, resulting in dark areas
in SAR images. Although spaceborne SAR systems have proven to be a
valuable tool for oil spill detection and monitoring, the major challenge
still remains, i.e. discrimination between oil spill and ‘look-alike’ spots
(Zhang et al., 2011; Solberg, 2012). In the last decade, a number of
udolf.Ressel@dlr.de (R. Ressel).
automatic and semi-automatic techniques have been implemented in
order to differentiate oil spill and look-alike dark spots based on sin-
gle-pol (HH or VV, multi-looked ground range projected) SAR images.
Some of the proposed techniques are also capable of providing results
in Near Real Time (NRT) (Singha et al., 2014). However, such techniques
suffer from a highmiss-classification rate which is undesirable for oper-
ational services. Recently improved availability of polarimetric SAR data
makes it attractive to utilize such data in a time critical processing chain
capable of detecting and distinguishing different types of oil spills from
‘look-alikes'. In addition to that, small operational spillages (production
water) fromoffshore platforms are often ignored as theirmanifestations
appear insignificant on traditional ‘ScanSAR’ wide swath images which
can be overcome with high resolution polarimetric imagery. Therefore,
in order to utilize those advantages amajor focus of research in this area
is the development of automated algorithms based on polarimetric im-
ages to distinguish oil spills from ‘look-alikes’. This study investigates,
for the first time, spatially and temporally coincident, fully polarimetric
C and X band spaceborne SAR images in order to develop an oil spill de-
tectionmethodology. Traditional oil spill detection techniques use back-
scatter, geometry, shape, or contextual based feature parameters in
order to classify dark-spots on object basis, whereas this study aims to
develop a pixel based classifier to distinguish oil spill and ‘look-alike’
spots and eventually different types of oil. A comprehensive review of
traditional oil spill detectionmethodologies and evaluation of tradition-
al features can be found in Topouzelis (2008) and Singha et al. (2014),
respectively. On the other hand, numerous polarimetric features have
been proposed for the same purpose (Migliaccio et al., 2007, 2009b;
Velotto et al., 2011; Skrunes et al., 2014a, 2014b; Migliaccio et al.,
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Fig. 1. Footprints of TerraSAR-X QuadPol StripMap (shown in red rectangles) and RADARSAT-2 Fine QuadPol (shown in black rectangles) images acquired over Bombay High offshore
platform cluster (approximate location of platform clusters shown in blue marks).

328 S. Singha, R. Ressel / Marine Pollution Bulletin 112 (2016) 327–340
2009a; Nunziata et al., 2011; Minchew, 2012; Liu et al., 2011; Zhang et
al., 2011; Collins et al., 2015). This study focuses on developing an Arti-
ficial Neural Network (ANN) based classifier which uses ten different
polarimetric features to distinguish oil spills from ‘look-alikes’. In addi-
tion to that, this study also looks into the performance of different polar-
imetric features for their ability to discriminate between different types
of oil and ‘look-alikes’ in the fully polarimetric C and X band domain.

SAR sensors with fully polarimetric capabilities are now available in
L (ALOS-2 PALSAR), C (RADARSAT-2, RISAT) and X (TerraSAR-X; Exper-
imental Mode) band and proven to be suitable for oil spill detection.
Forthcoming SAR sensors like RADARSAT Constellation Mission (RCM)
with Compact Polarimetry and larger swath coverage, NISAR with
Multi Frequency (S and L band) fully Polarimetric sensors will certainly
influence the SAR based oil spill detection paradigm in near future.
Methodologies for oil spill detection systems based on multi-mission
polarimetric SAR sensors have been continuously evolving anddevelop-
ment of an operational NRT processing chain is highly desirable
(Solberg, 2012; Singha et al., 2016). While previously developed meth-
odologies based on single polarimetric images manage to produce rea-
sonable classification accuracy required for operational services, in
most of the cases they suffer from a significant false positive rate and
still require a manual interaction Singha et al. (2014). This warrants
an investigation into the polarimetric domain. Recent investigations
show unique benefits of polarimetric SAR data to both observe oil slicks
and discriminate between oil spill and look-alike spots which is still a
major challenge for traditional oil spill detection systems based on sin-
gle polarized SAR images (Migliaccio et al., 2007; Singha et al., 2016).
The polarimetric scattering characteristics of the oil-covered sea surface
depends on a host of contributing parameters such as Substance type
(e.g. volume, age, and viscosity of the spilled oil), SAR instrument specif-
ic parameters (e.g. incidence angle, noise floor, imaging mechanism),
Geophysical parameters (e.g. local wind vector, presence of capillary
waves, surface currents). Moreover, even the molecular structure and
emulsification processes of the oil can affect the dielectric properties
of oil-covered waters and their scattering properties.
In this present study we developed an automated oil spill detection
methodology using Artificial Neural Network (ANN) as a classifier
which was trained using ten different polarimetric features extracted
from C (RADARSAT-2) and X band (TerraSAR-X, Dual Receave Antenna
Mode) fully polarimetric SAR images. The classifier is designed to classi-
fy each image into four different classes i.e. Crude Oil (CO), Emulsion
(EM), Look-Alike (LA) and Open Water (OW). Alongside fully polari-
metric C band SAR images this study also examines for the first time
the potential of X-band fully polarimetric space borne SAR acquisitions
for oil spill detection and characterization. The paper is organized as fol-
lows: Section 2 provides the description of the dataset used in this
study. Section 3 gives an introduction about the polarimetric features
and their mathematical definitions. Section 4 provides the summary of
the proposedmethodology and the processing chain along with a com-
prehensive scheme to analyze the discriminative power of polarimetric
and traditional features. Experimental results and discussions about the
performance of the classifier and feature analysis are presented in
Section 5, while summary and conclusions are drawn in Section 6.

