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Prioritized Inverse Kinematics: Generalization
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Abstract—This letter proposes a generalization of the prior-
itized inverse kinematics (PIK) problem as the multi-objective
optimization with the lexicographical ordering. We specify three
properties for a vector-valued objective function to be proper
for the PIK problem, so that the set of all PIK solutions can
be generated from the set of all proper objective functions.
The dependence property requires that higher priority tasks do
not constrain lower priority tasks unnecessarily, the uniqueness
property demands that there exists one and only one PIK
solution given a proper objective function, and the representation
property asks that if there are two distinct references that are
realizable by a mechanism, then the PIK solutions for those
references should differ. We also include the preconditioning of
the velocity mapping functions in our generalization that can be
used to handle the numerical imbalance in the orthogonalization
that raises a difficulty in choosing damping functions and
degenerates the performance of lower priority tasks. We justify
our generalization by showing that it discards trivial solutions
such as a constant function that is not intended and contains
several PIK solutions including two successful PIK solutions, so
called Nakamura’s and (weighted) Chiaverini’s solutions, with
and without damping. We compare those PIK solutions by a
simulation with a seven degrees of freedom manipulator, KUKA-
LWR.

Index Terms—Kinematics, redundant robots, optimization and
optimal control, prioritized inverse kinematics.

I. INTRODUCTION

PRIORITIZED Inverse Kinematics (PIK) in the velocity
level has been studied intensively for decades along

with the growth of the robotic society and the study on the
PIK has been used and expanded in many areas such as
constrained PIK [1][2][3][4], task switching [5][6][7][8][9],
prioritized control [10][11][12][13][14][15], prioritized opti-
mal control [16][17][18][19][20], learning prioritized tasks
[21][22][23][24][25][26], etc. Nowadays, the PIK and the
related studies are considered as a basic building block in
the development of learning and control methods for robotic
systems that have multiple tasks to accomplish. In spite of the
enormous studies on the PIK, most of them are focused on the
formulation and the practical use of a specific PIK solution
on their own necessity. However, there are some questions
that those approaches cannot answer. For example, can we
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always find a smooth PIK solution given smooth Jacobian
matrices and smooth references? Smoothness of a PIK solution
is an important property we must check because existence
and uniqueness of a joint trajectory satisfying a PIK solution
depend on it. To answer this question, we need to know the
set of all PIK solutions. However, based on our knowledge,
no one defined such a set.

In this letter, we propose a generalization of the PIK
problem. In Section II, we provide a background of the PIK
problem focusing on two successful PIK solutions. The idea
to see a specific PIK solution as an optimal solution of the
multi-objective optimization with the lexicographical ordering
can be found in [4][27]. In Section III, we generalize this idea
by specifying three properties for a vector-valued objective
function to be proper for the PIK problem and by precondi-
tioning the velocity mapping functions. In our generalization,
the set of all PIK solutions can be generated from the set
of all proper objective functions by the mapping defined
as the optimal solution of the multi-objective optimization
with the lexicographical ordering. In Section IV, we show
that our generalization discards trivial solutions such as a
constant function that is not intended and contains several
PIK solutions including two successful PIK solutions with
and without damping. We also provide simulation results that
compare those PIK solutions with a seven degrees of freedom
(DOF) manipulator, KUKA LWR. The concluding remarks are
followed in Section V.

II. BACKGROUND

Let l ∈ N \ {1} be the number of tasks. The forward
kinematics with multiple tasks in the velocity level is a process
to find the matrix-valued functions Ja : Rn → Rma×n for
a ∈ {1, . . . , l} called the velocity mapping functions whose
value Ja(q) maps the joint velocity q̇ ∈ Rn into the a-th
task velocity Ja(q)q̇ ∈ Rma for each joint position q ∈ Rn.
Without loss of generality, we assume m = m1+· · ·+ml ≤ n.
Here, the expression ‘without loss of generality’ means that
we can always define the velocity mapping functions to satisfy
this assumption. For example, if velocity mapping functions
J̃a : Rñ → Rma satisfy m > ñ, then we can redefine J̃a to
Ja : Rn → Rma as

Ja(q) = Ja(q̃, qñ+1, . . . , qn) =
[
J̃a(q̃) 0

]
such that m = n and J(q)q̇ = J̃(q̃) ˙̃q by introducing dummy
variables or virtual joints qñ+1, . . . , qn. Sometimes, Ja also
depends on the time t ∈ R (e.g. the relative velocity between
the end-effector and a moving object) but we restrict ourselves
to the case Ja(q) at the moment. We may or may not require
that Ja be the derivative of a function. For example, Ja(q)q̇
could be the angular velocity or the derivative of the Euler
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angles of a specific part of a mechanism. The desired behavior
of the a-th task velocity Ja(q)q̇ is represented by the vector
field ra : R × Rn → Rma called the a-th reference. The
references are designed freely depending on a scenario of
a mechanism in an environment. A typical choice could be
ra(t,q) = ṗa(t) + Ka(pa(t)− fa(q)) if Ja is the derivative
of a forward kinematic function fa : Rn → Rma and the task
position fa(q) needs to follow a desired task trajectory pa :
R → Rma where Ka ∈ Rma×ma is a feedback gain matrix.
The goal of the a-th task at (t,q) is to find the joint velocity q̇
that satisfies the a-th differential forward kinematics equation
Ja(q)q̇ = ra(t,q) at least approximately or equivalently that
minimizes the a-th residual eres

a (t,q,y) = ra(t,q)− Ja(q)y
with respect to y in some sense. The inverse kinematics with
multiple tasks in the velocity level is a process to find the
inverse kinematics solution u : R× Rn → Rn satisfying

J(q)u(t,q) = r(t,q)

for each (t,q) ∈ R × Rn at least approximately where
J =

[
JT1 · · · JTl

]T
: Rn → Rm×n and r = (r1, . . . , rl) :

Rn → Rm. If such a function u is found, then the a-th residual
can be written as eres

a (t,q) = ra(t,q)− Ja(q)u(t,q) and be
used for the quantitative evaluation of u.

