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Abstract—This paper proposes a novel framework for the
fusion of hyperspectral and LiDAR-derived rasterized data using
extinction profiles (EPs) and deep learning. In order to extract
spatial and elevation information from both the sources, EPs that
include different attributes (e.g., height, area, volume, diagonal of
the bounding box, and standard deviation) are taken into account.
Then, the derived features are fused via either feature stacking
or graph-based feature fusion. Finally, the fused features are fed
to a deep learning-based classifier (convolutional neural network
with logistic regression) to ultimately produce the classification
map. The proposed approach is applied to two data sets acquired
in Houston, USA and Trento, Italy. Results indicate that the
proposed approach can achieve accurate classification results
compared to other approaches.

Index Terms—Convolutional neural network, deep learning,
extinction profile, graph-based feature fusion, hyperspectral,
LiDAR, random forest, support vector machines.

I. INTRODUCTION

Due to the availability of diverse remote sensors these days,
it is now possible to obtain a wide variety of information
from different materials on the Earth, ranging from spectral
information provided by passive sensors (e.g., multispectral
and hyperspectral images), to height and shape information
acquired by Light Detection and Ranging (LiDAR) sensors,
and texture information to amplitude and phase by Synthetic
Aperture Radar (SAR). This availability makes it possible
to integrate different information captured by diverse sensors
to further improve object detection ability and classification
performance. In spite of the rich amount of information
available in such data sets, automatic interpretation of remote
sensed data remains a difficult task [1].

Hyperspectral images are considered as an effective tool to
define the phenomenology and spectral characteristics of the
object of interest over a detailed spectral signature. LiDAR
data can be taken into account to practically characterize
the elevation and object height information of the scene.
Many methodologies have been proposed and/or adapted to
perform feature selection, feature extraction, segmentation,
and classification on hyperspectral images [2-9]. In a like
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manner, LiDAR data have been investigated for many tasks,
in particular feature detection and extraction [10-16].

However, urban scenes are usually highly complex and
challenging and it is optimistic to assume that a single sensor is
able to provide all the necessary information for classification
and feature extraction [17]. Bearing this in mind, hyperspectral
images are not applicable to effectively differentiate objects
composed of the same material (i.e., objects with the same
spectral characteristics). For example, roofs and roads that are
made of the same material exhibit the same spectral character-
istics, which makes the discrimination of such categories in the
feature space a very difficult task. On the other hand, LiDAR
elevation data alone cannot differentiate between objects with
the same elevation that are made of different materials (e.g.,
roofs with the same elevation made of concrete or asphalt). In
addition, the use of LiDAR data alone for complex areas, e.g.,
where many classes are located close to each other, is very
limited compared to optical data, due to the lack of spectral
information provided by this type of sensors [16, 18].

To address the above-mentioned issues and take advantage
of information provided by each available sensor, the fusion
of multi-sensor data can be taken into consideration. However,
the automatic integration of multiple types of data is not a
trivial task [19]. In addition, the use of more features extracted
by different sensors, while the number of training samples
is limited, may cause the so-called curse of dimensionality
[9, 20, 21]. To address this issue, different feature reduction
approaches, including feature extraction [22] and feature se-
lection [23-25], can be investigated.

The joint use of hyperspectral and LiDAR data has proven
to be successful for a wide variety of applications such as
shadow, height, and gap-related masking techniques [26-28],
above-ground biomass estimates [29], micro-climate mod-
elling [30], quantifying riparian habitat structure [31], and fuel
type mapping [32]. In addition, the joint use of LiDAR and
hyperspectral data has led to higher classification accuracies
compared to the use of each source individually. For instance,
in [1, 14, 19, 33-35], spatial, contextual, and structural in-
formation acquired by LiDAR data has been investigated,
along with spectral information captured by multispectral
and hyperspectral sensors. The obtained results have shown
improvement in terms of discrimination ability in forested and
urban areas. In all those works, the use of LiDAR along with
optical data leads to better results with respect to classification
accuracies. The aforementioned works indicate that LiDAR
and hyperspectral data may complement each other well and
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by integrating those two data sets appropriately, one can make
the most of the advantages of the two, while addressing the
shortcomings of each of them. The sequence of research works
on the joint use of LiDAR and hyperspectral data led to the
2013 Data Fusion Contest, organized by the Geoscience and
Remote Sensing Society (GRSS) [1].

In [36], the concept of the attribute profile (AP) was in-
troduced as a generalization of the morphological profile [37]
to extract a multilevel characterization of an image by using
a sequential application of morphological attribute filters. A
comprehensive survey on APs and their capabilities for the
classification of remote sensing data can be found in [9, 38].
To further improve the conceptual capability of the AP and
the corresponding classification accuracies, Ghamisi er al.
proposed extinction profiles (EPs) in 2016 [39]. EPs are based
on extinction filters, which are extrema-oriented connected
idempotent filters. In contrast with attribute filters, extinction
filters preserve the height of the extrema kept [39]. In [39], it
was shown that extinction filters are a more efficient alternative
than attribute filters in terms of simplification for recognition
applied to remote sensing images. This advantage leads to
higher classification accuracy for EPs compared to the results
obtained by APs. In addition, EPs’ parameters can be set
automatically, independent of the kind of the attribute being
used (e.g. area, volume, ...). However, the initialization of
threshold values used in APs is difficult and time-consuming.
In other words, the main issue of conventional APs, the
initialization of the threshold values, is addressed by EPs [39].
In [40], the concept of EPs has been generalized to extract
spatial and contextual information from hyperspectral images.

Recently, classification of hyperspectral data using deep
learning-based methods has attracted many researchers, due to
the capability of these approaches to extract abstract features at
deeper layers. More abstract features are known to be generally
invariant to most local changes of the input. Deep learning
is defined by the so-called “deep” neural network (DNN)
architectures, commonly deeper than three layers.

Based on various architectures and activation functions,
numerous classes of DNNs have been introduced, includ-
ing deep belief networks (DBN) [41], deep Boltzmann ma-
chines (DBM) [42], and stacked autoencoders (SAE) [43].
The number of contributions, based on deep learning for
hyperspectral image analysis is limited. In [44], a SAE-based
approach was developed for hyperspectral data classification
and feature extraction. In [45], a DBN-based feature extraction
was developed by the same team for the classification of
hyperspectral data. Although both approaches have led to
acceptable classification accuracy, there is, however, a full
connection between different layers. Consequently, a huge
number of parameters need to be trained, which can be an
undesirable factor if only a limited number of training samples
is available.