2. Experimental dataset

Fully polarimetric TerraSAR-X (TS-X) and RADARSAT-2 (RS-2) im-
ages have been used to develop and validate the proposed algorithm.
Themajority of the imageswere acquired over the BombayHigh region,
about 160 km off the coast of Mumbai, India. This region hosts a cluster
of offshore oil platforms and has been in production since 1974. Unlike
European waters, there are no observation derived from regular aerial
surveillance, wherefore the only possible way to monitor this kind of
area is the use satellite SAR imagery. Beginning from March 2015 until
the October 2015, a total number of 20 TerraSAR-X images and 20
RADARSAT-2 images were acquired over the study area. Efforts have
been made to ensure that the C and X-band acquisitions are spatially
and temporally near coincident. In addition to the dataset collected
over Bombay High region we have also gathered a number of TS-X
and RS-2 fully polarimetric images manifesting ‘look-alike’ spots. The



Fig. 2.Top:σo values of the transact shownwith red line on Fig. 3 RADARSAT-2 acquisition.
Bottom: σo values of the transact shown with red line on Fig. 4 TerraSAR-X acquisition.
Solid black line indicates the average NESZ, dotted and dashed black lines indicate upper
and lower bound of the noise floor respectively.
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fully polarimetric X-band SAR data have been acquired by TerraSAR-X
and TanDEM-X constellation during a scientific exploration campaign
started in October 2014 and continued until March 2016. One of the
main objectives of this campaign is to evaluate quad-polarized X-band
high resolution SAR data to develop new technologies and applications.
X-band quad pol data were acquired using Dual Receive Antenna (DRA)
configuration mode. DRA configuration is achieved by electronically
splitting the physical antenna (4.8 m in Azimuth) during receive into
two parts separated in along track (Mittermayer and Runge, 2003;
Eineder and Fritz, 2006). Therefore, in order to obtain the full scattering
matrix the whole antenna is transmitting one polarization (toggled
pulse by pulse to transmit two polarization) and in reception. The split
of the antenna enables recording of two polarizations (Breit et al.,
2010). The X-band fully polarimetric data which were acquired over
the study area is quite unique, as currently only the TerraSAR-X and
TanDEM-X constellation is able to provide such space-borne observa-
tions (only during science phase). On the other hand C-band
RADARSAT-2 Quad pol SAR data is available in two different modes,
Standard Quad pol and Fine Quad Pol. In both quad polarization
modes, a nominal image scene covers an area of approximately 25 km
(Range) × 25 km (Azimuth). These two modes of quad pol data is also
available in ‘Wide’ mode, where a nominal image scene covers an area
of approximately 50 km (Range) × 25 km (Azimuth). In case of
TerraSAR-X StripMap quad polarization mode, a nominal image scene
covers an area of approximately 16 km (Range) × 55 km (Azimuth).

All of the images acquiredwere Single-Look Complex (SLC) products
with nominal slant range resolution of approximately 1.2 m in case of
TerraSAR-X StripMAP and 5.2 m in case of RADARSAT-2 Fine Quad
(FQ) and Fine QuadWide (FQW) which is ideal for monitoring offshore
platform clusters like Bombay High. Fig. 1 shows the location of the
study area, platform locations and an overview of the acquired TS-X im-
ages. The dataset includes different beams of TerraSAR-X StripMAP
mode (e.g. StripFar_006, StripNear_009 etc.) and RADARSAT-2 Fine
Quad pol Mode (e.g. FQ10, FQ13, FQ6W etc.) incorporating a broad
range of incidence angles, from 20 to 35 degree. The incidence angle
range was chosen due to its low instrument noise floor, approximate
NESZ range [−17 dB to −26 dB] in case of TerraSAR-X DRA StripMAP
and −35.0±4 dB in case of RADARSAT-2 Fine Quad and −33.0±6
dB in case of RADARSAT-2 FineQuadWide)which is a critical parameter
in respect to the polarimetric system performance and low enough for
dark feature observation even at low wind conditions (Zhang et al.,
2011; Velotto et al., 2011; Latini et al., 2016). It is important to note
that the NESZ range provided here holds for TS-X data acquired in
DRA mode and has been extracted from the particular dataset used in
this study. Fig. 2 represent the σo values of a transact line over clean
water and oil spill spots, which clearly shows that the σo values are
well above the respective NESZ values for both sensors. The dataset is
strongly heterogeneous, contains several oil spill spots, providing fresh
and old platform sourced spills and incorporating different wind condi-
tions. All the TS-X and RS-2 images present in the dataset were in the
range of desirable wind conditions which is around 3–13 m/s. More-
over, the dataset contains a comprehensive set of look-alikes, including
phenomena such as ship wakes and low wind areas. A small number of
look-alike examples present in the dataset are not from the study area
and were acquired over either North Sea or Mediterranean Sea.