In the PIK problem, the available DOF of a mechanism
is the limited common resource that should be distributed
to multiple tasks. Specifically, rank(Ja(q)) is the maximum
available DOF for the a-th task at q ∈ Rn. Here, rank(·) is the
rank of a matrix. In total, there are rank(J(q)) available DOF
for all tasks and rank(J(q)) ≤

∑l
a=1 rank(Ja(q)) ≤ m by

singularity. The a-th task is said to have a task singularity at q
if rank(Ja(q)) < ma. The a-th and b-th tasks are said to have
an algorithmic singularity at q if rank(

[
JTa (q) JTb (q)

]
) <

rank(Ja(q)) + rank(Jb(q)). If the a-th task does not have
a task singularity at q, then we can always find q̇ ∈ Rn
satisfying Ja(q)q̇ = ra(t,q). However, even though the
a-th and b-th tasks do not have task singularities at q, if
they have an algorithmic singularity, then we cannot always
find q̇ satisfying Ja(q)q̇ = ra(t,q) and Jb(q)q̇ = rb(t,q)
simultaneously. Priority is a strategy to distribute the available
DOF to multiple tasks and the distribution is carried out by the
consecutive projections of the joint velocity to the null spaces
of the higher priority tasks.

There are two successful PIK solutions. The first solution,
which we call the Nakamura’s solution, was formulated by
Nakamura et al. [28] and Maciejewski and Klein [29] for two
tasks and extended later for an arbitrary number of tasks by
Siciliano and Slotine [30] as

ua = ua−1 + (JaNa−1)×(ra − Jaua−1) (1)

Na = Na−1 − (JaNa−1)+(JaNa−1) (2)

where u = ul, u0 = 0, N0 = In, (JaNa−1)× = (JaNa−1)+

for λa = 0, and (JaNa−1)× = (JaNa−1)∗ for λa ∈ (0,∞).
Here, In ∈ Rn×n is the identity matrix, (JaNa−1)+ is
the (Moore-Penrose) pseudoinerse, and (JaNa−1)∗ is the
damped pseudoinverse with the damping constant λa defined
as (JaNa−1)∗ = (JaNa−1)T (JaNa−1J

T
a + λ2

aIma
)−1. In

the early history of the prioritized inverse kinematics, there

was not a fast and reliable way to compute the pseudoin-
verse for real-time applications, so the damped pseudoinverse
(JNa−1)∗ was often used in (2) instead of (JaNa−1)+.
However, this practical modification makes the projection
imperfect and (JaNa−1)∗ in (1) used to cause unexpected
behavior of the joint trajectory generated from the Nakamura’s
solution especially in the vicinity of the algorithmic singular-
ities. It motivated researchers to think of a new prioritized
inverse kinematics solution that is robust against algorithmic
singularities.

The second solution, which we call the Chiaverini’s so-
lution, was proposed by Chiaverini [31] for two tasks and
extended later for an arbitrary number of tasks by Baerlocher
and Boulic [32] as

ua = ua−1 + Na−1J
×
a ra (3)

Na = Na−1 − (JaNa−1)+(JaNa−1) (4)

where u = ul, u0 = 0, N0 = In, J×a = J+
a for λa = 0,

and J×a = J∗a for λa ∈ (0,∞). The Chiaverini’s solution is
known to be more robust against the algorithmic singularity
but to generate the larger residual compared to the Nakamura’s
solution. To alleviate this inaccuracy problem of the second
solution, Park et al. [33] and Choi et al. [34] modified the
Chiaverini’s solution using the weighted pseudoinverse.

Let δ ∈ (0,∞) and define W : Rn → Rn×n as W(q) =
JT (q)J(q)+δ2In. The weighted Chiaverini’s solution is given
as

ua = ua−1 + NW
a−1J

W×
a ra (5)

NW
a = NW

a−1 − (JaN
W
a−1)W+(JaN

W
a−1) (6)

where u = ul, u0 = 0, NW
0 = In, JW×a = JW+

a for
λa = 0, and JW×a = JW∗a for λa ∈ (0,∞). Here, JW+

a

and (JaN
W
a−1)W+ are weighted pseudoinverses and JW∗a is

the weighted damped pseudoinverse with the weighting matrix
W. We recall that for a matrix A ∈ Ra×b and a symmet-
ric and positive definite matrix W ∈ Rb×b, the weighted
pseudoinverse and the weighted damped pseudoinverse with
a damping constant λ ∈ (0,∞) are defined as AW+ =
W−1AT (AW−1AT )+ and AW∗ = W−1AT (AW−1AT +
λ2Ia)−1, respectively. The idea of the weighted Chiaverini’s
solution is to precondition the linear inverse problem J(q)q̇ =
r(t,q) by the right preconditioner W

1
2 (q) for each (t,q) such

that the rows of (JW− 1
2 )(q) are almost mutually orthogonal.

So, if λ1 = · · · = λl = 0 and 0 < δ � σmin(J(q)), then
eres(t,q) ≈ 0. Here, σmin(·) is the minimum singular value
of a matrix.

