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Natriuretic peptides are commonly considered cardiovas-
cular and renal hormones. Indeed, genetic natriuretic 

peptide deletion promotes arterial hypertension and associated 
organ damage.1 Conversely, pharmacological natriuretic pep-
tide augmentation lowers blood pressure. Less recognized is 
the fact that natriuretic peptides potently affect lipid and glu-
cose metabolism. Through these metabolic actions, natriuretic 
peptides may provide a pathophysiological link between car-
diovascular and metabolic disease. Indeed, arterial hyperten-
sion and insulin resistance or overt type 2 diabetes mellitus 
commonly occur in the same patients. Similarly, heart failure 
is associated with impaired skeletal, muscular oxidative func-
tion and insulin resistance.2,3 The review focusses on recent 
epidemiological, genetic, physiological, and pharmacological 
evidence linking the natriuretic peptide system with metabolic 
disease. Moreover, we discuss clinical trials evidence suggest-
ing that natriuretic peptide modulation could be pursued fur-
ther in metabolic disease prevention and treatment.

The Cardiac Natriuretic Peptide System
ANP (atrial natriuretic peptide) and BNP (B-type natriuretic 
peptide) are released from cardiac atria and ventricles, respec-
tively. Both peptides are produced as preprohormones and are 
stored as prohormones in intracellular granules. The native 
peptides are released in equimolar amounts with N-terminal 
peptide fragments, which are more stable than the native hor-
mones and can serve as natriuretic peptide release markers. 
Stretch of atrial or ventricular cardiomyocytes which can be 
secondary to increased sodium intake, physical exercise, or 
diseases associated with volume overload triggers natriuretic 
peptide release. Both natriuretic peptide and their N-terminal 
peptide fragments are clinically established heart failure 
biomarkers. Once released, natriuretic peptides raise renal 
sodium excretion, elicit vasodilation, and are the physiologi-
cal antagonists of the renin-angiotensin system.4 Natriuretic 
peptides also attenuate sympathetic nervous system activity 
at least in part through interaction with central vasopressin 
pathways.5 ANP and BNP responses are primarily mediated 
by the GCA (guanylyl cyclase-coupled natriuretic peptide 

receptor; also known as NPR-A [natriuretic peptide recep-
tor A]). NPR-C, which is sometimes referred to as scavenger 
receptor, is devoid of guanylyl cyclase activity and facilitates 
cellular natriuretic peptide uptake and degradation. In addi-
tion, natriuretic peptides are enzymatically cleaved by nepri-
lysin. Neprilysin also degrades other peptides potentially 
modulating cardiovascular and metabolic regulation, such as 
bradykinin, endothelin-1, and glucagon-like peptide 1.

Epidemiological Association Between Natriuretic 
Peptides, Metabolic Risk, and Blood Pressure

In large-scale epidemiological studies, natriuretic peptide bio-
markers showed strong associations with glucose metabolism 
and type 2 diabetes mellitus risk independently of established 
risk markers, including excess adiposity. In 3333 Framingham 
study participants without heart failure, plasma NT-proBNP 
and NT-proANP (N-terminal proANP and BNP) levels were 
inversely related to all components of the metabolic syndrome 
except for arterial hypertension.6 Furthermore, natriuretic 
peptide levels were reduced in participants with insulin resis-
tance indicated by an elevated homeostasis model assessment 
index.6 Among 1274 participants of the KORA (Cooperative 
Health Research in the Augsburg Region) F4 cohort, the 
odds ratio for having central obesity, elevated triglycerides, 
the metabolic syndrome, impaired fasting glucose, or type 
2 diabetes mellitus was substantially reduced in those with 
midregional (MR)-proANP plasma levels in the highest quar-
tile.7 Remarkably, MR-proANP increased together with blood 
pressure. Yet, circulating MR-proANP concentrations were 
inversely related to carotid intima-media thickness suggest-
ing that metabolic and cardiovascular traits associated with 
MR-proANP may translate to structural vascular disease.7