Fig. 3 shows an example of platform sourced oil spills along with
presence of the offshore platform cluster on a RS-2 Fine quad pol wide
image acquired on 20th of April 2014 at 01:15 UTC (Ascending orbit)
over the study area. Fig. 4 shows an example of a similar platform
sourced oil spill on a TS-X StripMap quadpol image acquired few
hours before the RS-2 acquisition (Fig. 3) over the same area. As men-
tioned earlier, some of the look-alike examples were collected outside
of the study area as occurrences of look-alikes over the study area are
very rare. Fig. 5 demonstrates manifestations of a weather induced
look-alike phenomenon on the RS-2 Fine quad pol wide image acquired
over the Balearic Sea, near the coast of Barcelona on 30th November
2012 at 17:43UTC. Anexample of look-alikemanifestationsdue to pres-
ence of algae bloom on a TS-X StripMap quad pol image is presented in
Fig. 13.
3. Polarimetric features

In case of fully polarimetric SAR acquisition, the scattering matrix is
given as

S ¼ SHH SHV
SVH SVV

� �
ð1Þ

where SXX = |SXX |exp(jϕXX), with |SXX | represents the amplitude and
ϕXX represents the phase of the complex scattering coefficient. The spa-
tial averaging window size was chosen to be 11 pixels for our sample
dataset throughout this publication.) The scattering vector is commonly
analyzed with respect to the lexicographic basis and the Pauli basis. The
resulting scattering matrices (averaged covariances) are the well-



Fig. 3.RADARSAT-2Quad polarimetric image represented in Pauli RGB (Mid incidence angle: θ=25.4, beammode: FQ6W) acquired on 02nd of June 2015 at 13:16UTC (Ascending Orbit)
over Bombay High offshore platform cluster. This image is a part of the training dataset. (© MDA, 2015).
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known coherency matrix T3 and covariance matrix S3:

T3 ¼ 1ffiffiffi
2

p
SHH þ SVVj j2

D E
SHH þ SVVð Þ SHH þ SVVð Þ�h i SHH þ SVVð Þ 2SHVð Þ�h i

SHH þ SVVð Þ� SHH þ SVVð Þh i SHH þ SVVj j2
D E

SHH−SVVð Þ 2SHVð Þ�h i
SHH þ SVVð Þ� 2SHVð Þh i SHH þ SVVð Þ� 2SHVð Þh i 2SVVð Þj j2

D E
0
BBB@

1
CCCA

ð2Þ

S3 ¼
SHHj j2

D E
SHHð Þ SVVð Þ�h i SHHð Þ SHVð Þ�h i

SHHð Þ� SVVð Þh i SVVj j2
D E

SVVð Þ SHVð Þ�h i
SHHð Þ� SHVð Þh i SVVð Þ� SHVð Þh i SHVj j2

D E
0
BBB@

1
CCCA ð3Þ

The concept for using Polarimetric SAR (PolSAR) data for oil slick ob-
servation was initially assessed in Gade et al. (1998) and later on in
Migliaccio et al. (2007) for SIR-C/X-SAR data followed by an experimen-
tal demonstration on fully polarimetric ALOS PALSAR data in [17]. The
principal concept was then adapted for X-band by Velotto et al.
(2011), using TerraSAR-X dual pol coherent Single Look Complex
(SLC) data. The polarimetric electromagnetic model, which is the basis
of this proposed methodology predicts that the sea surface is governed
by Bragg scattering (or tilted-Bragg scattering), has a high inter-channel
(co-pol) correlation (see Eq. (6)), and in case of non-Bragg scatter (e.g.
oil covered sea surface) the correlation is significantly lower (Velotto et
al., 2011; Skrunes et al., 2014a). In (Velotto et al., 2011) the authors
demonstrated that the standard deviation of Co-polarized Phase Differ-
ence (CPD) for a polluted area is significantly higher compared to pollu-
tion free background due to significant deviation from Bragg scattering
mechanism and on the other hand lower coherence for polluted area
due to the same reason. In Migliaccio et al. (2007, 2009b), Velotto et
al. (2011), Skrunes et al. (2014b) the model has been demonstrated to
be congruent even at different frequencies, L-, C- X-band making it at-
tractive for further evaluation. CPD has a probability distribution (pdf)
that depends on the number of looks l (l¼1 in both cases of TS-X and
RS-2 dataset)
and co-polarized phase difference(CPD) is given by

CPD ¼ φHH−φVV ; ð4Þ

and standard deviation of CPD is denoted by σφCO

σφCO
¼ StdDev CPDð Þ: ð5Þ

When HH and VV are uncorrelated (in case of an oil covered sur-
face), the pdf becomes uniformly distributed between−180 and 180.

The complex correlation coefficient between HH and VV (ρCO) is
given in Eq. (6), where ⁎ denotes complex conjugate and 〈⋅〉 denotes
spatial averaging.

ρCO ¼ SHHS
�
VV

� ��� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SHHS

�
HH

� �
SVVS

�
VV

� �q : ð6Þ

In Migliaccio et al. (2007), well-known Eigenvalue decomposition is
proposed for use in oil spill detection algorithms. Eigenvalue based
polarmetric features i.e., entropy (H), anisotropy (A) and mean scatter-
ing angle (α) (Cloude and Pottier, 1996, 1997; Hajnsek et al., 2003) are
usedwith a combination of constant false alarm rate (CFAR) filter for oil
spill classification on a single SIR-C/X-SAR L-band data set. In a polari-
metric approach one generally first computes the (locally averaged) co-
variance matrix of the scattering vector in order to compute the
Eigenvalues.

