
Web-based Visualization of Daily Mobility Patterns in R

Antje von Schmidt, Rita Cyganski, Matthias Heinrichs

Institute of Transport Research

German Aerospace Center (DLR)

Germany, Berlin

e-mail: antje.vonschmidt@dlr.de, rita.cyganski@dlr.de, matthias.heinrichs@dlr.de

Abstract-Human mobility reflects how, when, where and why

people move from one location to another. Transport demand

models can provide answers to these questions. Such models

usually require a large amount of data as input and provide

detailed information about the trips made by each individual

during a day. Exploring this data can become very complex.

Usually, several types of aggregation and disaggregation are

performed on a spatial, temporal or demographic level. Often

a variety of tools is used for analyzing, communicating and

validating the data. This paper introduces an interactive and

scalable web application for analyzing, communicating and

validating the data of a transport model. The presented

approach could also be used within a different research

domain. Therefore, recommendations and implementation

notes are given on how such an application can be realized in

R. A special focus is set on the representation of daily mobility

patterns within this application.

Keywords-transport demand; daily mobility patterns;

visualization; R; Shiny.

I. INTRODUCTION

This paper is an extended version of previous work
presented at the IARIA Seventh International Conference on
Data Analytics [1].

Human mobility reflects how, when, where and why
people move from one location to another. Biking, going by
car, using public transport, and walking are often considered
modes to accomplish activities such as education, working,
shopping, leisure or other things. Transport models can be
used to provide a realistic picture of the current traffic
situation, to predict future developments of transport demand
or to undertake scenario-based analysis of various possible
development paths, such as an aging population, changed
prices or new mobility trends. To estimate the demand that is
analyzed and visualized in this paper, the microscopic
transport demand model TAPAS [2][3] is used. Such models
usually require a large amount of data as input. Within a
simulation run, TAPAS calculates the activities and trips
performed during a day for each person in the research area.
Thereby, it provides individual trip chains with specific
spatial and temporal information as well as a detailed
description of each person and the associated household as
simulation output. The sum of these trips results in an overall
picture of the transport demand within a specified study area
and timescale.

Not only the validation of input and output data, but also
the analysis and representation of simulation results are not
easy tasks, especially if the target audience is heterogeneous

and several output media have to be covered. There are many
visualization types available, and which one to choose
strongly depends on the research question and the domain of
interest. In the field of transport research, several types of
aggregation and disaggregation are performed, may they be
on a spatial, temporal, or demographic level. A wide range of
visualization tools are available [4]. Some of them can be
used out of the box, and others require programming skills or
are only intended for a certain type of visualization, spatial
or non-spatial. Consequently, often a combination of these
tools is used, also because commercial software solutions or
eye catching animations are usually too expensive for being
applied within research projects. In general, a flexible and
extensible approach is preferable, which allows adaptation to
the respective needs.

The aim of this paper is to introduce the application
“Transport Visualizer” (TraVis). It is an interactive, user-
friendly and scalable web-based solution for analyzing,
communicating and validating the simulation data of a
transport model, such as TAPAS. A special focus is set on
the representation of daily mobility pattern within this
application. TraVis is based on the programming language
R, which is known as a flexible and powerful open source
language. R is widely used in the scientific field for
statistical computing, data analysis and visualization [5].
This application architecture was chosen because of the
possibility of combining the benefits of R with the
interactivity of modern user interfaces by using the Shiny
web-framework [6].

The paper is organized as follows: Related work is
discussed in Section II, followed by an introduction of the
simulation data used with TAPAS in Section III. Section IV
describes the implementation requirements and Section V
gives recommendations, on how to set up a web-based
application in R. The usage of spatial data and the realization
of the TraVis application are outlined in Section VI
respectively in Section VII. The visualizations of the daily
mobility patterns within this application will be presented in
Section VIII, using a baseline scenario for the city of Berlin
in 2010. Finally, Section IX summarizes this paper and gives
an outlook on future work.

II. RELATED WORK

For a long time, the role of visualization in transport
modelling was largely limited to the static presentation of
aggregated final results, primarily through statistical tables
and simple graphs or the provision of key indicators
describing the development of transport demand (see for

76

International Journal on Advances in Internet Technology, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

instance [7][8]). In recent years, map-based representations
were progressively used within the transport domain. In
particular, the level of detail is increasing: from a general
overview of the study area, to a certain spatial resolution of it
or temporal selections, down to the visualization of
individual travel behavior [9]-[12]. Modern web
technologies [13]-[15] as well as the growing availability of
data and computing power have contributed to a significant
increase in the usage of dynamic and interactive forms of
visualization. In transport as in other research fields, it is
necessary to analyze the visualization requirements and
consider the type of data to be visualized, the audience to be
addressed, the purpose of the visualization, the appropriate
level of detail, the aspects of the data that should be
transmitted, and the target medium for which the
visualization is generated. A general framework for the
visualization of transport data and models is defined in [16].