Convolutional neural networks (CNNs) have gained great
attention from many researchers due to their use of local
connections to handle spatial dependencies. In addition, CNNs
share weights, which significantly decreases the number of
parameters requiring training, in comparison to other deep
approaches. However, the number of parameters needed to

deal with hyperspectral data is still high. In this manner,
inappropriate weights may lead to getting trapped in a local
minimum of the loss function. Ideally, many training samples
should be available to train weights appropriately; this is
an issue for hyperspectral image processing, where there is
usually an imbalance between dimensionality and the number
of available training samples. To partially overcome this issue,
few regularization methods have been introduced to handle
overfitting problems, including L2 regularization and dropout
[46]. In [47], a data augmentation method called “dithering”
is taken into account to further address the overfitting issue.
In this paper, a novel fusion framework is proposed for
the joint classification of LiDAR and hyperspectral data. In
particular, the main contributions of this paper are as follows.

1) This paper proposes a strong framework for multi-sensor
data classification using EPs and graph-based multi-
sensor data fusion [48]' [35, 48]. However, the proposed
methodology can be considered to be a template and
therefore, different types of feature extraction and fusion
approaches can be used instead of the graph-based fea-
ture fusion., and deep learning-based classification. The
usefulness and generalization capability of the proposed
approach have been tested on two real data sets with
different land-covers. To this end, the first data set,
Houston data, is taken over an urban area, while the
second data set is taken over a rural area in Trento,
Italy.

2) To the best of our knowledge, this paper investigates
a deep learning-based approach for the classification of
multisensor data, LIDAR and hyperspectral, for the first
time in the remote sensing community.

3) The concept of EPs has successfully been investigated
for the classification of panchromatic [39] and hyper-
spectral data [40] so far. This paper also investigates
the ability of the EPs to extract useful information from
LiDAR images.

The rest of the paper is organized as follows: Section II is
devoted to the methodology. Section III presents experimental
results on two well-known data sets. Section IV wraps up the
paper by providing the main concluding remarks.

II. METHODOLOGY

This paper considers two strategies to fuse elevation, spec-
tral, and spatial information of LiDAR rasterized data and
hyperspectral images. Figs. 1 and 2 show the proposed fusion
strategies, strategy 1 and strategy 2, respectively. In summary:

1) Strategy 1 (Fig. 1): In this framework, nonparametric-
weighted feature extraction (NWFE), an extended multi-
extinction profile (EMEP), and a multi-extinction profile
(MEP) are applied to the LiDAR and hyperspectral
images to extract spectral, spatial, and elevation infor-
mation. Finally, all extracted features are concatenated
into a stacked vector and fed to a classifier (RF or

'Here, we only used graph-based feature fusion since its performance
has already been proven to be successful for the fusion of LiDAR and
hyperspectral data.
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Fig. 2. Strategy 2: The architecture of the proposed method using graph-based feature fusion as the fusion step.

2)

CNN-based classification approach) to produce the final
classification map.

Strategy 2 (Fig. 2): In this framework, EMEP is ap-
plied to the input hyperspectral data to extract spatial
information. In parallel, MEP is applied to the LiDAR-
derived Digital Surface Model (DSM) image to extract
elevation information. In order to normalize the number
of spectral, spatial, and elevation features, kernel prin-
cipal component analysis (KPCA) is separately applied
to the input data, the output of EMEP, and the output of
MEP. Extracted features are fused using the graph-based
feature fusion (GBFF) and fed to a classifier [random
forest (RF) [49] or CNN-based classification approach]
to produce the final classification map. RF has already
been shown to be effective in terms of classification
accuracy and efficient in terms of CPU processing time,
when it is performed on the features extracted by MPs
and APs, and frequently outperforms well-known clas-

sifiers in the hyperspectral community, such as support
vector machines (SVMs), on such features [9, 38]. We
used RF here to evaluate and compare the performance
of the proposed method with the RF.

For both strategies, we tried to feed the spectral, spatial,
and elevation information to the final classification approach.
To this end, EPs automatically generate spatial and elevation
features from the DSM (a LiDAR-derived feature) and the first
ICs (hyperspectral derived features). It is not recommended to
perform approaches such as MPs, APs, and EPs directly on the
whole hyperspectral data set, as they produce many redundant
features due to the high redundancy available between hyper-
spectral bands. Instead, they have almost often been performed
on a few features extracted by a feature extraction approach
(here, ICA). Below, a detailed description of the main building
blocks of the proposed strategies and the reason for their use
is provided.
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A. Extinction Profile (EP)

1) Extinction Filters: Ghamisi et al. [39] proposed the con-
cept of extinction profiles (EPs), based on a set of connected
filters, called extinction filters, which can preserve relevant
image extrema. Relevance here can be measured using the
concept of the extinction value defined by Vachier [50]. Let
Max(f) = {My, Ma, ..., Mn} be the regional maxima of the
image F. For each regional maxima, M;, there is an extinction
value ¢; corresponding to the increasing attribute being ana-
lyzed. For the input gray-scale image F, the extinction filter
preserves the n maxima with the highest extinction values,
which can be shown as follows:

EF"(F) = R)(F), (1)

where RZ(F) denotes the reconstruction by dilation [51] of
the mask image, which is given as follows:

g = max{M}, )

where max is the pixel-wise maximum operation. The term
M is the maximum with the highest extinction value, M/ has
the second highest extinction value, and so on. By construc-
tion, the transformation that defines any regional extrema of
an image with the corresponding extinction value defines the
concept of a granulometric operation [52], which is a family
of opening and closing operators of increasing size.

The efficient implementation of the extinction filter is based
on max-tree data representation [53]. After constructing the
max-tree, the n maxima (max-tree leaves) with the highest
extinction values for the corresponding attribute are chosen,
while all other max-tree nodes that are not in the paths from
these leaves to the root are pruned.

In [39], it was shown that extinction filters act more
efficiently than attribute filters with respect to simplification
for recognition of remote sensing panchromatic images, since
they can preserve more regions and correspondences found by
affine region detectors. Another advantage of extinction filters
over attribute filters is that it is easier to set the parameters of
the extinction filters than those of attribute filters. The main
reason is that they are independent from the kind of attribute
being used (e.g., area, volume,...), since they are based on the
number of extrema. In contrast, the thresholds used by attribute
filters vary greatly according to the attribute being used as well
as the data set being analyzed. Therefore, the thresholds are
more difficult to set.