Once we find a PIK solution u : R × Rn → Rn, we
generate the joint trajectory q : [t0,∞) → Rn by solving
the differential equation

q̇ = u(t,q)

for each t ∈ (t0,∞) with the initial value q(t0) = q0. The
first thing we must check is the smoothness of u because many
important properties of the differential equation depend on it.
For example, the solution of this initial value problem exists
if u is continuous and linearly bounded (∃γ, c ∈ [0,∞) :
‖u(t,q)‖ ≤ γ‖q‖ + c, ∀(t,q)) and the solution is unique if
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u is locally Lipschitz and linearly bounded [35, pp.178]. So,
a canonical question is: Can we always find a continuous or
locally Lipschitz PIK solution? To answer this question, we
first need to define the set of all PIK solutions.

For A ∈ Rm×n, we define R(A) = {Ab | b ∈ Rn} and
N (A) = {b ∈ Rn | Ab = 0}. We recall that N (A)⊥ =
{c ∈ Rn | cTb = 0, b ∈ N (A)} = R(AT ). For a, b ∈ N,
we use the shorthand notation a, b = N ∩ [a, b]. We will need
the following lemma later.

Lemma 1: Let J ∈ Rm×n with m ≤ n. There exist a
lower triangular matrix Ce = [cij ] ∈ Rm×n and an orthogonal
matrix Ĵe ∈ Rn×n such that J = CeĴe; caa ≥ 0 for a ∈ 1,m;
and cab = 0 for a ∈ 1,m if cbb = 0.

Proof: See Appendix.
If J ∈ Rm×n has full rank, then the algorithm in the proof

of Lemma 1 is same to the modified Gram-Schimidt orthogo-
nalization that is numerically stable compared to the classical
one [36]. If J is rank deficient, then the QR decomposition
of JT is not unique. Lemma 1 imposes an additional property
cab = 0 for a ∈ 1,m if cbb = 0 that is important in this study.
We remark that the QR decomposition of JT by Householder
reflectors does not give that property.

III. GENERALIZATION

Let x = (t,q) be a variable on X = R × Rn. Generally,
the a-th velocity mapping function is defined as Fa =[
fta Fqa

]
: X → Rma×(n+1) with fta : X → Rma and

Fqa : X → Rma×n that maps the joint velocity q̇ ∈ Rn
into the a-th task velocity fta(x) + Fqa(x)q̇ ∈ Rma for each
x ∈ X . The a-th reference ra : X → Rma is freely designed
according to a scenario. Then, the goal of the a-th task at x
is to find the best joint velocity q̇ that satisfies

Fqa(x)q̇ = ra(x)− fta(x) = r′a(x)

at least approximately. Note that we need to solve l such linear
inverse problems simultaneously. Sometimes, the precondi-
tioning of the matrix-valued functions Fq1, . . . ,Fql gives bet-
ter solvability. Let R : X → Rn×n be invertible everywhere
and define Ja : X → Rma×n as Ja(x) = Fa(x)R−1(x).
Then, the a-th linear inverse problem can be written as

Ja(x)R(x)q̇ = r′a(x).

The (right) preconditioner function R can be designed freely
considering Fq1, . . . ,Fql. A specific choice of R and its effect
on the PIK problem is discussed in [37]. One may let R = In
to ignore this part.

We define ft = (ft1, . . . , ftl), Fq =
[
FTq1 · · · FTql

]T
,

F =
[
ft Fq

]
, J = FqR

−1, r = (r1, . . . , rl), and r′ = r− ft.
The PIK problem contains the orthogonalization process as
a subproblem to find the projections into the null spaces
of higher priority tasks. We orthogonalize rows of J by
performing the full QR decomposition of JT (x) at each x ∈ X
as in Lemma 1J1

...
Jl


︸ ︷︷ ︸

J(x)∈Rm×n

=

C11 · · · 0 0
...

. . .
...

...
Cl1 · · · Cll 0


︸ ︷︷ ︸
Ce(x)=[Cij(x)]∈Rm×n

 Ĵ1

...
Ĵl+1


︸ ︷︷ ︸

Ĵe(x)∈Rn×n

.

Define orthogonal-projector-valued functions Pa : X →
Rn×n for a ∈ 1, l as

Pa(x) = ((CaaĴa)+(CaaĴa))(x) = (ĴTaC
+
aaCaaĴa)(x).

Then, CabĴb = JaPb by Lemma 1 and the a-th residual can
be written as

eres
a = r′a − JaRq̇ = r′a − Ja

a∑
b=1

PbRq̇.

Usually, multiple scenarios are applied for a mechanism in
an environment, so we need to consider various references
given F and R. We expect that the inverse kinematics solution
differs among various references. It leads us to think of the
inverse kinematics solution as a function of the reference. Let
(Rm)X be the set of all functions from X to Rm. Then,
we may define the inverse kinematics solution with multiple
tasks considering various references as the best mapping
u : X × (Rm)X → Rn such that v = Ru satisfies
J(x)v(x, r) = r′(x) for each (x, r) at least approximately
or equivalently minimizes the residual eres(x,y, r) = r′(x)−
J(x)y with respect to y for each (x, r) in some sense. Note
that we extended the domain of the residual from X ×Rn to
X×Rn×(Rm)X in order to consider various references. Here,
‘at least approximately’ and ‘in some sense’ can be understood
very differently. We may specify the details on those expres-
sions by constructing an optimization problem. Since we have
multiple tasks, we need to introduce a vector-valued objective
function π = (π1, . . . , πl) : X ×Rn× (Rm)X → [0,∞)l that
describes how to minimize (eres

1 , . . . , eres
l ) such that for each

r ∈ (Rm)X the goal of the a-th task at x can be achieved by
minimizing πa(x,y, r) with respect to y. We remark that π is
not a specific function but a variable of the function space that
is defined as the set of all functions from X×Rn×(Rm)X to
[0,∞)l. Not every objective function is appropriate for the PIK
problem. For example, if πa(x,y, r) = ‖y‖ for all a ∈ 1, l,
then we have a trivial solution u = R−1v = 0. Therefore, we
need to find properties for an objective function to be proper
for the PIK problem.