Another important factor is the type of visualization.
Charts are often used to represent information on a high or
intermediate level of detail. Which type of illustration should
be used depends on the data type and on what is to be shown.
In [17], a chart selector guide and four basic methods of data
analysis are defined that can help to choose the right chart
type for comparison, composition, distribution, and relation.
The comparison of single values, such as totals or means, is
best shown with regular bar or column charts, while line
charts are more suitable for identifying distributions of
continuous values or the development of a measure over
time. Stacked charts can be used to represent the absolute or
relative changes within the composition of categorical
variables. Scatter and bubble charts are suitable for
representing correlations between two respective three
numerical variables, whereas parallel coordinates can be
used to point out relationships between multivariate data. A
chord diagram is a common way to illustrate interrelation
between data in a matrix, whereas data with a spatial context
are typically represented by suitable maps. For example, a
choropleth map can help to identify regional varieties, while
flow maps show the quantity of movements between
geographical units. Spatial changes between scenarios are
usually achieved by difference maps, whereas animated
maps are suitable to represent differences over time. There
are many more ways for visualizing data, and not all of them
can be listed here. Hence, only a brief insight into the
diversity is given. A good overview can be found at [18].

Although many visualization concepts and tools are
available, the challenge remaining is to integrate these
different approaches and to enable the users to perform their

analyses without mastering programming languages or using
a variety of tools.

III. SIMULATION DATA

Microscopic transport demand models usually require a
variety of different input data, such as population, locations,
network, transport offers, timetable and land use. All this
data is very heterogeneous in terms of format, spatial
resolution, and time frame. TAPAS, for instance, requires all
possible locations within a specified study area where
activities such as working or shopping can be realized, but
also the respective capacities indicating the number of people
that can be there at the same time. Furthermore, a main input
is a highly differentiated synthetic population, which is
generated by the SYNTHESIZER [19]. Within such
transport models, individual and household information play
an important role in the choice of destination and transport
means. Therefore, a synthetic population contains
information both at the personal and household level. In the
case of TAPAS, age, sex and an employment status variable
are used on the individual level. In addition, information on
available mobility options is required, such as a driving
license, a public transport ticket, a bike as well as the budget
a person can spend on mobility. Household information
comprises the number of persons, the total household
income, the number and type of vehicles that belong to the
household as well as the spatial reference of the address. The
simulation results, on the other hand, provide detailed
information for each individual trip, including, among other,
start time and duration, transport mode chosen, the distance
as well as information about the trip purpose, and the
location of origin respectively destination. Table I provides
an excerpt of the simulation output. The identifier of each
person and the corresponding household can be used to
merge further information. Overall, data associated with an
average simulation run is quite vast, reaching roughly 11.5
million trips using a baseline scenario for the city of Berlin
with a population of 3.3 million inhabitants in 2010.

IV. IMPLEMENTATION REQUIREMENTS

Exploring the simulation data of a transport model can

become very complex. The tabular representation of the

simulation output, shown in Table I, is not easily to interpret

by humans, especially when handling large amounts of data.

Based on related work, the following aspects were selected

as requirements for the implementation.

TABLE I. GENERATED INDIVIDUAL ACTIVITY BASED DAILY MOBILITY PLAN FOR A SAMPLE PERSON

P-ID HH-ID

Trip Purpose Location

Start time Duration Mode Distance Activity Start time Duration Start End

1 5 7:15 10 min bike 2 km shopping 7:25 5 min at home at a shop

1 5 7:30 30 min public transport 10 km working 8:00 8:30 h at a shop at work

1 5 16:30 15 min bike 3 km leisure 16:45 1:00 h at work at a gym

1 5 17:45 45 min bike 9 km leisure 18:30 12:00 h at a gym at home

77

International Journal on Advances in Internet Technology, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Data type

As mentioned before, the simulation data includes a

variety of heterogeneous data types, which all have to be

taken into account for exploring the data and the resulting

daily mobility pattern in a disaggregated or aggregated

manner. Besides the data with a spatial context such as

activity location, traffic flow, population density or origin-

destination matrices, there are also descriptive variables.

These can be further subdivided into continuous, discrete

and categorical data, such as the trip length, person age, or

the activity performed.

B. Target audience and purpose

The visualizer shall help modelers to review the model

values and disseminate the results to a wider audience,

including both the scientific community and the public.

Therefore, the usage of different media, including scientific

publications, static presentations or interactive

visualizations is intended.