2) Extended Multi-Extinction Profile (EMEP): The main
idea behind using EPs is to apply several extinction filters with
progressively higher threshold values to appropriately extract
and model the spatial information of the adjacent pixels. In
more detail, the EP is constructed by performing a sequence
of thinning and thickening transformations defined with a
sequence of progressively stricter criteria. The EP for the input

gray scale image, F, can be presented as:
EP(F) =
{0 (F), ™1 (F),...,¢™ (F),F,
thickening profile (3)

Ly (F), /P (F)),

thinning profile

™ (F),..

where Py : {P),} (¢ = 1,...,L) is a set of L ordered
predicates (i.e., P\, € P,,, ¢ < k). For EPs, the number
of extrema can be considered as the predicates. The terms ¢
and +y are thickening and thinning transformations.

The EP, as presented here, only works on a gray-scale
image. To further generalize the concept of the EP to hy-
perspectral data, one possible way is to perform a feature
reduction approach, such as PCA or independent component
analysis (ICA), on the input data and then, apply EPs to the
most informative features [9]. This approach is based on the
reduction of the dimensionality of the data from E C Z™ to
E’ C Z™ (m < n) with a generic transformation ¥ : £ — E’
carried out on an input image F (i.e., Q = U(F)). Then,
the EP can be performed on the most informative features
Q;, ¢ = 1,...,m) of the extracted features, which can
mathematically be given as:

EEP(Q) = {EP(Q,),EP(Q.),...,EP(Q,,)}. (4

In contrast to MPs that are only able to model the size
and structure of different objects, EPs are more flexible
and can be of any type. In this way, the extended multi-
EP (EMEP) concatenates different EEPs (e.g., area, height,
volume, diagonal of bounding box, and standard deviation on
different extracted features) into a single stacked vector, which
can be mathematically defined as follows:

EMEP = {EP,, ,EP,,,...,EP,,}, (5)

where ag, k = {1, ..., w} denotes different types of attributes.
Since different extinction attributes can extract complementary
spatial information, the EMEP has a greater ability to extract
spatial information than a single EP.

It should be noted that the EMEP demands almost the
same computational time as a single EP, since the most time
demanding step is to produce the max-tree and min-tree, which
are computed only once for each gray-scale image.

In our experiments on the LiDAR-derived image, since there
is only one image available, we use the term multi-EP (MEP)
for the situation when different types of EPs are applied to the
LiDAR image.

3) EEP Computational Complexity Analysis: It is easy to
obtain the fact that the computational complexity of the EEP
is m times the complexity of computing EP, in which m is
the number of informative features retained after performing
ICA or PCA.

The most time-consuming part is the construction of the
max-tree and min-tree required to compute the thickening and
thinning profiles. The complexity for a generic floating point
structure is O(nlog n), where n is the number of image pixels.
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TABLE I
COMPLEXITY ANALYSIS OF THE EEP. THE PARAMETER “‘s” REFERS TO
THE NUMBER OF THRESHOLD VALUES IN THE PROFILE. THE PARAMETER
“m” REPRESENTS THE NUMBER OF INFORMATIVE FEATURES KEPT AFTER
PERFORMING A FEATURE REDUCTION APPROACH.

Operation Complexity # Occurrence
Max-tree construction O(nlog n) 2m
Attribute computation O(n) 2m
Extinction values computation O(m) 2m
Filtering O(n) 2ms

For a complete analysis of the max-tree construction complex-
ity for different data types and different implementations, refer
to [54].

In our implementation, we use the array-based node-
oriented max-tree representation proposed in [55]. This rep-
resentation is very flexible, and for some attributes, such as
height, it reduces the computational complexity from O(n)
to O(m), where m is the number of max-tree nodes. The
structure is also suitable for parallel processing of the max-
tree. Table I demonstrates the computational complexities of
different steps in the EEP. For detailed information about the
complexities of the max-tree construction, attributes computa-
tion and filtering, see [54, 55].

B. Convolutional Neural Network (CNN)

Compared to other deep approaches, CNNs [56] take advan-
tage of local connections and shared weights. CNNs exploit
local correlations using local connectivity between the neurons
of near layers. In CNNs, some connections between neurons,
which share the same weights and biases, are replicated across
the entire layer. Fig. 3 demonstrates an example of the CNN-
based classification. As can be seen, the CNN consists of
several convolutional and pooling layers that construct a deep
network. In order to use the CNN for classification, a fully
connected logistic regression (LR) layer can be considered at
the end of the network. A convolutional layer is as follows:

D
I _ -1, 1.1 1
;= f Exl *ki; +05 |,
i=1

where ;L',i-_l is the i-th feature map of the (I-1)-th layer, xly is

the j-th feature map of the current (I)-th layer, and D is the
number of input feature maps. The k:ﬁj and b, are the trainable
parameters in the convolutional layer. The function f(.) is a
nonlinear function and * is the convolution operation.

In addition to the convolutional layer, one can also use
pooling in a network. The main advantage of pooling is that
such approaches can extract invariant features by reducing the
resolution of feature maps. As shown in Fig. 3, each pooling
layer is connected to the previous convolutional layer, and
combines a small NV x 1 patch of the convolution layer. The
most common pooling technique is max pooling [57].2

Due to the high dimensionality of hyperspectral data, a
network can be forced to overfitting. To handle this issue

2We have used the MatConvNet library for the implementation of the CNN-
based classification method utilized in http://www.vlfeat.org/matconvnet/.

to some extent, rectified linear units (ReLU), dropout layers,
and dithering [47] can be taken into account. For detailed
information about CNNs and their design, please see [58].

The output of CNN is classified using an LR, which em-
ploys soft-max as its output-layer activation. Soft-max ensures
that the activation of each output unit sums to one. Therefore,
the output can be seen as a set of conditional probabilities. LR
can be considered to be a single layer neural network and, as
a result, it can be merged with the CNN to form a CNN+LR
deep classifier. In this manner, the size of the output layer
should be equal to the number of classes.

Both the EPs and the CNN are considered to extract
meaningful features from the input data. Here, it should be
noted that, although deep models extract abstract features in
their deep layers in particular, the deep learning model can
be considered to be a feature refiner, i.e., mapping the input
low-level feature to a mid/high-level one.