(O1) Dependence: Since πa describes how to minimize
eres
a (x,y, r) = r′a(x)− Ja(x)

∑a
b=1 Pb(x)y that depends on

(x,y, ra(x)), we may write πa(x,y, r) = πa(x,y, ra(x))
for all (x,y, r) ∈ X × Rn × (Rm)X . Consider the
minimization of πa(x,y, ra(x)) with respect to y and
write y =

∑a
b=1 Pb(x)y + (In −

∑a
b=1 Pb(x))y. Only∑a

b=1 Pb(x)y influences on eres
a and there is a possibility

that (In −
∑a
b=1 Pb(x))y influences on eres

i (x,y, ri(x)) for
some i > a. Since the optimal value of y should be deter-
mined for all tasks, it is appropriate that πa(x,y, ra(x)) =
πa(x,

∑a
b=1 Pb(x)y, ra(x)) for all (x,y, r) ∈ X × Rn ×

(Rm)X . To better understand this property, let π1(x,y, r) =
‖y‖. Since the first task has the highest priority, we have a triv-
ial solution v = 0 regardless of the choice of π2, . . . , πl which
is not desirable. On the other hand, if we let π1(x,y, r) =
‖P1(x)y‖ that satisfies the property we demand, then we have
P1v = 0 and there is a possibility to choose v in the null
space of J1 according to π2, . . . , πl.

(O2) Uniqueness: If π1 has the dependence property, then
to minimize π1(x,y, r1(x)) subject to y ∈ Rn is equivalent
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to minimize π1(x,y, r1(x)) subject to y ∈ R(P1(x)). It is
preferable that the minimizer of π1(x,y, r1(x)) subject to
y ∈ R(P1(x)) is unique not only to remove ambiguity in the
selection of a minimizer but also to use the maximum available
DOF for the first task. Let y∗1 be the unique minimizer of
π1(x,y, r1(x)) subject to y ∈ R(P1(x)) and consider the
minimization of π2(x,y, r2(x)) with respect to y under the
priority relations between tasks. Since the second priority task
should not influence the first priority task, π2(x,y, r2(x))
should be minimized subject to y ∈ y∗1 + R(P2(x)) =
{y∗1 + z | z ∈ R(P2(x))}; it means that the minimizer of π2

does not change the minimum value of π1. By the dependence
property, it is equivalent to minimize π2(x,y∗1 + y, r2(x))
subject to y ∈ R(P2(x)) and it is also preferable that the
minimizer is unique by the same reason. We can continue the
same reasoning for a ∈ 3, l and find the expression of the
uniqueness property: there exists a unique minimizer y∗a of
πa(x,

∑a−1
b=1 y∗b + y, ra(x)) subject to y ∈ R(Pa(x)).

(O3) Representation: Consider the mapping ra(x) 7→ y∗b
of Rma into R(Pb(x)); it means the function f : Rma →
R(Pb(x)) defined as f(ra(x)) = y∗b . Here, ra(x) is consid-
ered as a variable on Rma . If b ∈ 1, a− 1, then ra(x) 7→ y∗b
is constant by the dependence and uniqueness properties
because the minimizer y∗b of πb is not influenced by the
change of the a-th reference ra. Then, the minimization
of πa(x,

∑a−1
b=1 y∗b + y, ra(x)) subject to y ∈ R(Pa(x))

can be considered as a way to solve the inverse problem
g(y) = (CaaĴa)(x)y + Ja(x)

∑a−1
b=1 y∗b + fta(x) = ra(x).

Since R(Pa(x)) = R((CaaĴa)T (x)) = N ((CaaĴa)(x))⊥

(see the comment above Lemma 1), the linear transformation
(CaaĴa)(x) of R(Pa(x)) into R((CaaĴa)(x)) is one-to-one
and onto by the Rank Theorem. We recall that a mapping
f : A → B is said to be onto if B = f(A) = {f(a) |
a ∈ A} and one-to-one if f(a1) 6= f(a2) for every distinctive
a1, a2 ∈ A. If f is one-to-one and onto, then there exists an
inverse mapping f−1 : B → A satisfying f(f−1(b)) = b for
all b ∈ B. So, we can find a one-to-one inverse mapping
g−1 of R((CaaĴ)(x)) onto R(Pa(x)). This property is
important because we expect that the joint velocities of two
distinctive references that are realizable by the available DOF
are different. So, it is desirable that the mapping ra(x) 7→ y∗a
of R((CaaĴa)(x)) into R(Pa(x)) is one-to-one and onto.