C. Level of detail

The target application should contain all levels of detail
of spatial, temporal, and demographic dimensions. It should
be possible to aggregate simulated data at different viewing
modes – for the complete study area or parts of it. This can
be used, e.g., to validate the applied synthetic population,
including the vehicle fleet and mobility options. The
simulation result should be used for computing common key
indicators of the transport demand (e.g., modal split) by
aggregation. At the most detailed level, the individual travel
behavior should be extractable from the simulation output
and visualized. In addition, the usage of public space should
be included in the analysis. It might be interesting to know
how much space is used for parking vehicles. This is
particularly interesting due to the space limitations and
competition in cities. The space requirements for parking
may change, for example through an increasing use of
mobility services (e.g., bike-, car- or scooter-sharing) or the
introduction of autonomous vehicles. Therefore, this
information can provide useful information for future urban
planning.

D. Output medium and interactivity

According to the different audience and purpose, both

static as well as dynamic media have to be addressed. To

understand changes, for example between different scenario

parameters or time frames, it is important to provide the

possibility to compare the corresponding simulation results.

To take a closer look at certain aspects of the simulation

output, the use of filters should be supported, including the

following filter types: specific groups of persons or

households, mode choice, location, trip purpose, time of

traveling, distance, trip type and specific part of the study

area. Detailed filter options are shown in Table II. These

filters should be used to limit the simulation result

accordingly.

TABLE II. FILTER OPTIONS

Filter Elements

Region type agglomeration, urban, sub urban, rural, zone
identifier

Household size 1, 2, 3, 4, 5+

Number of cars 0, 1, 2

Person group kids (< 6), pupil, student, employed, unemployed,
pensioner

Transport mode walk, bicycle, car, car (co-driver), public transport,
other

Activities education, leisure, private matters, shopping,
working, other

Locations education, leisure, private matters, shopping, work,
other

Trip type local people, commuters, origin, destination

Time of traveling early (0 - 6), morning (7- 12), afternoon (13 - 18),
evening (19 - 24)

Distance 1000m, 2000m, 3000m, 4000m, 5000m, 5000m+

Another main aspect is the opportunity to adjust the

spatial scale, whereby different resolution of zones or the

European wide standardization for geographical grids [20]

may be applied. To address the various target media, it is

also required to export appropriate figures for print media

and to show the results on screen.

E. Visualization type and customization

With regards to the different types of data and the

various target media, the application should contain suitable

visualizations, such as different charts, maps and

animations. This is necessary for presenting the simulation

data according to the desired level of detail. Furthermore,

the application should be scalable so that new types of

reporting can be integrated immediately. Besides the choice

of the right visualization type, it is also very important to

have the opportunity to adopt its appearance. Therefore, it is

required to customize attributes related to the layout, such as

the color of the bars, the chart background, and the position

of labels or of the legend as well as the appropriate font type

and size. With the focus on internationalization, it is also

necessary to supply different languages in order to

automatically generate the required labels for the

visualization.

V. RECOMMENDATIONS ON HOW TO SET UP AN WEB-

BASED APPLICATION IN R

The development of a web-based application is not
always straightforward. If a comprehensive application
has to be created, the implementation can quickly become
complex and time-consuming. It is therefore recommended
to create readable and reusable code. In the following
section, some recommendations are given, on how to set up a
web-based application in R.

78

International Journal on Advances in Internet Technology, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Use a development environment

RStudio, for instance, has established its position as a
development environment in the R community. This tool
should be used in conjunction with an up to date R version.
Both are platform independent and a freely accessible
version is available. When creating a new application, select
"Shiny Web Application" as the project type within RStudio.
This automatically integrates the Shiny web-framework.
After the creation, a first example application is available
and can be adapted accordingly.

B. Apply a usable application structure

A basic Shiny application is usually structured either in
one script (app.R) or split into two: a user-interface script
(ui.R) and a computational script (server.R). The ui.R script
includes the layout and all the user-interface elements of the
application, whereas the logic is specified in the server.R
script. Here, for example, is defined what will occur if the
user changes the value of a select box. Both scripts interact
with each other through input and output objects. Splitting
the programming code in only two scripts may be sufficient
for smaller applications, but the programming code can
quickly become unwieldy in larger ones. Therefore, it is
recommended to split these main scripts further to make the
code easier to maintain for developers. This can be
additionally supported by a modular application design.

C. Create modules to use elements several times

Recently, the capability of using modules was added to
Shiny as a new feature [21]. Shiny modules can be used to
capture functionality and avoid name collisions by using
namespaces for the input and output elements. This is
especially important as element identifiers must be unique
within a Shiny application. A module can be considered as a
function that can be called several times within an
application and is also structured either in one script
(module.R) or split into two: a user-interface script (ui.R)
and a computational script (server.R). To use modules
across applications, it is recommended to pack them into a
separate R package. This provides the full benefits of
packaging, such as an update of the module package will
automatically update all affected Shiny applications
accordingly. Before creating modules, one should consider
what recurring features are needed in the application.