The (quad-polarimetric) eigenvalues λ1,λ2, and λ3 of T3 are used to
compute pj = λj/(λ1 + λ2 + λ3). This is the input for deriving entropy

H ¼ − p1 log3 p1ð Þ þ p2 log3 p2ð Þ þ p3 log3 p3ð Þð Þ; ð7Þ

and

A ¼ p2−p3ð Þ
p2 þ p3ð Þ ð8Þ



Fig. 4. TerraSAR-X Quad polarimetric image represented in false color composite (mid
incidence angle θ = 29.63) StripMAP (stripFar_006) acquired on 01st of June 2015 at
01:15 UTC (Descending Orbit) over Bombay High offshore platform cluster. This image
is a part of the training dataset. (© DLR,2015).
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From the eigenvectors v1,v2 and v3 of T3 one obtains

αi ¼ arccos vj 1ð Þ� 	
; j ¼ 1;2;3: ð9Þ

The average α angle we define by

α ¼ α1p1 þ α2p2 þ α3p3 ð10Þ

While the classical H−A−α parameters (cf. Cloude and Pottier,
1997) in the fully polarimetric case also permit the physical interpreta-
tion (eg. regarding predominant scattering mechanisms and values be-
tween 0 and 1), we do not further explore this aspect for our two-
dimensional adaptation. In case of an oil covered sea surface, H tends
to zero, indicating therefore a dominant scatteringmechanism scenario.
On the other hand, a pollution free sea surface dominated by relatively
high Entropy represents random scattering mechanisms. Entropy has
also been found useful for oil spill detection on ALOS PALSAR polarimet-
ric data inMigliaccio et al. (2009a). In Liu et al. (2011), authors also used
a combination of Cloude-Pottier based decomposition features (H−
A−α) along with the co-pol correlation coefficient (ρCO) in order to
form a feature combination to enhance oil spill detection capability on
UAVSAR L-band fully polarimetric data. In addition to that, Polarimetric
Span is also investigated as a separate feature in that study. Polarimetric
Span can be derived from the summation of Eigenvalues, therefore in
the fully polarimetric case it is given by

Span ¼ λ1 þ λ2 þ λ3: ð11Þ

Aswe discussed in this section,many previous studies examined dif-
ferent polarimetric features specially co-polarized phase difference
(φCO) and H−A−α for oil spill discrimination and characterization.
Nonetheless, reliability of a single polarimetric feature for oil spill and
look-alike discrimination has still not been adequately answered. Fig.
6 presents histograms of co-polarized phase difference (φCO) and H−
A−α values which are extracted from RS-2 imagery for four different
classes i.e. Crude Oil (CO), Emulsion (EM), Look-Alike (LA) and Open
Water (OW). CrudeOil (CO), Emulsion (EM) andOpenWater (OW)his-
tograms were obtained using a well-known RS-2 Fine Quad Pol image
presented in Fig. 3a in Skrunes et al. (2014b) and Look-Alike (LA) histo-
grams were obtained using Fig. 5. It can be observed from 6 that in case
of co-polarized phase difference (φCO) Crude Oil and Look-alike have a
very similar distribution. On the other hand it is a relatively trivial task
to discriminate Emulsion from Crude oil and look-alike using co-polar-
ized phase difference (φCO). In case of Entropy (H), Emulsion and
Open Water exhibit similar characteristics whereas Emulsion and
Look-alike show a large difference. Therefore it is evident from Fig. 6
that only one polarimetric feature will be insufficient to discriminate
different types of look-alike and oil spills which is also valid for TS-X ob-
servations. Thereforewepropose amethodologywhichuses a combina-
tion of well-known and recently established polarimetric features to
characterize dark spots. In addition towell-known polarimetric features
we also investigate an array of additional polarimetric features which
are relatively under exploited for oil spill detection and characterization
purpose.

A recent study by Skrunes et al. (2014b) evaluated eight established
polarimetric features on two C-band RADARSAT-2 fine quad pol data
where only HH and VV channels were taken into account. In that
study, geometric intensity was based on the T2 matrix whereas, in the
present study geometric intensity μ is expressed as,

μ ¼ det T3ð Þ1=2 ð12Þ

is used as a feature parameter based on the T3 coherencymatrix. Anoth-
er recent study by Singha et al. (2016) also found μ to be useful for ob-
ject-based oil spill and look-alike discrimination. In addition to the T3
matrix based features,σφCO

and ρCO, another lexicographic based feature,
and the real part of the co-polarization cross product (Rco) were evalu-
ated in Skrunes et al. (2014b).

The real part of the co-polarization cross product (Rco) is given by

Rco ¼ jℜ SHHS
�
VV

� �� 	�� ð13Þ

where ℜ stands for real part and

SHHS
�
VV

� � ¼ jSHHjjSVV jei φHH−φVVð Þ
D E

ð14Þ

Rco is used for oil spill and look-alike discrimination in Nunziata et
al. (2008) (also in Migliaccio et al., 2009a) as main part of a processing
chain, where oil spills are distinguished from clean sea and biogenic

look-alikes with the help of the ratio between Rco and hjSHV 2i . In
Nunziata et al. (2008) authors described the physical rationale behind



Fig. 5.Manifestation of a weather induced ‘look-alike’ phenomenon on RADARSAT-2 Quad polarimetric image represented in Pauli RGB (Mid incidence angle: θ = 30.00, beam mode:
FQ10W) acquired on 30th November 2012 at 17:43 UTC (Ascending Orbit) over the Balearic Sea, near the coast of Barcelona. This image is a part of the training dataset. (©MDA, 2015).

