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Motivation – MDO Processes @ VicToria  
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Integrated Aero-Structural  

Wing  Optimization (IAWO) 

Many Discipline Highly- 

Parallel Approach (MDHP) 

Multi-Fidelity Gradient-Based 

Approach (MFGB) 

• Three MDO processes within VicToria/HAP2 presented @ DLRK2018 (e.g. Ilic et al.a) 

• Aerodynamics is covered by various presentation (e.g.  Ritter et al.b and Merle et.al.c)  

• Missing Disciplines:  

o Overall Aircraft Design (OAD) 

o Structural Analysis and Design 

o Loads Analysis 

a) C. Ilic¹, M. Abu-Zurayk¹, T. Wunderlich¹, J. Jepsen¹, M. Schulze¹, M. Leitner¹, A. Schuster¹, 
S. Dähne¹, M. Petsch¹, R.-G. Becker¹, S.-A. Zur¹, S. Gottfried¹; ¹DLR, DE 
Overview of Collaborative High Performance Computing-Based MDO of Transport 
Aircraft in the DLR Project VicToria 
 

b) M. Ritter, DLR AE, DE; L. Reimer¹, R. Heinrich¹, W. Mönnich, DLR FT, DE; ¹DLR AS, DE 
Maneuver Simulation of a Flexible Transport Aircraft with HiFi-Methods and 
Comparison to Experimental Data 
 

c) Andrei Merle¹, Arno Ronzheimer¹, Philipp Bekemeyer¹, Stefan Görtz¹, Stefan Keye¹, Lars 
Reimer¹; ¹DLR, DE 
Gradient-based Optimization of a Flexible Long-Range Transport Aircraft using a High-
Dimensional CAD-ROM Parameterization 
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Motivation -  Disciplines Besides Aerodynamics  
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Integrated Aero-Structural  

Wing  Optimization (IAWO) 

Many Discipline Highly- 

Parallel Approach (MDHP) 

Multi-Fidelity Gradient-Based 

Approach (MFGB) 

Sorting and bringing the „other“ disciplines besides aerodynamics „in-line“: 
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Motivation -  DLR Institutes Involved 

> T. Klimmek et al. > Parameterized Disciplinary Sub-Processes within High-Fidelity-based Aircraft MDO > DLRK2018 > 4-6 Sep. 2018 

Integrated Aero-Structural  

Wing  Optimization (IAWO) 

Many Discipline Highly- 

Parallel Approach (MDHP) 

Multi-Fidelity Gradient-Based 

Approach (MFGB) 

SL FA BT AE AE SR FA BT AE DLR Institutes: 
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OAD – Initializing Design 

Inputs: 

• AC configuration 

• TLAR 

 

Using: 

• Topological rules to initialize 

configuration 

• Configuration specific design 

knowledge 

 

Outputs: 

• AC model 

(CPACS 

Dataset) 
VicToria MDO process 

database 

Domain C
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Knowledge-Based Model Generator

Rule-Based Production System
IF … THEN … à topological changes
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Rule 1 Rule 2 Rule N

generates

Product Model Instance

uses

Domain-Specific-Ontology A

uses

uses
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Solution Path Generator
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Design Knowledge 

A

uses
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OAD – Enhanced Design 
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Domain C

Domain B

Domain A

Knowledge-Based Model Generator

Rule-Based Production System
IF … THEN … à topological changes

Domain A Rule-Base

Rule 1 Rule 2 Rule N

generates

Product Model Instance

uses

Domain-Specific-Ontology A

uses

uses

Exports to

Solution Path Generator
parametric changes

uses

Domain-Specific 
Design Knowledge 

A

uses

uses

CPACS modeled 
in SysML

CPACS XML-File

Inputs: 

• AC model 

• Enhancement specification 

 

Using: 

• Topological rules to initialize 

details 

• Design knowledge (configuration 

and component specific) 

 

Outputs: 

• Enhanced AC model  

(e.g. added structure,  

control surfaces,  

cabin layout …) 
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Structural Modelling – General Tasks 