D. Define the data store used

Data is often stored in a database. PostgreSQL, for
example, can be used as a database system. A free version is
also available. With the PostGIS extension, spatial data can
also be managed within such a database. But, data can also
be stored in text files instead of in a database. Within R it is
possible to access all common data types within various data
stores.

E. Reduce the data volume

Within the R environment, all data is stored in the
working memory. When analyzing large amounts of data,
this can slow down the performance. Therefore it is

recommended to reduce the data volume. This can be done,
for example, by aggregating the data accordingly.

F. Create a concept for managing spatial data

Spatial related evaluations within the field of transport
research have to be often carried out for different spatial
scales. Furthermore, the boundaries of a spatial zone may
change or new zonal levels are added. Therefore, the data
have often been spatially adapted accordingly. The spatial
mapping of data on the fly can be very time consuming. For
this reason, it is recommended to create a concept to avoid
data redundancies and an unnecessarily inflation of the data
volume.

G. Use HTML widgets for interactive visualization types

A Shiny application can easily be extended by including

HTML widgets. They provide an interface to a specific

JavaScript library and generate interactive visualizations.

The usage within R usually does not require further web

development skills. There are already several widgets for

interactive visualization types available, such as for charts,

maps, or data tables.

H. Provide multi-language support

Results of research projects often have to be presented on
national and international conferences or in journals.
Therefore, it is necessary to provide the labels of the figures
in the respective language. The labels should therefore not be
integrated statically into the application, but instead be
dynamically adaptable. This can be achieved, for example,
by providing and using resource files for each language.

I. Decide, how to share the application with others

A Shiny application can be started locally within

RStudio. To make this application available, the entire

application folder with the associated files can be passed to

other users. To start this application, it is necessary that the

user has RStudio and R installed on the computer. This type

of application sharing may be sufficient within a workgroup.

However, it is also possible to run the application on an own

web server. Therefore, the Shiny Server can be installed on

a Linux operating system. This server is freely available as

open source. In addition, such an application can also be

hosted for free or commercially via the RStudio service.

VI. USING SPATIAL DATA IN R

Spatial data plays an important role within the

simulation data. Not only for the preparation of the input

data, but also in the later analysis and visualization of the

simulations. Table III includes possible geometry types to

represent transport related issues. Whereby, relevant

attributes of the types can be used to highlight content

related issues. The color of a point for example can be used

to present different activity locations, whereas the size can

be used to visualize the location capacity and the line

thickness can help to show a different traffic volume.

79

International Journal on Advances in Internet Technology, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. GEOMETRY TYPES TO REPRESENT TRANSPORT RELATED ISSUES

Geometry type Intended purpose (e.g.)

Point

activity location,
location capacity

Line

origin and destination of
a trip

Polygon

population density

Grid

car density

Combination

aggregated traffic flow

This kind of data may be available in various formats,

e.g., as shapefile, text file or in a database. R offers several

packages for handling spatial data. The package rgdal [22]

for instance includes functions for reading and writing

shapefiles. Data available in the geoJSON format can be

integrated using the geojsonio package [23]. The rpostgis

package [24] provides an interface to PostGIS enabled

PostgreSQL databases. Currently, spatial objects in R are

often based on spatial classes which are specified in the sp

package [25]. The recently created sf package [26] supports

simple features, a standardized way to encode spatial vector

data and could replace the sp package in the future. The

package links to a lot of other R packages, include many

operations to manipulate spatial data, and can be used for

reading and writing the mentioned formats. Furthermore, the

sf package interacts very nicely with the tidyverse package

[27] and makes it quite easy to create maps in conjunction

with other appropriate packages.

Depending on the intended use, maps may be needed

either in a static or interactive way. For instance, the

packages cartography [28], ggplot2 [29] or tmap [30] can

be used to plot static maps, whereas interactive maps can be

created with packages such as leaflet [31], highcharter [32]

or as well with tmap.

VII. REALIZATION OF THE TRAVIS APPLIACTION

Based on the implementation requirements, the following
parts of the application were realized as described below.

A. Concept for managing spatial data within a database

All simulation data is stored in a PostGIS enabled
PostgreSQL database. The database structure of TAPAS is
designed to avoid redundant data and unnecessary increase
in data volume. Therefore, each spatial scale of a study area
is kept in its own table, including an identifier, the
coordinates of the boundaries as polygon and further
attributes like the zone name. In addition, all household and
location addresses as well as other places without direct
address, such as playgrounds or parks, are stored as point
coordinates in the geocodes table. All geometry columns of
these tables have been provided with a spatial index. The use
of spatial indexes can reduce the time required for spatial
queries compared to tables without such an index. Every
point coordinate within the geocode table is mapped to the
desired spatial scales. Finally, the corresponding zone
identifier has been stored within the geocodes table, each
scale in its own column. These identifiers can be used to join
the data from the belonging spatial scale table. Each point
coordinate has also a unique identifier which is joined to the
households and locations table. At the same time, the
household and location identifier is included in the trips
table. With this approach, the spatial mapping of the point
coordinates to the polygon of the respective zone only has to
be performed once. It therefore offers a great advantage for
the later spatial analysis and visualization of the data, as the
aggregation to a certain zone is much faster using identifiers
than a spatial reallocation. Furthermore, new spatial scales
can be integrated easily. An outline of the database structure
is shown in Figure 1.