Fig. 6. Polarimetric feature histogram for Crude Oil (CO), Emulsion (EM), Look-Alike (LA) and OpenWater (OW) extracted from RADARSAT-2 Quadpol image. Polarimetric features (from
left to right): Copolarization phase difference, CPD, Entropy, H. Anisotropy, A. Alpha, α.
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Table 1
TerraSAR-X and RADARSAT-2 imaging modes used in this study.

Sensor
Incidence
angle range

Polarization
mode

Imaging
mode

Slant Rng
Res. (m)

Az Res.
(m)

TerraSAR-X 29 ∘–38 ∘ Quad-Pol(DRA⁎) StripMAP 1.2 m 6 m
RADARSAT-2 22 ∘–48 ∘ Quad-Pol Fine Quad 5.2 m 7.6 m
RADARSAT-2 22 ∘–48 ∘ Quad-Pol Fine Quad

Wide
5.2 m 7.6 m

⁎ DRA - Dual Receive Antenna (Experimental Mode).

Table 2
List of polarimetric features used in this study.

Polarimetric features

Stddev Co-Pol Phase Difference, σφCO
Velotto et al. (2011), Migliaccio et al. (2009b)

Coherency Coefficient, ρCO Velotto et al. (2011)
Geometric Intensity, μ Skrunes et al. (2014b)
Real Part Co-Pol Cross Product, Rco Migliaccio et al. (2009b)
Entropy, H Zhang et al. (2011), Liu et al. (2011), Skrunes et al. (2014b)
Anisotropy, A Skrunes et al. (2014b), Liu et al. (2011)
Alpha angle, α Zhang et al. (2011), Liu et al. (2011), Skrunes et al. (2014b)
Scattering Diversity, δ Praks et al. (2009)
Surface Scattering Fraction, τ Praks et al. (2009)
Polarimetric, Span Liu et al. (2011), Singha et al. (2016)
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this fact, wherein a sea surface that is covered with biogenic look-alikes
is still dominated by Bragg scattering, hence indistinguishable from
clear background. In case of an oil covered area the value of Rco is ex-
pected to be nearly zero and in case of a clear background Rco is expect-
ed to have a value greater than zero (Nunziata et al., 2008).

In addition to those established polarimetric feature we also exploit
two new coherency matrix (T3) based features (invariant to unitary
Fig. 7. Polarimetric features extracted from RADARSAT-2 Quadpol image presented in Fig. 3. (a
Coefficient, ρCO. (c) Geometric intensity, log(μ). (d) Real part of the copolarization cross produ
diversity, δ. (i) Surface Scattering Fraction, τ. (j) Polarimetric Span. The features μ,rCO are log tr
transforms), namely Scattering diversity and Surface scattering fraction
for oil spill detection and characterization, previously proposed by Praks
et al. (2009). Praks et al. (2009) shows that Scattering diversity com-
bined with the surface scattering fraction can be used to form a classifi-
cation space almost identical to the traditional Entropy-Alpha
classification space (Cloude and Pottier, 1997). Our motivation of intro-
ducing these two parameters was these features are very straightfor-
ward to calculate and require less time to compute compared to
traditional H−A−α. These two features are proven to be useful for
other maritime related applications such as sea ice classification
(Ressel and Singha, 2016). However, until now those two features
have not been exploited for oil spill and look-alike characterization.

Scattering diversity is defined as

δ ¼ 3
2

1−
T3k kF

span qð Þ


 �2
 !

; ð15Þ

(where ‖T3‖F denotes the T3 Frobenius norm). Surface scattering fraction
is defined as

τ ¼
jSHH þ SVV j2
D E

span
: ð16Þ

All of the features used in this study are given in Table 2 and illustrat-
ed in Fig. 7 for an example of platform sourced oil pollution on a RS-2
fully polarimetric image. Figs. 8 and 9 show examples of platform
sourced oil pollution and look-alike on TS-X fully polarimetric imagery,
respectively. (See Table 1 for further details.)
) Standard deviation of copolarization phase difference, σφCO
. (b) Magnitude of Coherence

ct, (log(rCO)). (e) Entropy, H. (f) Anisotropy, A. (g) Alpha angle, α. (h) Surface scattering
ansformed for visualization purpose (© DLR, 2015).