The evidence on natriuretic peptide associations with 
glucose and lipid metabolism from cross-sectional surveys 
is strongly supported by longitudinal studies using incident 
type 2 diabetes mellitus as end point. In 1828 participants of 
the Malmo Diet and Cancer Study without diabetes mellitus 
at inclusion, reduced circulating MR-proANP concentrations 
heralded increased risk for type 2 diabetes mellitus after full 
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adjustment for traditional risk factors.8 The overall association 
was primarily explained by excess diabetes mellitus risk in 
participants in the lowest MR-proANP quartile.8 Conversely, 
in a more recent analysis, circulating MR-proANP values in 
the high normal range were associated with lower prevalence 
of insulin resistance during follow up.9 Among 7822 ARIC 
study (Atherosclerosis Risk in Communities) participants, 
NT-proBNP measurements at baseline were inversely related 
to risk for new-onset diabetes mellitus during a median follow-
up of 12 years across sex, ethnicity, and obesity subgroups.10 
Others confirmed the association in older populations.11 A 
smaller scale mechanistic study in lean healthy individuals 
suggests that the association between reduced natriuretic pep-
tides and impaired metabolism is not explained by an effect of 
insulin resistance or perturbed glucose metabolism on cardiac 
natriuretic peptide release.12

Although reduced natriuretic peptide measurements 
are associated with incident and future metabolic risk, the 
state-of-affairs seems more complicated for blood pressure, 
as indicated above. Moreover, in normotensive blacks, ele-
vated BNP measurements were associated with increased 
risk for longitudinal increases in blood pressure.3 There are 
no data suggesting that natriuretic peptides could increase 
blood pressure. Instead, increased natriuretic peptide release 
seems to be a compensatory response attempting to restrain 
blood pressure.

Genetic Evidence Linking Natriuretic Peptide 
Deficiency With Metabolic Disease and 

Elevated Blood Pressure
Common variants in the genes encoding ANP and BNP pre-
cursors affect their circulating levels.13 Alleles associated with 
increased natriuretic peptide concentrations were also associ-
ated with lower blood pressure and reduced odds of having 
arterial hypertension.13 Recently, the micro RNA miR-425 was 
shown to negatively regulate ANP production, and a common 
genetic variant makes ANP production resistant to miR-425.14 
Post-translational modifications of proBNP seem to regulate 
BNP release.15 Compared with whites, blacks exhibit 40% 
lower circulating NT-proBNP concentrations after adjustment 
for clinical covariates.16 Genetic variations may contribute to 
ethnic differences in natriuretic peptide levels and susceptibil-
ity to cardiovascular and metabolic disease.

Among participants of the Malmo Diet and Cancer Study, 
27 307 individuals were genotyped for the rs5068 variant of 
the gene encoding the ANP precursor, which is associated 
with increased circulating ANP concentrations. Carriers of 
at least 1 copy of the rs5068 G allele exhibited a lower like-
lihood of incident diabetes mellitus within 14-year follow 
up.17 The association between rs5068 and a favorable meta-
bolic profile was also shown in blacks.18 In a study apply-
ing Mendelian randomization, the observed association 
between the rs198389 polymorphism and type 2 diabetes 
mellitus was compared with the expected association. The 
latter was computed from associations between NT-proBNP 
level and type 2 diabetes mellitus and NT-proBNP differ-
ences associated with the rs198389 C allele.11 The analysis 
suggested a causal inverse relationship between BNP and 
type 2 diabetes mellitus.

Together, the epidemiological and genetic evidence 
strongly suggests that reduced availability of, both, ANP and 
BNP predisposes to insulin resistance, type 2 diabetes melli-
tus, and elevated blood pressure, whereas increased natriuretic 
peptide availability seems to be protective.