Figure 1. Outline of the TAPAS database structure

80

International Journal on Advances in Internet Technology, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Approch to reduce the data volume

Loading a full sample, with roughly 11.5 million trips for
the city of Berlin 2010, is not really manageable within R.
Especially the representation within a web browser does not
work well, because the loading of the data is rather slow. To
reduce the amount of data, the disaggregated simulation data
is not loaded directly into R. Instead, several SQL functions
for data preparation were implemented within the database
e.g., for data filtering, or data aggregation. This also makes
parsing the data with other programs possible. However, the
goal is to enable users to perform their analyses
automatically and without the use of additional tools.

The simulation results generated by TAPAS are not
overwritten when simulation parameters are adjusted; new
result data is generated instead. Once generated, the data is
static and can be stored in corresponding R objects. This has
the advantage that the data does not have to be retrieved
from the database again for a new simulation evaluation.

C. Application structure

The two main scripts of a basic Shiny application are
split into several parts to make the code easier to maintain.
Global objects for example, are defined once in the global.R
file and used multiple times within other files. Application
settings such as the used packages, property files for each
provided language, or database configurations are defined
within the settings folder. Each part of the application
frontend (e.g., header, body, or sidebar) is placed in its own
file and referenced within the ui.R script. Computational
parts are outsourced as functions and used within the
server.R script. Each created module is stored in its own
folder, which contains the corresponding ui.R and server.R
files of the module. Once generated, data (e.g., evaluated
data) is stored within the data folder. The developed and
used file structure within TraVis is shown in Table IV. An
overview of the application architecture is given in Figure 2.

TABLE IV. USED FILE STRUCTURE

Folder/File Description

/data stored spatial and evaluated data (*.rdata)

/functions
outsourced functions including:
database connection, text formatter

/modules
includes subfolder for each module, which contains
the corresponding ui.R and server.R files

/server computational snippets

/settings
application settings, e.g, used packages, properties
(de/en), database config

/ui user-interface snippets

/www Stylesheets, JavaScript functions

global.R
global objects, with reference to /settings and
/scripts

server.R
main computational file, with reference to /server
and /scripts/modules

ui.R
main user-interface file, with reference to /ui and
/scripts/modules

Figure 2. Overview of the TraVis application architecture

D. Modularizing

The following recurring features were defined for the
TraVis application so far:

 Render a map view, enabling support for panning,
zooming and switching layer on/off, as well as for
exporting the map as a printable image. Supply a
settings panel to adjust the map layout individually.
This includes customization options, such as the
color scheme and legend position.

 Supply a map data panel with elements to switch
between multiple scenarios and possible categorical
values.

 Render a chart view and supply a settings panel to
adjust the chart layout individually. This includes
customization options, such as the type of the chart,
an adoptable color scheme for matching the
respective project’s corporate design, text alignment
and legend position. Furthermore, provide the
possibility to export the generated chart as a
printable image.

 Render a panel with value boxes to highlight key
indicators.

 Supply a filter panel with elements to limit the
simulation result according to the filter options given
in Table II.

 Enable an interactive link between the above
mentioned elements.

For flexibility reasons and further usage within other
applications, these defined features have been split into
separate Shiny modules: map, chart, box and filter module.
In the following, each of the sub-modules is described in
more detail.

The user-interface of the map module contains a data
panel with selection fields for the choice of the respective
simulation and the associated categorical data. Furthermore,
there is a map container and a corresponding settings panel
for adapting the map layout. The server part of the map
module receives several parameters as input, such as spatial
aggregated data and the associated geometry. Additionally, it
provides a function to view the data according to the selected
scenario as well as the chosen category (e.g., the mode

81

International Journal on Advances in Internet Technology, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

walking). For rendering the map, the leaflet HTML widget
[31], related to the JavaScript Leaflet library is integrated
within this module. This widget is perfect for displaying
maps within a web browser, as all the interactive features,
such as panning, zooming and switching layer on/off, come
into use. The module structure, including the definition and
use of the namespace as well as the linkage of the input and
output objects between the user- and server part of the map
module is outlined in Figure 3.

