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A Stabilizing Controller for Regulation
of UAV With Manipulator
Min Jun Kim , Konstantin Kondak, and Christian Ott

Abstract—Stability is not trivial in aerial manipulation tasks be-
cause of the dynamical coupling between the aerial vehicle and the
manipulator. This is especially true when the manipulator becomes
heavy, so that its dynamics can be significant. In this letter, a stabi-
lizing controller for the regulation of overall system will be designed
without using any assumptions on the dynamic model. In addition,
thorough discussion with simulation validation is presented.

Index Terms—Aerial systems: mechanics and control, motion
control.

I. INTRODUCTION

IN RECENT years, as a natural extension of successful
achievements in unmanned aerial vehicle (UAV) studies,

aerial manipulation has become an emerging research field. In
this field, there are many interesting research branches such as
mechanical design [1]–[4], modeling methodology [5], [6], and
intelligence [7]–[9]. In addition to these, control design is also an
important branch to accomplish successful aerial manipulation.

Control of UAV-manipulator (in short, UAV-M hereinafter)
system is a quite complicated problem because the UAV is dy-
namically coupled with the robotic manipulator, and moreover,
the UAV is typically under-actuated.1 Control problem becomes
especially important when the dynamics of the manipulator be-
comes significant. One example is the UAV-M in Fig. 1(a) which
is equipped with a 7 Degrees of Freedom (DoF) manipulator.
Since the manipulator weighs about 14 kg (while the UAV body
weighs around 35 kg), the dynamics of the manipulator can
significantly affect that of the UAV, and vice versa. Our pre-
vious study [11] has shown that, while the UAV is hovering,
manipulator’s simple swing motion can actually cause instabil-
ity. To overcome this, [12] showed that UAV and manipulator
can be controlled independently if the Center of Mass (CoM)
of the whole system lies on the gravity vector of the UAV. For
example, [8], [13] used this strategy in the aerial manipulation
tasks. However, the analysis was rather conceptual because it
was based on a simplified model, and formal stability proof was
not provided.

Although several approaches have employed full dynamics
of the UAV-M systems in control design [5], [14]–[20], formal
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1As a matter of fact, fully-actuated UAVs are also being studied [10].

Fig. 1. (a) UAV-M system developed in DLR. (b) Schematic diagram of
the system when the joint angles are zero. This letter assumes that the user
can command thrust force (fth ), torque around the UAV (τuav ), and joint
torque (τm ) to the UAV-M. However, for our system, angular velocity can be
commanded instead of τuav . This feature will be discussed in Section IV. For
any cases, the system does not have actuation along the body x, y directions
(under-actuation).

stability proof was often missing or was based on some as-
sumptions of the UAV-M model. [14], [15] analyzed admissible
manipulator motion that does not harm flight stability, and [16]
solved optimization problem to find a manipulator trajectory
that minimizes the coupling dynamics. [5], [17] provided great
insight into UAV-M control problems, but the controller was
designed only for planar systems. In some studies, the control
law was designed as if the UAV-M has full actuation, and is
distributed to actuators using least square [18] or small angle
assumption [19]. A recent study [20] showed that the UAV-M
is a flat system if the manipulator is attached to the CoM of the
UAV and is operating in a plane, which can be considered to
be almost true for many systems. However, these assumptions
seems hard to be verified on our system because the manipulator
is mounted far from the CoM and is able to move in 3D.

Therefore, in this letter, we solve a regulation problem of
the UAV-M systems without any assumptions on the UAV-M
model in the stability proof. Although the regulation is one of
the most fundamental questions in control, to the best of authors’
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knowledge, its solution has not been presented yet. The key idea
is to express the UAV dynamics in the body frame, so that we
have zero force inputs along x and y directions in the equation
of motion (recall that UAV is under-actuated; there is no input
along body x, y directions as shown in Fig. 1(b)). In contrast,
when the UAV dynamics is expressed in the global reference
frame, the thrust input influences every x, y, z directions via
rotation matrix. Due to the zero inputs, the formulation can
be handled easily. A stabilizing controller can be designed by
coupling the body linear velocity with body angular velocity
properly.