C. Data Fusion

1) Feature Stacking: In regards to Strategy 1, feature stack-
ing is used for feature fusion. Feature stacking is a simple
approach to integrating extracted features from LiDAR and
hyperspectral images. In this manner, let X5P° denote the
input hyperspectral data, and let X5 be the output of the
EPs on the first informative independent components of the
hyperspectral data, which can extract and model spatial infor-
mation of the hyperspectral data. Let X¥® denote the features
obtained by performing MEP on the LiDAR image, which can
extract elevation information. Unsupervised feature extraction
approaches, such as ICA and PCA, do not consider the class-
specific information of hyperspectral data, which can be pro-
vided by training samples. To efficiently extract spectral infor-
mation while decreasing the dimensionality, supervised feature
extraction approaches, such as NWFE, can be taken into
account [59, 60]. In this case, let XNWFE denote the features
extracted by the NWFE. The feature stacking approach simply
concatenates the features, i.e., X>® = [XSpa; XEle. XNWFE] . The
main shortcoming of such approaches is that they increase di-
mensionality in the feature space, which may cause the Hughes
phenomenon [20]. This issue might dramatically downgrade
the classification accuracy of classifiers, which cannot handle
high dimensionality with a limited number of training samples.

2) Graph-Based Feature Fusion (GBFF): In regard to
Strategy 2, a GBFF developed by Liao er al. [48] is used
for the fusion of spectral, spatial, and elevation features. The
outputs of different steps may have different dimensionalities
and characteristics, detailed as follows:

1) For example, the output of EPs on the first three indepen-
dent components produces 213 features (i.e., 71 features
for each independent component, including 14 features
for the height attribute, 14 features for the area attribute,
14 features for the volume attribute, 14 features for the
diagonal of the bounding box attribute, and 14 features
for the standard deviation attribute, and the independent
component should also be included to make a complete
profile). These features extract the spatial information of
the scene and model different attributes. Let X3P* denote
the spatial features.
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Fig. 3. A general example of a CNN network. For strategy 1, a concatenation of NWFE, EMEP, and MEP is used as the input for the CNN deep network,
while for strategy 2, the output of the graph-based feature fusion is fed to the CNN deep network as the input.

2) Hyperspectral data sets contain detailed spectral infor-
mation. For example, in the case of the Houston data,
the number of spectral features is 144. Let X3P denote
the spectral features.

By performing the MEP on the LiDAR image, one may
obtain several features presenting elevation information
of the LiDAR derived data. (i.e., 71 features for the
LiDAR image). Let X™ denote the elevation features.

3)

In order to fuse the features described above, the number
of dimensionalities should first be normalized in order to put
the same weight on each type of the features and reduce the
computational cost and noise throughout the feature space [1].
In [1], Kernel PCA [61] was suggested as an effective tool to
reduce the dimensionality of each type of features, separately,
since it can represent a higher-order complex and nonlinear
distribution in a fewer number of dimensions, which is helpful
against the Hughes phenomenon and high computational cost.
As suggested in [1], the normalized dimension of each type
of features is set to the smallest dimensions of the above-
mentioned features. For example, for the Houston data, this
value is set to 71 (dy =71).

Let FSP¢ — {F?pe}dl ’ FSP2 — {Fipa}dl _and FEe —
=1 =1

{Ff‘le}il represent the spectral, spatial, and elevation fea-
tures after normalization to the same number of dimen-
sions, respectively, while Ffpe € R, Ffpa € R4, and
FiEle € R4 are the normalized spectral, spatial and eleva-

tion features, respectively. Let F5* = [F**; F5"* F**¢] and
| F?pe;Ffpa;FfleJ € N3(4) denote the vector stacking
of the spectral, spatial, and elevation features. Finally, let

{Z;}_, and Z; € R represents the fusion features with
dimensionality of do with do < 3(dy).

The main aim of the graph-based feature fusion is to seek a
transformation matrix, w € R®3(d1)>d2 which can perform both
dimensionality reduction and feature fusion in such a way that
Z; = w'F;, where F; can be set to Fft“. The transformation
matrix w can reduce dimensionality and fuse features at the
same time, while it preserves local neighborhood information
and detects manifolds embedded in the original feature space
[48]. To do so, the following approach can be considered to

seek an appropriate transformation matrix w:

min

arg
wER3d1 X do

> |W'F - WTFJ‘H2A1'3' ;

ij=1

where matrix A is denoted as the edge of the graph G =
(F,A).

III. EXPERIMENTAL RESULTS
A. Data Description

1) Houston Data: The data is composed of a hyperspectral
image and a LiDAR-derived digital surface model (DSM).
This data set was distributed for the 2013 GRSS data fusion
contest. The hyperspectral data was acquired by the Compact
Airborne Spectrographic Imager (CASI) over the University
of Houston campus and the neighboring urban area on June
23, 2012. The LiDAR data was acquired on June 22, 2012.
The data sets were collected by the NSF-funded Center for
Airborne Laser Mapping (NCALM). The size of the data is
349x1905 pixels with the spatial resolution of 2.5m. The
hyperspectral data set consists of 144 spectral bands ranging
from 0.38 to 1.05um. The 15 classes of interests are: Grass
Healthy, Grass Stressed, Grass Synthetic, Tree, Soil, Water,
Residential, Commercial, Road, Highway, Railway, Parking
Lot 1, Parking Lot 2, Tennis Court, and Running Track. The
“Parking Lot 1” includes parking garages at the ground level
and also in elevated areas, while “Parking Lot 2 corresponds
to parked vehicles. Fig. 4 shows a color composite repressen-
tation of the hyperspectral data and the corresponding training
and test samples. Table II gives information about the number
of training and test samples for different classes of interests.

Cloud shadows in the hyperspectral data were detected
using thresholding of illumination distributions calculated by
the spectra. Relatively small structures in the thresholded
illumination map were removed based on the assumption that
cloud shadows are larger than structures on the ground.

2) Trento Data: The second data set is a subset of larger
data captured over a rural area south of the city of Trento, Italy.
The subset used in the experiments is of 600 by 166 pixels.
The LiDAR DSM data was acquired by the Optech ALTM

3The enhanced data is provided by Prof. Naoto Yokoya from Technical
University of Munich (TUM).
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Fig. 4. Houston - From top to bottom: A color composite representation of the
hyperspectral data using bands 70, 50, and 20, as R, G, and B, respectively;
training samples; test samples; and legend of different classes.

TABLE I
HOUSTON: NUMBER OF TRAINING AND TEST SAMPLES.

