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Abstract— In this paper, a dual-frequency and dual-baseline
(DFDB) processing framework for the extraction of high-
precision terrain information from airborne interferometric
synthetic aperture radar (SAR) data is presented. Specifically,
we propose the use of two single-pass data sets acquired
simultaneously in two different frequency bands and two large-
baseline repeat-pass data sets also acquired simultaneously in two
frequency bands. The configuration profits from the stability of
the single-pass derived elevation maps in relation to spatially
correlated artifacts as well as from the increased sensitivity
associated with large-baseline acquisitions. Moreover, the dual-
frequency nature of the data set enables the tackling of the phase
unwrapping issue, promoting the retrieval of unambiguous mea-
surements. Several algorithms for the interferometric processing
of the DFDB airborne data set are proposed, including the
outline of multichannel phase calibration and unwrapping error
correction strategies and approaches to remove spatially corre-
lated artifacts and extract the common underlying topography.
Elevation models generated from a DFDB data set acquired with
the airborne F-SAR sensor over tidal flats in northern Germany
are presented, and comparisons with an airborne laser scanner
reference show errors with a standard deviation of around 14 cm
and a mean absolute deviation of less than 10 cm.

Index Terms— Digital elevation model (DEM), dual frequency,
repeat-pass interferometry, SAR interferometry (InSAR).

I. INTRODUCTION

ACROSS-TRACK synthetic aperture radar (SAR) interfer-
ometry (InSAR) is a well-established tool for topography

mapping, and many InSAR systems have been successfully
exploited for the retrieval of digital elevation models (DEMs)
[1]–[6]. Nevertheless, the generation of InSAR DEMs with a
relative vertical accuracy in the order of centimeters in fine
spatial grids remains challenging. First, a suitable interfero-
metric configuration has to be selected to ensure the required
vertical sensitivity, demanding large baselines between master
and slave sensors and/or short wavelengths. In this case, issues
related to the interferometric processing have to be properly
dealt to mitigate decorrelation and possible biases. In partic-
ular, adaptive spectral filtering must be applied [7], and the
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phase unwrapping/unwrapping errors correction and the phase
calibration steps have to be carefully performed. Moreover,
when more than one interferograms are available, a method to
optimally extract the common topographic information should
be considered, ensuring the high quality of the final DEM.

The first challenging step for an accurate DEM recon-
struction is the phase unwrapping. In the past two decades,
the development of robust algorithms to retrieve unambiguous
solutions has been mainly focused on multichannel strategies.
The phase of interferometric data sets acquired with different
baselines, or using different carriers, have different fringe fre-
quencies. Multichannel strategies aim to remove the ambiguity
of the joint problem by using simultaneously all the phase
information to retrieve an underlying common height [8]–[12].
Rigorous maximum-likelihood (ML) approaches were intro-
duced in [13]–[16] and opened the door to several more robust
algorithms using contextual information in maximum a pos-
teriori (MAP) frameworks [17]–[22]. No universal solution
can be singled out, and the efficiency of the approaches is
closely related to the characteristics of the available data set
[e.g., a number of images and distribution of the available
heights of ambiguity (HoAs)] and imaged scene (e.g., topogra-
phy and land coverage). In general, however, the performance
of ML and MAP approaches degrades when only a limited
number of acquisitions are available.

Despite the use of robust phase unwrapping algorithms,
unwrapping errors might occur, e.g., due to the insulation
of regions by water bodies or other decorrelating features.
In fact, the general difficulty of the phase unwrapping problem
promoted the development of a few strategies for unwrapping
error treatment. For example, [23] proposed a strategy to
detect and correct remaining 2π ambiguities in a baseline
calibration step. The approach was later extended in [24],
where morphological filters to improve the detection were
included. More recently, Lachaise et al. [25] developed the
correction strategy of the TanDEM-X operational processor
profiting from the mission dual-baseline global coverage to
detect and correct unwrapping inconsistencies.

A second important aspect of the generation of DEMs
from InSAR data concerns the calibration of the interfero-
metric phase. The term phase calibration may incorporate the
correction of phase offsets, baseline errors, and other artifacts.
The main challenges are to achieve a precise calibration using
minimum or no external information and to obtain results
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that are robust to unwrapping errors. The calibration of phase
offsets without the use of ground control points (GCPs) has
been investigated in the context of multichannel configurations
in [26], where an entropy maximization scheme was proposed.
In the realm of offset estimation in single-pass interfero-
grams, [27] proposed an approach using data sets acquired
with opposite geometries, while [28] investigated a two-step
methodology based on the use of low-resolution external and
possibly biased DEMs. The approach was later simplified in
[29], where a single-step scheme was suggested profiting from
the approximately linear relation between height and phase.
In a similar way, [30] proposed a method to calibrate airborne
repeat-pass data using TanDEM-X intermediate DEMs.

The more general problem of how to combine all the
available information to obtain a high-quality elevation model
should also be addressed. The issue is closely related to
the characteristics of the available data sets and, ultimately,
the product requirements. As previously mentioned, many
strategies couple the extraction of the underlying topography to
the phase unwrapping in a multichannel framework. In addi-
tion to the already cited literature, [16] investigated an ML
approach to combine single-pass multibaseline/multiaspect
data sets to obtain the elevation models of urban areas using
the MEMPHIS Ka-band sensor. Moreover, [5] and [31] studied
several aspects of the SAR and InSAR processing chains
for MEMPHIS Ka-band data, including the efficiency of ML
height estimators.

Current spaceborne interferometric SAR systems can pro-
vide wide coverage topographic measurements with spatial
resolution and vertical accuracy in the order of a few meters.
For example, the TanDEM-X mission is allowed for the
creation of a global DEM with a point-to-point relative vertical
accuracy of 2 m for flat-to-moderate terrain and 4 m for
steep terrain within a 90% confidence interval and a spatial
resolution of around 12 m [32]. Experimental processing
strategies can also be used to improve the elevation models
derived from the TanDEM-X data. For example, [33] proposed
an iterative coarse-to-fine multilooking approach, and DEMs
in a 4-m sampling spatial grid and a height accuracy of
less than 2 m were reported. Moreover, the possibility of
having large-baseline single-pass interferograms during the
mission science phase is allowed for elevation maps with
even higher accuracy [34]. For example, Lee and Ryu [35]
generated DEMs using large-baseline TanDEM-X data over
tidal flats with 5–7-m sampling and reported the rms errors of
around 20 cm in comparison with GPS measurements. In [36],
highly accurate DEMs with 6-m sampling and height accuracy
(standard deviation) around 17 cm in comparison with airborne
laser measurements were achieved for areas of flat-to-moderate
terrain. Nevertheless, the level of topography details obtained
with airborne laser scanner (ALS) still surpasses the one found
in spaceborne SAR products due to the finer spatial grids and
submeter vertical accuracy of usual ALS systems [37]–[40].

Despite being able to generate very precise results, current
ALSs have a much smaller coverage when compared with
usual airborne SAR systems, which turn the ALS imaging of
large areas comparatively more expensive. Additionally, ALS
sensors are considerably more sensitive to weather conditions.

Therefore, airborne InSAR for DEM generation offers a good
compromise between acquisition cost and achievable accuracy.
In fact, several airborne SAR systems have been used recently
to retrieve accurate topographic information. For example,
the aforementioned works [5], [31] reported a relative vertical
accuracy varying from 19 to 59 cm (one standard devi-
ation), depending on the characteristics of the acquisition,
and an effective coverage area of around 2.1 km × 0.6 km
(azimuth × range) using data from the Memphis Ka-band
system. De Macedo et al. [41] demonstrated the importance
of using topography-and-aperture-dependent Motion Com-
pensation (MoCo) to retrieve accurate height measurements
over challenging terrain using the single-pass/three-baseline
configuration of the OrbiSAR sensor. They reported DEMs
with 5-m spatial resolution and a relative vertical accuracy of
around 40 cm when comparing data from orthogonal views.
Marotti et al. [42] showed the results obtained with the
X- and Ku-band MetaSensing airborne sensors covering an
area of around 3.5 km × 0.5 km (azimuth × range). The
comparison with a laser reference showed a relative height
accuracy of the order of 30 cm in both cases for flat terrain.
Perna et al. [6] presented first the results of the TELAER
multibaseline interferometric system, able to acquire X-band
data with range resolution around 0.5-m and 1.5-km swath.
Like the OrbiSAR, the TELAER single-pass interferometer
profits from a three-baseline configuration to deal with the
phase ambiguity problem. They also emphasized the neces-
sity of a precise MoCo, and preliminary comparisons with
ALS measurements have shown height errors (one standard
deviation) in the order of 1.5 m.

The work presented in this paper aims to generate highly
accurate elevation models from airborne InSAR data col-
lected with as few acquisition flights as possible. Specifically,
we seek to construct DEMs from data collected with the
F-SAR sensor [43], in a grid with 1 m × 1 m spatial
sampling and relative and absolute vertical accuracies in the
order of decimeters, i.e., comparable with ALS technology.
Note that, although the above-mentioned Ka-band airborne
interferometers can yield DEMs with a submeter vertical
accuracy, the swath limitation makes such systems less suitable
for the mapping of large areas. Moreover, DEMs obtained with
data from general X-band single-pass interferometers using
standard processing techniques do not satisfy simultaneously
our vertical and spatial accuracy requirements. In order to
obtain the desired DEM quality, we suggest the use of F-SAR
data acquired over two passes, one of them also using the
single-pass interferometer. In this way, at least one single-
pass and one repeat-pass interferogram are available. For the
latter, a suitable large baseline is chosen. Moreover, during
each flight, data are acquired using simultaneously the X-band
and S-band systems, benefiting from the multifrequency capa-
bilities of the F-SAR sensor. Consequently, data from a dual-
frequency (X- and S-band) and dual-baseline (single- and
repeat-pass) configuration can be used.

Due to the reduced number of available images, the large
ratio between repeat- and single-pass baselines, and the pres-
ence of low-frequency artifacts in the repeat-pass interfero-
grams, the direct extraction of topography from the wrapped
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phases using the ML/MAP approaches as in [8]–[22] is not
possible. The large ratio between the baselines and between
the S- and X-band wavelengths also prevents the use of [44]
for the identification of unwrapping errors. Moreover, general
unwrapping error correction strategies fail to treat interfero-
grams with an HoA in the order of meters and containing
residual biases, as is the case considered here. The state-of-
the-art approaches for the calibration of airborne InSAR data,
e.g., the ones proposed in [28] and [29], are not well suited
for repeat-pass interferometry, since they neglect unwrapping
errors, baseline miscalibration, and other low-frequency dis-
turbances. Additionally, F-SAR single-pass interferograms are
affected by range-dependent multipath errors, which further
challenge the calibration process [45]. Current solutions either
rely on calibration data or are not able to ensure the submeter
vertical accuracy required here [46], [47]. In order to solve
the aforementioned problems of unwrapping, calibration, and
topography retrieval in an efficient manner, we propose a DEM
generation chain suitable for the suggested dual-frequency and
dual-baseline (DFDB) configuration.

This paper is organized as follows. Section II briefly dis-
cusses the choice of the DFDB configuration, while Section III
presents the overall structure of the DEM generation chain.
Novel approaches of the chain are discussed in Sections IV–IX.
Specifically, Section IV briefly addresses the dual-frequency
phase unwrapping issue, Section V details the strategy to
mitigate multipath artifacts in the single-pass InSAR data,
Section VI discusses the calibration of baseline errors and
phase offsets, Section VII presents an unwrapping error verifi-
cation strategy for the repeat-pass data, Section VIII proposes
a method to mitigate residual biases contained in the repeat-
pass interferograms, and Section IX describes the retrieval of
the underlying topography considering the different available
data sets. In Section X, DEMs derived from DFDB F-SAR
data acquired over the tidal flats in the Jade Bight (northern
Germany) are shown and compared with an ALS reference
model for validation. Finally, Section XI gives the conclusions.

II. PROPOSED CONFIGURATION

The proposed DFDB configuration enables the extraction
of precise terrain information from airborne interferometric
data and was conceived considering the particularities of
the F-SAR system [43], [48]. The F-SAR uses the IGI’s
CCNS4 navigation system and postprocessing software. The
sensor is capable of acquiring fully polarimetric data in five
different frequency bands: X, C, S, L, and P. Furthermore,
data can be simultaneously collected in up to four different
wavelengths, and the S- and X-band modules include single-
pass across-track interferometers with an effective baseline of
around 1.6 m. A detailed description of the F-SAR system is
given in [43].

A. “Dual-Baseline” Nature of the Configuration

The relative height accuracy achievable through InSAR
can be expressed in terms of the interferometric vertical
wavenumber kz and the standard deviation of the phase

noise ρφ as

ρh ≈ 1

kz
ρφ ≈ λR sin θ

4π B⊥
ρφ (1)

where λ is the wavelength, R is the range distance, θ is
the incidence angle, and B⊥ is the projection of the baseline
between master and slave antennas in the direction perpen-
dicular to the line of sight [49], [50]. For surface scattering,
the increase in B⊥—or conversely the decrease in the HoA
(� 2π/kz)—usually leads to an improvement of the retrieved
height measurements, as long as the decrease in the inter-
ferometric coherence (e.g., due to geometric decorrelation) is
limited or can be treated [7].

Due to the short baseline of the F-SAR single-pass
interferometer (around 1.6 m), at least one large-baseline
repeat-pass data set must be employed in order to ensure
high vertical sensitivity. The baseline length can be chosen
according to the height accuracy requirements considering sys-
tem characteristics—e.g., wavelength, system resolution, noise
equivalent sigma nought, and flight altitude—and the statistics
of the interferometric phase [49]. Under ideal conditions and
neglecting geometric distortions, a single interferometric data
set acquired with a sufficiently large baseline would enable
the generation of highly accurate topographic maps. However,
large-baseline repeat-pass interferograms are often affected by
low-frequency artifacts due to, e.g., uncompensated (resid-
ual) motion errors or atmospheric effects [51], [52]. If left
untreated, such disturbances introduce biases in the derived
elevation models. On the other hand, monostatic single-pass
interferometers are generally robust in relation to biases, since
master and slave are equally affected by these errors. However,
the fixed baseline is usually not sufficiently large to ensure the
desired vertical accuracy. By combining both measurements,
one could then account for possible biases using the single-
pass interferometric information while profiting from the lower
sensitivity to the noise of elevation models generated from
large-baseline interferograms.

Notice that the improvement in height accuracy is caused
by enlarging the baseline ceases when volume or baseline
decorrelation becomes predominant. For airborne systems with
high range resolution, baseline decorrelation is not a lim-
iting factor for obtaining height accuracies in the order of
decimeters. On the other hand, volumetric decorrelation might
dominate when acquiring with large baselines. Thus, the usage
of large-baseline interferograms to recover information over
high vegetation, even when acquiring at higher frequency
bands, becomes prohibitive [4], [36]. Hence, the additional
use of a small-baseline data set (e.g., the F-SAR single-pass)
is helpful if the height retrieval of such scatters is required
and a decreased vertical accuracy is acceptable.

B. “Dual-Frequency” Nature of the Configuration

Although the single-pass/repeat-pass configuration is theo-
retically suitable for the recovery of highly accurate elevation
models (up to the statistical limit imposed by the chosen base-
line), practical issues related to the interferometric processing
can impair the results. The interferometric phase unwrapping
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Fig. 1. (Left) Interferometric phase pdf parameterized by the height.
(Right) Interferometric phase likelihoods obtained from the F-SAR data. The
coherence coefficients of single- and repeat-pass interferograms are 0.95 and
0.6, and the nominal height is −1.2 m as indicated by the blue vertical line.

step is specially critical, since large-baseline configurations
result in phases with very high fringe frequency. As previously
mentioned, multichannel approaches can be used to reduce the
ambiguity of the interferometric phase joint pdf. However, that
is not the case of the single-/repeat-pass configuration consid-
ered here due to the large difference between the individual
HoA and the reduced number of available interferograms.

As an example, Fig. 1 (left) shows the simulated X-band
single- and repeat-pass interferometric phase likelihoods para-
meterized by the height. Effective baselines of around 1.6 and
28 m were considered. In this ideal example, no phase error
is considered, i.e., the observed phases match theirs nominal
values. The joint likelihood appears in green, and consists
of the multiplication of the individual likelihoods, i.e., the
statistical independence of the data sets is assumed. The
investigated height interval is constrained to 42 m, corre-
sponding to only one cycle of the single-pass likelihood, but
several cycles of the repeat-pass one. In this case, the global
maximum of the joint likelihood is located at the nominal
residual height position in this simulation at −1.2 m. Due to
the baseline ratio, small errors in the measured single-pass
phases (e.g., due to decorrelation or biases) shift the position
of the global maximum of the joint likelihood by an amount
of the order of magnitude of the repeat-pass HoA. This is
observed in Fig. 1 (right), where the likelihoods obtained from
the experimental F-SAR X-band data are depicted. The single-
pass coherence coefficient is 0.95, while the repeat-pass one
is 0.6. The single-pass phase measurement deviates by 15◦
from its nominal value, causing a shift of approximately 1.4 m
in the position of the global maximum (indicated by the pink
vertical line) in relation to the true height position (indicated
by the blue vertical line).

The introduction of data collected with additional baselines
can further reduce the ambiguities at the cost of an increased
number of flights. However, the phase of an interferometric
data set acquired from independent passes will contain uncor-
related low-frequency artifacts, posing a problem to multi-
baseline approaches in airborne interferometry. In order to
circumvent the issue, keeping the number of acquisition flights
to a minimum of two, a DFDB configuration is suggested
profiting from the multifrequency capabilities of the F-SAR
airborne system. As discussed in [13] and [17], the choice
of multifrequency data sets over multibaseline ones has the
additional advantage that the hypothesis of independence

Fig. 2. Block diagram of the DFDB DEM processing chain. The tags
SSP, X)SP, SRP, and XRP stand for S-band single-pass, X-band single-pass,
S-band repeat-pass, and X-band repeat-pass, respectively.

between the interferograms is met, and the computation of the
multichannel joint statistics is straightforward. Although large
spectral separation favors a less ambiguous joint likelihood,
too large spectral separation may lead to different interfer-
ometric phase contents in case of semitransparent media.
Thus, a compromise has to be made according to the desired
application.