Another advantage of the proposed controller is that it has
a clear working principle which (i) assigns physical meanings
to the control gains, and (ii) allows us to apply the proposed
controller to the UAV-M which has an angular velocity servo
instead of a torque servo for the UAV part (for instance, our
system in Fig. 1). In addition, the limitation of the proposed
controller in the tracking scenario will be also discussed.

The rest of the paper is organized as follows. Section II
presents the modeling of the UAV-M, and Section III presents
the control design. Discussions on the controller will be pre-
sented in Section IV with simulation validation in Section V.
Section VI concludes the paper.

II. MODELING OF UAV-MANIPULATOR SYSTEMS

A. Notations

The following notations are used throughout the paper.
� qm ∈ �n : Generalized coordinates of the n DoF robotic

manipulator.
� vb = [vb,x vb,y vb,z ]T (or wb ): Body linear (angular) ve-

locity. The body frame {b} is located on the CoM of the
UAV.

� ξ = [vT
b wT

b q̇T
m ]T : UAV-M velocity vector.

� v: Linear velocity represented in the global frame {g}.
� r: The origin of {b} from that of {g}, represented in {g}.

Note that v = ṙ.
� gRb : The orientation of {b} frame seen from the {g} frame

(bRg is the inverse).
� φ = [α β γ]T : Roll, pitch, and yaw angles.
� Q(φ): The map from Euler rate to the body angular veloc-

ity; namely, wb = Q(φ)φ̇.
� fth , τ uav : Thrust and torque inputs on the UAV represented

in the body frame.
� τm : Joint torque input on the manipulator.
� M ∈ �(6+n)×(6+n) , C ∈ �(6+n)×(6+n) , and g ∈ �6+n :

Inertia matrix, Coriolis and centrifugal matrix, and gravity
vector represented in {b}, respectively.

� The first 3 by n + 6 components of M and C can be
expressed as

M t � M |first 3×(n+6) = [M tt M tr M tm ] , (1)

Ct � C|first 3×(n+6) = [Ctt Ctr Ctm ] . (2)

Here, the subscripts t, r, and m represent ‘translational’,
‘rotational’, and ‘manipulator’, respectively. Similarly, gt

represents the first three elements of g.
� M̄ , C̄, and ḡ: Dynamic parameters evaluated at the desired

manipulator’s configuration qm = qdes
m . Similar to the pre-

vious, ḡt = [ḡt,x ḡt,y ḡt,z ]T represents the first three com-
ponent of ḡ.

B. Modeling

The equation of motion of UAV-M in the body frame can be
expressed as

M(qm )ξ̇ + C(qm , ξ)ξ + g(φ, qm ) = τ b (3)

with previously introduced notations. Here, τ b represents the
control command in the body frame, and is given by

τ b = [0 0 fth τ T
uav τ T

m ]T , (4)

where fth ∈ �, τ uav ∈ �3 , and τm ∈ �n are control inputs to
be designed. Note that, by expressing the dynamic model in the
body frame, the first two elements of τ b are zero. This makes it
easy to handle the equation in Section III.

The following two properties of the UAV-M model will be
used later.

Property 1: If the roll and pitch angles (α and β) are zero,
then the gravitational forces along body x, y directions are zero
(i.e., ḡt,x = 0 and ḡt,y = 0).

Property 2: M tr is given by M tr = −mbr∨
C oM . Here, m is

the total mass, (·)∨ is the skew-symmetric operator, and brC oM

is the position of the CoM from the origin of {b}.

III. A STABILIZING CONTROLLER

A. Control Goal

As one of the most fundamental control problems, this letter
tackles the regulation task. Namely, we aim at achieving the
followings.

� r → rdes . The desired position of the UAV is given in the
global frame.