We say that a vector-valued objective function π =
(π1, . . . , πl) : X × Rn × (Rm)X → [0,∞)l is proper for
the PIK problem if π has the following three properties:

(O1) ∀(a,x,y, r) ∈ 1, l×X×Rn×(Rm)X , πa(x,y, r) =
πa(x,

∑a
b=1 Pb(x)y, ra(x));

(O2) ∀(a,x, r) ∈ 1, l×X × (Rm)X , there exists a unique
minimizer y∗a of πa(x,

∑a−1
b=1 y∗b +y, ra(x)) subject

to y ∈ R(Pa(x));
(O3) ∀(a,x) ∈ 1, l × X , the mapping ra(x) 7→ y∗a of

R((CaaĴa)(x)) into R(Pa(x)) is one-to-one and
onto.

The PIK problem is the process to find the PIK solution. We
say that a map u : X×(Rm)X → Rn is a PIK solution if there
exists a proper objective function π = (π1, . . . , πl) such that
R(x)u(x, r) minimizes πa(x,y, r) with respect to y for each

(a,x, r) ∈ 1, l×X × (Rm)X under the priority relations. The
π-PIK solution is the PIK solution determined by the proper
objective function π. We say that a PIK solution is smooth
if u(·, r) is smooth on X for every smooth r ∈ (Rm)X and
is nonsmooth if u(·, r) is not smooth on X for some smooth
r ∈ (Rm)X . Here, smoothness can be understood differently
depending on the order of smoothness required; for example,
it could be continuity, local Lipschitz continuity, continuous
differentiability, etc.

The PIK problem can be written as the multi-objective opti-
mization with the lexicographical ordering. Consider multiple
objective functions φa : Rn → [0,∞) for a ∈ 1, l and a
constraint set Ω ⊂ Rn. The problem

lex min
y∈Ω

(φ1(y), . . . , φl(y))

is to find an optimal solution y∗ ∈ Ω satisfying

φa(y∗) = min{φa(y) | y ∈ Ω and
φb(y) = φb(y

∗) for b ∈ 1, a− 1}

for all a ∈ 1, l. Let π : X × Rn × (Rm)X → [0,∞)l be
a proper objective function. Fix (x, r) ∈ X × (Rm)X and
define φa(y) = πa(x,y, r) for a ∈ 1, l. By (O2), there exist
y∗1, . . . ,y

∗
l ∈ Rn satisfying

{y∗1} = arg min
y∈R(P1(x))

φ1(y)

{y∗2} = arg min
y∈R(P2(x))

φ2(y∗1 + y)

...
{y∗l } = arg min

y∈R(Pl(x))

φl(y
∗
1 + · · ·+ y∗l−1 + y).

Let y∗ = y∗1 + · · ·+y∗l . By (O1), φa(y∗) = φa(y∗1 + · · ·+y∗a)
for a ∈ 1, l and

φ1(y∗) = min{φ1(y) | y ∈ Rn}
φ2(y∗) = min{φ2(y) | y ∈ y∗1 +R(In −P1(x))}

= min{φ2(y) | y ∈ Rn and φ1(y) = φ1(y∗1)}
...

φl(y
∗) = min

{
φl(y)

∣∣∣∣∣y ∈
l−1∑
b=1

y∗b +R

(
In −

l−1∑
b=1

Pb(x)

)}
= min{φl(y) | y ∈ Rn and

φb(y) = φb(y
∗) for b ∈ 1, l − 1}

‖y∗‖2

2
= min{‖y‖2/2 | y ∈ Rn and

φb(y) = φb(y
∗) for b ∈ 1, l}.

y∗ minimizes πa(x,y, r) with respect to y for a ∈ 1, l under
the priority relations and is a unique solution of

lex min
y∈Rn

(π1(x,y, r), . . . , πl(x,y, r), ‖y‖2/2).

Therefore, we can write the π-PIK solution as

u(x, r) = R−1(x)v(x, r) (7)

v(x, r) ∈ arg lex min
y∈Rn

(π1(x,y, r), · · · , πl(x,y, r), ‖y‖2/2).



AN et al.: PRIORITIZED INVERSE KINEMATICS: GENERALIZATION 5

We call a function u satisfying the above problem with an
objective function π a π-PIK solution candidate when the
properness of π is not evaluated.

Let Π be the set of all functions from X ×Rn× (Rm)X to
[0,∞)l, U be the set of all functions from X× (Rm)X to Rn,
and θ : Π→ U be the function defined as (7). Let Πp and Up
be the set of all proper objective functions and the set of all
PIK solutions, respectively. Then, we can compactly represent
our generalization of the PIK problem as

Up = θ(Πp). (8)

In other words, the set of all PIK solutions is generated from
the set of all proper objective functions by the mapping defined
as the optimal solution of the multi-objective optimization with
the lexicographical ordering. At this point, we must clarify
that (8) is not the only way to generalize the PIK problem.
One can freely propose a different notion of generalization
and study the relations with our generalization. Also, (8) does
not provide a way to find all PIK solutions but a way to
study theoretical properties of the PIK problem. One important
property we found is nonsmoothness of PIK solutions defined
by (8). Once a PIK solution u is determined from Up, we
generate a joint trajectory q : [t0,∞) → Rn with an initial
value q(t0) = q0 and a reference r by solving the differential
equation

q̇(t) = u(t,q(t), r), t ∈ (t0,∞).

As we discussed in Section II, smoothness of u given r is an
important property we must check. Now, the question “Can we
always find a smooth PIK solution given smooth Jacobians and
references?” can be interpreted as “For every smooth F and
R, does there exist a proper objective function π such that the
π-PIK solution is smooth for all smooth r?”. Unfortunately,
our analysis shows that if smooth F and R satisfies a certain
condition, then for every π ∈ Πp there exists smooth r such
that u = θ(π) given r is nonsmooth [38]. This analysis result
sends an important message that prioritization can induce
nonsmoothness, so that we need to put our efforts to construct
an alternative existence theorem of the joint trajectory, other
than classical existence theorems. In the rest of this letter, we
furnish some examples of PIK solutions to confirm that our
generalization is reasonable.