III. INTERFEROMETRIC PROCESSING CHAIN

The necessary processing steps for the DFDB DEM genera-
tion from the four available interferometric data sets are shown
in Fig. 2. In the diagram and in the remaining of this paper,
the tags SSP, XSP, SRP, and XRP stand for S-band single-pass,
X-band single-pass, S-band repeat-pass, and X-band repeat-
pass, respectively, and are used to identify inputs/outputs
throughout the chain. A short summary of each module is
given in the following.

1) Generation of Interferometric Products: The first mod-
ule consists in the generation of the required interfero-
metric products and takes place after all the individual
complex images have been formed. Precise knowledge
of the lever-arm information is assumed (better than
1mm), as obtained from a priori evaluation of calibra-
tion data takes with corner reflectors deployed across
the full range of incidence angles [53]. In addition,
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the strong nonlinear phase pattern, especially in X-band
(see Fig. 5), suggests that the antenna phase center
varies with an elevation angle. This is corrected during
antenna pattern compensation as part of the SAR image
formation [43]. Although the interferometric process
runs individually for each data set at this stage, all
single look complex (SLC) complex images should
be coregistered to the same geometry. While single-
pass interferograms are created without any filtering,
a range-adaptive spectral filter is employed to account
for geometric decorrelation in the repeat-pass interfer-
ograms [7]. The module also contains the flat-earth
removal based on either a reference DEM with low-
accuracy or a mean terrain value. Finally, the multisquint
approach is employed to compensate for residual motion
errors in the repeat-pass interferograms (up to constant
and linear components) [54]. Since the acquisition of
X- and S-band is simultaneous, the residual motion
errors are expected to be the same for both data sets.
Consequently, it is sufficient to perform the estimation
using the data from a single frequency of acquisition,
applying the estimated baseline corrections to both data
sets. Moreover, applying the same correction in both
data sets ensures that possible uncompensated errors
in the phases correlate, which impacts the choice of
unwrapping strategy. Once the interferograms have been
formed, the interferometric phase and coherence are
extracted and are used as an input for the next steps.

2) Dual-Frequency Phase Unwrapping: The second
module encompasses the unwrapping of the
interferometric phases and is performed using a
dual-frequency approach based on the region-growing
algorithm (see Section IV).

3) Multipath Mitigation: Once the phases are unwrapped,
the first calibration step takes place, namely, a multipath
mitigation strategy is applied to correct artifacts in the
single-pass phases [45], [46]. The repeat-pass phases
are involved in the process, serving as multipath-free
references (see Section V).

4) Estimation of Constant and Linear Baseline Errors and
Phase Offset: In the next calibration step, possible
offsets and trends due to constant and linear baseline
errors are compensated (see Section VI).

5) Unwrapping Errors Verification: In this module, possi-
ble unwrapping errors are detected and corrected using
an active contour’s scheme. This step aims at the treat-
ment of large-scale unwrapping errors mainly associated
with discontinuities in the image (see Section VII).

6) Phase-to-Height Conversion: In the following,
the phases are individually transformed to height
maps, still in slant-range geometry.

7) Estimation of Residual Low-Frequency Artifacts: The
final calibration modules estimate and correct residual
low-frequency artifacts in the repeat-pass data sets due
to, e.g., residual motion errors or atmosphere hetero-
geneity (see Section VIII).

8) Fusion: In this step, the information of the data from
the different baselines and frequencies of acquisition

is merged into the final elevation model, considering a
noise mitigation strategy (see Section IX).

9) Geocoding: The obtained elevation model is transformed
into universal transverse mercator coordinates.

In Sections IV to IX, the details of the different calibration
steps, phase unwrapping, and extraction of the underlying
topography are presented.

IV. PHASE UNWRAPPING

The unwrapping of the X- and S-band interferograms is
performed jointly profiting from the reduced ambiguity of the
dual-frequency unwrapping problem. However, as indicated by
the block diagram in Fig. 2, single- and repeat-pass phases are
handled independently in order to avoid salt-and-pepper-like
errors associated with the large ratio between the HoAs of
both data sets.

The phase unwrapping is carried out using the dual-channel
region-growing approach described in detail in [36] for a dual-
baseline spaceborne configuration, and it is an adaptation of
the single-channel region growing algorithm proposed in [55].
The approach can be directly employed for the dual-frequency
scenario as long as uncorrelated biases in both data sets
are negligible in comparison with the smallest HoA. The
configuration proposed in this paper, i.e., the simultaneous
acquisition of the multifrequency data sets, promotes robust-
ness in relation to phase artifacts caused by residual motion
errors and troposphere heterogeneity, thus enabling the use of
such an algorithm with airborne data.

The dual-channel region-growing algorithm is congruent,
i.e., it removes 2π multiples from each pixel. The approach
relies on the estimation of this ambiguity band using three
different strategies: 1) independently evaluating the already
unwrapped neighbors in both data sets; 2) assuming that the
height information of the center pixel is the same in both
data sets; and 3) assuming that the slope computed from the
already unwrapped pixels is the same in both data sets. The
final ambiguity band is then estimated considering a weighted
average according to the expected statistics of the three predic-
tions. Moreover, the discrepancy between these predictions is
used together with the interferometric coherences as an extra
reliability measure to guide the region growing path.

Unlike in the dual-baseline case considered in [36], in the
dual-frequency scenario, differences of phase content caused
by the changes in penetration depth can occur within semi-
transparent media. If the differences are in the order of the
smallest HoA, the dual-channel approach is likely to introduce
errors in the corresponding unwrapped phase. Since here we
consider repeat-pass HoAs in the order of meters, the esti-
mated height of, e.g., crops and forest, will be biased toward
the one corresponding to the phase center of the S-band data
set. On the other hand, the HoAs of the single-pass data sets
(tens of meters) are much larger than the expected penetration
depth differences (centimeters to a few meters). An alternative
would be then to first unwrap the single-pass phases and use
the filtered differences between the S- and X-band unwrapped
data sets (after conversion to height) in order to weight down
the predictions of the repeat-pass unwrapped number which
assume same height content, whenever a problematic region



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

is encountered. An example of the height discrepancies caused
by the differences in X- and S-band penetration depths is
shown later in Section X.

V. MITIGATION OF MULTIPATH ARTIFACTS

The reception of secondary returns superimposed to the
direct signal of interest is a problem for many communication,
navigation, and imaging systems. For example, in airborne
SAR systems, the antennas are often surrounded by metallic
structures from the antenna mount or aircraft fuselage. As a
consequence, the sensors often receive strong signals from
reflections on the surrounding surfaces rather than on the
remote imaged scene [45]–[47], [56]–[60]. The additional
undesired reflections are generally called multipath signals
and are usually not accounted for during the image focusing.
Consequently, amplitude and phase disturbances arise in the
form of oscillations dependent on the incidence angle.

The phase distortions caused by the multipath must be
corrected to ensure the quality of the derived elevation models.
In fact, the matter is addressed within the calibration steps
of many airborne InSAR systems. Chapin et al. [60], for
example, used an external high-precision DEM in order to
estimate a range-dependent phase correction, which is then
approximated by Chebyshev polynomials to account for all
required incidence angles. In a similar way, [57] and [58]
compute the phase screen from acquisitions over sea sur-
faces, for which an accurate height reference is available.
Kobayashi et al. [59] suggested a parametric estimation using
a single-reflection multipath model followed by the corre-
sponding phase correction. However, the results were reported
as unsatisfactory by the authors. In [47], a cross-calibration
scheme is considered exploiting overlapping data acquired
from crossing tracks. Mao et al. [46] presented a more sophis-
ticated model comprising multiple reflections, and made use of
targets with the well-known elevation in order to estimate the
model parameters. Magnard et al. [31] used the interferometric
data from perpendicular tracks to build an incident-angle-
dependent phase correction for a Ka-band MEMPHIS data set
for which no antenna pattern phase information was available.

A. F-SAR Multipath Characterization

In the case of the F-SAR system, the antennas constituting
the X- and S-band interferometers are located in the antenna
mount attached to the right lateral of the aircraft, as illustrated
in Fig. 3.

Given the mount design and antenna configuration,
backscattered signals are reflected on the area indicated in
green in Fig. 3, and are received by the upper antennas
(S2 and X2) overlapped with the direct signal. Reciprocally,
the transmitted signal is composed by a direct component
plus the reflected one. The latter is delayed and attenuated
in relation to the former. Considering that the only multipath
components originate from reflections within the indicated
area, the lower antennas (S1 and X1) are not affected.

Cross sections of the two-way antenna pattern gains along
the elevation measured by the German Aerospace Center

Fig. 3. F-SAR antenna mount attached to the Do228 aircraft. The location
of the X- and S-band antennas is indicated. The flat area indicated in green
enables that multipath reflections reach the X2 and S2 antennas.

Fig. 4. Two-way antenna gain along elevation for (Left) X-band and (Right)
S-band. In both plots, the patterns considering the lower antennas (X1 and S1)
as both receiver and transmitter are shown in black curve, the patterns
considering the lower antennas as transmitter and the upper as receiver are
shown in red curve, and finally, the patterns considering the upper antennas as
transmitter and receiver are shown in blue curve. Especially, for the X-band
case, it is possible to see the oscillations caused by the multipath presence in
the upper antennas.

Fig. 5. Antenna pattern phase along the elevation for (Left) X-band and
(Right) S-band. In both plots, the patterns considering the lower antennas
(X1 and S1) as both receiver and transmitter are shown in black curve,
the patterns considering the lower antennas as transmitter and the upper as
receiver are shown in red curve, and finally, the patterns considering the upper
antennas as transmitter and receiver are shown in blue curve.

compact test range (CTR) facility [61] are shown in Fig. 4.
X- and S-band VV measurements appear on the left and right
of Fig. 4, respectively. The corresponding antenna pattern
phases can be seen in Fig. 5. In all plots, the case when the
lower antennas (X1 and S1) act as both receiver and transmitter
is shown in black curve, the case when the lower antennas act
as transmitter and the upper ones as receiver is shown in red
curve, and finally, the case when the upper antennas act as both
transmitter and receiver is shown in blue curve. Oscillations
caused by the multipath reflections can be noticed in both
phase and amplitude of the upper X-band patterns and in the
phase of the upper S-band pattern. As expected, no relevant
effect is recognized in the measurements of the lower antennas.
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Fig. 6. Geometry of multipath reflections. The slave antenna is indicated
in yellow. The direct field received by the antenna ( �Es ) appears in blue line,
while the reflected field ( �Er ) appears in red line. D is the horizontal distance
between the antenna phase center and the antenna mount.

B. Multipath Model

Fig. 6 shows the geometry of the problem considering a
direct backscattered signal and a single multipath component
being received by the SAR sensor. In Fig. 6, a wave polariza-
tion parallel to the plane of incidence is considered [62]. The
sketch shows three rays: the direct one in blue line, the incident
one in green line, and the multipath (or reflected) one in
red line. Furthermore, the antenna phase center appears in
yellow. The distance between this phase center and the locus of
reflection is indicated as Bmp, and is analogous to the baseline
of an across-track interferometer.

The total field received by the upper antenna is given by
the sum of the direct component and the projection of the
reflected component in θ̂i , whose amplitude is attenuated by
the reflection coefficient. Furthermore, the two received signals
are shifted in phase due to the reflection coefficient, and,
additionally, the geometrical difference between the direct
path and the path traveled by the reflected ray [59], [63].
Analytically,

�Emp(θ) = �Es(θ) + �Es(θ)ρ̄(θ) cos(2θ)e− j 2π
λ �Rmp (2)

where �Es is the multipath-free field, ρ̄ is the equivalent
complex reflection coefficient [64], [65], λ is the wavelength,
and �Rmp is the path difference between direct and multipath
components. Note that the reflection coefficient depends on
the polarization of the wave and, except for the case of per-
fectly conducting surfaces, on the incidence angle. Therefore,
the equivalent antenna pattern, i.e., the one including the
multipath reflections depends on the employed polarization.

Considering the geometry depicted in Fig. 6, the total path
difference �Rmp between the direct and multipath components
can be written as

�Rmp ≈ −Bmp(− cos(2θ) + 1) = −2D sin θ (3)

where D is the horizontal separation between the antenna
phase center and the antenna mount.

Fig. 7. Black curve: interferometric phase profile estimated from the
data. Red curve: phase profile obtained from master and slave antenna
patterns. Green curve: phase profile obtained from model. Blue curve: residual
multipath profile after removing the phase of antenna pattern. Magenta curve:
residual multipath profile after removing modeled phase in magenta.

C. Multipath Mitigation Using Modeled and
Measured Phase Profiles

Assuming that the distance from the fuselage (D) and
the reflection coefficient is known or can be estimated from
the data, the relation between the antenna pattern contain-
ing multipath and the ideal one can be found using (2)
and (3). Moreover, the phase of the equivalent pattern can
then be extracted and used to estimate a correction for the
interferometric data when no precise antenna measurement is
available.

In the case of the F-SAR system, D ≈ 16 cm and the
path difference between the direct and reflected signals is up
to 20 cm in far range, which corresponds to less than half
of an X-band resolution cell. Therefore, the multipath effect
does not introduce ambiguous echoes, and a phase correc-
tion should be able to remove the artifacts observed in the
interferograms.

Although measurements of the antenna pattern phase are
available for the F-SAR data, the obtained correction is limited
due to, e.g., errors in the CTR measurements and lack of
precise knowledge of attitude and incidence angles. Fig. 7
shows, in black curve, an example of residual phase extracted
from the F-SAR single-pass InSAR data. The profile corre-
sponds to the difference between the interferometric phase
and the synthetic phase generated using a highly accurate
ALS DEM, and, hence, should contain no strong topo-
graphic information. The interpolated antenna pattern phase
obtained using the information of master and slave antennas is
shown in red curve, while the residual multipath profile after
removing the phase of the antenna pattern appears in blue
curve.

Fig. 7 also contains the phase profile obtained from the
reflection model in green curve. In this case, the unknown
complex reflection coefficient, vertical and horizontal offsets
from the nominal phase center, and depression angle error
were estimated directly from the interferometric data [45]. The
residual multipath profile after removing the phase given by
the proposed model appears in magenta.

The improvement obtained when using any of the phase pro-
files to correct the interferometric phase is clear. Nevertheless,
artifacts up to 10◦ can still be found when using the measured
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antenna pattern, leading to height errors up to 1 m and not
satisfying the absolute accuracy requirements considered in
this paper. Fitting the data to the reflection model to estimate
the correction allows to reduce the maximum error to 6◦.
However, the approach requires knowledge of the topography
for at least part of the imaged scene.

D. Data-Based Multipath Mitigation for the
DFDB Configuration

An alternative mitigation strategy proposed here is based on
an iterative estimation of the multipath phase profile from the
available DFDB data set. Specifically, the difference between
the phase content of single- and repeat-pass interferograms
is exploited, allowing for the estimation of the multipath
component directly from the data without knowledge of the
topography.

After the phase flattening, the residual single-pass interfer-
ometric phases can be approximated as [66]

φ{X,S}SP
res (θ) ≈ k{X,S}SP

z,real �h (θ) + φ{X,S}SP
mp (θ) (4)

where k∗
z,real are the vertical wavenumbers calculated from

the real tracks, �h is the difference between the employed
reference height and the true height of the terrain, and
φ

SSP,XSP
mp are the multipath phase profiles. For convenience,

the unknown single-pass phase offsets were included in
the multipath profile. The formulation considers that no
global coregistration errors remain, which is usually the case
for single-pass interferometry. Note that θ depends on the
unknown topography and aircraft attitude and, hence, it is
function of both range and azimuth. Rapid topography changes
might introduce higher frequency components in the multipath
profile.

The repeat-pass interferometric phases can be approxi-
mated as

φ{X,S}RP
res ≈ νX,S + k{X,S}RP

z,real �h

+ 4π

λX,S

(
ε{X,S}RP

y1
+ ε{X,S}RP

y2
x
)

sin θ

+ 4π

λX,S

(
ε{X,S}RP

z1
+ ε{X,S}RP

z2
x
)

cos θ (5)

where ε∗
y1

and ε∗
z1

are constant baseline errors in the hori-
zontal and vertical directions, ε∗

y2
and ε∗

z2
describe the linear

components of the baseline errors, and νX and νS are phase
offsets [54]. Note that a generic case is being considered here,
where X- and S-band baseline errors might be independent
(a simplification for simultaneous acquisitions is considered
later in Section VI-B). In practice, the repeat-pass phase might
contain additional spatially correlated errors of higher order
along azimuth due to, e.g., limitations of the multisquint
algorithm [54]. However, considering that such residual errors
are slowly varying, the approximation in (5) is expected to
hold within small intervals over azimuth. In fact, since the
goal is the estimation of a 1-D profile along the elevation,
it is enough to select a small block of data covering the whole
swath. Using the vertical wavenumbers to account for the
different geometries, the difference between the single- and

repeat-pass phases can be calculated in order to cancel �h.
In this case, the only dependence with the residual topography
is due to the incidence angle.

The multipath components are highly sensitive to the vari-
ations of the aircraft attitude and, hence, the corresponding
phase profiles can vary from range line to range line. When-
ever possible, it is advisable to select data corresponding
to smooth topography for the estimation, in which case the
multipath profiles are also smoother and similar for the whole
block. Nevertheless, even for a perfectly flat terrain, changes
in the roll angle introduce an azimuth dependence of the
multipath phase. Accordingly, in order to make the range lines
of the phase difference comparable, the phase differences are
interpolated to a common incidence angle profile θc. This
profile is selected by simply averaging the expected θ over
the azimuth dimension. Since the expected multipath artifacts
are low frequent, the sampling of θc can be larger than that of
θ at least in the first iteration. After the interpolation, the only
expected azimuth variation in φX,S

diff (θc) is due to the linear
baseline error component.

The use of an azimuth block rather than a single range-
line is justified by two simple reasons. First, the effect of
phase noise is mitigated by averaging over azimuth. Second,
the practical implementation of the algorithm tags certain
regions as improper for the estimation. A pixel is deemed
invalid if: 1) it was considered unreliable by the phase
unwrapping algorithm; 2) its coherence on either repeat-pass
or single-pass interferograms is below a predefined threshold;
or 3) it is considered an outlier according to the modified
Z-score test applied to each azimuth line of the consider
block [67]. As a consequence, a given range line might
contain valid information only for a certain range of incidence
angles. In general, blocks corresponding to higher coher-
ence and less prone to contain unwrapping errors should be
preferred, and ideally, at least one measurement over the
discrete range of incidence angles is available. Otherwise,
an interpolation has to be performed accounting for the
missing data, and the overall quality of the correction might
degrade.