Set-up structural models as finite element models (FEM) to: 

• Estimate component/structural mass 

• Use the elastic model for loads, aeroelastic, controller design, and 

performance analysis (together with CFD) 

• Investigate detailed/local structural characteristics (e.g. holes) 

• Investigation of the structural concepts (e.g. fuselage for crash analysis) 

• Use structural dimensioning methods (sizing, structural optimization with 

aluminum and/or carbon fibre reinforced plastic) 

> T. Klimmek et al. > Parameterized Disciplinary Sub-Processes within High-Fidelity-based Aircraft MDO > DLRK2018 > 4-6 Sep. 2018 

à Various model generator methods and tools have 

been developed by FA, BT, and AE to serve the 

individual requirements and tasks in the three 

MDO processes. 
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Structural Modelling –  

Wing & Tail with DELiS (FA) 

> T. Klimmek et al. > Parameterized Disciplinary Sub-Processes within High-Fidelity-based Aircraft MDO > DLRK2018 > 4-6 Sep. 2018 

• Further development of DELiS (FA) for structural 

model generation from ANSYS tool to Gmsh based 

mesh generator (FE-tool independent) 

• Generation of ANSYS and MSC Nastran FEMs 

 

Gmsh 
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Structural Modelling –  

Wing & Tail with DELiS (FA) 

> T. Klimmek et al. > Parameterized Disciplinary Sub-Processes within High-Fidelity-based Aircraft MDO > DLRK2018 > 4-6 Sep. 2018 

• Consideration of detailed structural modelling for 

global aircraft finite element model (e.g. stiffener 

elements, rib holes) 

• Connection to  fast analytical methods (e.g. 

surrogate models for efficient failure prediction of the 

detailed structure) 

Rib stiffener elements Rib holes (e.g. for  maintenance) 
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• Python based modelling tool  

• Usage via scripting or a comprehensive GUI 

• Provides fuselage models in various formats  

(incl. ANSYS, MSC NASTRAN, B2000++, …) 

• Complex inner fuselage structure and detailed  

interfaces to wing and tail are included 

• Set-up time < 3 min. 

 

PANDORA also includes sizing algorithm  

à later more in „Structural Design“ 

Structural Modelling –  

Fuselage Structure with PANDORA (BT) 
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Fuselage Beam: 

 

Global Finite Element Model (GFEM/dynamic): 

• For loads, aeroelastic, analysis and structural 

optimization 
 

Fuselage stiffness 

• Beam model preliminary sized / shell model ahead 
 

Wing stiffness (topology): 

• Bar elements (stringer, spar caps, stiffener) 

preliminary sized 

• Shell elements (spars, ribs, skin) for structural 

optimization and sensitivity analysis 
 

GFEM/dynamic (condensed): 471 Nodes 

GFEM/dynamic (full): 

GFEM/dynamic  

(condensed): 

Fuselage Shell Model 

 

Structural Modelling –  

Complete A/C with ModGen (AE) 
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Loads Analysis – Loads Process 

(Geometric) 

Design  

Variables 

Structure 

Load

s 

Mode

l A 
M 

S 

K 

Model  

Integration 
Loads Analysis Specify load cases 

Update 

stiffness 

and mass 

Sized Structure / 

Critical load cases 

and loads 

Structural Design 

Critical load cases 

and loads  

Sorting and 

Envelopping 

Load  

Recovery / 

Correlated  

loads 

Model Generation 

MTOW 
MLW 

MZFW 

OEW 

Mass 

Convergence 

Load Loops 

Aerodynamic 

> T. Klimmek et al. > Parameterized Disciplinary Sub-Processes within High-Fidelity-based Aircraft MDO > DLRK2018 > 4-6 Sep. 2018 

Number Load Cases: 

In principle high number 

of load cases possible 

due to e.g.: 

• various mass 

configurations 

• various flight points 

• gust conditions 

(according to CS25) 

