

Knowledge for Tomorrow

InitiativE-BW – Real-world driving, energy demand, user experiences and emissions of EV-fleets

European Transport Conference, Barcelona, 2016-10-06

H. Dittus, U. Kugler, D. Özdemir, M. Schmitt

German Aerospace Center, Institute of Vehicle Concepts

Background: The Project InitiativE-BW Elektrische Flottenfahrzeuge für Baden-Württemberg

InitiativE-BW

- investigates real life operation of electrified vehicles
- project duration: 01/2014 to 12/2016
- project goal: up to 500 electrified vehicles on road in BW
- vehicles are equipped with data loggers
- user experiences are assessed with structured surveys

<u>Status</u>

- 358 contracts signed, 114 in negotiation (by 08/2016)
- more than 90% battery electric vehicles (BEV)
- 88% of vehicles are in commercial applications
- 64 vehicles are equipped with data loggers

Gefördert durch:

Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit

Aufgrund eines Beschlusses des Deutschen Bundestages

Förderprogramm:

Background: The Project InitiativE-BW Distribution of vehicle types

Background and Objectives of this study

Background

- EU Regulation limits tank-to-wheel emissions to 95 g CO₂/km by 2021
- No tank-to-wheel CO₂ emissions from battery electric vehicles (BEV), but during generation and distribution of electric energy
- Energy costs are important for the total costs of ownership of BEV

Objectives

- Analyse specific use case for a BEV charged by power from electricity grid and local photovoltaic (PV) system
- Consider temporally resolved data of German electricity production mix combined with the BEV use case to derive 2015 CO₂ emissions
- Determine economic and ecologic impact of PV power usage in 2015:
 - reduction of specific emissions in g CO_2/km
 - energy cost reduction

Data sources for the study

Data logger of local PV System Average power, 15-min intervalls

BEV data logger Charging events, secondly

Agorameter Database, German Electricity Production Mix Average power per source with hourly resolution

Icha and Kuhs (UBA) Emission factors by source, yearly

Ecoinvent Database Emissions of vehicle manufacturing

 \equiv

Agorameter Database German electricity production with hourly resolution

Agora Energiewende; Current to: 11.09.2016, 20:45

German electricity production mix Specific CO₂ emission statistics for 2015

Source: Icha and Kuhs (2016)

\rightarrow On average CO₂ emissions are lower during daytime

^[1] Others: Mineral oil plants, waste incineration plants and unspecified sources

Local PV system 15-min average power of PV, building load and grid

→ Building load includes BEV charging events. But how to identify them?

Local PV system Building base load – reference curves per month

Local PV system Charging energy and PV share in 2015

 \rightarrow Suitable charging behaviour needed for a notable PV share

➔ In 2015 the PV system covered 20% of BEV energy demand

Impact of PV system on CO₂ emissions Comparison of reference and BEV use case

	kg CO ₂	Yearly average g CO ₂ /kWh
Reference case without PV		
CO ₂ emissions from grid charging	1,235.8	517.5
BEV use case with PV		
CO ₂ emissions from grid charging	1,010.2	528.8
Avoided CO ₂ emissions by PV charging	225.6	472.4
Overall CO ₂ emissions in use case	1,010.2	423.0
Use case CO ₂ reduction	18.3 %	

 \rightarrow PV provides 20% of charging energy, but CO₂ reduction only 18.3%

 \rightarrow PV substitutes "clean" grid energy

 \rightarrow mileage based emissions due to electricity production 96 g CO₂/km

Ecoinvent Database CO₂ emissions related to BEV manufacturing

	Unit	CO ₂							
Vehicle data: lifetime 12 years, 175,000 km									
Vehicle mass without battery	kg	1213							
Battery mass	kg	435							
Emission factors									
Ecoinvent BEV without Battery	kg/kg vehicle	7.00							
Ecoinvent Battery	kg/kg battery	5.41							
Results: CO ₂ emissions related to BEV manufacturing									
BEV without battery	kg	8,491							
Battery	kg 2,353								
Total manufacturing emissions	kg	10,844							

\rightarrow mileage based emissions due to manufacturing 62 g CO₂/km

^[1] Original battery mass 290 kg, multiplied by 1.5 to account for replacement after 8 years

BEV CO2 emissions - summary 2015 BEV use case with PV system

The mileage based CO_2 emissions of that respective BEV in 2015 amount to

158 g CO₂/km

including vehicle manufacturing, electricity production and emission benefits from PV system usage

Emissions without PV system: 179 g CO2/km → 12% savings

Business case 2015 Impact of PV system on BEV energy cost in Germany

	BEV use case						
First operation of PV syst	em:	2012-07	2013-07	2014-07	2016-07		
Earnings for PV energy fed to grid excl. VAT	Ct/kWh	17.95	14.30	12.22	11.97	' (2016), +++r (2016),	
Electricity price in 2015	Ct/kWh	24.10				s: BDEW	
Cost for EV charging with PV-system	Ct/kWh	22.87	22.14	21.72	21.67	Source	
Energy cost reduction	%	5.10	8.13	9.86	10.06		

 \rightarrow Significant impact of PV charging on energy costs in BEV use case

 \rightarrow Impact of PV on energy costs increases with rising electricity prices

→ Recently built PV systems have a higher impact on BEV energy costs

Main Conclusions and Outlook

<u>Use Case 2015</u>

- PV system provided 20% of BEV charging energy:
 - 18% of CO₂ emission reduction
 - 9.9% energy cost reduction

Local PV system & BEV in Germany

- Impact of PV on BEV energy costs increases with rising electricity costs
- Recently built PV systems have a higher cost reduction potential

<u>Outlook</u>

- Analysis of BEV & PV system use case for 2016
- Evaluation of temporally resolved CO₂ emissions for further BEVs

Knowledge for Tomorrow

Contact

German Aerospace Center, DLR e.V. Institute of Vehicle Concepts Pfaffenwaldring 38-40 70569 Stuttgart Holger Dittus holger.dittus@dlr.de