Assuming that the variations along the azimuth of
kz,real

SSP,XSP can be neglected, which should hold for a small
block in azimuth, the average of the phase difference over the
azimuth interval can be written as

φX,S
diff (θc)

≈ φ{X,S}SP
mp (θc) − k{X,S}SP

z,real

k{X,S}RP
z,real

(θc)

·
[

4π

λX,S
ε{X,S}RP

y sin θc + 4π

λX,S
ε{X,S}RP

z cos θc + νX,S

]
(6)

where ε∗
y and ε∗

z are equivalent constant errors over the block.
The signal in (6) is 1-D and contains both the multipath profile
and the phase due to constant baseline errors. In principle,
the interpolated phase difference could be filtered and used
as an equivalent multipath profile in order to correct X- and
S-band single-pass residual phases, leaving the baseline cali-
bration to a posterior step. In this case, the phase error model
used for the single-pass calibration, which often considers only
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Fig. 8. Maximum height error resulting from miscalibration of the baseline
error as a function of the number of reference points used for calibration.

a constant offset [27], [28], should be adapted to consider
the equivalent θc-dependent baseline error transferred from the
repeat-pass data [second term of (6)].

Although the equivalent single-pass error model is simple,
it corresponds to a poorly conditioned estimation problem
due to the lack of diversity of the incidence-dependent terms
along the valid swath. This is verified in the simulation
results presented in Fig. 8, which shows the resulting max-
imum height error due to miscalibration as a function of the
employed number of reference points. For the simulation,
an X-band single-pass phase was synthesized considering
different constant standard deviation values ranging from 1◦
to 35◦. The topography information provided by the reference
points is assumed to be error free; hence, all the error is due to
phase noise or residual multipath artifacts in the SAR image.
The results show that, even for a standard deviation of 5◦,
more than 10 points are necessary for a robust estimation,
effectively impeding the calibration using GCP. Given that an
accurate reference DEM is not necessarily available for the
correction, an alternative is to resort to the multifrequency
information in order to separate the multipath components
from the baseline error. Specifically, we exploit the difference
between the single-pass residual phases

φSX
diff(θc) = φSSP

mp (θc) − kSSP
z,real

kXSP
z,real

(θc)φ
XSP
mp (θc). (7)

The error model in (6) and (7) can be combined in a linear
system of equations in the form of

Ay = Bobs (8)

with

y = [ φXSP
mp (�) φSSP

mp (�) εXRP
y εXRP

z εSRP
y εSRP

z νX νS
]T
(9)

where � = [ θc,1 · · · θc,P ] is the common incidence angle
vector. From (9), the total number of unknowns is (2P + 6),
while the observation vector

Bobs = [φX
diff(�) φS

diff(�) φSX
diff(�)

]T
(10)

comprises 3P elements. If P > 6, the system in (8) is
overdetermined. However, the singular value spectrum seen in
Fig. 9 (left) shows that the last three singular values are small,
indicating a poorly conditioned problem [68]. Hence, small
errors in the observation vector may hinder the separation

Fig. 9. (Left) Singular value spectrum of overdetermined forward operator.
The condition number of the problem is of the order of magnitude of 105.
(Right) Singular value spectrum of underdetermined forward operator. In this
case, the condition number is around 2.

of the multipath phase profile from the equivalent baseline
errors, and a regularization strategy should be considered,
e.g., by means of truncated singular value decomposition [69].
Alternatively, we suggest to directly employ the truncated
problem defined by

Atruncytrunc = Bobs,trunc (11)

where the forward operator Atrunc is constructed from (6)
and (7)

Bobs,trunc = [ φX
diff(�) φSX

diff(�)
]T

(12)

and

ytrunc = [ φXSP
mp (�) φSSP

mp (�) εXRP
y εXRP

z νX
]T

. (13)

The singular value spectrum of the truncated forward
operator is shown in Fig. 9 (right) and confirms its better
conditioning. The minimization is solved with a least-norm
approach, that is

min ‖ytrunc‖2 s.t. Atruncytrunc = Bobs,trunc (14)

typically used for underdetermined problems. Note that the
model is able to retrieve the individual multipath profiles
up to a constant offset, since the separability between the
offsets in the X- and S-band phase profiles depends on the
variation along the range of kSSP

z,real/kXSP
z,real, which is usually

small. As a consequence, the calibration of a phase offset in a
posterior step is required. Moreover, if the unknown offsets are
large, the least-norm optimization gives poorer results. Hence,
a rough estimation of the offset should be performed based on
the mean terrain information and subtracted from the phases
beforehand.

E. Validation With Simulated and Real Data

The approach was validated with simulations using synthe-
sized phases considering a gentle slope varying from 18 to
25 m as the true terrain information. Phase standard devia-
tions of 5◦ and 10◦ were considered for single- and repeat-
pass phases. The low standard deviation value is consistent
with the empirical observations and is justified by the fact
that the estimation is performed over the averaged profiles,
as previously discussed. In addition to the topographic infor-
mation and noise, the single-pass phases contain the multipath
artifacts generated from the reflection model. On the other
hand, the repeat-pass phases comprise artifacts due to constant
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Fig. 10. Black curves: simulated interferometric phase profile. Red curves:
simulated X-band multipath phase profile. Green curves: estimated profiles.
Blue curves: estimation error. (Left) Overdetermined model was considered,
failing to estimate the multipath profile. (Right) Model (14) was used and the
estimation error is under 2◦.

Fig. 11. Differences between the reference ALS DEM and the obtained
(Left) S-band and (Right) X-band elevation models for a block of F-SAR
DFDB data. (Top row) No multipath mitigation was applied. (Bottom row)
Proposed DFDB multipath mitigation strategy was employed to correct the
phase undulations. The data correspond to the first third of the scene, and
a block of 256 samples in its center was used to estimate the multipath
profile.

Fig. 12. (Left) Estimated S-band multipath profile. (Right) Estimated X-band
multipath profile.

baseline errors. The simulation results are shown in Fig. 10.
The black curves show the phase difference between simulated
X-band repeat- and single-pass interferograms, the red ones
show the simulated X-band multipath phase profile, the green
curves are the estimated profiles, and finally, the blue curves
show the estimation error. In Fig. 10 (left), the overdetermined
model was considered, which failed to separate the multipath
profile from the baseline errors. In Fig. 10 (right), the truncated
problem was considered providing a much better estimation
(errors less than 2◦).

Finally, real F-SAR DFDB data are considered. The block
of data corresponds to the first third of the acquisition, which
is described in detail in Section X. Fig. 11 shows the height
difference between a reference ALS DEM and the obtained
(left) S- and (right) X-band F-SAR single-pass elevation
models. The results in the first row correspond to the case
when no multipath mitigation is applied, and the errors up
to 1 m are observed in both S- and X-band differences. The
results in the second row were obtained after applying the
proposed DFDB multipath mitigation strategy, and the range
phase undulations are no longer visible. Fig. 12 shows the

Fig. 13. Differences between the reference ALS DEM and the obtained
(Left) S-band and (Right) X-band elevation models for a block of F-SAR
DFDB data. (Top row) No multipath mitigation was applied. (Bottom row)
Proposed DFDB multipath mitigation strategy was employed to correct the
phase undulations. The data correspond to the last third of the scene.

estimated multipath profiles for (left) S-band data and (right)
X-band data. The profiles were estimated using 256 samples
located around the center of the data block shown in Fig. 11,
and was then interpolated accounting for the incidence angle
and attitude variations in order to provide a 2-D correction
for the whole scene. The robustness of the estimation can be
appreciated in Fig. 13, which also shows the height differences
between F-SAR and ALS reference (top) before and (bottom)
after the mitigation of multipath artifacts, but now for the final
third of the scene. As in Fig. 11, the range undulations are no
longer visible.

Up to this point, it is assumed that the incidence angle
information is accurate, which is not the case if the topography
is not known. Usually, a low accuracy reference elevation
model is employed during the image processing, and can be
used for the initial estimation of θ and k∗

z,real. The effect of
the unknown topography should be small for flat terrains,
and, in general, can be compensated by using an iterative
estimation approach. For this purpose, after the correction and
baseline calibration, the single-pass phase is transformed to
height and used for the better assessment of θ . The multipath
profile can then be reestimated, and θc with finer sampling
can be used to estimate higher frequency components. The
process can be repeated until the changes in the incidence
angle are negligible, but, normally, two iterations suffice. Note
that the multipath mitigation process can be performed using
undersampled phases due to the low-pass characteristics of
both multipath phase profile and baseline errors, such that
the computational burden of the whole estimation process is
affordable.

VI. BASELINE ERRORS AND PHASE OFFSET CALIBRATION

Considering that proper internal calibration and coregis-
tration procedures were performed during the processing of
the single-look complex images [43], the single-pass phases
should not contain fringes due to linear or constant baseline
errors. Nevertheless, they might enclose an unknown offset
due to, e.g., inaccurate range delay estimation or the lack
of absolute referencing of the phase unwrapping. Moreover,
an offset might be introduced by the multipath mitigation strat-
egy, as discussed in Section V. On the other hand, the repeat-
pass phases might be affected by constant and linearly varying
baseline errors and a global phase offset, as described in
Section V [54].
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A. General Calibration Approach

Here, we propose to estimate the repeat- and single-pass
constant and linear phase errors jointly without the use of
external references. In this case, the unknown topography
is accounted for by considering the differences between the
available single- and repeat-pass phases, that is

φX,S
diff = kX,S · φ{X,S}SP

res − φ{X,S}RP
res (15)

where

kX,S = k{X,S}RP
z,real

k{X,S}SP
z,real

. (16)

In general, the estimation of the unknowns of the baseline
error model described by (5) can be performed individually for
the data of each frequency of acquisition. However, airborne
repeat-pass interferometric phases are often affected by higher
order spatially correlated errors not accounted for in this
model. Depending on the characteristics of such errors and on
the quality of the interferometric phases, a simple model-based
least-squares (LS) solution considering independently each
frequency of acquisition may be biased. In fact, the baseline
calibration problem can be more robustly defined exploring the
correlation between higher order artifacts in X- and S-band
phases, benefiting from the simultaneous acquisition of the
data sets. In this case, a multiobjective optimization problem
is considered

arg min
yX,yS,yXS

‖ AX yX − φ̂X
diff ‖2

+ μ1 ‖ ASyS − φ̂S
diff ‖2 +μ2 ‖ AXSyXS − φ̂XS

diff ‖2 (17)

where

yXS = [εS
y1

εS
y2

εS
z1

εS
z2

εX
y1

εX
y2

εX
z1

εX
z2

νSRP νXRP

]T (18)

φ̂XS
diff is the observation of the difference between the X- and

S-band repeat-pass phases

φXS
diff ≈ φXRP

res − λS

λX
φSRP

res (19)

and the forward operators A∗ are constructed according to the
model in (5).

The parameters μ1 � 0 and μ2 � 0 in (17) are used to
ensure proper scaling of the objectives and to provide relative
weightings between the minimization of DFDB differences,
allowing larger errors in the former. If μ2 = 0, the solution
is equivalent to individually calibrating X- and S-band data
sets.

B. Simplification for Simultaneous Acquisitions

Since in the proposed DFDB configuration, X- and S-band
data are simultaneously acquired, and considering that after
a proper lever-arms calibration, the absolute positions of the
phase centers are known, we can assume that constant and
linearly varying baseline errors are the same in X- and S-band
repeat-pass data (i.e., εS

z∗ = εX
z∗ = εz∗ and εS

y∗ = εX
y∗ = εy∗).

Hence, (17) can be expressed in the following equivalent LS
optimization:

arg min
yeq

‖ Aeqyeq − φ̂diff ‖2 (20)

where

Aeq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4π

λX
sin � −μ1

4π

λS
sin � 0

−4π

λX
x sin � −μ1

4π

λS
x sin � 0

−4π

λX
cos � −μ1

4π

λS
cos � 0

−4π

λX
x cos � −μ1

4π

λS
x cos � 0

−1 0 μ21

0 −1 −μ2
λS

λX
1

kX(�) 0 0
0 μ1kS(�) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(21)

yeq = [εy1 εy2 εz1 εz2 νXRP νSRP νXSP νSSP ]T (22)

and

φ̂diff = [ φ̂X
diff μ1φ̂

S
diff μ2φ̂

XS
diff

]T
. (23)

Given the accuracy of the measuring instruments, it is rea-
sonable to expect that the baseline errors are small. Hence,
a mixed LS optimization can be employed regularizing the
solution

arg min
yeq

‖ Aeqyeq − φ̂diff ‖2

s.t. ‖ybe‖ ≤ δ (24)

where ybe is a subvector of yeq corresponding to the baseline
errors only, i.e., the first four terms of (22), and the vector δ
gives their magnitude thresholds.

C. Extension to the Complex Domain

Up to now, unwrapping errors have been neglected. If those
are indeed present, the LS optimizations in (24) will be biased.
Moreover, at least a relative calibration between the X- and
S-phases is required before unwrapping, requiring an approach
suitable for wrapped phases. In the following, we propose a
complex domain alternative based on the estimation of local
phase slopes [70], [71]. The dual-frequency approach based on
the forward operator in (21) is considered, but the adaptation
to the single-frequency, or, more generally, the single-channel
case, is straightforward.

For the derivation, the complex signals obtained from the
noiseless phase differences φX

diff and φS
diff are locally (i.e.,

blockwise) modeled in terms of 2-D complex sine waves

sX,S
diff (r, x) = exp

[
j
(

f X,S
r r + f X,S

x x
)]

(25)

where −Nr /2 � r � Nr /2 and −Nx /2 � x � Nx /2 are the
pixel coordinates within a window of size Nr x Nx ; and f ∗

r and
f ∗
x are the local spatial slopes along the range and azimuth

directions and correspond to the derivatives of the expected
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phase along the range and azimuth directions sampled at the
window center position. The new optimization problem is

arg min
yc

∥∥∥∥
[

Ar
Ax

]
yc −

[
F̂r

F̂x

]∥∥∥∥
2

(26)

where

Ar =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 4π cos �

λXr tan �
− 4π cos �

λSr tan �

−4πx cos �

λXr tan �
−4πx cos �

λSr tan �
4π

λX r cos �

4π

λSr cos �
4πx

λX r cos �

4πx
λSr cos �

∂kX

∂�

1

r tan �
0

0
∂kS

∂�

1

r tan �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(27)

with
∂kX,S

∂�
= B{X,S}RP

B{X,S}SP

sin(αRP − αSP)

cos2(� − αSP)
(28)

Ax =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

−4π

λX
sin � −4π

λS
sin �

0 0

−4π

λX
cos � −4π

λS
cos �

∂kX

∂x
0

0
∂kS

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(29)

with

∂kX,S

∂x
= B{X,S}SP

∂ B{X,S}RP
∂x − B{X,S}RP

∂ B{X,S}SP
∂x

B2{X,S}SP

· cos(� − αRP)

cos(� − αSP)
(30)

yc = [
εy1 εy2 εz1 εz2 νXSP νSSP

]T
(31)

F̂r = [
f̂ X
r f̂ S

r

]
(32)

and

F̂x = [
f̂ X
x f̂ S

x

]
. (33)

The vectors � and r contain the incidence angle and range
position at the center of each block in the first dimen-
sion, whereas x contains the azimuth position at the center
of the block in the second dimension. A simple way to
obtain the components of the observation vectors F̂r,x is by
locating the position of maximum amplitude of the Fourier
transform of each considered block.

Given the nature of the modeling, the constant offsets of the
repeat-pass phases cannot be estimated using the local slopes.
As a consequence, after performing the optimization in (26)
and compensating for the obtained phase error, the offsets
of the repeat-pass phases have to be estimated using the
single-pass phases as references. To mitigate the effect of

TABLE I

SIMULATED BASELINE ERRORS

unwrapping errors, the offsets can be calculated by evaluating
the maximum of the histograms of the phase differences.

Although the above-discussed complex domain approach
has the advantage of allowing for a linear LS optimization,
the accuracy of the estimation is limited by the resolution of
the Fourier transform and the validity of the 2-D complex sine
wave model itself. In order to refine the result, the complex
error model can be used within a nonlinear LS framework,
i.e., the solution is found through

arg min
yc

∥∥e j Aeq yeq − e j φ̂diff,c
∥∥2 (34)

where

φ̂diff,c =
⎡
⎢⎣ φ̂X

diff + ν̂XRP,0

μ1
(
φ̂S

diff + ν̂SRP,0

)
μ2
(
φ̂XS

diff − ν̂XRP,0 + λS
λX

ν̂SRP,0

)
⎤
⎥⎦ (35)

with Aeq and yeq as in (21) and (22), and where ν̂∗RP,0 are the
initial estimates of the constant phase offsets. The optimization
in (34) can be solved using the iterative Levenberg–Marquardt
algorithm [72] with an initial solution obtained through (26).

Note that the computation of φ̂XS
diff for (35) requires the

scaling of the S-band repeat-pass phase. If this phase contains
unwrapping errors, those can bias the estimation depending
on how large the remainder of λS/λX is and on how large
the 2π ambiguities are. However, if the ratio between the
wavelengths is close to an integer, as in the F-SAR X- and
S-band configuration (λS/λX ≈ 3.01), the baseline calibration
can still profit from the joint dual-frequency estimation even
in the presence of small residual unwrapping errors.

Finally, note that the extension of the two-step complex
domain calibration approach to consider the more general
calibration model described by (17) is straightforward. This
could be used, for example, when two repeat-pass data sets
independently acquired are available instead of data from two
acquisition frequencies.