Class Number of Samples
No | Name Training | Test
1 Grass Healthy 198 1053
2 Grass Stressed 190 1064
3 Grass Synthetic 192 505
4 Tree 188 1056
5 Soil 186 1056
6 Water 182 143
7 Residential 196 1072
8 Commercial 191 1053
9 Road 193 1059
10 | Highway 191 1036
11 | Railway 181 1054
12 | Parking Lot 1 192 1041
13 | Parking Lot 2 184 285
14 | Tennis Court 181 247
15 | Running Track 187 473
[ Total [ 2832 [ 12,197 ]

3100EA sensor and the hyperspectral data captured by the
AISA Eagle sensor, all with the spatial resolution of 1m. The
hyperspectral data consists of 63 bands ranging from 402.89
to 989.09nm, where the spectral resolution is 9.2nm. The
spatial resolution of this data set is 1m. For this data set, six
classes of interests were extracted, including Building, Woods,
Apple Trees, Roads, Vineyard, and Ground. Fig. 5 shows a
color composite representation of the hyperspectral data and
the corresponding training and test samples. Table III gives
information about the number of training and test samples for
different classes of interests.

B. Algorithm Setup and Discussion

For NWFE, the first features with cumulative eigenvalues
above 99% are automatically retained. To this end, 6 and 17
features have been extracted from the Trento and Houston data,
respectively.

For the RF, the number of trees is set to 300. The number
of the prediction variable is set approximately to the square

Thematic classes:
B Apple trees 3 Buildings @ Ground

1 Wood B Vineyard B Roads

Fig. 5. Trento - From top to bottom: A color composite representation of the
hyperspectral data using bands 40, 20, and 10, as R, G, and B, respectively;
Training samples; Test samples; and legend of different classes.

TABLE III
TRENTO: NUMBER OF TRAINING AND TEST SAMPLES.

Class Number of Samples
No | Name Training | Test
1 Apple trees 129 3905
2 Buildings 125 2778
3 Ground 105 374

4 Woods 154 8969

5 Vineyard 184 10317

6 Roads 122 3252

[ Total [ 819 ] 29595 ]

root of the number of input bands.

Fig. 6 and Table IV provide information about the structure
of the CNN network. Furthermore, the following points have
been taken into account to design a proper CNN network:

1) In this work, 90% of the training samples were used to
train weights and biases, while the rest are validation
samples to guide the design of a proper architecture in
order to avoid overfiting. Please note that the validation
samples are different from the test samples. The val-
idation samples have been extracted directly from the
training set.

2) A dynamic learning rate is taken into account. To do
so, the whole training period is divided into five stages,
starting from a relatively high learning rate of 0.005,
and decreasing by a half for each subsequent stage.
This setting provides a fast-descend-of-loss function at
the beginning, while the gradually decreasing rate can
ensure a small but consistent progress. After reaching
a certain stage of training, a high rate might not be
efficient anymore, since it might cause oversteps leading
to a higher loss.

3) In this paper, the input hyperspectral data sets were
normalized in the range of [0 1]. In order to extract
sufficient spatial information for the pixel to be classi-
fied, a large window with the size of 27x27 pixels was
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TABLE IV
THE ARCHITECTURE OF THE CNN.
Number | Convolution ReLU  Pooling  Dropout
1 4x4x32 Yes 2x2 No
2 5 X5 x 64 Yes 2x2 50%
3 4 x4 x128 Yes No 50%
INPUT [27 X 27 X 10]
CONV-1 kernel size: 4 X 4 X 10 kernel #: 32 weights: (4 X 4 X 10) X 32 + 32 (bias)
Feature Map-1 [[24 X 24 X 32]
POOL-1 size: 2 X 2
Feature Map-2 f[12 X 12 X 32]
CONV-2 kernel size: 5 X 5 X 32 kernel #: 64 weights: (5 X 5 X 32) X 64 + 64 (bias)
Feature Map-3 [8 X 8 X 64]
POOL-2 size: 2 X 2
Feature. Map-4 [[4 X 4 X 64]
CONV-3 kernel size: 4 X 4 X 64 kernel #: 128 weights: (4 X 4 X 64) X 128 + 128 (bias)
Feature Map-5 f[1 X 1 X 128]
Full Connection fkernel size: 1 X 1 X 128 kernel #: 9 weights: (1 X 1 X 128) X 16 + 16 (bias)
Feature Map-6 f[1 X 1 X 16]
Softmaxloss
Output probability vector: [1 X 16]

Fig. 6. Detailed information about the network considered for CNN and
SICNN.

considered. Since the studied areas are of small sizes,
only three convolution layers and two pooling layers
have been used.

4) For the training step, a mini batch with a size of 32 was
taken into account. For relatively small training samples,
as in our case, this could allow the training step to
perform more frequent parameter updates and achieve
faster convergence in practice.

5) In order to preserve the borders of different features
through the convolutional process, the original image
is padded with an extra artificial border, which mirrors
the original border.

In terms of EPs, the following points have been taken into
account:

1) In order to generate the EP for area, volume, and
diagonal of the bounding box, the values of n used to
generate the profile are automatically given by [a’],
where 7 = 0,1,...,s — 1 and s shows the number of
thresholds. The aforementioned equation was obtained
experimentally. In this equation, the larger the «, the
larger the differences between consecutive images in
the profile. The smaller the «, the fewer extrema there
will be, where most of the image information is usually
present [53]. As recommended in [39], the approprite o
value can be chosen between 2 and 5. Here, «, and s
are set to 3 and 7, respectively.

2) In order to generate the EP for height and standard de-
viation, the threshold values were adjusted with respect
to the maximum value of each attribute, disregarding
extreme values such as the root node, which usually has
a much higher attribute than the other nodes [39]. Then,
the maximum value is split up into seven equidistant
parts.

3) The size of the EPs is 2s + 1, since the original image
should also be included in the profile. The profiles were

computed using the 4-connected connectivity rule.

Fig. 7 shows a few representative features produced by EPs
on the LiDAR image using area, volume, diagonal of the
bounding box, height, and standard deviation attributes. As
can be seen, different extinction attributes extracts different
spatial information, which can be suitable for classification
accuracies.

For the sake of simplicity, the following names are used
in the experimental part: LIDAR, Hyper, and LIDAR+Hyper
show the classification accuracies of LiDAR, hyperspectral,
and their stack, respectively. EPjq,, and EPpype, show the
classification accuracies of EPs applied to LiDAR, and hy-
perspectral data. EPjigar + EPpyper refers to the classification
accuracies of EPs applied to the stack of LiDAR and hyper-
spectral. GBFF and Stack show the classification accuracies
of the proposed method using GBFF and stacking as the fusion
step.