� α → 0, β → 0, γ → γdes ; or in short, φ → φdes =
[0 0 γdes ]T . Roll and pitch angles should be regulated to
zero eventually. Otherwise, the UAV will move.

� qm → qdes
m . The robotic arm moves to its desired config-

uration.
Moreover, one assumption on the control task is made.
Assumption 1: In the desired configuration, the CoM of the

overall system does not lie on the x-y plane of the {b} frame. 2

Note that, under this assumption, the first 2 by 2 components of
M tr has full rank from Property 2.

B. Control Design

This section proposes a stabilizing controller for the regu-
lation of UAV-M systems. One of the main difficulties in ac-
complishing the control goal is the under-actuation nature. Note
that, due to the absence of control inputs along body x, y direc-
tions, it is not possible to control the UAV position along these
directions directly. Physically speaking, however, it can be con-
trolled indirectly by controlling the orientation of the UAV. To
realize this physical intuition, the proposed approach first ap-
plies feedback linearization to an output variable composed of
wb and q̇m . Then the classical pole-placement technique is ap-
plied only to the latter component, which allows us to decouple
the manipulator dynamics from the UAV dynamics by employ-
ing the cascade control theory. The remaining output wb will
be coupled with the UAV position (and velocity) properly to
achieve asymptotic stability.

2This may limit the workspace, but not likely to be restrictive in practice
because the workspace of the UAV-M is usually below the UAV.
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To begin with, let us rewrite (3) as follows to highlight that
the UAV-M is an under-actuated system

Mξ̇ + Cξ + g = Buu + Bthfth , (5)

where

Bu =
[

03×(3+n)
I(3+n)×(3+n)

]
∈ �(6+n)×(3+n) , (6)

Bth =

[ 02×1
1

0(3+n)×1

]
∈ �(6+n)×1 . (7)

Here, fth and u = [τ T
uav τ T

m ]T are the control inputs to be
designed.

From Fig. 1(b), it is natural to select fth as a dedicated control
input for body z direction. Another control input u will be
designed to control an output variable y. Since u is composed
of the torque around UAV (τ uav ) and joint torques (τm ), it is
natural to define y by3

y = [0(3+n)×3 I(3+n)×(3+n) ]︸ ︷︷ ︸
BT

u

ξ

=
(

wb

q̇m

)
. (8)

To apply feedback linearization, take time derivative of y:

ẏ = BT
u ξ̇

= BT
u M−1(−Cξ − g + Buu + Bthfth). (9)

Then, using

u = (BT
u M−1Bu )−1

×
(

BT
u M−1(Cξ + g − Bthfth) +

(
ẇref

b

q̈ref
m

))
, (10)

where BT
u M−1Bu is always invertible, the closed-loop dy-

namics of (9) becomes4

ẇb = ẇref
b and q̈m = q̈ref

m . (11)

However, note that (11) does not express the UAV translational
dynamics which appears as internal dynamics:

M tt v̇b + M tr ẇ
ref
b + M tm q̈ref

m + Ctξ + gt =

( 0
0

fth

)
(12)

Now, the problem is to design fth , ẇref
b and q̈ref

m that stabilize
the closed-loop UAV-M dynamics (11)–(12).

To make analysis simple, the manipulator dynamics (e.g.,
M tm q̈ref

m ) can be eliminated from (12) by employing a well-
known result from the cascaded system control literature
[21]. 5

3y can be chosen alternatively. One example is shown in Appendix.
4Note that the reference signal differs from the desired signal in the sense

that the former one is a part of control law and the latter is the input to the
controller. Namely, the reference signal is designer’s choice. By defining the
reference properly, the regulation to the desired value can be achieved.

5Theorem 1 introduces local stability. Stronger versions can be found in [21,
Th. 4.2 and Corollary 4.6]. We only introduce Theorem 1 mainly because the
Euler angle representation is local expression. In fact, the proposed controller
of this letter satisfies the stronger version as well because it satisfies exponential
stability.