D. Validation With Simulated and Real Data

Fig. 14 shows the results from Monte Carlo simulations
performed in order to evaluate the convergence of the proposed
baseline calibration algorithm. Two sets of parameters were
chosen in accordance to typical observations from F-SAR
interferometric processing, and are shown in the second and
third columns of Table I (“First Simulation” and “Second
Simulation”). The noisy interferometric phases were simulated
considering a flat terrain and a constant coherence value
of 0.6. Two optimization schemes were considered: the DFDB
problem represented by (34) [see Fig. 14 (left)] and the
single-frequency problem, where S- and X-band phases were
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Fig. 14. Results from Monte Carlo simulations showing the failure rate
according to the maximum allowed error in the initial estimation. Failure is
defined here as the percentage of cases for which the error in the retrieved
parameters causes an interferometric phase error larger than 3◦. (Left) Results
for the proposed dual-frequency scheme. (Right) Results for the single channel
case. (Top) Nominal baseline error for this simulation can be found in
the second column of Table I, identified as “First Simulation.” (Bottom)
Nominal baseline error can be found in the third column of Table I, identified
as “Second Simulation.”

individually calibrated [see Fig. 14 (right)]. The initial solution
used for the complex optimization was randomly sampled
from a uniform distribution, such that the maximum allowed
error for any parameter is a percentage of the nominal value.
The results show the failure rate according to the maximum
allowed error, where “failure” is defined as the percentage of
cases for which the error in the retrieved parameters causes an
interferometric phase error larger than 3◦. In both simulations,
it is possible to see the convergence improvement due to the
use of the dual-frequency information in comparison with the
single channel case.

A slightly different simulation is performed to evaluate the
convergence of the complete scheme, i.e., initial estimation
with the slope model, followed by refinement with the non-
linear LS optimization. For the simulation, nominal baseline
errors are randomly sampled in the interval

yc ∈ [0.9 · a · yc,3, 1.1 · a · yc,3
]
, a ∈ [0, 1] (36)

where a is scaling factor and the components of yc,3 are given
in the fourth column of Table I (“Third Simulation”). The vari-
ation of the phase root-mean-square error (RMSE) caused by
the baseline estimation error as a function of the scaling factor
is shown in Fig. 15. Fig. 15 (left) shows the error using the
slope model alone, i.e., using only the initial estimation, while
Fig. 15 (right) shows the result using the two-step strategy.
Note that even for the larger errors in the initial estimation,
the estimation provided by the slope-based model is sufficient
to ensure the convergence of the nonlinear LS. Moreover,
using the refined estimation, the performance is improved for
both the X- and S-band cases. Given its better performance,
the two-step strategy is employed for the calibration of the
DFDB data set and its effectiveness can be appreciated in the
comparison between the obtained SAR DEMs and the ALS
reference, as shown in Section X (see Fig. 30).

A final validation is given in Fig. 16, where the difference
between the X- and S-band repeat-pass phases after the

Fig. 15. Results from Monte Carlo simulations showing (Left) performance
of the estimation based on the local slopes only and (Right) performance of
the two-step strategy. The performance is evaluated in terms of the phase
RMSE introduced by the estimation error as a function of the scaling factor,
i.e., as a function of the magnitude of the nominal baseline errors.

Fig. 16. Rewrapped difference between the X- and S-band phases after
calibration (phases scaled to the S-band geometry). (Top) Data set of each
acquisition frequency was individually calibrated. (Bottom) DFDB scheme
was employed.

calibration is shown. In Fig. 16 (top and bottom), the data sets
were calibrated with the complex domain scheme. However,
for the result shown at the top, the data sets from the X- and
S-band were individually calibrated, whereas for the result
at the bottom, the dual-frequency estimation was employed.
The phases are scaled to the S-band geometry, and to avoid
misinterpretation due to unwrapping errors, the phase differ-
ences are rewrapped and a water mask has been applied.
Fig. 16 (top) indicates that the calibration of the phases
considering the single-frequency model diverged due to the
presence of unmodeled low-frequency artifacts, leading to
a phase trend in the azimuth (horizontal) direction. Conse-
quently, the difference between the X- and S-band phases
diverges, and phase fringes are observed. On the other hand,
the more robust dual-frequency model provides consistent
results.

VII. UNWRAPPING ERRORS’ CORRECTION

Although multichannel algorithms like the one in [36]
promote a successful phase unwrapping, the ill-posed nature
of the unwrapping problem can still cause residual errors.
A typical challenging case is when large incoherent areas
cross the whole swath, e.g., due to the presence of flooded
areas or forests in the scene, potentially leading to large-scale
unwrapping errors [24], [36], [44].

We tackle the unwrapping error detection as a classifi-
cation problem, i.e., the phases are segmented into regions
corresponding to an integer multiple of 2π . The procedure
is divided in two steps: 1) the generation of an initial clas-
sification map using the DFDB phase differences and 2) the
refinement of the solution by means of an active-contour-based
algorithm. According to the estimated classification maps,
the proper 2π multiples are compensated.

At this point of the chain, the residual phases can be
modeled as

φ
XSP,SSP,XRP,SRP
res = k

XSP,SSP,XRP,SRP
z,real �h + n

XSP,SSP,XRP,SRP
err 2π

+ εXSP,SSP,XRP,SRP (37)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 17. Expected standard deviation of the noise in the height maps
generated with the single-pass data (black curve corresponds to X-band and
red curve corresponds to S-band) and the HoA of the repeat-pass data (green
curve corresponds to X-band and blue curve corresponds to S-band). (Left)
Single-pass coherence value of 0.9 was considered. (Right) Value was 0.6.

where �h is the unknown height increment in relation to the
used reference height (e.g., mean terrain value or reference
DEM), n∗

err are the ambiguity errors, and ε∗ are phase errors
unrelated with the unwrapping, e.g., noise and low-frequency
artifacts.

The HoA of the single-pass data sets is usually large enough
to allow for a reliable phase unwrapping, especially if the
proposed dual-channel approach is employed. In fact, even if
unwrapping errors occur, they can be identified and corrected,
assuming that the residual topographic phase and other errors
are not big enough to modify the ambiguity error, that is

k{X,S}SP
z,real �h + ε{X,S}SP � π (38)

in which case, unwrapping errors can be found by simply
calculating the nearest integer

n{X,S}SP
err =

⌊
φ

{X,S}SP
res

2π

⌉
. (39)

Hence, nXSP and nSSP are neglected in the following argumen-
tation, which focuses on the more challenging identification
of unwrapping errors in the repeat-pass scenario. The initial
segmentation maps of the X- and S-band repeat-pass phases
are estimated as

IX,S =

⎢⎢⎢⎢⎢⎢⎣
φ

{X,S}RP
res − k

{X,S}RP
z,real

k
{X,S}SP
z,real

φ
{X,S}SP
res

2π

⎤
⎥⎥⎥⎥⎥⎥
. (40)

Due to the large-baseline ratio between the considered
single- and repeat-pass interferometers, the classification maps
obtained through (40) can be very noisy. For example, the sim-
ulation results in Fig. 17 show the expected noise standard
deviation after phase-to-height conversion for the S-band and
X-band single-pass data, together with the HoA of the repeat-
pass data sets. An effective repeat-pass baseline of around
30 m and the single-pass coherences of 0.9 (left) and 0.6 (right)
were considered for the simulation. In both cases, the repeat-
pass HoA is of the same order as the noise standard deviation
in the single-pass height map of the same frequency, leading
to misclassification.

Low-frequency phase biases in the repeat-pass interfer-
ograms further deteriorate the classification maps in (40).
Although the difference between the repeat-pass phases can
aid in the detection of unwrapping failure, it cannot provide

an unambiguous measure of the unwrapping errors unless they
are known to be present only in one of the data sets. Moreover,
in cases where

nSRP
err ≈ kSRP

z,real

kXRP
z,real

nXRP
err (41)

typical when close-to-integer wavelengths ratios are employed,
the difference between the repeat-pass phases provides little
help to the detection of errors. Nevertheless, it can be used
as an indicator of miscalculation of the ambiguity numbers
through (40), since in this case, the difference between the
corrected repeat-pass phases tend to increase.

Similar to the suggested scheme for the baseline errors
calibration in Section VI, we proposed here to jointly use
all available data sets for the unwrapping errors detection,
thus mitigating the effect of phase biases in the repeat-pass
interferograms. Moreover, a regularized active-contour-based
solution is proposed in order to cope with noise scaling while
respecting the borders of large-scale unwrapping errors.

Active contours and variational calculus are the common
tools for the detection of object boundaries in image process-
ing applications, and have been widely used in the context
of edge detection and image segmentation [73]–[78]. The
contours are defined in the image domain and are either
attracted or repelled by external forces, finally converging to
the location of feature boundaries. The design of such forces
will ultimately define the characteristics of the detected objects
or the final segmentation map.

In the SAR context, active contours have been mainly used
for image segmentation, e.g., in [79], where a statistical model
based on the estimation of local tone and texture was proposed
to guide the curve evolution along the classical tension and
stiffness constraints. In [80], a multiregion level-set model able
to segment SAR images in an arbitrary number of homoge-
neous regions was introduced, and later expanded to consider
polarimetric images [81]. Silveira and Heleno [82] introduced
a statistical model based on a mixture of log-normal densities
to perform water/land segmentation in SAR images. A few
studies investigated the use of active contours in InSAR: [83]
proposed a user-dependent method to extract the contour map
that characterizes the interferometric fringes followed by a
block integration to perform the phase unwrapping and [84]
introduced different functionals to support the phase estimation
and unwrapping.

The approach suggested in the following focuses on the
identification and correction of residual unwrapping errors
rather than the detection of interferometric phase fringes.
For this purpose, the multiphase evolution scheme proposed
in [75] for image classification is adapted to the InSAR DFDB
scenario. For completion, a summary of the algorithm in [75]
is given in the following, followed by the adaptation to the
unwrapping errors correction scenario.

A. Review of Active Contours for Image Segmentation

The method in [75] intends to segment an image into
K classes, each one characterized by a certain mean and
standard deviation. Formally, being � an open connected
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subspace of R
2, its partition P is defined as the set {�i }i=1...K ,

such as

∅ /∈ P

� = K∪
i=1

�i

�i ∩
i �= j

� j = ∅ (42)

where ∅ is the empty set. Any partition can be seen as a
classification map, where each subset �i characterizes a class,
that is

�i = {z ∈ �/z belongs to the ith class}. (43)

The boundary of a subset �i is defined as

�i = ∂�i ∩ �

= ∪
j �=i

�i j (44)

where

�i j = � j i = �i ∩ � j ∩ � (45)

is the interface between two regions and can eventually be
equal to ∅.

Giving the definitions mentioned earlier, the classification
of a data function I : � → R over � with respect to
K predefined classes consists in finding the optimum set
{�i }i=1...K constrained to the following conditions.

1) The set {�i}i=1...K representing the final classification
map is a partition of �, i.e., the conditions in (42) are
fulfilled.

2) The data of a given class are well described by the
class first- and second-order statistics, i.e., the smaller
the standard deviation, the closer the elements are to the
mean value.

3) The solution is regular, i.e., small isolated regions are
avoided.

The proposed solution considers the evolution of coupled
active interfaces until the optimum partition is reached. The
evolution itself is guided by functionals or forces, derived from
the constraints mentioned earlier. It is performed considering
a multiphase level-set scheme [85], i.e., each region and its
corresponding interface are described by a level-set function
�i (x, y; t) such that⎧⎪⎨

⎪⎩
�i (x, y; t) > 0 if (x, y) ∈ �i

�i (x, y; t) = 0 if (x, y) ∈ �i

�i (x, y; t) < 0 otherwise

(46)

where x and y represent the spatial coordinates and t indicates
the variation of the level-set function with time. According
to (46), the front, i.e., the interface of a certain region,
is composed of points where the level-set function equals
zero, whereas the interior of a certain region is marked by the
positive values of the level set. While the tracking of drastic
topological changes, such as boundary breaking and merging,
is very difficult when evolving directly the curves, it is
automatic when using the level-set representation, justifying
its use. Furthermore, all required calculations are performed
on a fixed rectangular grid, allowing for accurate numerical
approximations of the level-set motion [77], [85].

Fig. 18. Pictorial representation of (Left) S-band phase partially corrupted by
a one-cycle unwrapping error, (Middle) X-band phase partially corrupted by a
three-cycle unwrapping error in the top-left corner and one-cycle unwrapping
error in the bottom-right corner, and (Right) optimum partition.

B. Active Contours for DFDB Unwrapping Error Correction

In the context of our DFDB unwrapping error correc-
tion, the observed data are the available residual phases,
i.e., φXRP

res , φSRP
res , φXSP

res , and φSSP
res . Rather than segmenting the

phase itself, the goal here is to detect and classify only
regions representing 2π ambiguities. Hence, the classification
is performed over the following data difference functions:

uX = φXRP
res − kXRP

z,realhref,SP, uX : � → R

uS = φSRP
res − kSRP

z,realhref,SP, uS : � → R

uSX = φSRP
res − kSRP

z,real

kXRP
z,real

φXRP
res , uSX : � → R (47)

where href,SP is obtained from the weighted average of the
single-pass residual heights, which, as mentioned earlier, are
considered free of unwrapping errors.

The i th region—or, equivalently, the i th class—
characterizes the unwrapping errors in both the X- and
S-band data, i.e., it is described by

�i =
{

p ∈ �

∣∣∣∣ nXRP
err [p] = nXRP

err i
nSRP

err [p] = nSRP
err i

}
(48)

where the integers nXRP
err i and nSRP

err i represent the X- and
S-band repeat-pass ambiguity errors of the class. Therefore,
the final classification provides an ambiguity map with all the
necessary information for correcting the interferometric data.
A pictorial representation of two corrupted X- and S-band
phases and the corresponding partition can be seen in Fig. 18

The approach proposed here intends to cope with two main
issues related to the use of the single-/repeat-pass configura-
tion: the presence of biases in the repeat-pass phases or in the
reference phases and the false detection of unwrapping errors
due to noise scaling. Accordingly, the classification constraints
are defined as follows.

1) The set {�i }i=1...K representing the final classification
map is a partition of �.

2) Within a region, the X-band data approach in average
the ambiguity band of the corresponding class up to a
small bias.

3) Within a region, the S-band data approach in average
the ambiguity band of the corresponding class up to a
small bias.

4) The difference between the X- and S-band residual
height maps is minimal.

5) The detected discontinuities in the phase differences
correspond to discontinuities in the individual phases.
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6) The solution is regular, i.e., small isolated regions are
avoided.

The above-mentioned constraints are analytically described
by the following functionals.

1) Partition Functional:

F1(�1, . . . ,�K ) =
∫

�

(
K∑

i=1

H (�i) − 1

)2

dxdy. (49)

2) X-band Data Matching Functional:

F2(�1, . . . ,�K )

=
K∑

i=1

∫
�i

(
uX − 2πnXRP

err i

ρX

)2

H (�i)dxdy (50)

where ρX is the differential phase standard deviation
given by

ρX =
√

ρ 2
XRP

+ kXRP
z,realρ

2
ref (51)

and ρXRP is estimated from the repeat-pass interfero-
metric coherence. This functional penalizes differences
between the topographic information obtained from the
single-pass reference and the X-band repeat elevation
model after the unwrapping error correction. How-
ever, it is weaker whenever uX is deemed unreliable,
i.e., when the noise level in the X-band repeat-pass phase
and/or reference residual height model is high.

3) S-band Data Matching Functional:

F3(�1, . . . ,�K )

=
K∑

i=1

∫
�i

(
uS − 2πnSRP

err i

ρS

)2

H (�i)dxdy (52)

where ρS is the differential phase standard deviation
given by

ρS =
√

ρ 2
SRP

+ kSRP
z,realρ

2
ref (53)

and ρSRP is estimated from the repeat-pass interfer-
ometric coherence. Note that (51) and (53) assume
the statistical independence of single- and repeat-pass
data sets, which is not strictly the case since the two
interferometric phases share the same master. However,
due to the large difference between the single- and
repeat-pass baselines, the dependence between the two
data sets can be neglected [86].

4) Dual-Frequency Data Matching Functional:

F4(�1, . . . ,�K )

=
K∑

i=1

∫
�i

⎛
⎜⎜⎜⎝

uS − 2πnSRP
err i − (uX − 2πnXRP

err i

) · k
SRP
z,real

k
XRP
z,real

ρSX

⎞
⎟⎟⎟⎠

2

H (�i)dxdy. (54)

This data functional penalizes the differences between
the topographic information obtained from both repeat-
pass data sets after the unwrapping error correction.

The smaller the variance of uXS is, the stronger is the
penalization.

5) Edge-Detection Functional:

F5(�1, . . . ,�K )

=
K∑

i=1

∫
�

g
(
φXRP

res , φSRP
res

)
δ(�i )|∇�i |dxdy (55)

where g(·) assumes zero on edges and a positive value
otherwise.
The functional penalizes the introduction of new edges
in the individual phases, regularizing the result and
avoiding the false alarm due to biases in the repeat-pass
data.

6) Regularization Functional:

F6(�1, . . . ,�K ) =
K∑

i=1

∫
�

δ(�i )|∇�i |dxdy. (56)

The final global functional is given by the weighted sum-
mation

F(�1, . . . ,�K ) =
6∑

l=1

ξl Fl (�1, . . . ,�K ) (57)

where ξ1...6 are predefined weights. Since the three data func-
tionals are weighted by the appropriate standard deviations,
it is enough to consider a single weight for the data terms,
i.e., ξ2 = ξ3 = ξ4.

The minimization is performed by solving the system of
coupled partial differential equations (PDEs) given by

∂ Fε

∂�i
= 0, ∀i = 1 . . . K , ε → 0+ (58)

where Fε is the regular approximation of (57) [76] (see the
Appendix for the solution).

The strength of the approach lies on the natural evolution of
the detected regions toward the minimum DFDB differences.
Since the classification is applied on the phase differences,
natural boundaries in the scene due to changes in topography
are preserved. Moreover, thanks to the dual-frequency data
functional, biases large enough to cause errors in the initial
X-band classification map, but not in the S-band one, do not
disrupt the final results. Additionally, the edge-detection func-
tional avoids the placement of false discontinuities. Finally,
the introduction of salt-and-pepperlike errors is mitigated
through the use of the regularization functional.

C. Validation With Simulated and Real Data

In the following, simple simulations are used to highlight the
importance of the introduced functionals and the effectiveness
of the proposed strategy. For simplicity, the elevation model to
be retrieved is zero everywhere, and the single-pass phases are
always assumed free of artifacts. All images contain 128 ×
128 pixels. A square-shaped unwrapping error is introduced
in both repeat-pass phases, with nSRP

err = 1 and nXRP
err = 3.