C. Discussion of the Houston Data

1) RF-based approaches: Table V shows the classification
accuracies obtained by different approaches using RF. The
classification accuracies obtained by LiDAR+Hyper improves
both the classification results obtained by the individual use
of LiDAR and Hyper, which confirms that LiDAR and
hyperspectral data are appropriate complements for each other
in terms of classification accuracies. The use of EPs can sig-
nificantly improve kappa, overall accuracy (OA), and average
accuracy (AA), since the EPs can efficiently extract spatial
information and model the shape and size of different objects,
which are helpful to precisely differentiate different classes
of interest. For example, EPj4, significantly improves the
classification accuracy of LiDAR by almost 42% in terms of
the OA, which confirms the capability of the EP in terms of
information extraction from LiDAR-derived rasterized data.
The best results were obtained by the proposed approach
using feature stacking. In this context, Stack improves GBFF
by almost 1.5% in terms of OA. The main reason for this
improvement is that RF is insensitive to noise in the training
labels and can handle high dimensional data with even a
limited number of training samples. The GBFF approach
reduces dimensionality and discards some information, while
feature stacking increases the dimensionality and keeps all
the information. Due to the robustness of the RF, a better
classification result can be obtained by the proposed approach
using feature stacking. In terms of class-specific accuracies,
Stack also improves the class-specific accuracies of most
classes compared t0 EPjga + EPpyper. The main reason is
that EP is performed on the first ICs generated by ICA.
ICA does not consider class information provided by training
samples and therefore, it cannot extract spectral information
properly. However, in Stack, a few extra features produced
by NWFE are also considered, which can extract spectral
information with respect to class discriminant information
provided by training samples. The only exceptions are classes
Roads, Highways, and Parking lots, where the classes are
made of almost exactly the same materials and therefore have
almost the same spectral characteristics. As a result, spatial
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and elevation information can be more helpful to differentiate
these classes than spectral information.

2) CNN-based approaches: Table VI shows the classifica-
tion accuracies obtained by different approaches using CNN
as the classifier. The use of EP significantly improves the
classification accuracies of both LiDAR and hyperspectral data
due to the great ability of the EP in terms of simplification
for recognition. As can be seen, the proposed approach using
graph-based feature fusion provides the best results in terms
of classification accuracies. The main reason is that CNN,
in contrast with RF, is not that efficient at handling high
dimensional data when the number of training samples is
insufficient. The graph-based approach performs the fusion
step while it reduces the dimensionality. However, the feature
stacking-based approach increases dimensionality by concate-
nating elevation, spectral, and spatial features. This is the main
reason why Graph outperforms Stack when CNN is chosen
for the classification step. In addition, Graph preserves local
neighborhood information in the projected lower dimensional
feature space, while it detects the manifold embedded in the
original high-dimensional input data.

In table VI, EPpyper shows the best class-specific accuracy
for the category highways. The reason is that for this particular
class, the LiDAR-derived features complicate the distribution
of classes in the feature space as they consider elevation
information to distinguish different classes. For the Houston
data, the elevation of this particular class changes along
the highways. Therefore, the consideration of EPs on the
hyperspectral data set alone can lead to the best classification
performance for the highways, as it only considers spectral
information.

Fig. 8 demonstrates a few classification maps obtained
by applying different approaches to the Houston data. In
this manner, the outputs of RF on (a) hyperspectral data,
(b) the stack of LiDAR and hyperspectral data, and (c) the
proposed approach using feature stacking; and the outputs of
CNN-based classification on (d) hyperspectral data, (e) the
stack of LiDAR and hyperspectral data, and (f) the proposed
approach using GBFF are demonstrated. As can be seen,
the consideration of EPs can produce more homogeneous
classification maps than Hyper and the stack of LiDAR and
hyperspectral. Although the cloud shadow was removed from
the original data, when ICA is performed to the enhanced
hyperspectral data to produce base features for MEEPs, the
shadow effect is partially appeared on the second IC. This
is the reason that the cloud shadow slightly downgrades the
quality of the classification maps obtained by the proposed
approach.

D. Discussion on the Trento Data

With respect to Tables VII, and Table VIII, one can simply
notice that in all cases, EPjigar + EPpyper, Graph, and Stack
could lead to the highest classification accuracies. In addition,
the consideration of the spatial and elevation information can
significantly boost the performance of using LIDAR and Hy-
per in terms of classification accuracies, when these sources
have been considered separately. Same as the Houston data,

the use of EPs can considerably improve the classification ac-
curacy of LiDAR. In this context, the amount of improvement
by RF, and CNN are almost 41%, and 35%, respectively. In all
cases, the LIDAR+Hyper can boost the performance of either
LiDAR or Hyper in terms of classification accuracy, which
proves that the consideration of elevation information along
with spectral information are suitable in terms of obtaining
accurate classification maps. In terms of CNN, Graph slightly
improves Stack in terms of classification accuracies due to the
fact that Graph reduces dimensionality while fusing different
features, which is suitable from the stand point of classification
accuracy for CNN. Fig. 9 demonstrates a few classification
maps obtained by different approaches on the Trento data.

E. Comparison with the Literature

In this section, we briefly compare the proposed approach
with the literature. For the Trento data set, the proposed
approach improved the methodologies published in [19, 62] in
terms of classification accuracies. Indeed, the CNN considered
in our methodology provides the highest classification accu-
racies. In terms of SVM and RF, our fusion framework also
leads to higher classification accuracy than the ones reported
in [19, 62]. This improvement might be due to the use of EPs
instead of APs in the proposed approach. With respect to the
study published in [39], EPs are more powerful and efficient
than APs in terms of simplification for recognition applied to
remote sensing images and they can preserve the height of the
retained extrema.

For the Houston data, with respect to the outcome of
the 2013 Fusion Contest,* the proposed approach provides
acceptable classification accuracies. However, it is important to
note that most approaches investigated in the contest had been
specifically developed for the classification of the Houston
data, while they include several overheads, pre-processing,
and postprocessing approaches to further improve the eventual
classification accuracy. The consideration of these pre- and
post-processing approaches can also be an interesting research
line to further improve the obtained classification accuracies.
However, in this paper, we have tried to propose a scheme that
is also applicable to other data sets composed of coregistered
hyperspectral and LiDAR images. In other words, the main
objective of the paper is to propose an efficient fusion frame-
work that is capable of handling different coregistered LiDAR
and hyperspectral images by preserving the generalization
capability of the proposed approach, while achieving the
highest classification accuracy on one specific data set is not
expected. In [63], a fusion framework using multiple feature
learning was developed for the Houston data, whose results
are comparable to the ones obtained by the proposed approach.
The proposed approach can slightly improve the results of the
work in [63] when no postprocessing is taken into account.
However, when Markov random field (MRF) is used as the
post-processing approach, the classification result of [63] will
be slightly better than the proposed approach, in which no
postprocessing is used. This fact encourages us to consider

“http://www.grss-ieee.org/community/technical-committees/data-
fusion/2013-ieee-grss-data-fusion-classification-contest-results/
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Fig. 7. A few representative features produced by EPs on the LiDAR-derived image file using area, volume, diagonal of the bounding box, height, and
standard deviation attributes.