The chart module includes a chart container and a
corresponding settings panel for adapting the chart layout
within the user-interface. The server part receives several
parameters as input, such as aggregated data and the colors
to use as default. For rendering the chart, the highcharter
HTML widget [32], related to the JavaScript Highcharts
library is used within this module. Highcharts contains a
large number of interactive chart types and supports the
export into different output formats (e.g., png, svg or jpeg).
This module includes additionally a function to render the
chart according to the selected spatial object within the map.

The box module contains a panel with several boxes in
the user-interface. The server part, on the other hand,
receives the values as parameter and contains a function for
rendering these boxes. For this purpose, the value boxes
from the shinydashboardPlus [33] are used. Additionally,
this module contains a function to render the boxes
according to the selected spatial object within the map.

The user-interface of the filter module contains a panel
with select boxes for each defined filter option in Table II.
The server part contains a function to render this panel and to
filter the data accordingly. Finally, this module is used to
return the filtered data to a parent module.

#definition of the map module user-interface
mapUI <- function(id){

 #namespace definition
 ns <- NS(id)
 …
 #use of the namespace for the data panel elements
 uiOutput(ns(“simulation”)) #list of simulations
 uiOutput(ns(“category”)) #list of modes, activities, …
 …

 #map container
 leafletOutput(ns(“map_leaflet”), …)
 …
}

#definition of the map module server part
map <- function(input, output, session, data, geometry, named.list, …){

 ns <- session$ns
 …
 #render ui-elements for the data panel
 output$simulation <- renderUI({… selectInput(ns(“simulation”)) …})
 output$category <- renderUI({… selectInput(ns(“category”)) …})
 …
 #render map
 output$map_leaflet<- renderLeaflet({…})
}

Figure 3. Outline of the map module

The map, chart, box and filter module are wrapped
within a higher-level simOut module. This module includes a
grid layout for the arrangement of the four sub-modules and
a reference to the respective user-interface elements of each
module. The server part of the simOut module receives
several parameters such as spatial aggregated data, the
associated geometry and a named list. Some of these inputs
are provided as parameters for the sub-modules, others are
used within function. The named list, for example, is used
for transforming categorical values into adequate factors.
Furthermore, it includes a function to aggregate data as well
as the reference to each sub-module. The simOut module has
been created for the evaluation of the simulation output. An
outline of the simOut module is shown in Figure 4. It
illustrates the link between the four sub-modules and the
simOut module. Furthermore, a simIn module has been
created for the evaluation of the simulation input data. Both
main modules are used several times within the application.

 #module user-interface
 simOutUI <- function(id){

 #namespace definition
 ns <- NS(id)
 …
 #insert the user-interface parts of the corresponding modules
 filterUI(ns("filter"))
 mapUI(ns("map"))
 boxUI(ns("box"))
 chartUI(ns("chart"))
 …

 }

 #module server
 simOut <- function(input, output, session, data, geometry, named.list, ...)
 ...

 #call the server parts of the corresponding modules
 callModule(filter, “filter”, …)
 callModule(map, “map”, ...)
 callModule(box, “box”, ...)
 callModule(chart, “chart”, ...)

 }

Figure 4. Outline of the parent module simOut

E. Application frontend

The application frontend of TraVis is built with an
extended dashboard version for Shiny applications,
shinydashboardPlus [33]. It includes four parts: header,
body, left and right sidebar. The header is currently used for
displaying the application name and to toggle both sidebars.
Further elements can be integrated. The left sidebar contains
the main navigation of the application. Each menu item
refers to an evaluation topic. Currently, parts of the
population, vehicle fleet and stationary traffic from the
simulation input can be visualized as well as daily mobility
patterns which are obtained from the simulation output. The
right sidebar is used as the main settings panel with several
tabs. The first one enables the user to get access to the data.
Here, it is possible to select one or more simulation runs
belonging to a chosen research project. The spatial scale can
be defined in the second tab. The third tab allows for

82

International Journal on Advances in Internet Technology, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

defining the target language to be used throughout the entire
session. Following the approach of multi-language support
within a Shiny application [34], switching between English
and German is currently implemented. The body includes the
main panel. Depending on the chosen evaluation topic, the
corresponding module simIn respective simOut is used.

VIII. DAILY MOBILITY PATTERNS FOR BERLIN

Daily mobility patterns can be described by three key
indicators that are related to the selected mode of out-of-
home travelers [35]: the number of trips, the distance and the
travel time. Table V contains common daily mobility key
indicators using a baseline scenario for the city of Berlin in
2010. Approximately 3.3 million inhabitants lived in 1.9
million households that year.

The result of a microscopic transport model allows
working with even more detailed patterns of travel behavior.
For instance, the daily mobility can be influenced by various
socio-demographic factors such as age, gender and income.
Especially, the interaction between the trip purpose and the
used mode can be analyzed. But, also the spatiotemporal
information is very important because these values can be
used to point out spatial differences in the traffic volume
during a day and to visualize traffic flows. The following
figures illustrate various forms of representing daily mobility
patterns within TraVis. The focus is on the visualization of
the computed traffic volume grouped by transport mode for
the city of Berlin in 2010. Within the application it is
possible to visualize the spatial distribution for different
spatial scales and for each transport mode as well as the
activity made.