CFD data for correction 
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Loads Analysis – Simulation Models 

Multi Tool Approach (FA, BT, SR) --- One Tool Approach (AE) 

Condensed  

Stiffness Model 

(SR or AE) 

> T. Klimmek et al. > Parameterized Disciplinary Sub-Processes within High-Fidelity-based Aircraft MDO > DLRK2018 > 4-6 Sep. 2018 

Stiffness Model  

(FA) 

Stiffness Model (BT) 

Stiffness Model (AE) 

Aero Model, DLM 

(AE or SR) 

Mass Model (AE) 

Mass Model (SR) 
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Wing Bending Moment (Mx): 

• Pull Up & Push Down up to 2/3 

span 

• Accelerated Roll and Gust in last 

1/3 span 

• Dominant cases: 

o  max. take off mass 

o  cruise and diving speed  

o  max. flight altitude 

> T. Klimmek et al. > Parameterized Disciplinary Sub-Processes within High-Fidelity-based Aircraft MDO > DLRK2018 > 4-6 Sep. 2018 

Loads Analysis – Results  

Maneuver & Gust Loads(AE, SR) 

Mx vs. Wing Span 

Long Range A/C 
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Loads Analysis – Results  

Continuous Turbulence (SR) 

> T. Klimmek et al. > Parameterized Disciplinary Sub-Processes within High-Fidelity-based Aircraft MDO > DLRK2018 > 4-6 Sep. 2018 

 

 
 

• Comparison continuous turbulence (CT) to discrete gust (DG) cases in a  

2D-Envelope (wing root and VTP root) 

VTP Root Wing Root 
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Closed Loop Open Loop 

Loads Analysis – Results 

Gust Loads with Flight Controller (SR) 

Angle of Attack vs. time Wing Root Bending Moment Elevator Deflection vs. Time Pitch Angle vs. Time 
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Structural Design – Task 

> T. Klimmek et al. > Parameterized Disciplinary Sub-Processes within High-Fidelity-based Aircraft MDO > DLRK2018 > 4-6 Sep. 2018 

• Estimation of structural dimensions 

• For carbon fibre material in addition material parameter, lay-up, layer 

orientation etc. 

• Consideration of design loads (number of considered load cases depend on 

the objective of the structural design and the capabilities of the design method 

• Consideration of various constraints: stress, strain, buckling, aileron efficiency 

• Consideration of manufacturing constraints (e.g. min. thickness, transition 

between different lay-ups/thickness) 

à Two basic approaches: 

1. Sizing methods based on fully stressed design concept (BT, FA) 

2. Gradient-based structural optimization methods (AE, FA) 
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Structural Design – Wing Sizing  

DELiS / S-BOT (FA) 

> T. Klimmek et al. > Parameterized Disciplinary Sub-Processes within High-Fidelity-based Aircraft MDO > DLRK2018 > 4-6 Sep. 2018 

DELiS FE modeling 

Wing sizing HTP sizing VTP sizing 

Post-processing 

• Fully-stressed design approach 

• Use of preselected subset of load cases 

(only critical load cases) 

• Parallel sizing of wing components 

• Performance (S-BOT): 8h for 17 

iterations 

 

Further improvements by using new sizing 

tool from BT (next slides) 

 

Further developments: 

• Beam based preliminary sizing module 

in DELiS 

• Preliminary sizing step before FE based 

sizing) 



Objective 

• Development of a fast and flexible sizing module fe_sizer within PANDORA 

• FE solver independent  

• Flexible algorithm to add 

additional sizing criteria 
 

Status 

• Usage via scripting or GUI 

• Transfer of strength and  

buckling criteria from  

predecessor tool S-BOT+ 

• Connection to various solvers 

• ANSYS, MSC Nastran  

• Open Source solvers  

(e.g. B2000++) to be  

added, soon  
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Structural Design – Fuselage 

PANDORA Framework (BT) 