This represents a challenging case for the DFDB configuration,
since both the phases are affected at the same location, and
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Fig. 19. In this simulated scenario, no noise is included, and the only
phase content of the repeat-pass data are square-shaped unwrapping errors
with n

SRP
err = 1 and n

XRP
err = 3 (in the top-left quadrant of the images) and

a low-pass artifact emulating uncompensated azimuth-varying range delays.
(Top row) S-band data. (Bottom row) X-band data. (From left to right)
Corrupted repeat-pass phases, unwrapping error maps obtained using no dual-
frequency data functional during the evolution, and unwrapping error maps
obtained using the dual-frequency data functional.

nXRP/nSRP ≈ λS/λX, i.e., the initial dual-frequency phase
difference is close to zero.

The first simulation intends to show the strength of the
dual-frequency data functional. For that, no noise is included
and regularization and edge-detection functionals are set to
zero. The repeat-pass X-band phase is corrupted by a low-
pass error varying from 0◦ to 250◦. The same pattern is
scaled by the ratio between the X- and S-band wavelengths
and applied to the S-band repeat-pass phase, thus emulating
the effect of uncompensated azimuth-varying range delays
in dual-frequency simultaneous acquisitions. The corrupted
phases can be seen in the first column of Fig. 19 (S-band
at the top and X-band at the bottom). The first trial considers
ξ4 = 0, i.e., no dual-frequency functional. The unwrapping
error maps obtained with the multiphase evolution are shown
in the second column of Fig. 19, where the top corresponds
to S-band and the bottom corresponds to X-band. In this case,
large unwrapping errors were introduced in the X-band phase
due to the bias. When considering ξ4 = 1, the case presented
in the third column of Fig. 19, the evolution converges to the
desired partition.

For the second example, the simulated phases include
Gaussian noise with the standard deviations of 50◦ for the
repeat-pass phases and 250◦ for the scaled single-pass ref-
erence. The same low-pass artifact of the first experiment is
considered. An additional unwrapping error (4 × 4 pixels) is
introduced in the bottom-right quadrant, as can be seen in
the first column of Fig. 20 (S-band at the top and X-band at
the bottom). In this example, all data functionals are used,
and the goal is to demonstrate the capability of the edge-
detection functional to avoid the introduction of errors due
to noise scaling. For that purpose, the results of three trials
are presented: the first one considers no smoothing functional,
i.e., ξ5 = ξ6 = 0, the second one considers only the traditional
regularization functional, i.e., ξ5 = 0 and ξ6 = 1, and the
third considers additionally the edge-detection regularization

Fig. 20. In this simulated scenario, Gaussian noise with a standard deviation
of 50◦ is included in the repeat-pass phases. The first column shows the (Top)
S-band repeat-pass phase and (Bottom) X-band repeat-pass phase. In addition
to the unwrapping error of the first simulation, a small error in the bottom-
right quadrant is introduced. The results of three trials are depicted in the
second–fourth columns: the first one considers no smoothing functional, i.e.,
ξ5 = ξ6 = 0, the second one considers only the traditional regularization
functional, i.e., ξ5 = 0 and ξ6 = 1, and the third considers additionally the
edge-detection regularization ξ5 = ξ6 = 1.

ξ5 = ξ6 = 1. The retrieved unwrapping error maps are pre-
sented in the second–fourth columns of Fig. 20. As expected,
if no regularization is employed, the obtained correction is
noisy. The results are improved by using the curve length
regularization functional. However, the small unwrapping error
introduced in this example is completely missed. Considering
the edge-detection functional, it is possible to obtain a com-
promise between a regular solution and the detection of small
unwrapping errors.

As it is, the approach is able to successfully map unwrap-
ping errors in noisy cases and in the presence of small
biases. However, if errors large enough to cause misdetection
simultaneously in repeat- and single-pass phases are present,
the estimation can fail. Moreover, even if the errors are not
large enough to compromise the retrieved map, the rough
estimation and removal of low-pass errors can improve the
convergence of the multiphase evolution. Therefore, the fol-
lowing bias estimation is proposed at this stage:

φoff,S =

N∑
n=1

〈uS〉2π

N
(59)

where 〈·〉2π represents the modulo 2π operator, and the aver-
age is performed over a (preferably large) window containing
N pixels. The offset is computed prior to the classification and
is used to update the data functions in (47) and initial classifi-
cation map in (40). Note that the estimation is performed over
the data set with a larger HoA, in this case, the S-band. In fact,
the estimation is limited to errors up to a wrapping cycle of
this data set. Note that this step only represents a coarse bias
estimation, and it will not be used to correct the repeat-pass
phases at this point of the processing chain. A finer strategy
to remove low-pass components in the DFDB configuration is
discussed in Section VIII.

Finally, a block of real F-SAR DFDB data is consid-
ered. Fig. 21 shows the S-band unwrapped phase after
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Fig. 21. (Top) Unwrapped S-band phase after calibration. (Middle) Phase
of the ROIs 1–5 are shown from left to right after correcting unwrapping
errors by simply using the single-pass phases as reference. (Bottom) Results
obtained with the active-contour-based approach using no external weighting
of the functionals (i.e. ξ1...6 = 1).

calibration, and a large unwrapping error is recognized by
the color transition from orange to yellow, from left to right.
The error is related to a low coherent water branch, which
divides the image in two regions and cripples the growing
process. Despite the apparent simplicity of the detection,
the direct estimation of residual ambiguities using the single-
pass information only [i.e., using (40)] is impaired by the
presence of noise and low-pass phase artifacts. In this case,
the remaining (and introduced) artifacts can be observed in
the regions of interest (ROIs) in the second row of Fig. 21,
which shows the phases after the correction using (40). On the
other hand, the active-contour scheme proposed in this section
is able to provide satisfactory results, as seen in third row
of Fig. 21. Moreover, the comparison of the final obtained
F-SAR DEMs and the ALS reference in Section X shows
no remaining large-scale unwrapping errors around the water
branch (see Figs. 30 and 32).

VIII. ESTIMATION OF LOW-PASS ARTIFACTS

IN THE REPEAT-PASS DATA

Repeat-pass interferometry is generally more sensitive to
low-frequency distortions in comparison with single-pass
interferometry due to the separate acquisition of master and
slave data sets. The causes, and consequently, the charac-
teristics of such artifacts depend on several factors, e.g.,
the type of platform employed, the precise knowledge of the
system parameters, and the processing kernel, among others.
Assuming that no deformation takes place in the time between
master and slave acquisitions and that soil moisture remains
the same, the main sources of low-frequency disturbances
in airborne InSAR are baseline miscalibration, propagation
effects in the troposphere, and uncompensated residual motion
errors.

After phase-to-height conversion, repeat-pass and single-
pass residual height maps can be modeled as

hres,{X,S}RP = htop + hε,{X,S}RP + hη,{X,S}RP (60)

and

hres,{X,S}SP = htop + hη,{X,S}SP (61)

where htop is the desired topographic information, hη,∗ are
the noise contributions, and hε,∗RP represent the low-frequency
disturbances. It is considered here that any other phase artifact
can be neglected for the single-pass case, which is typically
true if a proper calibration of the phase offset and multi-
path component has been previously carried out. Moreover,
the topographic component in the X- and S-band data is
assumed to be the same, i.e., penetration depth differences
are neglected.

In order to mitigate the effects of low-frequency artifacts in
the final elevation model, the information of single- and repeat-
pass data is combined. For the proposed strategy, the spectrum
of hε,∗ is considered to be limited and an additive noise model
is employed, where all the hη,∗ values are assumed to be zero-
mean and pairwise independent. Moreover, hε,∗ is assumed to
be stationary and independent of the noise contributions. The
hypothesis of stationarity requires the approach to be applied
in a blockwise manner, with a block size chosen according to
the spatial variation observed in the residual height differences.

Considering that all retrieved elevation models have the
same resolution cell and are coregistered to the same geom-
etry, the final X-band and S-band residual height can be
estimated as

hres,{X,S} = hres,{X,S}RP − (hres,{X,S}RP − hres,{X,S}SP) � gop

(62)

where gop is the optimum low-pass filter, the symbol � rep-
resents the convolution, and range and azimuth dependences
are suppressed for simplicity.

Treating separately X- and S-band data sets requires no
assumptions regarding the same topographic content. On the
other hand, by performing a joint estimation of the residual
error, one can benefit from the fact that errors originating from
uncompensated residual motion errors or propagation in the
troposphere are mainly the same in both residual height maps
due to the simultaneous acquisition. This information can then
be used for the construction of gop. Specifically, we assume
that hε,XRP = hε,SRP = hε and that the error can be estimated
from the residual height map with higher relative accuracy
(in our case, the X-band one) using a narrowband low-pass
filter, e.g., a fifth-order Butterworth filter [87], that is

ĥε = (hres,XRP − href,SP) � gop (63)

with cutoff wavelength wc obtained as the solution of

min
wc

Rdual � min
wc

∑
|hdiff,X − hdiff,S � gop(wc)|2 (64)

where

hdiff,{X,S} = hres,{X,S}RP − hres,{X,S}SP . (65)

For large cutoff wavelengths, the out-of-band noise in the
S-band height difference tends to increase the dual-frequency
residual Rdual. On the other hand, if wc is too short, part of the
information of the disturbance itself is missed, also leading to
increased Rdual. By solving (64), a compromise can be found.
The corrected residual elevation maps are then retrieved by
simply subtracting the estimated errors, that is

hres,{X,S} = hres,{X,S}RP − ĥε. (66)
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Fig. 22. (Left) Variation of the dual-frequency residual difference for different
cutoff wavelengths for a block of real DFDB F-SAR data of around 500 m ×
500 m. (Right) Estimated low-pass disturbance using the obtained optimum
cutoff wavelength.

Fig. 23. Estimated height error in the X- and S-band elevation models due
to low-frequency disturbances.

A limitation of the low-pass estimation is the inclusion of
the in-band noise of the single-pass reference height href,SP
in the estimated disturbance. The effect is more relevant
the stronger the noise, and the wider the bandwidth of the
low-frequency disturbances.

Fig. 22 (left) shows an example of the variation of Rdual
for different values of wc for a block of around 500 m ×
500 m extracted from the F-SAR DFDB campaign over the
Jade Bight. In this case, the minimum residual difference
corresponds to a cutoff wavelength of around 4 m. In Fig. 22
(right), the low-pass disturbance estimated for the block using
the optimum cutoff frequency is shown. Finally, Fig. 23 shows
the estimated height error for the whole imaged scene.

IX. ESTIMATION OF THE UNDERLYING TOPOGRAPHY

After the removal of the spatially correlated disturbances,
the elevation models in slant-range geometry corresponding to
each frequency of acquisition can be estimated as

ĥX,S = hres,{X,S} · U + hres,{X,S}SP · (1 − U) + href (67)

where hres,{X,S} are the results of (66), href is the reference
DEM used to support the SLC focusing and interferomet-
ric processing, and U is a binary mask assuming 0 if the
unwrapping of repeat-pass data is failed, indicating strongly
decorrelated areas (e.g., volume scatterers). Considering that
master and slave acquisitions are obtained within a short time
span, the expected height standard deviations of the repeat-
pass models for surface scatterers are typically much smaller
than those of the single-pass models. Hence, in order to
avoid the introduction of residual multipath artifacts in the
final elevation map and to avoid its degradation due to the
under estimation of the noise levels in the single-pass data,
we use the formulation in (67). If, on the other hand, volume
decorrelation plays a role, e.g., for agricultural fields with tall
crops, a weighted average (or a true ML solution) should be
considered instead.

Depending on the characteristics of the imaged scene and
the required absolute vertical accuracy, the differences in the

X- and S-band wave penetration can be considered negligible,
e.g., when imaging bare land. In this case, X- and S-band
DEMs can be merged into a higher quality DFDB elevation
model. For that, we propose here a simple fusion scheme in
the wavelet domain.

A. Multiresolution Analysis for Height Extraction

The decorrelation and compressing properties of wavelet
transforms offer a powerful tool for data denoising. Accord-
ingly, the topic has been widely investigated by the image
processing community [88]–[92] and by the SAR community
for SLC despeckling [93]–[95], interferometric phase denois-
ing [96]–[98], and mitigation of atmospheric noise [99], [100].
In general, wavelet domain filters benefit from the fact that
the wavelet transform maps most of the signal energy into a
few large coefficients. Rather than filtering out high-frequency
components, i.e., smoothing the data, the denoising algorithms
try to identify and remove wavelet coefficients that represent
pure noise. Moreover, wavelet transforms allow for a mul-
tiresolution characterization of the data, favoring the proper
handling of nonstationary signal and noise [101]–[103].

The fusion scheme proposed in the following is based upon
the techniques in [99] and [100], and its main motivations are:
1) multiresolution wavelet analysis potentially allows for the
estimation of the actual statistics of the individual elevation
models and 2) the redundancy of the multichannel configura-
tion combined with the decorrelation capabilities of discrete
wavelet transforms can be exploited to provide additional noise
and artifact reduction in an efficient manner.

The inputs for our estimation are the X- and S-band
elevation models obtained through (67), that is

hX,S = htop + hη,{X,S} (68)

where htop is the desired topographic component and hη,{X,S}
is the noise with spatially varying standard deviation. Consid-
ering the linearity of the wavelet transform, the additive model
in (68) is transferred to the wavelet domain, that is

WX,S � W (hX) = Whtop + Whη,{X,S} (69)

where W (·) is the wavelet operator. Moreover, considering
that noise and topography components are independent and
an orthogonal wavelet basis is considered, the noise in the
wavelet domain at a certain level can also be character-
ized as zero-mean Gaussian with spatially varying standard
deviation ρη,{X,S} [104].

In practice, we make use of the discrete wavelet transform
performing a multiresolution decomposition of the images,
where each level (or scale) is obtained by successively filtering
and downsampling the input image leading to four subbands:
one corresponding to the low-frequency or smooth band
denoted by WLL j (low–low) and three detail bands denoted
by WHL j , WLH j , WHH j (high–low, low–high, and high–high,
respectively).

The smooth bands are further decomposed until the coarsest
(or highest) scale has been achieved, yielding one residual low-
passband (W{X,S}LL J

) and 3J detail bands for each frequency
of acquisition, where J is the desired number of scales.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

20 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Provided that the noise is not dominant, i.e., considering that
its standard deviation is considerably smaller than the expected
topography, its wavelet coefficients have small magnitude and
are distributed over all scales. On the other hand, the discrete
wavelet transform of the terrain is sparse, i.e., the energy
is concentrated in a limited number of coefficients. In fact,
as suggested in [99], most of the topography can be modeled
as a 1/ f process, i.e., most of the signal energy follows a poly-
nomial decay when transitioning from coarser to finer scales.
In this sense, the wavelet transform properly decorrelates htop
and can be understood as the approximation of its Karhunen–
Loeve transform [99], [105]. Since the lower (or finer) scales
contain mainly noise, they can be used for assessing the
statistics of the individual height maps [104]–[106]. The final
elevation model can then be estimated by properly identifying
and merging the relatively few signal coefficients while atten-
uating or suppressing the coefficients which characterize only
noise, thus obtaining a smoother solution.

Although most of the energy of htop is compressed into
large magnitude coefficients at higher (or coarser) scales,
the wavelet coefficients of fine features, e.g., edges of building
or small terrain fissures, can be spread throughout the lower
scales, eventually assuming small magnitudes. Consequently,
if not performed carefully, the suppression of coefficients in
the lower scales can lead to oversmoothing or even to the
suppression of terrain traits.

B. DFDB Multiresolution Analysis for Height Extraction

In order to distinguish between features and noise,
the redundancy of the multichannel configuration
can be exploited. Specifically, the cross correlation
between the multiresolution decompositions of X- and
S-band elevation models is evaluated. Intuitively, whenever
the detail bands contain terrain features, a high correlation
between the X- and S-band coefficients is expected.
On the other hand, assuming the independence of the noise
contributions of both data sets, low correlation is expected
for the noise coefficients.

The proposed fusion scheme can be described by the
following steps.

1) Compute the multiresolution decomposition of X- and
S-band elevation models up to the J scale. Considering
that the main goal is to reduce the impact of noise,
it is enough to set J to a small number, e.g., J = 3,
as suggested for the interferometric phase filtering
in [96]. Alternatively, the scales dominated by noise
can be identified by evaluating the mean power of each
decomposition level of the difference between X- and
S-band height maps, i.e., WXS, since the height differ-
ence should contain mainly noise at this stage.

2) For Each Decomposition Level j :

a) Estimate the cross correlation between the detail
bands of X- and S-band decompositions, i.e., com-
pute

RW{LH,HL,HH} j
[in, im ]

= corr(WX{LH,HL,HH} j
, WS{LH,HL,HH} j

). (70)

Considering that the noise contributions are zero-
mean, independent, and that their statistics are
homogeneous in the considered estimation win-
dow, then RW∗ j

→ 0 when no signal is present.
On the other hand, if the coefficients represent the
desired signal, then RW∗ j

→ 1.
b) Locally estimate the expected noise statistics as

ρ̂ηj,{X,S}[in, im]
= 1

M j

∑
in∈δN

∑
im∈δN

|W{X,S}HH j
[in, im ]|2 (71)

where δN is the estimation window used to account
for the spatial variability of the noise and M j is the
number of available pixels [103].

c) Estimate the detail coefficients as

ŴLH j =
(
WXLH j

/ρ̂ 2
ηj,X + WSLH j

/ρ̂ 2
ηj,S

)
(
1/ρ̂ 2

ηj,X + 1/ρ̂ 2
ηj,S

) RWLH j

(72)

ŴHL j =
(
WXHL j

/ρ̂ 2
ηj,X + WSHL j

/ρ̂ 2
ηj,S

)
(
1/ρ̂ 2

ηj,X + 1/ρ̂ 2
ηj,S

) RWHL j

(73)

and

ŴHH j =
(
WXHH j

/ρ̂ 2
ηj,X + WSHH j

/ρ̂ 2
ηj,S

)
(
1/ρ̂ 2

ηj,X + 1/ρ̂ 2
ηj,S

) RWHH j
.

(74)

3) At scale J , estimate the low-pass residual as

ŴLLJ = (WXLL J
+ WSLL J

)

2
. (75)

4) Compute the inverse decomposition from the estimated
wavelet coefficients in (72)–(75).