TABLE V. KEY INDICATORS OF DAILY MOBILITY USING A BASELINE

SCENARIO FOR THE CITY OF BERLIN IN 2010

Mode Number of Trips Distance (km) Time (min)

 Sum Values Average Values

Bike 1.469.023 (12.5%) 5.1 29

Car 3.625.876 (30.9%) 7.6 25

Public transport 3.210.767 (27.4%) 7.8 50

Walk 3.422.100 (29.2%) 1.8 26

Total 11.727.766 5.9 31

Figure 5 (A) shows the spatial distribution of all walking

trips within the city. The total share of walking trips for the
entire city is shown in Figure 5 (B). The modal split of two
selected districts is represented in Figure 5 (C). These
districts, one within the city center and the second further
out, serve to compare the traffic volume during a day. While,
the traffic volume in the morning is shown at the top and in
the afternoon at the bottom for each district, see Figure 6 (A-
B). In both districts the morning pick takes place at 6 and 7
o'clock. Throughout the day there are more trips within the
inner city district which are made by walking respectively by
using public transport. In the further out district, however,
going by car dominates. In addition, it is evident that in the
afternoon many more trips are undertaken within the inner
city district.

Figure 5. Visualization of the computed traffic volume for a selected mode of transport (walk). The spatial distribution within the city is shown in the map on
the left side (A), while (B) represents the total share of walking trips for the entire city of Berlin. The modal split of two selected districts, one within the city

center (Friedrichshain-Kreuzberg) and one further out (Treptow-Köpenick), is shown on the right-hand side (C).

83

International Journal on Advances in Internet Technology, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Visualization of the computed traffic volume during a day. Two districts within the city of Berlin are compared, one within the city center (A) and
the second further out (B). The traffic volume in the morning is shown at the top and in the afternoon at the bottom.

IX. SUMMARY AND FURURE WORK

Transport demand models can provide answers to the
questions of how, when, where and why people move from
one location to another. Exploring the data of such a model
can become very complex. This paper introduces the web-
based application TraVis, which integrates several types of
aggregation and disaggregation on a spatial, temporal, or
demographic level. The application is implemented in the
programming language R, which is widely used in the
scientific field for statistical computing, data analysis and
visualization. By using the Shiny web-framework it is
possible to convert R analyzes into an interactive web
application. Therefore, the application architecture was
chosen. TraVis is currently used to analyze and communicate
the simulation data of the transport model TAPAS, but is
also suitable for evaluating real-time mobility observation
data. In this case, legal issues such as data privacy related
aspects have to be considered.

The presented approach could also be used to analyze
research results within a different domain. Therefore, several
recommendations and implementation notes are provided on
how such application can be realized in R. This includes the
use of a development environment, a usable application
structure, a modular application design, the use of a reduced
data volume, a concept for managing spatial data, to
integrate HTML widgets for interactive visualization types,
the support of multi-language, and advice on how to share
the application with other users. Finally, the visualization of
daily mobility patterns within the TraVis application is
presented for a baseline scenario for the city of Berlin in
2010.

Upcoming work will focus on the visualization of
spatiotemporal related data such as the individual travel

trajectory and on implementing the ability to toggle between
single and multi-window view. Furthermore, it is planned to
make the application freely available as open source. TraVis
is currently intended for internal use only, but it will be
accessible from the following repository in the near future:
https://github.com/DLR-VF/TraVis.

REFERENCES

[1] A. von Schmidt, R. Cyganski, and M. Heinrichs, “Shine on
Transport Model Simulation Data: Web-based Visualization
in R using Shiny”, in DATA ANALYTICS 2018, The
Seventh International Conference on Data Analytics, pp. 67-
72, 2018, ISBN 978-1-61208-681-1, ISSN 2308-4464.

[2] M. Heinrichs, D. Krajzewicz, R Cyganski, and A. von
Schmidt, “Disaggregated car fleets in microscopic travel
demand modelling”, 7th International Conference on Ambient
Systems, Networks and Technologies, pp. 155-162, 2016, doi:
10.1016/j.procs.2016.04.111.

[3] M. Heinrichs, D. Krajzewicz, R Cyganski, and A. von
Schmidt, “Introduction of car sharing into existing car fleets
in microscopic travel demand modelling”, Personal and
Ubiquitous Computing, Springer, pp. 1055-1065, 2017
doi: 10.1007/s00779-017-1031-3.

[4] N. Yau, “Visualize this: the flowingdata guide to design,
visualization, and statistics”, Wiley Publishing, 2011, ISBN:
978-0-470-94488-2.