> T. Klimmek et al. > Parameterized Disciplinary Sub-Processes within High-Fidelity-based Aircraft MDO > DLRK2018 > 4-6 Sep. 2018 

Exemplary sizing of a fuselage barrel 



• Validation according validation plan in progress 

1.  Generic fuselage barrel (analytical results available) 

 Good correlation 

 

2.  Long range a/c fuselage model benchmark  

 (17 Load cases, 3 Iterations) 

 Detailed analysis of results ongoing 

 Significant reduction of computing time  

(Factor 5-10 faster compared to S-BOT+) 
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Structural Design – Fuselage 

PANDORA Framework (BT) 

> T. Klimmek et al. > Parameterized Disciplinary Sub-Processes within High-Fidelity-based Aircraft MDO > DLRK2018 > 4-6 Sep. 2018 

phi 

x 

y 

z 

Critical Loadcases for fuselage panels  
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Structural Design – Gradient-based  

Structural Optimization (AE) 

> T. Klimmek et al. > Parameterized Disciplinary Sub-Processes within High-Fidelity-based Aircraft MDO > DLRK2018 > 4-6 Sep. 2018 

Preliminery Sizing (ModGen): 

• Fuselage beam 

• Wing bar elements                                          

(stringer, spar caps, stiffener) 
 

Design variables:   

• Thickness (Al, CFK) and lamination 

parameter (CFK) of the                                              

skin, ribs and spars                                   

(optimization regions) 
 

Constraints:    

• Stress, strain, buckling,  

control surface efficiency, divergence 
 

Objective function:   

• Minimization of the wingbox mass 
 

Convergence criteria: 

• Relative mass and design variable change  

 

 

Fuselage 

stiffness beam 

Tool: 

MSC Nastran SOL200 



DLR.de  •  Folie 22 

Structural Design – Structural  

Optimization of Composites (AE) 
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• Continuous optimization result with 

maximum strain criterion                 

• Failure criteria constraints: strength 

and buckling                      

• Manufacturing constraints: minimal 

thickness, blending 

• Objective: min. wing box mass 

Primary wing structure long range a/c 

  TV DA ,,*
2,1

Formulation of lay up with 

lamination parameters V 
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Structural Design – Manufacturing  

Constraints (FA) 

> T. Klimmek et al. > Parameterized Disciplinary Sub-Processes within High-Fidelity-based Aircraft MDO > DLRK2018 > 4-6 Sep. 2018 

Quantification 

• Based on approaches for layer continuity (Liu) and blending 

(Adams) 

Approach based on convex hull 

• Constraint: 

 05

*

24

*

13

*

22

*

11  hVhVhVhVh DDAA

Transition of lay-ups with different thickness 
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Structural Design – Smeared  

Stiffener (FA) 

𝑡𝑠 

𝑑𝑠 

𝑦 

𝑧, 𝑍 and 𝜁 axes 

𝑑𝑠 

𝑦 

𝜂-axis 

𝑡𝑠 

𝑧 𝑠 

𝑧 

• Stiffener structure necessary 
to increase buckling stability  

• Reduction of  mass  

• Influence on global stiffness 

∆𝑚≈ 20% 

𝐴𝐵𝐷𝑃𝑙𝑎𝑡𝑒 



• Various tools and methods for OAD, structural modelling, analysis, and optimization, and 

loads analysis were developed and successfully applied  

• Individual concepts of the MDO processes + individual focal points of the DLR institutes 

lead to various approaches (e.g. structural modelling and design) 

• Successful collaboration of DLR institutes for complement solutions (e.g. loads analysis, 

structural modelling)  

 

Next Steps: 

• Further development of specific and constantly improvable tools and methods 

• Adaptations due to individual MDO process requirements are on going 

• Full integration and application of disciplinary tools within the VicToria MDO processes  
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Summary and Outlook 

> T. Klimmek et al. > Parameterized Disciplinary Sub-Processes within High-Fidelity-based Aircraft MDO > DLRK2018 > 4-6 Sep. 2018 
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Many thanks for your attention! 