IV. EXAMPLES

We start by showing that our generalization discards some
trivial solutions. Assume that rank(J1(x0)) > 0 for x0 ∈ X .
Define π1(x,y, r) = ‖g(x) − y‖ for some g : X → Rn.
Then, for every π2, . . . , πl we have a unique π-PIK solution
candidate u(x, r) = R−1(x)g(x). Indeed, it is not a PIK
solution because π1 we chose does not have the properties
(O1) and (O3) at x0. Intuitively speaking, a proper objective
function should not constrain lower priority tasks unneces-
sarily and should give a different PIK solution if we change
the reference that is realizable by the available DOFs. So, a
constant function such as u = 0 is not a PIK solution unless
J = 0 in our generalization.

Next, we show that our generalization includes two suc-
cessful PIK solutions. Define vector-valued objective functions

π×α = (π×α1, . . . , π
×
αl) : X × Rn × (Rm)X → [0,∞)l for

α ∈ 1, 2 and × ∈ {+, ∗} as:

π+
1a(x,y, r) =

1

2
‖r′a(x)− Ja(x)y‖2

π∗1a(x,y, r) =
1

2
‖r′a(x)− Ja(x)y‖2 +

1

2
λ2
a(x)‖Pa(x)y‖2

π+
2a(x,y, r) =

1

2
‖J+

a (x)r′a(x)−Pa(x)y‖2

π∗2a(x,y, r) =
1

2
‖J∗a(x)r′a(x)−Pa(x)y‖2

where the damping function λa : X → (0,∞) is arbitrary
and J∗a(x) is the damped pseudoinverse of Ja(x) with the
damping constant λa(x) at x. Objective functions have the
property (O1) because Ja = Ja

∑a
b=1 Pb by Lemma 1. Since

R(Pa(x)) = R((CaaĴa)T (x)) = N ((CaaĴa)(x))⊥ for all
(a,x) ∈ 1, l ×X , the minimization problem

min
1

2
‖r′1(x)− (C11Ĵ1)(x)y‖2

s.t. y ∈ R(P1(x))

has a unique solution y∗1 = (ĴT1 C
+
11r
′
1)(x). It follows that the

minimization problem

min
1

2

∥∥∥∥∥
(
r′a − Ja

a−1∑
b=1

y∗b

)
(x)− (CaaĴa)(x)y

∥∥∥∥∥
2

s.t. y ∈ R(Pa(x))

has a unique solution y∗a = (ĴTaC
+
aa(r′a − Ja

∑a−1
b=1 y∗b ))(x)

for a ∈ 1, l. It is obvious that the replacement of ra(x)
with r̃a(x) ∈ Rma does not change y∗b for b ∈ 1, a− 1.
Let ra(x), r̃a(x) ∈ R((CaaĴa)(x)) = R(Caa(x)), ra(x) 6=
r̃a(x), and ỹ∗a = (ĴTaC

+
aa(r̃a − Fta − Ja

∑a−1
b=1 y∗b ))(x).

0 6= (ra − r̃a)(x) ∈ R(Caa(x)) and N (C+
aa(x)) =

R(Caa(x))⊥ imply that (C+
aa(ra − r̃a))(x) 6= 0 and

y∗a 6= ỹ∗a. Since the mapping ra(x) 7→ y∗a is affine
and dim(R((CaaĴa)(x))) = dim(R(Pa(x))), the mapping
ra(x) 7→ y∗a of R((CaaĴa)(x)) into R(Pa(x)) is one-to-
one and onto where dim(·) is the dimension of a vector
space. So, π+

1 is proper. By letting va(x, r) = y∗a for each
(a,x, r) ∈ 1, l×X×(Rm)X , we can derive the recursive form
π+

1 -PIK solution as

u = R−1v1:l

v1:a = v1:a−1 + ĴTaC
+
aa(r′a − Jav1:a−1)

v1:0 = 0

where v1:a = v1 + · · ·+ va for a ∈ 1, l.
We also find the closed form π+

1 -PIK solution. Define
C : X → Rm×m as the left (m × m) block of Ce

and Ĵ : X → Rm×n as the top (m × n) block of Ĵe
such that J = CeĴe = CĴ. Note that JT = ĴTCT

is the reduced QR decomposition of JT when m < n.
Define CD = diag(C11, . . . ,Cll) and CL = C − CD

where diag(C11, . . . ,Cll) is the block diagonal matrix whose
diagonal blocks are C11, . . . ,Cll starting from the top left
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corner. Obviously, C+
D = diag(C+

11, . . . ,C
+
ll ). We can rewrite

v = v1 + · · ·+ vl as

v = ĴT


C+

11r
′
1

C+
22(r′2 −C21Ĵ1v1)

...
C+
ll (r
′
l −
∑l−1
b=1 ClbĴbvb)

 = ĴT z

using Ja
∑a−1
b=1 vb =

∑a−1
b=1 CabĴbvb. By extracting C+

aa from
z, we find z = C+

D(r′−CLz) and z = (Im+C+
DCL)−1C+

Dr
′.

Since C+
DCL and CLC

+
D are strictly block lower triangular,

we have

(Im + C+
DCL)−1C+

D

=
[
Im −C+

DCL + · · ·+ (−C+
DCL)l−1

]
C+
D

= C+
D

[
Im −CLC

+
D + · · ·+ (−CLC

+
D)l−1

]
= C+

D(Im + CLC
+
D)−1.