Fig. 2. Cascaded control structure. If ẋ1 = f1 (x1 ) is asymptotically stable,
then it is sufficient to investigate asymptotic stability of ẋ2 = f2 (0, x2 ) to
conclude asymptotic stability of the original system (13)–(14).

Fig. 3. Similar to Fig. 2, it is sufficient to investigate (17)–(18), because
asymptotic (in fact, even exponential) stability of the robotic manipulator can
be achieved.

Theorem 1 (Asymptotic stability of cascaded systems):
Consider a system

ẋ1 = f 1(x1), (13)

ẋ2 = f 2(x1 ,x2). (14)

If ẋ1 = f 1(x1) is locally asymptotically stable to x1 = 0 and
ẋ2 = f 2(0,x2) is locally asymptotically stable to x2 = 0, then
(13)–(14) is locally asymptotically stable to x1 = 0 and x2 = 0.
This result can be described as Fig. 2. �

To apply Theorem 1, let us define

q̈ref
m = −Kd q̇m − Kp(qm − qdes

m ), (15)

where Kd and Kp are positive definite gain matrices. The
resulting closed-loop dynamics for the manipulator is

q̈m + Kd q̇m + Kp(qm − qdes
m ) = 0 (16)

which falls into the form of (13). The remaining dynamics (i.e.,
(12) and ẇb = ẇref

b ) becomes (14).
Hence, according to Theorem 1, it is now sufficient to inves-

tigate stability of the following (see Fig. 3):

M̄ tt v̇b + C̄ttvb + M̄ tr ẇ
ref
b + C̄trwb + ḡt =

( 0
0

fth

)
,

(17)

ẇb = ẇref
b . (18)

Recall that (̄·) represents the dynamic parameter (·) evaluated
at qm = qdes

m , q̇m = 0.
The control problem is reduced to design fth and ẇref

b to
stabilize (17)–(18). Since fth can only affect body z direction,
the UAV rotational dynamics will be coupled with the UAV
translational dynamics by means of ẇref

b . The following theorem
states the main result of the paper.

Theorem 2 (A stabilizing controller): Under the Assump-
tion 1 and under the control law (10) with (15), define

fth = −Dz ṽb,z − gt,z , (19)

ẇref
b = −D(Dw w̃b − M̄

T
tr ṽb) +

d

dt
(QDφφ), (20)
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where D,Dw > 0 are diagonal control gain matrices, and Dz >
0 is a scalar control gain. Moreover, w̃b and ṽb are

w̃b = wb + QDφ(φ − φdes) (21)

ṽb = vb + bRgDr (r − rdes), (22)

where Dr ,Dφ > 0 are diagonal gain matrices. Then the con-
trolled UAV-M system is locally asymptotically stable if the
gains Dw ,Dφ are sufficiently large, and the control goal in
Section III-A can be achieved.

Proof. See Section III-C.
The goal of the controller (19)–(20) is to achieve ṽb and

w̃b = 0 which imply the first order stable error dynamics

v + Dr (r − rdes) = 0 and φ̇ + Dφ(φ − φdes) = 0 (23)

because vb = bRgv and wb = Qφ̇. Intuitively speaking, (23) is
likely to be achievable because the closed-loop dynamics of (17)
has a stable PD dynamics of ṽb , and that of (18) has a stable PD
dynamics of w̃b . Note that the first 2 by 2 of M̄ trDM̄

T
tr which

is relevant to body x, y linear velocity is always positive definite
(recall Assumption 1), and body z direction has a dedicated
control fth . However, the coupling caused by wb in (17) and vb

in (18) makes the formal stability proof difficult. This difficulty
can be overcome by employing singular perturbation theory, as
presented in next section.