Relative Natriuretic Peptide Deficiency in 
Obesity

The tight association between excess adiposity and arte-
rial hypertension, as well as type 2 diabetes mellitus may 
be explained in part by paradoxical natriuretic peptide defi-
ciency. Given the increase in cardiac volume loading in 
obesity, one would expect to observe increased natriuretic 
peptide release. Instead, several large cohort studies reported 
inverse associations between circulating plasma natriuretic 
peptide levels, generally their N-terminal cleavage products 
and obesity.19,20 Thus, adiposity seems to reduce natriuretic 
peptide availability through decreased release together with 
increased natriuretic peptide clearance. The latter may result 
in part from adipose NPR-C scavenger receptor upregulation 
in obesity, particularly, in individuals with concomitant arte-
rial hypertension.21,22 Finally, obesity may negatively affect 
natriuretic responses as indicated by reductions in GCA gene 
and protein expression in subcutaneous abdominal adipose 
tissue of obese subjects with and without type 2 diabetes mel-
litus23–25 and in skeletal muscle.26

Physical Exercise and Weight Loss Augment 
Natriuretic Peptide Availability

Both physical exercise and weight loss are often recom-
mended for cardiovascular and metabolic disease preven-
tion. Some of the beneficial responses to these interventions 
may be mediated through increased natriuretic peptide avail-
ability and action. In healthy men, exercise on a bicycle 
ergometer acutely increased circulating ANP concentrations 
≈2-fold with less pronounced changes in BNP concentra-
tions.27 Similar exercise-related responses have been observed 
in patients with heart failure or with obesity.22,28 The response 
may be driven by increased venous return and cardiac filling 
pressure because exercise-induced ANP secretion is amplified 
by β-adrenoreceptor blockade.29 Moreover, exercise during 
water immersion further augmented ANP release.30 Exercise-
mediated ANP release increases with exercise repetition.31 A 
cohort study recently reported a positive correlation between 
physical activity level determined by triaxial accelerometry 
and plasma BNP concentrations.32 Finally, in middle-aged 
obese individuals, GCA expression in human skeletal muscle 
was positively correlated with oxidative capacity and was 
upregulated through aerobic exercise training.33

The natriuretic peptide system has been assessed before 
and after weight loss in overweight and obese individuals expe-
riencing modest weight loss through lifestyle interventions and 
massive weight loss through bariatric surgery. In overweight 
to obese individuals, weight loss through hypocaloric dieting 
during 6 months did not change the circulating MR-proANP 
concentrations suggesting that there was no major change in 
ANP release.22 In other studies, multimodal interventions, 
including exercise and hypocaloric dieting substantially 
increased NT-proBNP and MR-proANP concentrations.34–36 
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We speculate that the addition of physical exercise to weight 
loss programs may be more effective in increasing natriuretic 
peptide release compared with interventions solely relying on 
caloric restriction. In any case, even modest weight loss is suffi-
cient to reduce adipose NPR-C mRNA expression.22,36 A reduc-
tion in natriuretic peptide clearance could conceivably increase 
natriuretic peptide availability even in the setting of unchanged 
release. In the event, modest weight loss through hypocaloric 
dieting enhanced the natriuretic and cGMP-response to ANP 
infusion in obese hypertensive human subjects.37

Several studies showed that substantial body weight 
reductions after bariatric surgery elicit a more robust increase 
in circulating NT-proBNP concentrations compared with the 
response observed with lifestyle interventions.35,38

Pharmacological Manipulation of Natriuretic 
Peptide Signaling

Recombinant ANP (Caperitide) and BNP (Nesiritide) have been 
developed for intravenous treatment of acutely decompensated 
heart failure. Nesiritide also ameliorated resistant arterial hyper-
tension in a smaller scale study.39 Their short plasma half-life 
and the need for intravenous or subcutaneous infusion preclude 
their chronic use. Therefore, newer designer natriuretic peptides 
that differ from the native peptides in terms of efficacy, specific-
ity, and resistance to enzymatic degradation have been devel-
oped.40 Another option to augment the system is to attenuate 
natriuretic peptide clearance. However, neprilysin is a promis-
cuous enzyme that in addition to natriuretic peptides degrades 
many other substrates. In particular, neprilysin interferes with 
the conversion of angiotensin I and II,41 limiting the utility of 
neprilysin inhibition as monotherapy. Dual inhibition angioten-
sin of II subtype 1 receptor and neprilysin inhibition with sacubi-
tril/valsartan decreases blood pressure more than angiotensin II 
subtype 1 receptor blockade alone.42 The PARADIGM-HF trial 
(Prospective Comparison of ARNI With ACEI to Determine 
Impact on Global Mortality and Morbidity in Heart Failure) 
showed improved survival in sacubitril/valsartan-treated patients 
with heart failure and reduced left ventricular ejection fraction 
compared with patients on enalapril.43 PDE5 (phosphodiesterase 
5) inhibition selectively blocks cGMP degradation, the second 
messenger of GCA and of soluble guanylyl cyclase, which is 
activated by nitric oxide. Thus, PDE5 inhibition does not selec-
tively augment natriuretic peptide signaling. PDE5 inhibitors 
are currently approved for the treatment of pulmonary arterial 
hypertension and erectile dysfunction.