We call C⊕ = (Im + C+
DCL)−1C+

D = C+
D(Im + CLC

+
D)−1

as the prioritized pseudoinverse of C. It gives the closed form
π+

1 -PIK solution as

u = R−1ĴTC⊕r′.

From R(Pa(x)) = N ((CaaĴa)(x))⊥ and CaaĴa =
CaaĴaPa, we can find a unique solution of the minimization
problem

min
1

2
‖r′1(x)− (C11Ĵ1)(x)y‖2 +

1

2
λ2

1(x)‖P1(x)y‖2

s.t. y ∈ R(P1(x))

as y∗1 = (ĴT1 C
∗
11r
′
1)(x) where C∗aa is the damped pseu-

doinverse of Caa as before. It follows that the minimization
problem

min
1

2

∥∥∥∥∥
(
r′a − Ja

a−1∑
b=1

y∗b

)
(x)− (CaaĴa)(x)y

∥∥∥∥∥
2

+
1

2
λ2
a(x)‖Pa(x)y‖2

s.t. y ∈ R(Pa(x))

has a unique solution y∗a = (ĴTaC
∗
aa(r′a − Ja

∑a−1
b=1 y∗b ))(x)

for a ∈ 1, l. Similarly as before, (O3) can be checked
from N (C∗aa(x)) = R(Caa(x))⊥. Hence, π∗1 is proper.
Define C~

D = diag(C∗11, . . . ,C
∗
ll). We call C~ = C~

D(Im +
CLC

~
D)−1 = (Im +C~

DCL)−1C~
D as the prioritized damped

pseudoinverse of C. It is straightforward to derive the π∗1-PIK
solution in the recursive form

u = R−1v1:l

v1:a = v1:(a−1) + ĴTaC
∗
aa(r′a − Jav1:(a−1))

v1:0 = 0

and in the closed form

u = R−1ĴTC~r′.

It is immediate to check that π+
2 and π∗2 are proper and to

derive the π+
2 -PIK solution as

u = R−1
l∑

a=1

ĴTaC
T
aa(JaJ

T
a )+r′a = R−1ĴTCT

DH+r
′

and the π∗2-PIK solution as

u = R−1
l∑

a=1

ĴTaC
T
aa(JaJ

T
a+λ2

aIma)−1r′a = R−1ĴTCT
DH∗r

′

by using JaPa = JaĴ
T
aC

+
aaCaaĴa = CaaĴa where H+ =

diag((J1J
T
1 )+, . . . , (JlJ

T
l )+) and H∗ = diag((J1J

T
1 +

λ2
1Im1

)−1, . . . , (JlJ
T
l + λ2

l Iml
)−1).

Now, define Na = In−
∑a
b=1 Pb for a ∈ 1, l and N0 = In.

J1N0 = C11Ĵ1 and N1 = N0 − (J1N0)+(J1N0). Also,
JaNa−1 = (Ca1Ĵ1 + · · ·+CaaĴa)(In−

∑a−1
b=1 Pa) = CaaĴa

and Na = Na−1 − (JaNa−1)+(JaNa−1) for a ∈ 2, l by
Lemma 1. Then, we can rewrite the π+

1 -PIK solution as

u = R−1v1:l

v1:a = v1:a−1 + (JaNa−1)+(r′a − Jav1:a−1)

v1:0 = 0

and the π∗1-PIK solution by replacing v1:a with

v1:a = v1:a−1 + (JaNa−1)∗(r′a − Jav1:a−1)

that are same to the Nakamura’s solution (1) and (2) except for
the preconditioning. Also, we can rewrite the π+

2 -PIK solution
as

u = R−1
l∑

a=1

Na−1J
+
a r
′
a

and the π∗2-PIK solution as

u = R−1
l∑

a=1

Na−1J
∗
ar
′
a

that are same to the Chiaverini’s solution (3) and (4) except for
the preconditioning. If we let R = (FTq Fq + δ2In)

1
2 = W

1
2

with δ ∈ (0,∞), then we can check that the π×2 -PIK solution
is same to the weighted Chiaverini’s solution (5) and (6) from
NW
a = W− 1

2NaW
1
2 and NW

a−1F
W×
qa = R−1Na−1J

×
a .

We can come up with other PIK solutions. Define objective
functions π×3 ,π4 : X × Rn × (Rm)X → [0,∞)l as:

π+
3a(x,y, r) =

1

2
‖r′a(x)− (CaaĴa)(x)y‖2

π∗3a(x,y, r) = π+
3a(x,y, r) +

1

2
λ2
a(x)‖Pa(x)y‖2

π4(x,y, r) =
1

2
‖JTa (x)r′a(x)−Pa(x)y‖2.

Showing the properness of π×3 and π4 is similar to that of
π×1 . We can easily derive the π×3 -PIK solution as

u = R−1
l∑

a=1

ĴTaC
×
aar
′
a = R−1ĴTC⊗Dr

′

and the π4-PIK solution as

u = R−1
l∑

a=1

ĴTaC
T
aar
′
a = R−1ĴTCT

Dr
′

where C⊗D = diag(C×11, . . . ,C
×
ll ).