C. Theoretical Derivation (Proof of Theorem 2)

Singular perturbation analysis (also known as two-time scale
analysis) will be applied to (17)–(18) by letting Dw = Dφ =
1
ε I3×3 and D = I3×3 for simplicity with some ε > 0. First, let
us investigate (18) whose closed-loop dynamics is

˙̃wb +
1
ε
w̃b = M̄

T
tr ṽb . (24)

Noting that w̃b = wb − wdes
b = Q[φ̇ + 1

ε (φ − φdes)], (24) be-
comes

Q[φ̈ +
2
ε
φ̇ +

1
ε2 (φ − φdes)] + Q̇

[
φ̇ +

1
ε
(φ − φdes)

]

= M̄
T
tr ṽb . (25)

Let us now introduce a new time variable

σ =
1
ε
t (26)

which flows ε times faster than the real world time scale t. For
this reason, σ will be called the fast time scale. In addition to
the fast time scale, the fast variable is defined by

z =
1
ε2 (φ − φdes). (27)

Then, (25) becomes, as ε → 0,

Q[z′′ + 2z′ + z] = M̄
T
tr ṽb , (28)

where z′ = d
dt/ε z = d

dσ z.
On the other hand, (17) can be expressed as

v′
b = 0 (29)

in the time scale σ. Namely, vb can be considered as a
frozen variable in (28), and consequently, z converges to
z = Q−1M̄

T
tr ṽb exponentially fast in the time scale σ.

Now in the time scale t, noting that, as ε → 0, wb =
Qφ̇ = εQz′ → 0, φ − φdes = ε2z → 0, and ẇref

b = Qz −
M̄

T
tr ṽb → 0, (17) can be written as

[
m 0 0
0 m 0
0 0 m

]

︸ ︷︷ ︸
=M̄ t t

⎡
⎣ cos(γdes) sin(γdes) 0
− sin(γdes) cos(γdes) 0

0 0 1

⎤
⎦

︸ ︷︷ ︸
= b Rg |α = β = 0

v̇

= Bthfth (30)

because Ṙ = 0, wb = 0, and φ = φdes (α = β = 0 and γ =
γdes). Here, the Property 1 introduced in Section II is used.
Consequently, the exponential convergence of rz → rdes

z can
be shown easily from the third row of (30). We can conclude
exponential stability of r → rdes from the following Lemma.

Lemma 1: Assume that φ ≡ φdes (hence, wb = ẇb ≡ 0 fol-
lows) and rz ≡ rdes

z . This assumption implies rx = rdes
x and

ry = rdes
y .

Proof: If rx �= rdes
x or ry �= rdes

y , then ẇb is nonzero
which results in the contradiction, because ẇref

b,xy =
M̄

T
tr |first 2 by 2ṽb,xy is nonzero from the Assumption 1. Hence

rx = rdes
x and ry = rdes

y must hold.
In singular perturbation literature, (28) is called boundary

layer system, and (30) is called reduced system. So far, we have
investigated an extreme case ε → 0. To conclude exponential
stability for a more relaxed condition, the following theorem
which is a well-known result from the singular perturbation
theory [22] can be applied.

Theorem 3 (Stability using singular perturbation analysis):
If the boundary layer system is exponentially stable and the
reduced system is exponentially stable, then there exists ε∗
such that the original system is exponentially stable for 0
< ε < ε∗. �

Hence, according to the cascade structure (Theorem 1) and
the singular perturbation analysis (Theorem 3), the controlled
UAV-M system is asymptotically stable for small enough ε (or
sufficiently large Dw and Dφ ).

IV. DISCUSSION

A. Working Principle and Gain Selection Strategy

The theoretical derivation of the proposed controller starts
from Fig. 3 which states that the analysis of UAV dynamics can
be performed without considering the manipulator dynamics
explicitly (but, the static part should be still taken into account).
Namely, having a reliable control scheme for the manipula-
tor, the UAV control can be designed in the decoupled manner.
Howevever, this does mean that the UAV and manipulator are
controlled independently, because the feedback linearizing ac-
tion (10) contains coupling.