Natriuretic Peptide Influences on Cellular 
Metabolism

In the early 2000, we demonstrated a potent lipolytic effect 
of natriuretic peptides in human isolated adipocytes.44,45 
The response requires binding to GCA to activate a cGMP-
dependent signaling pathway. Subsequently, cGK-Iα (cGMP-
dependent protein kinase) is activated, which phosphorylates 
1 rate-limiting enzyme of lipolysis, the hormone-sensitive 
lipase and perilipin.46

Natriuretic peptides induce a thermogenic program and 
uncoupling protein 1 in human mesenchymal-adipose–
derived stem cells–derived adipocytes.47 Activation of the p38 
MAPK-ATF2 (mitogen-activated protein kinase–activating 

transcription factor-2) and PGC1α (peroxisome proliferator-
activated receptor-gamma coactivator-1α) pathway through 
cGK-I seem to be involved.47 The response requires mTORC1 
(mammalian target of rapamycin complex 1) activation 
through direct Raptor Ser791 phosphorylation.48 Natriuretic 
peptide signaling in adipocytes increases both oxygen con-
sumption rate and mitochondrial oxidative gene expression. 
The process may involve AMP-activated protein kinase.49 
Finally, natriuretic peptides promote glucose uptake in human 
adipocytes in a cGMP-dependent manner, an effect which is 
blunted in adipocytes from obese individuals.50

Chronic treatment of human primary myotubes with natri-
uretic peptides upregulates PGC1α gene and protein expres-
sion, as well as mitochondrial oxidative genes and proteins, 
oxygen consumption, and fat oxidation.33 Natriuretic peptide–
treated human primary myotubes were protected from palmi-
tate-induced lipotoxicity and insulin resistance.26 However, no 
acute effect on glucose uptake in human skeletal muscle cells 
was observed.

Collectively, the literature suggests that natriuretic peptide 
signaling controls fatty acid mobilization from adipocytes, as 
well as mitochondrial biology and cellular energy metabolism 
in adipocytes and skeletal myocytes (Figure 1).

Metabolic Natriuretic Peptide Actions in 
Animal Models

Some natriuretic peptide actions related to lipid mobiliza-
tion exhibit strong species specificity limiting the utility of 
animal models. Indeed, the relative resistance to the lipolytic 
effect of natriuretic peptides in adipocytes could be because of 
high NPR-C expression in certain species.51 In mice, genetic 
NPR-C deletion restores a normal lipolytic response to 
ANP.47 Full and adipose-specific NPR-C knockout mice fea-
tured reduced white fat pad mass concomitant with increased 
browning and UCP1 (uncoupling protein 1) protein expres-
sion.47,52 Transgenic mice overexpressing BNP were partly 
protected from high-fat diet–induced weight gain and glucose 
intolerance. Elevated oxygen consumption and fat oxidation 
through increased muscular mitochondrial respiration were 
likely involved.53 Ubiquitous cGK-I overexpression elicited 
a similar response.53 BNP- and cGK-I-transgenic mice also 
exhibit a browning of white fat pads, thus rendering white adi-
pocyte hypermetabolic with a thermogenic potential.