Remark 2: We can simplify the QR decomposition JT =
ĴTe C

T
e = ĴTCT given by Lemma 1 when formulating the

PIK solutions introduced in this section. Observe that every
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solution starts by R−1ĴTCT
D and the latter part does not

include Ĵ. Construct J̃ =
[̃
jT1 · · · j̃Tm

]T
: X → Rm×n

by letting j̃a(x) = ĵa(x) if caa(x) > 0 and j̃a(x) = 0 if
caa(x) = 0 for all (a,x) ∈ 1,m × X . Since cab(x) = 0 for
all a ∈ 1,m if cbb(x) = 0, we have JT = ĴTCT = J̃TCT

and ĴTCT
D = J̃TCT

D. The decomposition JT = J̃TCT can
be obtained by running the algorithm in the proof of Lemma
1 where J̃T = Q̃r and CT = Rr. So, we do not need to find
orthonormal basis of N (J(x)) in order to formulate the PIK
solutions introduced in this section.

It would be interesting to see how those PIK solutions work.
We provide numerical simulations with a 7-DOF manipulator,
KUKA LWR, whose first priority task is to move the end-
effector position f1(q) ∈ R3, second priority task is to adjust
the end-effector orientation f2(q) ∈ R3 represented by the
rotation vector, and third priority task is to avoid a stationary
obstacle. The obstacle avoidance is implemented based on
[5] in which a repulsive velocity is generated to make the
closest point on the manipulator move away from the obstacle.
We choose the initial configuration q0 ∈ R7 satisfying
rank(Fq(q0)) = 7; let pa ∈ R3 for a ∈ 1, 2 sufficiently
close to fa(q0); and design the a-th reference for a ∈ 1, 2 as
ra(q) = 10(pa − fa(q)). The preconditioner function R is
determined based on [37] with δ = 0.2. We generate the joint
trajectory q(t) from π+

1 -, π+
2 -, π+

3 -, and π4-PIK solutions and
observe if the norms of task errors ‖ea(t)‖ = ‖pa− fa(q(t))‖
for a ∈ 1, 2 converge to zero, if the minimum distance d(t)
between the manipulator and the obstacle increases, and if the
norms of residuals ‖eres

a (t)‖ = ‖ra(q(t))−Fa(q(t))q̇(t)‖ for
a ∈ 1, 3 converge to zero as t→∞.

The simulation results are shown in Figure 1. The joint
trajectory satisfying q̇(t) = u(q(t)) is found numerically by
using the Euler method with the fixed time step of 1ms. It
is clear that all PIK solutions give the desired behavior but
the convergence speed is high for π+

1 - and π+
3 -PIK solutions,

medium for the π+
2 -PIK solution, and low for the π4-PIK

solution. Figure 2 shows that the joint velocity of the π4-PIK
solution is much lower than others; it could be the reason
of the low convergence speed. However, the π4-PIK solution
does not diverge near singularity because it does not contain
the inverse of a matrix, while the others should be replaced to
the damped version.

V. CONCLUSION

We showed that how the PIK problem can be generalized
to the multi-objective optimization with the lexicographical
ordering. We found three properties (O1) to (O3) for a vector-
valued objective function to be proper for the PIK problem
by reasoning that a PIK solution should have dependence
(O1), uniqueness (O2), and representation (O3) properties
to preserve priority relations between tasks. As a result, we
could define the set of all PIK solutions from the set of
all proper objective functions by the mapping defined as the
optimal solution of the multi-objective optimization with the
lexicographical ordering. We showed that our generalization
discards some trivial solutions and includes Nakamura’s and
(weighted) Chiaverini’s solutions with and without damping.
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solution 1

solution 2

solution 3
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Fig. 1. Norms of task errors, the minimum distance, and norms of residuals
are plotted with respect to the time t [s].
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3 -PIK solution
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Fig. 2. Joint velocities q̇i(t) [rad/s] for i ∈ 1, 7 are plotted with respect to
the time t [s].

We also furnished some other PIK solutions that have not
been formulated so far and compared their properties by a
simulation of a 7-DOF manipulator, KUKA LWR.

Our generalization opens a possibility to study theoretical
properties of the PIK problem. For example, one can find an
answer of the question “Can we always find a smooth PIK
solution given smooth Jacobians and references?” from [38].
Also, our generalization provides an intuitive and systematic
way to find new PIK solutions; it would be easier to design
proper objective functions than to find PIK solutions directly.

APPENDIX

Run the next algorithm.
1: V =

[
v1 · · · vm

]
← JT

2: Q̃r =
[
q1 · · · qm

]
← 0 ∈ Rn×m

3: Rr = [rij ]← 0 ∈ Rm×m
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4: for a = 1 to m do
5: raa = ‖va‖
6: if raa > 0 then
7: qa = va/raa
8: if a < m then
9: for b = a+ 1 to m do

10: rab = 〈qa,vb〉
11: vb = vb − rabqa
12: end for
13: end if
14: end if
15: end for
Then, we get the decomposition JT = Q̃rRr where Rr

is upper triangular; raa ≥ 0 for a ∈ 1,m; rab = 0 for
b ∈ 1,m if raa = 0; qa = 0 if and only if raa = 0; and
nonzero columns of Q̃r are orthonormal. Define Q̃ ∈ Rn×n
and R ∈ Rn×m as Q̃ = Q̃r and R = Rr if m = n and
Q̃ =

[
Q̃r 0

]
and R =

[
RT
r 0

]T
if m < n. There are only

r = rank(J) nonzero columns in Q̃. Let {p1, . . . ,pn−r} ⊂
Rn be an orthonormal basis of N (J). Construct Q ∈ Rn×n
by replacing zero columns of Q̃ with p1, . . . ,pn−r. Since
R(Q̃) = R(JT ) ⊥ N (J), Q is orthogonal and we get the
full QR decomposition JT = QR = ĴTe C

T
e .
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