Remark 1: A cascaded control structure is often understood
as a cascade of fast and slow subsystems. However, Theorem 1
requires asymptotic stability of the subsystems, and does not ask
about convergence speed. It is obvious that, under the proposed
approach, the UAV cannot be asymptotically stabilized while the
manipulator is moving. But, this does not mean that the UAV-M
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Fig. 4. Based on the working principle, the proposed controller can be ap-
plied not only to the torque controlled UAV-M, but also to the (partially) servo
controlled UAV-M.

Fig. 5. The manipulator moved while hovering. Although the movement was
close to the full swing, stability could be maintained.

will be destabilized. According to Theorem 2, the controlled
UAV-M will be eventually asymptotically stabilized regardless
of the manipulator’s and the UAV’s convergence speed. �

The UAV control can be performed by fth in (19) and ẇref
b in

(20). In principle, feedback linearization (10) should be applied
to guarantee stability of which analysis requires perfect refer-
ence tracking. However, physically speaking, ẇref

b design will
be the most important part of the controller, and other control
methods can be used as far as the reference tracking is reason-
able. For example, local servo control can be applied instead
of the feedback linearization, as will be further discussed in
Section IV-B.

Because multiple control gains appear in the controller (19)–
(20), it is necessary to have a gain selection strategy. Roughly
speaking, similar to (25), the closed-loop dynamics of (18) can

be expressed as

Q[φ̈ + (Dw + D)φ̇ + DDw Dφ(φ − φdes)]

= DM̄
T
tr

bRg

(
v + Dr (r − rdes)

)
. (31)

If the right hand side is zero (meaning that there is no cou-
pling between translational dynamics and rotational dynamics),
φ will converge to the desired (recall that φdes = [0 0 γdes ]T )
regardless of the position error. In the proposed approach, posi-
tion error exists on the right hand side to perturb the rotational
dynamics when the asymptotic convergence is not achieved.

Therefore, the gains of left hand side determine the closed-
loop rotational dynamics, and those of the right hand side de-
termine the amount of perturbation. Namely, if the left hand
side gains are too large compared to the right hand side gains,
the convergence speed will be very slow because the rotational
dynamics excessively attenuates the perturbation. On the other
hand, if the right hand side gains are too large compared to the
left ones, the resulting behavior will be too shaky because of
too large perturbation. The gain Dz is rather independent to the
other gains because z direction is weakly coupled to the rota-
tional dynamics (note that there is a dedicated control input,
fth ). Because the exponential convergence of x, y directions is
a consequence of the convergence of body z direction (Lemma
1), fth should be designed to have strong control (see also
Appendix).

Apart from Dz , we have to tune four gains D, Dw , Dw , and
Dr which are complicatedly coupled as shown in (31). In this
letter, the gains were selected by the following procedure.

1) D is chosen based on M̄
T
tr which influences the right

hand side. In particular, the first 2 by 2 block matrix of
M̄

T
tr (which is determined by the total mass and height of

the CoM in the desired configuration) will be important,
because it defines the coupling relation between roll, pitch
and body x, y directions.

2) The left hand side gains Dw and Dφ are chosen to have
(nearly) critical damped behavior of the rotational dynam-
ics when the right hand side is zero.

3) Dr is chosen by increasing it from a small value. If the
resulting response is not satisfactory, return to the second
step with different D value.

As an example, we started with D = 0.1 I because
M̄

T
tr |first 2 by 2 was about [[0 − 10]T [10 0]T ] in our simulation

validation in Section V. We increased D in every iterations,
and in each iterations, responses of Dr = 0.1I , 0.5 I , and I
were compared. After a few iterations, the following gains were
selected and used in the implementation.

Dw = 20I, Dφ = 5I, D = I, Dr = 0.5I, and Dz = 100.
(32)

The resulting behaviors for different Dr values will be shown
in Section V-B to validate the discussion.