Preclinical studies with chronic treatment of mouse mod-
els for obesity and type-2 diabetes mellitus with natriuretic 
peptides have also been informative on their metabolic role 
and therapeutic potential. In obese diabetic db/db mice, 12 
weeks of BNP infusion improved insulin and glucose toler-
ance.54 BNP treatment reduced cardiac left ventricular mass 
and improved systolic function likely by ameliorating cardiac 
pressure overload and blood pressure. Cardiomyocyte apop-
tosis and cardiac fibrosis were also attenuated on BNP. We 
observed a remarkable effect of 4 weeks BNP treatment in 
obese and diabetic mice on blood glucose control and glu-
cose tolerance. BNP treatment significantly reduced HbA1c 
(glycated hemoglobin A1c) levels and improved insulin sen-
sitivity in obese diabetic db/db mice.26 A similar response was 
observed in obese high-fat fed mice, in which BNP improved 
glucose tolerance and insulin sensitivity in skeletal muscle. 
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Improved insulin signaling in skeletal muscle was paralleled 
by significant reductions in diacylglycerols and ceramides lev-
els, as well as an upregulation of lipid oxidation rate.26 We 
consistently noted reduced natriuretic peptide signaling, that 
is, reduced GCA expression and increased NPR-C expression, 
in adipose tissues and in skeletal muscle of obese and dia-
betic mice. NPR-C inhibition may be a promising therapeutic 
avenue in obesity and type-2 diabetes mellitus. Moreover, in 
one study, PDE5 inhibition in high-fat diet fed mice improved 
insulin sensitivity by enhancing insulin action in skeletal 
muscle,55 whereas another study failed to confirm the effect 
even showing worsened glucose tolerance.56 Increasing cGMP 
signaling through soluble guanylyl cyclase, which is engaged 
by nitric oxide rather than natriuretic peptides, protected from 
weight gain and ameliorated glucose metabolism.57

Remarkably, high-fat feeding led to reduction in the 
expression of GCA receptors in metabolic tissues together 
with NPR-C upregulation in adipose tissue without changes 
in circulating BNP concentrations.26 The finding suggests that 
changes in natriuretic peptide signaling and, perhaps, reduced 
natriuretic peptide availability at the tissue level may precede 
systemic changes in natriuretic peptides.

Mechanistic Studies on Human Metabolism
Intravenous ANP infusion increases adipose tissue lipoly-
sis and free fatty acid availability in a dose-dependent man-
ner.58–60 Lipolysis increases in adipose tissue but not in skeletal 
muscle.59 Furthermore, short-term ANP infusion augmented 
lipid oxidation and postprandial energy expenditure in healthy 
men while decreasing blood pressure.59,61 An increase in the 
ketone β-hydroxybutyrate suggested that hepatic lipid oxida-
tion contributed to the response.61 The latter may be particu-
larly relevant in the setting of heart failure because the failing 
heart shifts substrate use to ketones62 and metabolic natriuretic 
peptide actions may not desensitize in such patients.63

Natriuretic peptides modulate cytokine and adipokine 
responses and interfere with gut hormone secretion. For 
example, human BNP-32 infusion elicited ghrelin release 
while decreasing appetite.64 ANP infusion has been shown to 
increase the circulating insulin-sensitizing adipokine adipo-
nectin.65 All these findings strongly suggest that the natriuretic 
peptide system has an important role in the crosstalk between 
cardiovascular and metabolic regulation in humans.66

Clinical Trials Evidence
Thus far, relatively few clinical trials assessed influences of 
natriuretic peptide manipulation on metabolic outcomes. A 
trial including obese patients with arterial hypertension tested 
the hypothesis that sacubitril/valsartan improves insulin sen-
sitivity compared with the metabolically neutral comparator 
amlodipine. After 8-week treatment, sacubitril/valsartan, but 
not amlodipine, improved insulin sensitivity determined by 
hyperinsulinemic-euglycemic clamp.67 Abdominal adipose 
tissue interstitial glycerol concentrations increased with sacu-
bitril/valsartan, but decreased with amlodipine. Whole-body 
lipolysis and substrate oxidation did not change with either 
treatment.67 The trial also assessed lipid metabolism dur-
ing endurance exercise, which is potent stimulus for lipid 
mobilization. Exercise increased adipose tissue and systemic 
lipolysis. However, the response was not augmented on sacu-
bitril/valsartan treatment.68 The finding is in line with cellu-
lar studies suggesting that neprilysin in adipocytes does not 
control natriuretic peptide-mediated lipolysis.69 Furthermore, 
sacubitril/valsartan treatment for 8 weeks did not alter the 
abdominal subcutaneous adipose tissue transcriptome and 
expression of proteins involved in lipolysis, natriuretic peptide 
signaling, and oxidative metabolism.70 A post hoc analysis of 
PARADIGM-HF showed persistently lower hemoglobin A1c 
concentrations in patients treated with sacubitril/valsartan 
compared with patients on enalapril.71 Insulin treatment was 