Fig. 8. Classification maps for Houston data: The outputs of RF on (a) hyperspectral data, (b) the stack of LiDAR and hyperspectral data, and (c) the proposed
approach using feature stacking; the outputs of CNN-based classification on (d) hyperspectral data, (e) the stack of LiDAR and hyperspectral data, and (f)
the proposed approach using GBFF.

an approach like the hidden MRF proposed in [2] to further a few advanced approaches, such as RF and CNN-based

improve the classification accuracy of the proposed approach classification. The principal conclusions are as follows

in future.

1) EPs can significantly improve the classification accuracy
of both LiDAR and hyperspectral data. In this paper, the

IV. ConcLUsION usefulness of the EP for spatial and elevation informa-

This paper proposes a fusion approach for the spectral- tion extraction from LiDAR data has been investigated
spatial classification of LiDAR and hyperspectral data using for the first time in the remote sensing community.
extinction profiles and convolutional neural networks. In this Results indicate that promising results can be obtained
work, the concept of the extinction profile has been used for using the EP on LiDAR data, without involving any
spatial, and elevation information extraction from both LiDAR information from hyperspectral data.
and hyperspectral data. The spectral, spatial, and elevation 2) In this work, feature fusion was a better option than
features were then fused using either feature stacking or graph- graph-based feature fusion where RF is considered for

based feature fusion. Finally, the features were classified using the classification step. On the other hand, a further
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TABLE V
RF HOUSTON: CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT APPROACHES USING RF. THE METRICS AA AN OA ARE REPORTED IN
PERCENTAGE. KAPPA COEFFICIENT IS OF NO UNITS. THE BEST RESULT IS SHOWN IN BOLD. LIDAR, HYPER, AND LIDAR+HYPER SHOW THE
CLASSIFICATION ACCURACIES OF LIDAR, HYPERSPECTRAL, AND THEIR STACK, RESPECTIVELY. EPjigar, EPpyper, AND EPyigar + EPpyper SHOW THE
CLASSIFICATION ACCURACIES OF EPS APPLIED TO LIDAR, HYPERSPECTRAL, AND THE STACK OF MEP AND EMEP, RESPECTIVELY. GBFF AND STACK
SHOW THE CLASSIFICATION ACCURACIES OF THE PROPOSED METHOD USING GBFF AND STACKING AS THE FUSION STEP. THE NUMBER OF FEATURES IS
WRITTEN IN PARENTHESES.

LiDAR Hyper LiDAR+Hyper EPjs EPppe  EPjgy + EPhper  GBFF  Stack

(1) (144) (145) (71) (213) (284) (50) (301)

OA 31.83 77.47 80.91 73.42 80.36 86.98 87.25 88.91
AA 37.43 80.34 83.17 75.97 83.47 88.54 88.95 90.15
Kappa  0.2677  0.7563 0.7931 0.712 0.7876 0.8592 0.8615  0.8796
1 13.48 83.38 83.57 74.26 77.49 78.06 80.06 83.29
2 16.25 98.40 98.21 61.75 78.48 84.96 92.58 97.74
3 56.63 98.02 98.42 97.23 100.00 100.00 100.00  100.00
4 44.03 97.54 97.73 58.14 82.77 95.45 95.55 99.34
5 58.04 96.40 96.50 82.10 97.73 98.77 99.72 98.77
6 58.04 97.20 97.20 83.22 95.80 95.80 95.80 99.30
7 39.08 82.09 85.82 77.33 73.23 73.41 86.38 85.91
8 29.53 40.65 56.51 68.28 59.92 85.28 86.61 86.99
9 13.59 69.78 71.20 59.40 83.00 93.96 91.31 91.97
10 11.29 57.63 57.14 66.89 64.09 67.08 47.49 49.71
11 40.41 76.09 80.55 99.91 84.72 90.89 92.88 97.82
12 9.99 49.38 62.82 64.75 78.10 88.57 85.11 86.26
13 15.08 61.40 63.86 58.60 77.89 76.14 82.46 75.44
14 80.16 99.60 100.00 100.00 99.60 100.00 99.60  100.00
15 80.16 97.67 98.10 87.74 99.37 99.79 98.73 99.79

Fig. 9. Classification maps for Trento data: The outputs of RF on (a) hyperspectral data, (b) the stack of LiDAR and hyperspectral data, and (c) the proposed
approach using feature stacking; the outputs of CNN-based classification on (d) hyperspectral data, (e) the stack of LiDAR and hyperspectral data, and (f)
the proposed approach using GBFF.

feature extraction on the stacked features may improve hyperspectral data is provided by Prof. Naoto Yokoya. Fur-
the classification accuracy of CNN-based classifiers. thermore, the authors greatly appreciate Dr. Wenzhi Liao
With respect to using the CNN for the classification step, from Gent University for sharing the graph-based feature
the graph-based feature fusion approach could lead to fusion code with us. This research has been partly supported
better results in terms of classification accuracies than by the Alexander von Humboldt Fellowship for postdoctoral
feature stacking. researchers, and the Helmholtz Young Investigators Group

It should be noted that, in this work, deep learning has been “SiPEO” (VH-NG-1018, www.sipeo.bgu.tum.de).
used for the first time for the joint classification of LiDAR and
hyperpspectral data in our community, and its results indicate
that the convolutional neural network is an efficient tool for
the fusion of LiDAR and hyperspectral data. [1] C. Debes, A. Merentitis, R. Heremans, J. Hahn,
N. Frangiadakis, T. van Kasteren, W. Liao, R. Bellens,
A. Pizurica, S. Gautama, W. Philips, S. Prasad, Q. Du,
and F. Pacifici, “Hyperspectral and lidar data fusion:
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CNN HOUSTON: CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT APPROACHES USING CNN. THE METRICS AA AN OA ARE REPORTED IN
PERCENTAGE. KAPPA COEFFICIENT IS OF NO UNITS. THE BEST RESULT IS SHOWN IN BOLD. LIDAR, HYPER, AND LIDAR+HYPER SHOW THE
CLASSIFICATION ACCURACIES OF LIDAR, HYPERSPECTRAL, AND THEIR STACK, RESPECTIVELY. EPy; 447, EPpyper, AND EPjigyr + EPpyper SHOW THE

TABLE VI

CLASSIFICATION ACCURACIES OF EPS APPLIED TO LIDAR, HYPERSPECTRAL, AND THE STACK OF MEP AND EMEP, RESPECTIVELY. GBFF AND STACK
SHOW THE CLASSIFICATION ACCURACIES OF THE PROPOSED METHOD USING GBFF AND STACKING AS THE FUSION STEP. THE NUMBER OF FEATURES IS
WRITTEN IN PARENTHESES.