B. Implementing Without Torque Servo Interface

The resulting control law is given in fth , τ uav , and τm. How-
ever, in practice, some systems including ours in Fig. 1(a), do not
have torque servo interface. Our system, as an example, accepts
fth command, but not τ uav . Instead, we can command reference
angular velocity to the UAV. For the manipulator, either position
or torque can be commanded.
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Fig. 6. Simulation results with increasing Dr , while the other gains were fixed: Recall (32). The resulting motions were very similar to those of second order
systems, as expected. The maximum overshoot of rx was 0 → 2.6 → 53.3%. While the 10 to 90% rise time was improved with Dr (8.7 → 2.0 → 1.0 sec
for rx ), 2% settling time was not (21.5 → 11.76 → 13.64 sec for rx ). Considering all these, Dr = 0.5 I was chosen. (a) Dr = 0.1 I. (b) Dr = 0.5 I. (c)
Dr = I.

Fig. 7. The proposed controller was applied to UAV-M equipped with the
position servo manipulator and angular velocity servo UAV, as shown in Fig. 4.
Note that this implementation is almost model-free. ew ,xy z in the third row de-
notes the tracking error of angular velocity. Despite imperfect reference tracking,
stability was maintained.

Based on the working principle discussed in Section IV-A,
the proposed controller can be applied to our system without
any extensions, as shown in Fig. 4. Note that in this case, the
controller is almost model-free: M̄

T
tr is the only modeling term

in ẇref
b (see (20)). Fortunately, M̄ tr = −mbr∨

C oM |qm =qd e s
m

can
be computed with a small effort.

C. Limitation in Tracking Case

This letter has tackled the regulation problem which is one
of the most fundamental questions in control. In some real

world scenarios, however, the robotic manipulator should be
able to follow a certain trajectory. This section shows the lim-
itation of the controller when applied to the tracking scenario.
When the robotic manipulator is following a trajectory, say,
qdes

m (t), q̇des
m (t), q̈des

m (t), the internal dynamics is

M̄ tt v̇b + M̄ tr ẇ
ref
b + M̄ tm q̈des

m + C̄tξ + gt =

( 0
0

fth

)
.

(33)

Compared to (12), q̈ref
m is replaced by q̈des

m . For the regulation
case, once qm has converged to the desired value qdes

m , the
influence of the manipulator dynamics on the internal dynamics
(33) is gone. However, in the tracking case, even if the perfect
tracking is achieved, the influence of the manipulator still exists
because q̈des

m (and q̇des
m ) is not zero. From (33), it is clear that the

amount of manipulator’s motion will directly impact the internal
dynamics (i.e., the UAV translational dynamics). This feature
will be further discussed in the simulation studies.

V. SIMULATION VALIDATION

To show that the proposed controller is indeed a stabilizing
one, simulation studies are provided in this section. In addition,
the discussions in Section IV are also validated. The rigid body
dynamics (3) was used to simulate the UAV-M in Fig. 1. The
UAV which has 37.6 kg mass with diag{1.46 0.36 1.46} kg · m2

inertia, and 7 DoF DLR light weight robot (LWR) manipulator
(14 kg) were used in the simulation. The LWR was mounted
32 cm away from the CoM of the UAV. The simulated UAV-M
with qm = 0 is shown in Fig. 1(b).

A. Validation of the Proposed Controller

To validate the proposed controller, we performed the follow-
ing task:

� UAV position: rdes = 0 → [0 0 1]T m.
� UAV orientation: φdes = 0.
� manipulator position: qdes

m = 0 → [0 − π
2 01×5 ]T → 0,

periodically.
Here, the arrow → represents the step command. For the

manipulator position, only the second joint was commanded to
−π/2 to generate nearly full swing motion that significantly
influences the UAV dynamics. It is shown in [11] that, while
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Fig. 8. Simulation results for the tracking case. Left: large and fast trajectory (the 2nd joint travels 90◦ in the fully stretched configuration). Right: small and
slow trajectory (the 2nd joint travels 15◦). The maximum deviations of rx were about 0.073 m (left) and 0.0046 m (right).

hovering, the manipulator’s simple swing can destabilize the
UAV-M system.