Figure 1.  Integrative model of the various 
metabolic actions of ANP (atrial natriuretic 
peptide) in adipose tissue and in skeletal 
muscle. Interventions targeting the natriuretic 
peptide system through changes in 
natriuretic peptide and changes in natriuretic 
responsiveness. The figure uses the response 
of physical exercise as an example. Acute 
exercise increases ANP secretion, whereas 
chronic exercise upregulates ANP signaling 
in adipose tissue and in skeletal muscle. 
ANP induces fat oxidative capacity while 
ameliorating high-fat diet–mediated lipotoxicity 
in mouse skeletal muscle. In addition, 
ANP promotes lipolysis, browning, oxygen 
consumption, and glucose uptake in white and 
brown/beige adipocytes. All these biological 
effects collectively improve insulin and glucose 
metabolism. PGC1α indicates peroxisome 
proliferator-activated receptor-gamma 
coactivator-1α; and UCP, uncoupling protein.
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initiated in 7% of sacubitril/valsartan-treated patients and in 
10% of the enalapril-treated patients. Similarly, fewer patients 
on sacubitril/valsartan required oral antidiabetic medications.

In a recent randomized placebo-controlled trial in over-
weight individuals with prediabetes, treatment with sildenafil 
25 mg thrice daily improved whole-body insulin sensitivity 
assessed by hyperinsulinemic-euglycemic clamp.72

Potential Clinical Implications
Cardiovascular and metabolic diseases are tightly linked 
suggesting that there is a crosstalk between metabolic and 
cardiovascular organs. Epidemiology, genetics, mechanism-
oriented investigations, and clinical trials suggest that cardiac 
natriuretic peptides are important in that regard. Decreased 
natriuretic peptide signaling predisposes to arterial hyper-
tension and insulin resistance, which may progress to type 2 
diabetes mellitus. Conversely, augmenting natriuretic peptide 
signaling lowers blood pressure, while improving oxidative 
metabolism and insulin sensitivity (Figure  2). The potential 
implications for patients with obesity and arterial hyperten-
sion, who are prone to relative natriuretic peptide deficiency 
are obvious. However, natriuretic peptide-mediated cardio-
metabolic crosstalk may also be relevant for other cardio-
vascular conditions. For example, heart failure is associated 
with abnormalities in skeletal muscle oxidative capacity73 and 
insulin resistance.2 It is tempting to speculate that natriuretic 
peptide-mediated improvements in metabolism could be ben-
eficial in such patients. The idea that metabolism could be 
improved through increased natriuretic peptide availability 
in arterial hypertension and in heart failure, which are both 
associated with elevated natriuretic peptide release is coun-
terintuitive. Perhaps, natriuretic peptide release while being 
increased is nevertheless insufficient to rescue metabolism. 
We speculate that there could be resistance to natriuretic 
peptide actions in peripheral tissues. Yet, natriuretic peptide-
mediated lipolysis does not desensitize in patients with heart 

failure.63 In any event, further increases in natriuretic peptides 
through neprilysin inhibition improved glucose metabolism in 
both conditions.67,71 Natriuretic peptide availability and action 
can be affected through nonpharmacological measures, such 
as weight loss and physical exercise (Figure  2). Moreover, 
the system can be augmented through pharmacological 
approaches (Figure  2). We think that the potential of such 
drugs in addressing both, cardiovascular and associated meta-
bolic disease deserves to be studied in more detail. However, 
pharmacological manipulation of natriuretic peptide signal-
ing or other approaches affecting cGMP may not be without 
risks. For example, excess lipid mobilization could promote 
cachexia and worsen insulin sensitivity.
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