If required, the above-described approach can be modified
to better accommodate differences in the X- and the S-band
topography. In this case, instead of estimating a single set
of wavelet coefficients that are then inverted to provide the
final elevation model, the wavelet decompositions of X- and
S-band data are individually estimated. Specifically, (72)–(74)
are replaced by

Ŵ{X,S}LH,HL,HH j
= W{X,S}LH,HL,HH j

RW{X,S}LH,HL,HH j
(76)

i.e., the coefficients that are more likely to represent only
noise are suppressed. Notice that the correlation coefficients
in (76) are now modified in order to avoid the smearing of
features present in only one of the individual data sets. For
that purpose, a further assumption is required, namely that the
detail coefficients of features have larger magnitudes than the
ones of noise. In this case,

RW{X,S}{LH,HL,HH} j

=
{

RW{LH,HL,HH} j
, W{X,S}{LH,HL,HH} j

< ζ{LH,HL,HH} j

1, W{X,S}{LH,HL,HH} j
> ζ{LH,HL,HH} j

(77)
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Fig. 24. (Left) Simulated terrain containing abrupt variations. (Middle) Result
of ML estimation. (Right) Result of wavelet fusion using four decomposition
levels. A qualitative color palette was chosen for the depiction of simulated
and real terrains, since such palette favors a better visualization of noise and
its reduction.

Fig. 25. In this experiment, the true topography differs in S- and X-band
data sets. (Left) X-band wavelet-based estimation without considering the
modification of the correlation coefficients. (Right) Result considering the
modification.

where ζ∗ j are thresholds calculated from the data using the
maximum absolute deviation of the subbands [88]. Note that,
while the modification of the correlation coefficients mitigates
the smearing of features, it can also lead to suboptimal
performance for very noisy data sets.

C. Validation With Simulated and Real Data

Results considering a simulated terrain embedded in noise
are shown in Fig. 24. The original elevation model, the result
of a simple ML estimator [13], and the result of the proposed
approach appear from left to right, respectively. For the
wavelet fusion, Daubechies wavelets and four decomposition
levels were considered [107]. Moreover, for this first simula-
tion, it was assumed that the topographic content of X- and
S-band data are the same. It is possible to see that the wavelet
fusion provides good results in terms of noise reduction and
preservation of features. Moreover, the overall computation
cost is low thanks to the efficiency of the discrete wavelet
transform [106].

The results in Fig. 25 validate the use of the modified
coefficients in (76). For this simulation, the rectangular feature
in the top-right quadrant appears only in the X-band data (emu-
lating, e.g., short crops). Fig. 25 (left) shows the result of the
individual X-band wavelet estimation without considering (77)
(or equivalently, setting ζ∗ j = 0). In Fig. 25 (right), the result,
including the modified correlation coefficients, is given and
shows a better preservation of the edges.

Finally, a block of real F-SAR DFDB data is considered. For
comparison, in addition to the dual-frequency/wavelet-based
and ML approaches, an MAP + total variation (MAP+TV)
strategy is considered [108]. For both ML and MAP+TV esti-
mations, we consider a modified likelihood function (Fmain)
profiting from the fact that the data have already been

Fig. 26. Validation of the wavelet domain estimation using real data.
(From left to right) ML estimation, MAP+TV estimation, and wavelet-
based estimation. Both wavelet and MAP+TV estimations provide good noise
reduction in comparison with the ML estimation.

Fig. 27. Optical image of the Jade Bight, northern Germany. The red
rectangle indicates the valid area imaged by the F-SAR and corresponds to a
total size of approximately 20 km × 3 km.

unwrapped

Fmain(Φ|h) = rect

(
φXRP

2π

) ∏
i∈{SSP,SRP,XSP,XRP}

fi (φi |h; L) (78)

where fi (φi |h; L) are the periodic likelihoods of the individual
channels for a certain number of looks L, and the rectangular
function (rect) limits the joint likelihood to one wrapping cycle
of the fastest varying phase—here the X-band repeat-pass
phase. Note that the low-frequency disturbances have to be
compensated for in the interferometric phases, or, alternatively,
the phases can be retrieved from the corrected residual height
maps, that is

φ{X,S}RP = hres,{X,S}k{X,S}RP
z,real . (79)

The results are shown in Fig. 26, from left to right:
ML, MAP+TV, and wavelet estimations. Both wavelet
and MAP+TV estimations provide good noise reduction.
The set of desired heights required for the MAP+TV
approach was constrained around the X-band repeat-pass
HoA (around 1.5 m) with a sampling of 0.001 cm. The
total computational time required for the estimation of the
512 × 512 samples elevation map was less than 5 s for
the wavelet approach and around 8 min for the MAP+TV
approach. In both cases, the algorithms were implemented
in interactive data language, with exception of the graph-cut
optimizer required for the MAP+TV approach, implemented
in C++.

X. EVALUATION OF OBTAINED ELEVATION MODELS

The data presented next were acquired on July 16, 2013,
over the tidal flat areas of the Jade Bight, northern Germany,
using the F-SAR system. An optical image of the scene is
shown in Fig. 27.
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TABLE II

PARAMETERS FROM F-SAR EXPERIMENT OVER THE
JADE BIGHT, NORTHERN GERMANY

The campaign intended to generate a height map of the
intertidal mud flats with a relative vertical precision of the
order of centimeters on a grid with 1 m × 1 m sampling.
Intertidal regions are extremely dynamic with severe changes
in the water level during the course of the day. For such
scenes, airborne sensors are more attractive in comparison
with spaceborne sensors due to their flexibility in terms of
acquisition time. Furthermore, the bight presents considerably
lower backscatter than its surroundings. Thus, the quality of
the acquired data is improved if the receiver gain can be
controlled during the datatake, as it is the case of the F-SAR
system. Moreover, the airborne system allows for the choice of
the proper repeat-pass baseline, which enables the generation
of DEMs fulfilling the accuracy requirements.

The experiment consisted of two passes during
which the data were acquired simultaneously using the
X- and S-band antennas. Additionally, the first flight was
acquired with X- and S-band across-track interferometers.
Thus, one master and two slaves were available for each
carrier frequency, from which we computed one single-pass
and one repeat-pass interferogram for each band, i.e., we
construct a DFDB data set. The parameters of the experiment
are summarized in Table II.

The multisquint algorithm was applied for the estimation of
residual motion errors in the repeat-pass interferograms, and
errors up to ±3 cm in line of sight were removed, leading
to an almost flat multisquint phase. No precise elevation
model was used to support the image formation and the
DEM generation chain. To account for topography during
MoCo, spectral filtering, and flat-earth removal, a known
mean elevation was considered. Note that since the terrain
variation is relatively small for the majority of the scene (less
than 15 m), the synthetic DEM constructed from the mean
terrain height is enough to ensure a proper SLC focusing.

Within the valid swath, the HoA of the S-band repeat-pass
data set varies from approximately 2 to 6 m, while the HoA
of the X-band repeat-pass data set varies from approximately
0.7 to 2 m. On the other hand, single-pass interferograms
have a much larger HoA ranging from around 100 to 200 m
and 35 to 70 m for S- and X-band data, respectively. Hence,
the unwrapping of the single-pass phases is straightforward
considering the terrain variation of the scene. The residual
interferometric phases obtained from the single-pass data sets

Fig. 28. Estimated wrapped phases from all X- and S-band single- and repeat-
pass interferograms. The single-pass phases are scaled from −π/3 to π/3, and
the repeat-pass phases are scaled from −π to π . (a) (Left) X- and (Right)
S-band single-pass interferometric phase, first tile. (b) (Left) X- and
(Right) S-band single-pass interferometric phase, second tile. (c) (Left) X- and
(Right) S-band single-pass interferometric phase, third tile. (d) (Left)
X- and (Right) S-band repeat-pass interferometric phase, first tile. (e) (Left)
X- and (Right) S-band repeat-pass interferometric phase, second tile.
(f) (Left) X- and (Right) S-band repeat-pass interferometric phase, third tile.

are shown in the first row of Fig. 28, while the repeat-
pass residual phases are shown in the second row. For a
better visualization, the figures were divided in tiles whose
locations can be seen in Fig. 27. Note that the information
over flooded areas (upper part of tile 2 and lower part of tile 3)
is virtually lost in the repeat-pass interferograms due to the
strong temporal decorrelation but can be partially recovered
with the single-pass data. Moreover, note that Fig. 27 shows
the results before any multipath correction has been applied.
Hence, range undulations can be clearly seen in the single-pass
phases.

S- and X-band elevation models were generated using the
suggested chain (see Fig. 2) and considering the algorithms
proposed in Sections IV–VIII, i.e., no dual-frequency fusion
has been applied. The results are shown at the top and bottom
of Fig. 29. A water mask computed from the repeat-pass
coherences and amplitudes has been applied to the results.

The obtained DEMs are compared with an ALS reference to
evaluate the achieved relative and absolute vertical accuracies.
The available laser data were acquired three months prior to
the SAR data, and both F-SAR DEM and the ALS reference
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Fig. 29. Surface models of the Jade Bight obtained with (Top) S-band and (Bottom) X-band data. Both DEMs are geocoded in a UTM grid
with 1 m × 1 m posting. The black and red rectangles highlight ROIs for further evaluation.

Fig. 30. Differences between the F-SAR and ALS elevation models. The first
row gives the S-band comparison, while X-band one appears in the second
row. The differences are scaled from −1 to 1 m and show good agreement
between the obtained DEM and the reference.

Fig. 31. Histograms of the differences between (Left) S-band F-SAR and
ALS elevation models and (Right) X-band F-SAR and ALS elevation models.

were constructed in a UTM grid with 1 m × 1 m posting.
The first row of Fig. 30 shows the difference between the
S-band and ALS models, while the second row gives the
difference between the X-band and ALS models. Overall, good
agreement is observed between the generated models and the
reference. This attests for the good performance not only of
the baseline calibration methodology suggested in Section VI
but also of the filtering approach presented in Section VIII,
which is able to reduce low-pass errors of up to 3 m in the
original repeat-pass data sets down to centimeters.

A quantitative analysis of the achieved accuracies is
obtained from the histograms of the height differences. Fig. 31
shows the histogram of the difference between S-band DEM
and the reference (left) and the histogram of the difference
between X-band DEM and reference (right). The histograms
are similar and show an overall mean difference around 0 m
and a mean absolute difference of less than 10 cm. Note
that due to residual low-pass frequency disturbances and
differences in vegetation height between the F-SAR and the
references models, the histograms are slightly skewed, causing
the slightly higher mean absolute deviation. In both cases,
the standard deviation is around 14 cm.

Fig. 32. Shaded relief images corresponding to the F-SAR elevation
models of the first ROI. The first row shows (Left) S-band and (Right)
X-band single-pass elevation models. The second row shows (Left) S-band
and (Right) X-band repeat-pass elevation models. Tidal channels are resolved
in all the F-SAR DEM with the X-band repeat-pass DEM presenting the finest
detail content.

In the following, two ROIs are evaluated in order to give
a qualitative measurement of the level of detail contained in
the F-SAR elevation models. The locations of the ROIs are
indicated in Fig. 29 by the black and red rectangles.

The first ROI (black rectangle in Fig. 29) encompasses the
bight surface and tidal channels in the middle-western part of
the scene. Shaded relief images of the correspondent F-SAR
models are given in Fig. 32, where S- and X-band single-
pass DEMs appear in the first row and S- and X-band repeat-
pass DEMs are given in the second row. Many fine branches
are visible in both F-SAR repeat-pass DEMs. Furthermore,
it can be seen that the best result is obtained with the X-band
repeat-pass model, while both single-pass models present
considerably higher noise levels. The statistics of the ROI are
evaluated through the plots in Fig. 33.

The second ROI (red rectangle in Fig. 29) is chosen in
the eastern side of the scene, and includes part of the bight,
the dike, vegetated areas, and a few buildings. Shaded relief
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Fig. 33. Histograms of the height differences between the F-SAR and ALS
elevation models corresponding to the first ROI. The first row shows (Left)
S-band and (Right) X-band single-pass results, while the second row shows
(Left) S-band and (Right) X-band repeat-pass results.

Fig. 34. Shaded relief images corresponding to the F-SAR elevation models
of the second ROI. The first row shows (Left) S-band and (Right) X-band
single-pass elevation models. The second row shows (Left) S-band and (Right)
X-band repeat-pass elevation models. Fine features can be distinguished in
both bight and vegetated areas.

images of the F-SAR elevation models are given in Fig. 34.
Again, S- and X-band single-pass DEMs appear in the first
row, and S- and X-band repeat-pass DEMs in the second one.
In all the images, fine features can be distinguished in both
bight and vegetated areas. Also in this example, the superiority
of the repeat-pass products over the single-pass ones is clear.
Note that this ROI contains agricultural fields not present in
the laser DEM. Hence, larger inconsistencies are expected
when directly comparing the reference and F-SAR elevation
models. This is readily seen in the histograms of the height
differences shown in Fig. 35. Both repeat-pass distributions
contain a sidelobe around the mean vegetation height of the
fields. The sidelobe is still recognizable in the X-band single-
pass histogram, but it is lost in the S-band single-pass result
due to the increased noise content. For this ROI, the standard
deviation of the height difference should be interpreted with
caution, since it incorporates not only the errors in the F-SAR
DEM but also the disparity of the topographic content.

Fig. 35. Histograms of the height differences between the F-SAR and
ALS elevation models for the second ROI. The first row shows (Left)
S-band and (Right) X-band single-pass results, while the second row shows
(Left) S-band and (Right) X-band repeat-pass results. Due to the presence of
agricultural fields with tall crops (not included in the ALS reference), larger
inconsistencies are observed.

Fig. 36. Difference between F-SAR S- and X-band DEMs, scaled
from −0.5 to 0.5 m. The image shows that differences in penetration between
S- and X-bands are below a few centimeters for the majority of the scene, and
cause the height differences of around 30 cm for areas with short vegetation.

Differences in penetration between X- and S-band waves
are negligible for the majority of this particular scene. Never-
theless, a few agricultural fields present different topographies
in the two generated DEMs. This can be observed in Fig. 36,
which depicts the difference between S- and X-band F-SAR
elevation models, scaled from −0.5 to 0.5 m. The image shows
that the absolute height difference for vegetated areas is around
30 cm. As expected, in such regions, the X-band DEM is
higher than the S-band one.

Since the main goal of this experiment is to map the
bight area, it is reasonable to merge X- and S-bands into
a final elevation DEM with an improved relative accuracy,
as explained in Section IX. The wavelet fusion scheme
proposed in this paper was performed to combine X- and
S-band data into a final elevation model, neglecting pos-
sible differences in penetration [i.e., using (70)–(75)].
Figs. 37 and 38 show the resulting shaded relief images of
the selected ROIs located at the middle-western and eastern
portion of the bight, respectively. In Figs. 37 and 38, the DEM
presented in the left was constructed by a simple ML esti-
mation, while the one in the right was generated with the
proposed approach. Visually, the ML DEM does not show
much improvement in comparison with the X-band elevation
models in Figs. 32 and 34. In fact, since the quality of the
X-band repeat-pass data is considerably higher, it dominates
the resulting DEM. On the other hand, a quality improvement
of the bight terrain estimation is observed with the wavelet-
domain fusion, which yields a better regularization (i.e., noise
removal), specially within the bight area.

Figs. 39 and 40 show the histograms of the differences
between the final DEM and the ALS reference within the
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Fig. 37. Shaded relief images of the first ROI. Both results are the
combinations of X- and S-band elevation models. For the DEM presented
in (Left), an ML estimation was performed, while for the one in (Right),
the wavelet-domain fusion was performed.

Fig. 38. Shaded relief images of the second ROI. Both results are the
combinations of X- and S-band elevation models. For the DEM presented
in (Left), an ML estimation was performed, while for the one in (Right),
the wavelet-domain fusion was performed.

Fig. 39. Histograms of the height differences between F-SAR final DEM
and ALS reference for the first ROI. (Left) ML estimation. (Right) Proposed
wavelet fusion approach.

selected ROI. In both cases, Figs. 39 and 40 (left) corre-
spond to the DEM estimated with the ML algorithm, while
Figs. 39 and 40 (right) correspond to the results with the
proposed wavelet fusion. For both ROIs, the two estima-
tion strategies yield a small decrease in the height standard
deviation in comparison to the X-band DEM (from 0.08 to
0.06 m and 0.05 m, for the first ROI and from 0.27 to
0.24 m and 0.23 m for the second ROI). The small reduction
in the standard deviation indicates that the main sources of
discrepancies are residual low-pass disturbances in the SAR
products and residual errors in the ALS reference.

Finally, Fig. 41 shows the profiles of the final DEM along
the (left) North and (right) East directions. The profiles were
extracted from the first ROI, i.e., they correspond to intertidal
mudflats including several water tidal channels. The result
of the ML estimation is shown in black curve, the result
considering the wavelet reconstruction appears in red curve,
and the MAP+TV regularization appears in blue curve. The
profiles show that both wavelet and MAP+TV reconstructions
are able to reduce the noise while also fairly recovering small

Fig. 40. Histograms of the height differences between F-SAR final DEM and
ALS reference for the second ROI. (Left) ML estimation. (Right) Proposed
wavelet fusion approach.

Fig. 41. Profiles of the F-SAR final DEM along the (Left) North and (Right)
East directions. In both cases, the result of the ML estimation is shown in
black curve, the result considering wavelet reconstruction appears in red curve,
and the MAP+TV regularization appears in blue curve. An offset of 20 cm
has been introduced in the MAP+TV regularization result in order to improve
visualization.

features. The blocking artifacts in the blue curve are due to
the nature of the TV regularization [109], and can be avoided
by using higher order priors.

XI. CONCLUSION

In this paper, a methodology to generate highly accurate
elevation maps from large-baseline airborne InSAR data has
been described. The procedure uses DFDB data sets to ensure
the relative and absolute height accuracy of the derived model.
This combination profits from the stability of single-pass
interferograms in relation to slowly varying errors and the
low noise sensitivity associated with large-baseline elevation
models.

Specifically, the dual-frequency redundancy is exploited in
the phase unwrapping, unwrapping error correction, base-
line calibration, and regularization steps. On the other hand,
the unbiased single-pass information mainly supports the cor-
rection of low-frequency disturbances and absolute calibration
of the repeat-pass data. Moreover, the single-pass elevation
models can be used to fill the gaps corresponding to areas
where the repeat-pass interferograms are completely decorre-
lated, typically the case of volume scatterers.