It is clear that the UAV position will be influenced as the
robotic manipulator moves due to the dynamic coupling (recall
(33)). In the simulation result (Fig. 5), as soon as the position
error occurred due to the manipulator’s motion, angular motion
was generated according to ẇref

b in (20). As a result, asymptotic
stability could be achieved. Note also that the qm is not influ-
enced by UAV motions, because the closed-loop manipulator
dynamics (16) is decoupled via feedback linearization and
pole-placement.

B. Validation of the Gain Selection Strategy

In this section, to validate the gain selection strategy discussed
in Section IV-A, Dr was increased as Dr = 0.1 I → 0.5 I →
I , while the other gains were fixed according to (32).

� UAV position: rdes = 0 → [10 10 10]T m.
� UAV orientation: φdes = 0.
� manipulator position: qdes

m = 0.
The results are summarized in Fig. 6. Although asymptotic

stability could be achieved for every gains, more shaky motion
was generated as the gain Dr increased (see the y axis of RPY
angle plots). Considering the resulting responses, Dr = 0.5 I
was chosen as the final control gain.

C. Implementation on Non-Torque Controllable UAV-M

To validate the discussion in Section IV-B, the proposed con-
troller was implemented to the UAV-M which is not equipped
with a torque servo interface. The UAV angular velocity servo

and manipulator position servo were implemented using local
PI and PID control, as shown in Fig. 4. The same task with
Section V-A was performed. Although the control performance
was reduced because of the imperfect reference tracking, the
controlled UAV-M was stable (Fig. 7).

D. Tracking Control

As discussed in Section IV-C, UAV positioning error will
occur when the tracking control is applied. To investigate this
in more detail, we compare two tasks:

� For both tasks, UAV position: hovering in r = [0 0 1]T m.
� For both tasks, UAV orientation: φdes = 0.
� For task 1, manipulator position: qdes

m (t) = [0; π
4 sin

( π
10 t) 01×5 ]T . For task 2: qdes

m (t) = [0; π
24 sin( π

10 t)
01×5 ]T .

The task 1 and 2 respectively imply 90
◦

and 15
◦

swing with 10
sec period in the fully stretched configuration. Since the pole-
placement was applied to the manipulator, qm followed the de-
sired trajectory exactly. However, as discussed in Section IV-C,
the amount of position error was directly affected by that of
manipulators motion; the maximum deviation of rx was about
0.073 m for the task 1, and was about 0.0046 m for the task 2
(see Fig. 8).

VI. CONCLUSION AND FUTURE WORKS

In this letter, a stabilizing regulation controller for UAV-M
systems is proposed. Although the regulation is a fundamental
question in control problems, to the best of authors’ knowledge,
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this is the first time showing the full proof. According to the
working principle discussed in Section IV, the controllers for
the UAV and the manipulator can be designed in the decoupled
manner. Since multiple gains appear in the control law, a gain
tuning strategy is discussed. In addition, the proposed approach
can be applied to the UAV-M which has angular velocity servo
instead of torque servo for UAV part. In this case, the implemen-
tation is almost model-free. Limitation on the tracking case is
also discussed. These features were validated in the simulation
studies.

Many unsolved problems are left. For example, the proposed
approach should be extended to (i) tracking control, and (ii)
Cartesian space control to tackle more practically relevant sce-
narios. Furthermore, (iii) to accomplish the manipulation tasks,
interaction with the environment should be incorporated in the
future.

APPENDIX

The output variable y can be selected alternatively by

y = [0(4+n)×2 I(4+n)×(4+n) ]ξ

=

⎛
⎝ vb,z

wb

q̇m

⎞
⎠ (34)

Now, the pole-placement technique can be further applied to
vb,z and/or γ. But, still, wb,xy must be coupled with vb,xy to
guarantee stability. It would be worthwhile to mention that,
in the authors’ experience, (34) showed better result in terms
of control performance (e.g., convergence speed). This can be
understood from the discussion in Section IV-A. However, (34)
results in complicated model-based control law for fth , while
(19) is model-free.
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