Fig. 8. Polarimetric features extracted from TerraSAR-X Quadpol image presented in Fig. 13. (a) Standard deviation of copolarization phase difference, σφCO
. (b) Magnitude of Coherence

Coefficient, ρCO. (c) Geometric intensity, log(μ). (d) Real part of the copolarization cross product, (log(rCO)). (e) Entropy, H. (f) Anisotropy, A. (g) Alpha angle, α. (h) Surface scattering
diversity, δ. (i) Surface Scattering Fraction, τ. (j) Polarimetric Span. The features μ,rCO are log transformed for visualization purpose (© DLR, 2015).
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4. Methodology

4.1. Neural network classification

Asmentioned in the introduction, we performed a pixel-based super-
vised classification using an Artificial Neural Network (ANN). The training
dataset was extracted from 5 TS-X and 4 RS-2 images for four separate
classes, Crude Oil (CO), Emulsion (EM), Look-Alike (LA) and Open
Water (OW) incorporating different incidence angles. From the initial
training dataset, 20% of the samples had been reserved for testing pur-
pose. It is important to note that the training and testing datasets aremu-
tually exclusive and some samples of the training (testing) dataset (RS-2)
were extracted form verified Crude Oil (CO), Emulsion (EM), Look-Alike
(LA) spots, previously presented and studied by Skrunes et al. (2014b,
2014a). A limited amount of training samples for CO (X-band) was col-
lected from platform sourced fresh spills (with higher dampening ratio
compared to EM samples). LA samples include a broad range of phenom-
ena incorporating lower dampening (plant oil) and higher dampening
(weather induced phenomenons, algae blooms) effects. The rest of the
images, i.e. 15 TS-X and 16 RS-2, were treated as validation dataset, thus
disjoint from the training (testing) dataset. The feature set we used
contained all features and their respective local variances, which was
computed for each center pixel of an 11 × 11 sub-matrix sliding over
the entire feature image. Therefore, we extracted for each pixel men-
tioned polarimetric features (along with their local variances) and then
ingested the feature vectors into the classifier. The implementation was
carried out both in the Exelis IDL programming language (Image inges-
tion, calibration, feature extraction, statistical analysis) and in C (FANN li-
brary classifier, Nissen, 2005). The hardware specifications used were:
11 GB RAM, 2.7 Ghz Intel Core i-7 3740 QM, virtual linux OS.

The validation of the trained classifierwere carried out on rest of the
TS-X and RS-2 images i.e. 15 TerraSAR-X and 16 RS-2 images. It is



Fig. 9. Polarimetric features extracted from TerraSAR-X Quadpol image presented in Fig. 13. (a) Standard deviation of copolarization phase difference, σφCO
. (b) Magnitude of Coherence

Coefficient, ρCO. (c) Geometric intensity, log(μ). (d) Real part of the copolarization cross product, (log(rCO)). (e) Entropy, H. (f) Anisotropy, A. (g) Alpha angle, α. (h) Surface scattering
diversity, δ. (i) Surface Scattering Fraction, τ. (j) Polarimetric Span. The features μ,rCO are log transformed for visualization purpose (© DLR, 2015).
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important to note here that the images present in the validation dataset
aremutually exclusivewith the training a testing dataset. A detailed de-
scription of the results and discussion about the discriminative power
for each polarimetric features are presented in Section 5 along with
some examples of detected oil spill and look alike for both frequency
bands.
4.2. Mutual information for feature selection

As mentioned earlier, in addition to classification accuracy assess-
ment we have also carried out mutual information analysis of the ex-
tracted features to assess their contribution to the classification
process. Let X,Y be two random variables (with joint and marginal den-
sities, no point masses). Then the mutual information ℐ of X and Y is
Table 3
Classification results compared to reference data samples from each class, averaged over
different neural network topologies, RS-2 dataset.

Reference class

ANN classification OS EM LA OW

OS 100.0% 0% 0% 0%
EM 0% 96.2% 0% 0%
LA 0% 0% 99.0% 2.7%
OW 0% 3.8% 1.0% 97.3%
defined to be

ℐ XjYð Þ ¼ ℋ Xð Þ−ℋ XjYð Þ; ð17Þ

whereℋðXÞdenotes the entropy andℋ(X |Y) denotes the conditional
entropy of X given Y. A detailed introduction can be found in Yu and Liu
(2003), Peng et al. (2005) and its usage for remote sensing applications
in Ressel and Singha (2016). The intuition of this definition ofmutual in-
formation ℐ is to describe the amount of information that is shared by
both feature variable, X and Y, i.e. their “information overlap”. In other
words, the higher the ℐ(X |Y) value is, the more reliably one can make
a prediction about X from available knowledge of Y. By such a definition,
one can quantify, in terms of information theory, the (nonlinear) infor-
mation correlation of X and Y. Classical statistical correlation can only in-
dicate linear relationships, thusmutual information can be considered a
Table 4
Classification results compared to reference data samples from each class, averaged over
different neural network topologies, TS-X dataset.

Reference Class

ANN classification OS EM LA OW

OS 100.0% 0% 0% 0%
EM 0% 95.4% 0% 0%
LA 0% 0% 99.3% 3.8%
OW 0% 4.6% 0.7% 96.2%



Fig. 10. Example of detected oil (Type:Emulsion) on a RADARSAT-2 Quadpol image, presented in Fig. 3.
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generalization of classical correlation (see e.g. Lange and Grubmüller,
2006). According to this intuition of “shared information”, one would
expect ℐ to be symmetric in X and Y, and this indeed holds also for
the rigorous mathematical sense, i.e., ℐ(X |Y) = ℐ(Y |X). Since we are
mainly interested in relative feature quality, we will only use ℐ to
rank features relatively and not make further use of the absolute values
of ℐ.