The strength of the DFDB configuration is the exploitation
of the consistence between the data sets. Hence, its use is
not suitable when the penetration differences between the
X- and S-band waves are large, which might occur, e.g., when
imaging terrain covered with snow or glaciers. In such cases,
an alternative to promote proper unwrapping is to use smaller
baselines in order to ensure that the penetration differences
are smaller than the HoAs. Alternatively, we can replace the
S-band data set for a second X-band one with a smaller
baseline. In this case, the baselines should be such that the
corresponding HoA is larger than the expected residual low-
pass errors, thus also resulting in decreased relative height
accuracy. Moreover, both solutions will also lead to degraded
absolute referencing due to the suboptimal calibration caused
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by inconsistency between the data sets (differences in the
phase centers or differences between low-pass artifacts).

Although the DEM generation chain was derived for the
DFDB configuration, modifications can be performed accord-
ing to the available data, and the proposed algorithms can be
used according to the characteristics of the specific configu-
rations and systems. As mentioned earlier, it can be adopted
for data from a single-frequency/dual-baseline configuration,
albeit with an overall performance loss. In another example,
if a simultaneous acquisition with different carrier frequencies
is not viable, a dual-frequency configuration can be emu-
lated by splitting the range spectrum of a single data set
into two subbands, provided the bandwidth of the system
allows, as suggested in [13] and [110]. Also, depending on
the required accuracy, the role of the single-pass data to
support calibration can be fulfilled by external references, e.g.,
the TanDEM-X global DEM.

The efficiency of the DFDB configuration and proposed
chain has been validated with airborne SAR data of an
experiment conducted in Germany with the F-SAR sensor
over tidal flats in the Jade Bight in the North Sea, consisting
of two passes separated by an effective baseline of around
30 m, each one acquiring data simultaneously in X- and
S-bands. The proposed algorithms allowed the generation of
elevation models with vertical relative and absolute accuracies
in the order of centimeters in a 1 m × 1 m spatial grid,
unprecedented results for the F-SAR sensor. Although the data
used for the validation are flat, a good performance is also
expected for steep terrain. Note that the proposed calibration
approaches are fairly robust to topography, since they rely
on phase differences. Moreover, the suggested fusion strategy
mainly exploits the consistency between X- and S-band data,
thus not assuming smooth terrain. The critical step for such
scenarios would be the phase unwrapping. In fact, the dual-
channel unwrapping strategy discussed in Section IV also
performs well for complex scene, as shown in [36] using
TanDEM-X large-baseline data acquired over the Atacama
desert/mountains. Moreover, remaining unwrapping errors can
be corrected by the active-contour-based strategy proposed
here (also based on phase differences), provided that the
accuracy of available reference DEMs (e.g., the TanDEM-X
DEM) is good enough to allow for the verification of single-
pass data sets.

APPENDIX

This section provides the solution of the minimization
problem defined for identifying unwrapping errors in X- and
S-band repeat-pass phases. Writing the global functional as

Fε(�) =
6∑

l=1

ξl

∫
�
Lε,l

(
x, y,�,

∂�

∂x
,
∂�

∂y

)
dxdy (80)

where � = [�1 . . . ,�K ], and being the Euler–Lagrange
equation associated with each functional Fε,k and �i
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the final system of coupled PDEs used for the evolution is
given by
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where g() assumes zero on edges and a positive value other-
wise, example

g
(
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res , φSSP
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)
= 1

1+ |∇(G � φXSP
res
)∣∣p+ ∣∣∇(G � φSSP

res
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and the continuous approximations of the Heaviside and Dirac
delta measures are given by [76]

Hε → H, as ε → 0+ (84)

and

δε → δ, as ε → 0+. (85)

As in the original classification in [75], (82) is embedded
in an iterative scheme such that
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(86)

The initialization is performed by simply applying the signed
distance function to initial unwrapping error maps, e.g.,
the ones obtained with (40). The evolution of (86) is then
alternate with the reinitialization

Λ0
i = �t+1

i

Λτ+1
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i − dt
(
sign
(
Λ0

i

)[
1 − ∣∣∇Λτ

i

∣∣]) (87)
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until no further changes are observed in the region
interfaces.

REFERENCES

[1] H. A. Zebker and R. M. Goldstein, “Topographic mapping from
interferometric synthetic aperture radar observations,” J. Geophys. Res.,
vol. 91, no. 5, pp. 4993–4999, 1986.

[2] A. K. Gabriel and R. M. Goldstein, “Crossed orbit interferometry:
Theory and experimental results from SIR-B,” Int. J. Remote Sens.,
vol. 9, no. 5, pp. 857–872, 1988.

[3] M. Eineder et al., “Analysis of SRTM interferometric X-band data:
First results,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS),
vol. 6. Jul. 2000, pp. 2593–2595.

[4] G. Krieger et al., “TanDEM-X: A satellite formation for high-resolution
SAR interferometry,” IEEE Trans. Geosci. Remote Sens., vol. 45,
no. 11, pp. 3317–3341, Nov. 2007.

[5] C. Magnard, M. Frioud, D. Small, T. Brehm, and E. Meier, “Analysis
of a maximum likelihood phase estimation method for airborne multi-
baseline SAR interferometry,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 9, no. 3, pp. 1072–1085, Mar. 2016.

[6] S. Perna et al., “The InSAeS4 airborne X-band interferometric SAR
system: A first assessment on its imaging and topographic mapping
capabilities,” Remote Sens., vol. 8, no. 1, p. 40, 2016.

[7] A. Reigber, “Range dependent spectral filtering to minimize the base-
line decorrelation in airborne SAR interferometry,” in Proc. IEEE
Int. Geosci. Remote Sens. Symp. (IGARSS), vol. 3. Jun./Jul. 1999,
pp. 1721–1723.

[8] D. C. Ghiglia and D. E. Wahl, “Interferometric synthetic aperture radar
terrain elevation mapping from multiple observations,” in Proc. IEEE
6th Digit. Signal Process. Workshop, Oct. 1994, pp. 33–36.

[9] W. Xu, E. C. Chang, L. K. Kwoh, H. Lim, W. Cheng, and
A. Heng, “Phase-unwrapping of SAR interferogram with multi-
frequency or multi-baseline,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp. (IGARSS), vol. 2. Aug. 1994, pp. 730–732.

[10] A. Ferretti, A. M. Guarnieri, C. Prati, and F. Rocca, “Multi-baseline
interferometric techniques and applications,” in Proc. ERS SAR Inter-
ferometry, vol. 406. 1997, p. 243.

[11] K. Schmitt and W. Wiesbeck, “An interferometric SAR processor
avoiding phase ambiguities,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp. (IGARSS), vol. 4. Aug. 1997, pp. 1713–1715.

[12] J. Allievi, A. Ferretti, C. Prati, R. Ratti, and F. Rocca, “Automa-
tion of the DEM reconstruction from ERS Tandem pairs,” in Proc.
IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), vol. 6. Jul. 2001,
pp. 2504–2506.

[13] V. Pascazio and G. Schirinzi, “Estimation of terrain elevation by
multifrequency interferometric wide band SAR data,” IEEE Signal
Process. Lett., vol. 8, no. 1, pp. 7–9, Jan. 2001.

[14] M. Eineder and N. Adam, “A maximum-likelihood estimator to
simultaneously unwrap, geocode, and fuse SAR interferograms from
different viewing geometries into one digital elevation model,” IEEE
Trans. Geosci. Remote Sens., vol. 43, no. 1, pp. 24–36, Jan. 2005.

[15] G. Fornaro et al., “Maximum likelihood multi-baseline SAR interfer-
ometry,” IEE Proc.-Radar Sonar Navigat., vol. 153, no. 3, pp. 279–288,
Dec. 2006.

[16] M. Schmitt and U. Stilla, “Maximum-likelihood estimation for multi-
aspect multi-baseline SAR interferometry of urban areas,” ISPRS J.
Photogramm. Remote Sens., vol. 87, pp. 68–77, Jan. 2014.

[17] V. Pascazio and G. Schirinzi, “Multifrequency InSAR height recon-
struction through maximum likelihood estimation of local planes para-
meters,” IEEE Trans. Image Process., vol. 11, no. 12, pp. 1478–1489,
Dec. 2002.

[18] G. Ferraiuolo, V. Pascazio, and G. Schirinzi, “Maximum a posteriori
estimation of height profiles in InSAR imaging,” IEEE Geosci. Remote
Sens. Lett., vol. 1, no. 2, pp. 66–70, Apr. 2004.

[19] G. Ferraioli, A. Shabou, F. Tupin, and V. Pascazio, “Fast InSAR
multichannel phase unwrapping for DEM generation,” in Proc. Joint
Urban Remote Sens. Event, May 2009, pp. 1–6.

[20] A. Shabou, F. Baselice, and G. Ferraioli, “Urban digital elevation model
reconstruction using very high resolution multichannel InSAR data,”
IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11, pp. 4748–4758,
Nov. 2012.

[21] F. Baselice, G. Ferraioli, V. Pascazio, and G. Schirinzi, “Contextual
information-based multichannel synthetic aperture radar interferometry:
Addressing DEM reconstruction using contextual information,” IEEE
Signal Process. Mag., vol. 31, no. 4, pp. 59–68, Jul. 2014.

[22] C.-A. Deledalle, L. Denis, G. Ferraioli, and F. Tupin, “Combin-
ing patch-based estimation and total variation regularization for 3D
InSAR reconstruction,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp. (IGARSS), Jul. 2015, pp. 2485–2488.

[23] M. Hubig, S. Suchandt, and M. Eineder, “Automatic correction of
baseline and phase unwrapping errors in SAR interferograms,” in Proc.
3rd Eur. Conf. Synth. Aperture Radar, May 2000, pp. 1–4.

[24] J. J. Mohr and J. P. M. Boncori, “An error prediction framework for
interferometric SAR data,” IEEE Trans. Geosci. Remote Sens., vol. 46,
no. 6, pp. 1600–1613, Jun. 2008.

[25] M. Lachaise, T. Fritz, and R. Bamler, “The dual-baseline phase
unwrapping correction framework for the TanDEM-X mission part 1:
Theoretical description and algorithms,” IEEE Trans. Geosci. Remote
Sens., vol. 56, no. 2, pp. 780–798, Feb. 2017. [Online]. Available:
http://elib.dlr.de/114163/

[26] G. Ferraioli, G. Ferraiuolo, and V. Pascazio, “Phase-offset estimation
in multichannel SAR interferometry,” IEEE Geosci. Remote Sens. Lett.,
vol. 5, no. 3, pp. 458–462, Jul. 2008.

[27] J. C. Mura, M. Pinheiro, R. Rosa, and J. Moreira, “A phase-offset
estimation method for InSAR DEM generation based on phase-offset
functions,” Remote Sens., vol. 4, no. 3, pp. 745–761, 2012.

[28] S. Perna, C. Esposito, P. Berardino, A. Pauciullo, C. Wimmer, and
R. Lanari, “Phase offset calculation for airborne InSAR DEM gener-
ation without corner reflectors,” IEEE Trans. Geosci. Remote Sens.,
vol. 53, no. 5, pp. 2713–2726, May 2015.

[29] C. Esposito, A. Pauciullo, P. Berardino, R. Lanari, and S. Perna,
“A simple solution for the phase offset estimation of airborne SAR
interferograms without using corner reflectors,” IEEE Geosci. Remote
Sens. Lett., vol. 14, no. 3, pp. 379–383, Mar. 2017.

[30] M. Pinheiro, A. Reigber, and J. Lloredo, “Improving satellite derived
DEMS by using airborne InSAR data: The TanDEM-X/F-SAR case
of study,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS),
Jul. 2015, pp. 3834–3837.

[31] C. Magnard, M. Frioud, D. Small, T. Brehm, H. Essen, and E. Meier,
“Processing of MEMPHIS Ka-band multibaseline interferometric SAR
data: From raw data to digital surface models,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 7, no. 7, pp. 2927–2941,
Jul. 2014.

[32] G. Krieger et al., “TanDEM-X: A radar interferometer with
two formation-flying satellites,” Acta Astron., vol. 89, pp. 83–98,
Aug./Sep. 2013.

[33] X. Gao, Y. Liu, T. Li, and D. Wu, “High precision DEM generation
algorithm based on InSAR multi-look iteration,” Remote Sens., vol. 9,
no. 7, p. 741, 2017.

[34] I. Hajnsek and T. Busche, “TanDEM-X: Science activities,” in Proc.
10th Eur. Conf. Synth. Aperture Radar (EUSAR), Jun. 2014, pp. 1–3.

[35] S.-K. Lee and J.-H. Ryu, “High-accuracy tidal flat digital elevation
model construction using TanDEM-X science phase data,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 6, pp. 2713–2724,
Jun. 2017.

[36] M. Pinheiro, A. Reigber, and A. Moreira, “Large-baseline InSAR for
precise topographic mapping: A framework for TanDEM-X large-
baseline data,” Adv. Radio Sci., vol. 15, pp. 231–241, Sep. 2017.
[Online]. Available: https://www.adv-radio-sci.net/15/231/2017/

[37] A. Wehr and U. Lohr, “Airborne laser scanning—An introduc-
tion and overview,” ISPRS J. Photogram. Remote Sens., vol. 54,
nos. 2–3, pp. 68–82, Jul. 1999.

[38] J. Shan and S. Aparajithan, “Urban DEM generation from raw LiDAR
data,” Photogramm. Eng. Remote Sens., vol. 71, no. 2, pp. 217–226,
2005.

[39] X. Liu, “Airborne LiDAR for DEM generation: Some critical issues,”
Prog. Phys. Geogr., vol. 32, no. 1, pp. 31–49, 2008.

[40] H. Yu, X. Lu, X. Ge, and G. Cheng, “Digital terrain model extraction
from airborne LiDAR data in complex mining area,” in Proc. 18th Int.
Conf. Geoinform., Jun. 2010, pp. 1–6.

[41] K. A. C. D. Macedo, C. Wimmer, and J. R. Moreira, “Highly accurate
and precise airborne single-pass interferometry for DEM generation
over challenging terrain,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp. (IGARSS), Jul. 2014, pp. 394–397.

[42] L. Marotti, A. Meta, and A. Coccia, “MetaSensing airborne radar:
X- and Ku-band single-pass digital surface model generation,” in
Proc. IEEE 5th Asia–Pacific Conf. Synth. Aperture Radar (APSAR),
Sep. 2015, pp. 184–186.

[43] A. Reigber et al., “Very-high-resolution airborne synthetic aperture
radar imaging: Signal processing and applications,” Proc. IEEE,
vol. 101, no. 3, pp. 759–783, Mar. 2013.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

28 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

[44] T. Fritz, U. Balss, R. Bamler, and M. Eineder, “Phase unwrapping
correction with dual-baseline data for the TanDEM-X mission,” in
Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2012,
pp. 5566–5569.

[45] M. Pinheiro, P. Prats, R. Scheiber, and J. Fischer, “Multi-path correction
model for multi-channel airborne SAR,” in Proc. IEEE Int. Geosci.
Remote Sens. Symp. (IGARSS), vol. 3. Jul. 2009, pp. 729–732.

[46] Y. Mao, M. Xiang, L. Wei, and S. Han, “The mathematic model of
multipath error in airborne interferometric SAR system,” in Proc. IEEE
Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2010, pp. 2904–2907.

[47] J. Dall, “Cross-calibration of interferometric SAR data,” IEE Proc.-
Radar, Sonar Navigat., vol. 150, no. 3, pp. 177–183, Jun. 2003.

[48] M. Pinheiro, R. Scheiber, and A. Reigber, “Combination of repeat and
single-pass dual-frequency airborne InSAR data for accurate height
estimation,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS),
Jul. 2014, pp. 2237–2240.

[49] R. Bamler and P. Hartl, “Synthetic aperture radar interferometry,”
Inverse Problems, vol. 14, no. 4, pp. R1–R54, 1998.

[50] A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and
K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE
Geosci. Remote Sens. Mag., vol. 1, no. 1, pp. 6–43, Mar. 2013.

[51] P. Prats and J. J. Mallorqui, “Estimation of azimuth phase undulations
with multisquint processing in airborne interferometric SAR images,”
IEEE Trans. Geosci. Remote Sens., vol. 41, no. 6, pp. 1530–1533,
Jun. 2003.

[52] A. Danklmayer, B. J. Doring, M. Schwerdt, and M. Chandra, “Assess-
ment of atmospheric propagation effects in SAR images,” IEEE Trans.
Geosci. Remote Sens., vol. 47, no. 10, pp. 3507–3518, Oct. 2009.

[53] M. Jaeger, R. Scheiber, and A. Reigber, “External calibration of multi-
channel SAR sensors based on the pulse-by-pulse analysis of range
compressed data,” in Proc. EUSAR, 2018, pp. 1–4.

[54] A. Reigber, P. Prats, and J. J. Mallorqui, “Refined estimation of time-
varying baseline errors in airborne SAR interferometry,” IEEE Geosci.
Remote Sens. Lett., vol. 3, no. 1, pp. 145–149, Jan. 2006.

[55] W. Xu and I. Cumming, “A region-growing algorithm for InSAR
phase unwrapping,” IEEE Trans. Geosci. Remote Sens., vol. 37, no. 1,
pp. 124–134, Jan. 1999.

[56] E. L. Christensen and M. Dich, “SAR antenna design for ambiguity
and multipath suppression,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp. (IGARSS), Aug. 1993, pp. 784–787.

[57] S. N. Madsen, N. Skou, K. Woelders, and J. Granholm, “EMISAR
single pass topographic SAR interferometer modes,” in Proc. IEEE Int.
Geosci. Remote Sens. Symp. (IGARSS), vol. 1. May 1996, pp. 674–676.

[58] J. Dall, J. Grinder-Pedersen, and S. N. Madsen, “Calibration of a
high resolution airborne 3D SAR,” in Proc. IEEE Int. Geosci. Remote
Sens. (IGARSS) Remote Sens.-A Sci. Vis. Sustain. Develop., vol. 2.
Aug. 1997, pp. 1018–1021.

[59] Y. Kobayashi, K. Sarabandi, L. Pierce, and M. C. Dobson,
“An evaluation of the JPL TOPSAR for extracting tree heights,” IEEE
Trans. Geosci. Remote Sens., vol. 38, no. 6, pp. 2446–2454, Nov. 2000.