LiDAR Hyper LiDAR+Hyper EPlidar EPhyper EPlidar + EPhyper GBFF Stack
(1) (144) (145) (71) (213) (284) (50) (301)
OA 49.79 78.35 83.33 61.76 88.01 88.81 91.02 89.71
AA 49.67 77.19 83.21 62.47 89.12 90.00 91.82 90.39
Kappa  0.4563  0.7646 0.8188 0.5851 0.8702 0.8788 0.9033 0.8884
1 28.30 82.24 83.48 52.52 78.16 78.63 78.73 78.35
2 26.88 98.31 89.10 38.06 87.41 94.83 94.92 94.64
3 49.50 70.69 83.17 71.49 99.80 99.80 100.00  100.00
4 62.03 94.98 99.34 73.86 79.64 98.30 99.34 99.15
5 28.60 97.25 97.63 29.92 98.39 98.58 99.62 98.77
6 37.76 79.02 98.60 66.43 94.41 95.10 95.80 95.10
7 52.71 86.19 93.10 87.03 79.76 82.56 87.87 85.45
8 77.30 65.81 88.03 82.72 94.11 92.02 95.25 92.88
9 49.34 72.11 76.47 51.23 81.31 85.39 89.71 83.78
10 64.48 55.21 43.92 57.82 97.01 71.04 81.18 81.76
11 71.35 85.01 91.46 88.71 86.15 85.77 86.34 84.91
12 43.32 60.23 75.70 54.95 91.55 92.12 92.70 92.03
13 38.95 75.09 74.74 67.02 89.82 87.02 87.02 86.32
14 87.04 83.00 82.19 73.68 95.14 98.38 99.19 94.33
15 27.48 52.64 71.25 41.65 84.14 90.49 89.64 88.37
TABLE VII

RF TRENTO: CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT APPROACHES USING RF. THE METRICS AA AN OA ARE REPORTED IN
PERCENTAGE. KAPPA COEFFICIENT IS OF NO UNITS. THE BEST RESULT IS SHOWN IN BOLD. LIDAR, HYPER, AND LIDAR+HYPER SHOW THE
CLASSIFICATION ACCURACIES OF LIDAR, HYPERSPECTRAL, AND THEIR STACK, RESPECTIVELY. EPjigar, EPpyper, AND EPjigar + EPpyper SHOW THE

CLASSIFICATION ACCURACIES OF EPS APPLIED TO LIDAR, HYPERSPECTRAL, AND THE STACK OF MEP AND EMEP, RESPECTIVELY. GBFF AND STACK
SHOW THE CLASSIFICATION ACCURACIES OF THE PROPOSED METHOD USING GBFF AND STACKING AS THE FUSION STEP. THE NUMBER OF FEATURES IS
WRITTEN IN PARENTHESES.

LiDAR Hyper LiDAR+Hyper EPjs, EPppe  EPjgy + EPppe  GBFF  Stack

) (63) (64) %) (213) (284) (50) (290

0A 467 84.92 90.61 959  85.17 98.39 97.66 9845

AA 4331 8501 89.17 9353 8443 97.06 96.87  97.17

Kappa 0335  0.8004 0.8566 94.53  0.8099 0.9785 0.9688  0.9793

1 25 862 86.00 9782 96.06 97.62 9973 08.19

2 513 85.9 93.87 9425  98.42 96.80 97.04  96.56

3 342 96.8 97.91 9499  72.03 94.36 9582 9478

4 52.6 95.7 97.05 9922 9945 99.97 99.97  99.92

5 46.5 80.1 82.76 9876  69.89 99.10 96.90  99.19

6 324 65 86.01 76.15  70.79 94.55 9178  94.42
TABLE VIII

CNN TRENTO: CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT APPROACHES USING CNN. THE METRICS AA AN OA ARE REPORTED IN
PERCENTAGE. KAPPA COEFFICIENT IS OF NO UNITS. THE BEST RESULT IS SHOWN IN BOLD. LIDAR, HYPER, AND LIDAR+HYPER SHOW THE
CLASSIFICATION ACCURACIES OF LIDAR, HYPERSPECTRAL, AND THEIR STACK, RESPECTIVELY. EPjigyr, EPpyper, AND EPjigyr + EPpyper SHOW THE

CLASSIFICATION ACCURACIES OF EPS APPLIED TO LIDAR, HYPERSPECTRAL, AND THE STACK OF MEP AND EMEP, RESPECTIVELY. GBFF AND STACK
SHOW THE CLASSIFICATION ACCURACIES OF THE PROPOSED METHOD USING GBFF AND STACKING AS THE FUSION STEP. THE NUMBER OF FEATURES IS
WRITTEN IN PARENTHESES.

LiDAR Hyper LiDAR+Hyper EP;q,, EPnyper  EPjigar + EPpyper  GBFF  Stack

(1) (63) (64) (71) (213) (284) (50) (290)

OA 69.93 83.52 97.48 95.88 90.72 98.70 98.93 98.85
AA 49.42 80.59 95.58 92.50 84.99 98.08 98.48 98.40
Kappa  0.5802  0.7843 0.9664 0.9450 0.8763 0.9827 0.9855 0.9846
1 7.54 92.22 95.88 99.90 98.02 99.63 99.67 99.53
2 59.87 87.08 99.07 99.14 98.79 99.31 98.53 98.79
3 4.80 66.81 91.44 90.40 70.77 99.37 99.97 99.79
4 91.13 65.24 99.79 99.89 99.41 99.80 99.72 99.50
5 89.03 98.98 98.56 99.02 90.65 99.60 99.52 99.76
6 44.17 73.19 88.72 66.67 52.30 90.74 93.48 93.01
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