In our analysis, we will use the following terminology concerning
particular choices of X and Y:When Y is a feature and X is the class infor-
mation (X attains e.g. CO, EM, LA andOW), a (relatively) highmutual in-
formation ℐ would indicate a high predictive value of feature Y for
determining the class X. And by the symmetry of ℐ, information on X
permits to make a prediction of corresponding values of Y. The configu-
ration (Y feature, X all classes) we use to rank the features according to
relevance (all-class-relevance). We will write ℐ(Y |Class(all)) for this
situation. When in computing ℐ(Y |X) we use reference data only from
two classes, i.e. X assumes only two values of class property, then the
resulting value ℐ(Y |X) for a feature Y is called the two-class relevance
of feature Y.

In another configuration, we let X and Y be two different features.
When ℐ(X |Class(all)) and ℐ(Y |Class(all)) are about equal (i.e., have
equal relevance), high mutual information ℐ(X |Y) then indicates re-
dundancy of the two features X and Y. Such redundancy analysis may
serve in operational streamlining of the algorithm by discarding those
features that are found to be redundant. In order to obtain a higher com-
parability, ℐ(X |Y) is normalized by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℋðXÞℋðYÞp

(see Strehl and
Ghosh, 2003).

Into order to adapt the feature values to our particular choice of neu-
ral network, all features are rescaled into the range [−1.0,1.0]. We use
the common nonlinear rescaling method involving the tanh function:

~x ¼ tanh
x−X
νX

 !
; ð18Þ
where X denotes the mean of all values of feature X in the training data
and νX denotes the standard deviation of all values of feature X in the
training data. Whenever an ANN is trained on data that was rescaled
with these particular training data statistical parameters P ¼ fX;νXg,
then all feature vectors ingested into this network for classification
need to be rescaled likewise with these parametersP prior to classifica-
tion. From now on in this work, we only discuss the rescaled values of
the features, since these determine the numerical behavior of our algo-
rithm. The results of our feature analysis will be presented in Subsection
5.2.
5. Results and discussions

5.1. Classification results

As discussed in the Section 4, we train the ANN with a training
dataset consisting of ten polarimetric features and their local variances.
After training we tested the performance of the trained ANN using a
testing dataset (20% of the initial training dataset). Tables 3 and 4
show the classification accuracy achievedby the trained ANNusing test-
ing dataset for RS-2 and TS-X respectively. Noting that both training and
testing dataset are mutually exclusive and collected from the different
images (i.e. different met-oceanic conditions and incidence angle), our
approach can be considered to be consistent in itself and stable with re-
spect to different met-oceanic conditions as background. Additionally,
the proposed methodology is tuned for operational Near Real Time Ser-
vices with average processing time of 7–8 min for a RS-2 fine quad pol
scene and 10–12 min for a TS-X StripMap quad pol and RS-2 fine quad
pol wide scene. This is an essential performance indicator for operation-
al services followed by false positive and false negative rates of the pro-
posed methodology.

In order to demonstrate the reliability of the classifier we show the
classified examples of detected oil spills and look-alikes on both RS-2
and TS-X imagery. We first show some examples of classified images,



Fig. 11. Example of detected oil (Type:Emulsion) on a TerraSAR-X QuadPol StripMap
image, presented in Fig. 4.
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wherein the training and testing dataset were gathered followed by ex-
amples from the validation dataset.

Fig. 10 shows an example of oil spill on a RS-2 fine quad polwide im-
agery acquired on 02nd of June 2015 at 13:16 UTC (See Fig. 3) over the
study area where the trained classifier detected the dark-spot as emul-
sion (EM). Fig. 11 shows an example of an oil spill on a TS-X StripMap
quad pol image which was acquired few hours before on 01st of June
2015 at 01:15 UTC over the same area (See Fig. 4). In Fig. 11 the dark-
spots also detected as emulsion by the trained classifier for TS-X
which is in agreement with the classification results obtained from
RS-2 acquisition. As discussed earlier, most important aspect of any oil
spill detectionmethodology is its ability to detect look-alikes on SAR im-
ages. In Section 2we presented an RS-2 fine quadpolwide imagery (See
Fig. 5) manifesting the presence of large look-alike spots probably due
to adverse weather conditions. Fig. 12 shows the classified results ob-
tained using the ANN classifier trained for RS-2 where all of the dark-
spots are classified look-alikes. Fig. 13 shows occurrences of look-alike
phenomena, probably occurring due to an algae bloom on a TS-X quad
pol imagery acquired over North Sea during summer 2015. In spite of
the image acquired at relatively higher incidence angle (mid incidence
angle: θ = 38.80) the ANN classifier, trained for TS-X dataset managed
to successfully classify the dark-spots as look-alikes.

To judge visually on the plausibility of the classification on both C
and X band SAR imagery, we presented a spatially and temporally coin-
cident RS-2 and TS-X results in Fig. 14 where the TS-X image was ac-
quired on 15th of July 2015 at 01:15 UTC and RS-2 image was
acquired within less than oneminute after TS-X acquisition. It is impor-
tant to note here that this dataset is a part of the validation dataset and
disjoint from the training and testing dataset. The figure shows two
identical oil spills originating from offshore platforms on RS-2 and TS-
X imagery. Fig. 14 summarizes that for the locations of recognizably
identical oil spills classified as Emulsion (EM) in both frequency
bands. We also observe a significant match in the classified oil type
(EM) even with a notable difference in incidence angle between TS-X
and RS-2 acquisition.