[60] E. Chapin, S. Hensley, and T. R. Michel, “Calibration of an across
track interferometric P-band SAR,” in Proc. IEEE Int. Geosci. Remote
Sens. Symp. (IGARSS), vol. 1. Jul. 2001, pp. 502–504.

[61] M. Limbach, B. Gabler, A. D. Maria, R. Horn, and A. Reigber,
“DLR compact test range facility,” in Proc. 6th Eur. Conf. Antennas
Propag. (EUCAP), Mar. 2012, pp. 1276–1280.

[62] C. A. Balanis, Advanced Engineering Electromagnetics (CourseSmart
Series). Hoboken, NJ, USA: Wiley, 2012.

[63] L. Bertel, J. Rojas-Varela, P. Gourvez, and D. Cole, “Polarisation and
ground effects on HF receiving antenna patterns,” Ann. Télécommun.,
vol. 44, nos. 7–8, pp. 413–427, Jul. 1989.

[64] S. J. Orfanidis, Electromagnetic Waves and Antennas. Piscataway, NJ,
USA: Rutgers Univ., 2011.

[65] S. R. Saunders and A. Aragón-Zavala, Antennas and Propagation for
Wireless Communication Systems, 1st ed. New York, NY, USA: Wiley,
1999.

[66] P. Prats, A. Reigber, J. J. Mallorqui, R. Scheiber, and A. Moreira,
“Estimation of the temporal evolution of the deformation using airborne
differential SAR interferometry,” IEEE Trans. Geosci. Remote Sens.,
vol. 46, no. 4, pp. 1065–1078, Apr. 2008.

[67] B. Iglewicz and D. C. Hoaglin, How to Detect and Handle Outliers
(ASQC Basic References in Quality Control). Tucson, AZ, USA:
ASQC Quality Press, 1993.

[68] P. C. Hansen, “REGULARIZATION TOOLS: A MATLAB package
for analysis and solution of discrete ill-posed problems,” Numer.
Algorithms, vol. 6, no. 1, pp. 1–35, Mar. 1994.

[69] P. C. Hansen, “Truncated singular value decomposition solutions to
discrete ill-posed problems with ill-determined numerical rank,” SIAM
J. Sci. Statist. Comput., vol. 11, no. 3, pp. 503–518, 1990. [Online].
Available: http://dx.doi.org/10.1137/0911028

[70] E. Trouvé, M. Caramma, and H. Maître, “Fringe detection in noisy
complex interferograms,” Appl. Opt., vol. 35, no. 20, pp. 3799–3806,
Jul. 1996.

[71] G. W. Davidson and R. Bamler, “Multiresolution phase unwrapping
for SAR interferometry,” IEEE Trans. Geosci. Remote Sens., vol. 37,
no. 1, pp. 163–174, Jan. 1999.

[72] D. W. Marquardt, “An algorithm for least-squares estimation of nonlin-
ear parameters,” J. Soc. Ind. Appl. Math., vol. 11, no. 2, pp. 431–441,
1963.

[73] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” Int. J. Comput. Vis., vol. 1, no. 4, pp. 321–331, 1988.

[74] C. Xu and J. L. Prince, “Gradient vector flow: A new external force for
snakes,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 1997, pp. 66–71.

[75] C. Samson, L. Blanc-Féraud, J. Zerubia, and G. Aubert, “A level set
model for image classification,” in Scale-Space Theories in Computer
Vision (Lecture Notes in Computer Science), M. Nielsen, P. Johansen,
O. F. Olsen, and J. Weickert, Eds. Berlin, Germany: Springer, 1999,
pp. 306–317.

[76] T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE
Trans. Image Process., vol. 10, no. 2, pp. 266–277, Feb. 2001.

[77] L. A. Vese and T. F. Chan, “A multiphase level set framework for image
segmentation using the Mumford and Shah model,” Int. J. Comput. Vis.,
vol. 50, no. 3, pp. 271–293, Dec. 2002.

[78] A. Dubrovina, G. Rosman, and R. Kimmel, “Active contours for multi-
region image segmentation with a single level set function,” in Scale
Space and Variational Methods in Computer Vision (Lecture Notes in
Computer Science), vol. 7893, A. Kuijper, K. Bredies, T. Pock, and
H. Bischof, Eds. Berlin, Germany: Springer, 2013, pp. 416–427.

[79] M. S. Horritt, “A statistical active contour model for SAR image
segmentation,” Image Vis. Comput., vol. 17, nos. 3–4, pp. 213–224,
Mar. 1999.

[80] I. B. Ayed, A. Mitiche, and Z. Belhadj, “Multiregion level-set parti-
tioning of synthetic aperture radar images,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 27, no. 5, pp. 793–800, May 2005.

[81] I. B. Ayed, A. Mitiche, and Z. Belhadj, “Polarimetric image segmen-
tation via maximum-likelihood approximation and efficient multiphase
level-sets,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 9,
pp. 1493–1500, Sep. 2006.

[82] M. Silveira and S. Heleno, “Separation between water and land in SAR
images using region-based level sets,” IEEE Geosci. Remote Sens. Lett.,
vol. 6, no. 3, pp. 471–475, Jul. 2009.

[83] W. Feng, W. Gang, V. Prinet, and R. Kun, “Phase unwrapping based
on active contour model,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp. (IGARSS), vol. 7. Jul. 2003, pp. 4386–4388.

[84] K. Sartor, J. Allen, E. Ganthier, B. Gilbert, and G. B. Tenali, “Method
and apparatus for processing complex interferometric SAR data,”
CA Patent 2 681 742, Sep. 25, 2008.

[85] S. Osher and J. A. Sethian, “Fronts propagating with curvature-
dependent speed: Algorithms based on Hamilton–Jacobi formulations,”
J. Comput. Phys., vol. 79, no. 1, pp. 12–49, Nov. 1988.

[86] M. Lucido, F. Meglio, V. Pascazio, and G. Schirinzi, “Closed-form eval-
uation of the second-order statistical distribution of the interferometric
phases in dual-baseline SAR systems,” IEEE Trans. Signal Process.,
vol. 58, no. 3, pp. 1698–1707, Mar. 2010.

[87] A. Hooper, P. Segall, and H. Zebker, “Persistent scatterer interfero-
metric synthetic aperture radar for crustal deformation analysis, with
application to Volcán Alcedo, Galápagos,” J. Geophys. Res., Solid
Earth, vol. 112, no. B7, Jul. 2007.

[88] D. L. Donoho and J. M. Johnstone, “Ideal spatial adaptation by wavelet
shrinkage,” Biometrika, vol. 81, no. 3, pp. 425–455, 1994.

[89] M. Kazubek, “Wavelet domain image denoising by thresholding
and Wiener filtering,” IEEE Signal Process. Lett., vol. 10, no. 11,
pp. 324–326, Nov. 2003.

[90] F. Luisier, T. Blu, and M. Unser, “A new SURE approach to image
denoising: Interscale orthonormal wavelet thresholding,” IEEE Trans.
Image Process., vol. 16, no. 3, pp. 593–606, Mar. 2007.

[91] G. Chen and S.-E. Qian, “Denoising of hyperspectral imagery
using principal component analysis and wavelet shrinkage,” IEEE
Trans. Geosci. Remote Sens., vol. 49, no. 3, pp. 973–980,
Mar. 2011.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PINHEIRO et al.: GENERATION OF HIGHLY ACCURATE DEMs OVER FLAT AREAS 29

[92] Y. Ding and I. W. Selesnick, “Artifact-free wavelet denoising: Non-
convex sparse regularization, convex optimization,” IEEE Signal
Process. Lett., vol. 22, no. 9, pp. 1364–1368, Sep. 2015.

[93] F. Argenti and L. Alparone, “Speckle removal from SAR images in
the undecimated wavelet domain,” IEEE Trans. Geosci. Remote Sens.,
vol. 40, no. 11, pp. 2363–2374, Nov. 2002.

[94] A. Achim, P. Tsakalides, and A. Bezerianos, “SAR image denoising
via Bayesian wavelet shrinkage based on heavy-tailed modeling,” IEEE
Trans. Geosci. Remote Sens., vol. 41, no. 8, pp. 1773–1784, Aug. 2003.

[95] M. I. H. Bhuiyan, M. O. Ahmad, and M. N. S. Swamy, “Spatially
adaptive wavelet-based method using the cauchy prior for denoising
the SAR images,” IEEE Trans. Circuits Syst. Video Technol., vol. 17,
no. 4, pp. 500–507, Apr. 2007.

[96] C. Lopez-Martinez and X. Fabregas, “Modeling and reduction of
SAR interferometric phase noise in the wavelet domain,” IEEE Trans.
Geosci. Remote Sens., vol. 40, no. 12, pp. 2553–2566, Dec. 2002.

[97] X. Zha, R. Fu, Z. Dai, and B. Liu, “Noise reduction in interferograms
using the wavelet packet transform and Wiener filtering,” IEEE Geosci.
Remote Sens. Lett., vol. 5, no. 3, pp. 404–408, Jul. 2008.

[98] Y. Bian and B. Mercer, “Interferometric SAR phase filtering in
the wavelet domain using simultaneous detection and estimation,”
IEEE Trans. Geosci. Remote Sens., vol. 49, no. 4, pp. 1396–1416,
Apr. 2011.

[99] A. Ferretti, C. Prati, and F. Rocca, “Multibaseline InSAR DEM
reconstruction: The wavelet approach,” IEEE Trans. Geosci. Remote
Sens., vol. 37, no. 2, pp. 705–715, Mar. 1999.

[100] M. Shirzaei and R. Bürgmann, “Topography correlated atmospheric
delay correction in radar interferometry using wavelet transforms,”
Geophys. Res. Lett., vol. 39, no. 1, p. L01305, 2012.

[101] S. G. Mallat, “A theory for multiresolution signal decomposition:
The wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 11, no. 7, pp. 674–693, Jul. 1989.

[102] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli,
“Image denoising using scale mixtures of Gaussians in the wavelet
domain,” IEEE Trans. Image Process., vol. 12, no. 11, pp. 1338–1351,
Nov. 2003.

[103] B. Goossens, A. Pizurica, and W. Philips, “Wavelet domain image
denoising for non-stationary noise and signal-dependent noise,” in
Proc. IEEE Int. Conf. Image Process., Oct. 2006, pp. 1425–1428.

[104] W. Y. Lo and I. W. Selesnick, “Wavelet-domain soft-thresholding for
non-stationary noise,” in Proc. Int. Conf. Image Process., Oct. 2006,
pp. 1441–1444.

[105] I. Atkinson, F. Kamalabadi, S. Mohan, and D. L. Jones, “Asymptoti-
cally optimal blind estimation of multichannel images,” IEEE Trans.
Image Process., vol. 15, no. 4, pp. 992–1007, Apr. 2006.

[106] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way,
3rd ed. San Francisco, CA, USA: Academic, 2008.

[107] I. Daubechies, Ten Lectures on Wavelets. Philadelphia, PA, USA:
SIAM, 1992.

[108] G. Ferraiuolo, F. Meglio, V. Pascazio, and G. Schirinzi, “DEM recon-
struction accuracy in multichannel SAR interferometry,” IEEE Trans.
Geosci. Remote Sens., vol. 47, no. 1, pp. 191–201, Jan. 2009.

[109] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Phys. D, Nonlinear Phenomena, vol. 60,
nos. 1–4, pp. 259–268, 1992.

[110] F. Bovenga, V. M. Giacovazzo, A. Refice, and N. Veneziani, “Multi-
chromatic analysis of InSAR data,” IEEE Trans. Geosci. Remote Sens.,
vol. 51, no. 9, pp. 4790–4799, Sep. 2013.

Muriel Pinheiro was born in Ribeirão Preto, Brazil,
in 1986. She received the B.S. degree in electronic
engineering and the M.S. degree in telecommunica-
tions from the Aeronautical Technological Institute,
São José dos Campos, Brazil, in 2009 and 2010,
respectively, and the Dr. Eng. degree (Hons.) from
the Karlsruhe Institute of Technology, Karlsruhe,
Germany, in 2016.

From 2009 to 2010, she was with BRADAR, Sao
Jose dos Campos, Brazil, where she was involved
in the development of calibration algorithms for

airborne SAR interferometry (InSAR). In 2011, she joined the Microwaves
and Radar Institute, German Aerospace Center, Wessling, Germany, where
she has been a member of the Multimodal Algorithms Group. Her research
interests include signal and image processing, advanced techniques for SAR
image formation, InSAR, high-resolution digital elevation model generation,
and persistent scatterer interferometry.

Andreas Reigber (M’02–SM’10–F’16) received the
Diploma degree in physics from the University of
Konstanz, Konstanz, Germany, in 1997, the Ph.D.
degree from the University of Stuttgart, Stuttgart,
Germany, in 2001, and the Habilitation degree
from the Berlin University of Technology, Berlin,
Germany, in 2008.

He is currently the Head of the SAR Technology
Department, Microwave and Radar Institute, German
Aerospace Center, Wessling, Germany, where he is
leading the development and operation of state-of-

the-art airborne SAR sensors. He is also a Professor of remote sensing and
digital image processing with the Technische Universität Berlin, Berlin. His
research interests include various aspects of multimodal, multichannel, and
high-resolution SAR processing and postprocessing.

Dr. Reigber has received several prize paper awards, among them the IEEE
TGRS Transactions Prize Paper Award in 2001 and 2016 for his works on
polarimetric SAR tomography and nonlocal speckle filtering, respectively, and
also the IEEE TGRS Letters Prize Paper Award in 2006 for his work on
multipass SAR processing.

Rolf Scheiber received the Diploma degree in elec-
trical engineering from the Technical University of
Munich, Munich, Germany, in 1994, and the Ph.D.
degree in electrical engineering from the University
of Karlsruhe, Karlsruhe, Germany, in 2003. His
Ph.D. thesis was on airborne SAR interferometry
(InSAR).

Since 1994, he has been with the Microwaves
and Radar Institute, German Aerospace Center,
Wessling, Germany, where he has developed the
first operational high-precision interferometric SAR

processor for its E-SAR airborne sensor. Since 2001, he has been the Head
of the SAR Signal Processing Group, SAR Technology Department, where
he is currently supervising the F-SAR and Digital Beamforming Synthetic
Aperture Radar airborne SAR processing activities. He also supported several
ESA projects, including the Sentinel Program with several activities related
to the demonstration with TerraSAR-X of the new Terrain Observation by
Progressive Scan imaging mode. His research interests include algorithm
development for airborne and spaceborne SAR focusing, InSAR, differen-
tial InSAR, SAR tomography, circular SAR, and also radio ice-sounding
algorithms and applications.

Pau Prats-Iraola (S’03–M’06–SM’13) was born
in Madrid, Spain, in 1977. He received the Inge-
niero and Ph.D. degrees in telecommunications
engineering from the Universitat Politècnica de
Catalunya (UPC), Barcelona, Spain, in 2001 and
2006, respectively.

In 2001, he was a Research Assistant with the
Institute of Geomatics, Castelldefels, Spain. In 2002,
he was with the Department of Signal Theory and
Communications, UPC, where he was involved in
the field of airborne repeat-pass interferometry and

airborne differential SAR interferometry (InSAR). From 2002 to 2006, he
was an Assistant Professor with the Department of Telecommunications
and Systems Engineering, Universitat Autònoma de Barcelona, Barcelona.
In 2006, he joined the Microwaves and Radar Institute, German Aerospace
Center, Wessling, Germany, where he has been the Head of the Multimodal
Algorithms Group since 2009. He has co-authored about 50 peer-reviewed
journal papers in the field. His research interests include high-resolution
airborne/spaceborne monostatic/bistatic SAR processing, InSAR, advanced
interferometric acquisition modes, persistent scatterer interferometry, SAR
tomography, and end-to-end SAR simulation.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

30 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Alberto Moreira (M’92–S’96–F’04) received the
B.S.E.E. and M.S.E.E. degrees from the Aeronau-
tical Technological Institute, São José dos Campos,
Brazil, in 1984 and 1986, respectively, and the
Dr. Eng. degree (Hons.) from the Technical Univer-
sity of Munich, Munich, Germany, in 1993.

From 1996 to 2001, he was a Chief Scientist
and an Engineer with the SAR Technology Depart-
ment, German Aerospace Center (DLR), Wessling,
Germany. Under his leadership, the DLR airborne
SAR system has been upgraded to operate in inno-

vative imaging modes, such as polarimetric SAR interferometry and SAR
tomography. Since 2001, he has been the Director of the Microwaves and
Radar Institute, DLR, and a Full Professor with the Karlsruhe Institute of
Technology, Karlsruhe, Germany, in the field of microwave remote sensing.
His DLR’s Institute contributes to several scientific programs and projects
for spaceborne SAR missions, such as TerraSAR-X, TanDEM-X, SAR-Lupe,
and SAR-Lupe follow-on and also Kompsat-6, PAZ, Sentinel-1, BIOMASS,
and Tandem-L. The mission TanDEM-X, led by his Institute, has generated a
global, high-resolution digital elevation model of the Earth with unprecedented
accuracy, in which he served as an Initiator and a Principal Investigator. He has

authored or co-authored over 350 publications in international conferences and
journals and eight book chapters. He holds 21 patents in the radar and antenna
field. His research interests include encompass spaceborne radar end-to-end
system design, microwave techniques and system concepts, signal processing,
and remote sensing applications.

Dr. Moreira has served as the President of the IEEE Geoscience and
Remote Sensing Society (GRSS) in 2010. He was a recipient of several
international awards, including the IEEE AESS Nathanson Award in 1999 for
the Young Radar Engineer of the Year, the IEEE Kiyo Tomiyasu Field
Award in 2007, the IEEE W.R.G. Baker Award from the IEEE Board of
Directors in 2012, and the IEEE GRSS Distinguished Achievement Award
in 2014. He and his colleagues received the GRSS Transactions Prize Paper
Award in 1997, 2001, and 2007, respectively, and the GRSS Letters Prize
Paper Award in 2015 and 2017, respectively. He was the Founder and the
Chair of the GRSS German Chapter from 2003 to 2008. He served as
an Associate Editor for the IEEE GEOSCIENCE AND REMOTE SENSING

LETTERS from 2003 to 2007. He has been serving as an Associate Editor
for the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

since 2005. Since 2012, he has been serving as the Principal Investigator
for the Helmholtz Alliance—Remote Sensing and Earth System Dynamics,
comprising of 18 research institutes and 30 associated international partners.