5.2. Relevance and redundancy

From first glance at Table 5, for both sensors we find H and δ to be
next to each other in terms of rank and also at the top of the feature
list. Both A and α are rather low ranking for both sensors. We also ob-
served that τ and span are in the upper half of the table for both TS-X
and RS-2. Somewhat different is the relevance of ρCOwhich is rather im-
portant in TS-X based classification,whereas for RS-2 it scoresmidrange
in terms of relevance. Contribution of Rco to the classification process
appears to be important for both TS-X and RS-2. When considering
only the two-class relevance, we observed for either of the satellites
that the five highest ranking features for discriminating two classes
are span, H, δ, τ, and Rco which coincides with what can be observed
in Table 5. Another key observation was that the feature σφCO

ranked
lowest or second but lowest, in almost all cases of two-class relevance
on both sensors.

The most striking observation in Figs. 15 and 16 is the high correla-
tion of the polarimetric entropy H, and the scattering diversity δ, which
fits quite well the theoretical predictions of Praks et al. (2009), III·B and
(Ressel et al., 2015; Ressel and Singha, 2016). It is also noticeable from
Table 5 that the contribution of μ towards the classification process is
higher in case of RS-2 compared to TS-X.

Therefore, we can summarize the most relevant features (the top
five features for each class pair and for all-class discrimination) as
span, τ, δ, RCO, andH relevances. SinceH and δ carry coinciding informa-
tion and are of similar relevance, onemight consider discardingH. Given
that A and α are of inferior relevance for both sensors, we conclude that
the eigenvalue based features H,A,α can likely be discarded without
worsening the classification result. In particular, this would make the
computationally expensive Eigen decomposition dispensable in the
processing chain and thus save numerical overhead. Whether this ex-
pectation will be met in setting up a classifier with a reduced feature
set will be investigated in future studies.

6. Conclusions

A combination of different polarimetric features have exploited to
characterize dark spots on C and X-band quad-polarization SAR data
using Artificial Neural Network as a classifier. A first analysis of redun-
dancy among these features indicates the directions for further investi-
gation on selection of optimal features combinations (which can help to
avoid computational and memory overhead). The contribution of δ, τ
and span to the classification stage is significant. These features clearly
deserve attention in future studies. Additionally, the proposed



Fig. 12. Example of detected ‘look-alikes' (Weather induced) on a RADARSAT-2 QuadPol image, presented in Fig. 5.

Fig. 13. Left: Manifestation of ‘look-alikes' (Algae/Biogenic Slick) on StripMAP image (mid incidence angle: θ=38.80, stripNear_011, Contrast enhanced) acquired on 13th of July 2015 at
06:24 UTC over NorthSea. Right: Classification result using ANN. (© DLR,2015) This image is a part of validation dataset.
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Fig. 14. C and X band fully polarimetric SAR imagery acquired over Bombay High and
respective classified imagery. Top left: Pauli representation of RADARSAT-2 Fine Quad
Pol Wide (FQ4, mid incidence angle θ = 23.2, Descending Orbit) acquired on 15th of
July 2015 at 01:16 UTC (© DLR,2015). Top right: Classified RS-2 image using ANN.
Bottom left: TerraSAR-X Quad Pol (Dual Receive Antenna, StripFar_006, mid incidence
angle θ = 29.3, Descending Orbit) acquired on 15th of July 2015 at 01:15 UTC (©
DLR,2015). Bottom right: Classified TS-X image using ANN. Both images are part of
validation dataset.

Fig. 15.Normalizedmutual information (RS-2)ℐ ðY1; Y2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℋðY1ÞℋðY2Þ

p
. Features are:

1: σφCO
, 2: Rco, 3: ρCO, 4: μ, 5: τ, 6: span, 7: δ, 8: H, 9: A, 10: α.

Table 5
Relevance for distinguishing all different classes (all-class-relevance) in the TS-X training
data, and in the RS-2 training data.ℐ(RS) denotesℐ ðXjClassðallÞÞ= ffiffiffiffiffiffiffiffiffiffiffi

HðXÞp
for RS-2 data, and

ℐ(TSX) denotes ℐ ðXjClassðallÞÞ= ffiffiffiffiffiffiffiffiffiffiffi
HðXÞp

for TS-X data.

Feature ℐ(RS) Feature ℐ(TSX)

span 0.34462485 δ 0.50492575
Rco 0.33856680 H 0.46412914
H 0.33295479 τ 0.44965620
δ 0.32991932 Rco 0.44096278
τ 0.32004349 span 0.43324989
μ 0.28796856 ρCO 0.42914710
α 0.26523526 α 0.42182257
A 0.094870827 μ 0.37953386
σφCO

0.025278190 σφCO
0.084320886

ρCO 0.011422892 A 0.076652909
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methodology is tuned for operational Near Real Time Services with av-
erage processing time of 10–12 min for a standard TS-X Quad-Pol
Fig. 16.Normalizedmutual information (TS-X)ℐ ðY1; Y2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℋðY1ÞℋðY2Þ

p
. Features are:

1: σφCO
, 2: Rco, 3: ρCO, 4: μ, 5: τ, 6: span, 7: δ, 8: H, 9: A, 10: α.
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StripMAP scene and 7–8min for RS-2 FineQuad-Pol scene. An extensive
evaluation of features and performance estimation of the classifier for L-
band polarimetric SAR images in different environmental conditions
along with exploitation of compact polarimetric features is foreseen in
the near future.
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