[5] R Core Team, “R: A language and environment for statistical
computing”, R Foundation for Statistical Computing, Vienna,
Austria, 2018. http://www.R-project.org, accessed:
2019.11.26

[6] W. Chang, J. Cheng, J. J. Allaire, Y. Xie, and J. McPherson,
“Shiny: Web Application Framework for R”, 2017.
https://CRAN.R-project.org/package=shiny, accessed:
2019.11.26

[7] J. L. Bowman, M. A. Bradley, and J. Gibb, “The Sacramento
Activity-based Travel Demand Model: Estimation and
Validation Results”, presented at the European Transport
Conference, 2006.

84

International Journal on Advances in Internet Technology, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[8] R. M. Pendyala, R. Kitamura, A. Kikuchi, T. Yamamoto, and
S. Fujii, “Florida Activity Mobility Simulator: Overview and
Preliminary Validation Results”, Transportation Research
Record (1921), pp. 123-130, 2005.

[9] X. Liu, W. Y. Yan, and J. Y. Chow, “Time-geographic
relationships between vector fields of activity patterns and
transport systems”, in Journal of Transport Geography, 42,
pp. 22-33, 2015.

[10] O. Klein, “Visualizing Daily Mobility: Towards Other Modes
of Representation”, A. Banos and T. Thevenien (Eds.),
Geographical Information and Urban Transport Systems,
Wiley Online Library, pp. 167-220, 2013.

[11] H. Guo, Z. Wang, B. Yu, H. Zhao, and X. Yuan, “Tripvista:
Triple perspective visual trajectory analytics and its
application on microscopic traffic data at a road intersection”,
Visualization Symposium (PacificVis), IEEE Pacific, pp. 163-
170, 2011, ISBN: 978-1-61284-935-5.

[12] R. Cyganski, A. von Schmidt, and D. Teske, “Applying
Geovisualisation to Validate and Communicate Simulation
Results of an Activity-based Travel Demand Model”,
GI_Forum, in Journal for Geographic Information Science.
pp. 575-578, 2015.

[13] M. Bostock, V. Ogievetsky, and J. Heer, “D3: Data-Driven
Documents”, IEEE Transactions on Visualization and
Computer Graphics, IEEE Press, 17 (12), pp. 2301–2309,
2011, doi: 10.1109/TVCG.2011.185.

[14] V. Agafonkin, “Leaflet: a JavaScript library for interactive
maps”, 2011. Available from: https://leafletjs.com, accessed:
2019.11.26

[15] Highsoft, “Highcharts: interactive JavaScript charts for your
webpage”, 2009. https://www.highcharts.com, accessed:
2019.11.26

[16] M. Loidl et al., “GIS and Transport Modeling-Strengthening
the Spatial Perspective”, ISPRS International Journal of Geo-
Information, 5(6), 2016, doi: 10.3390/ijgi5060084.

[17] A. Abela, “Advanced Presentations by Design: Creating
Communication That Drives Action”, Pfeiffer, 2th edition,
2013, ISBN: 978-1-118-34791-1.

[18] Ferdio, “Data Viz Project”. http://datavizproject.com,
accessed: 2019.11.26

[19] A. von Schmidt, R. Cyganski, and D. Krajzewicz,
“Generation of synthetic populations for transport demand
models, a comparison of methods taking Berlin as an
example”, “Generierung synthetischer Bevölkerungen für
Verkehrsnachfragemodelle, ein Methodenvergleich am
Beispiel von Berlin” (original title), In HEUREKA'17 -
Optimierung in Verkehr und Transport, FGSV-Verlag, pp.
193-210, 2017.

[20] INSPIRE, http://inspire.ec.europa.eu, accessed: 2019.11.26

[21] J. Cheng, “Modularizing Shiny app code”, 2017.
https://shiny.rstudio.com/articles/modules.html, accessed:
2019.11.26

[22] R. Bivand, T. Keitt, and B. Rowlingson, “rgdal: Bindings for
the 'Geospatial' Data Abstraction Library”, R package version
1.4-4, 2019. https://CRAN.R-project.org/package=rgdal,
accessed: 2019.11.26

[23] S. Chamberlain and A. Teucher, “geojsonio: Convert Data
from and to 'GeoJSON' or 'TopoJSON'”, R package version
0.7.0, 2019, https://CRAN.R-project.org/package=geojsonio,
accessed: 2019.11.26

[24] D. Bucklin and M. Basille, “rpostgis: linking R with a
PostGIS spatial database”, in The R Journal, 2018, 10(1), pp.
251-268. https://journal.r-project.org/archive/2018/RJ-2018-
025/index.html, accessed: 2019.11.26

[25] E. Pebesma and R. Bivand, “Classes and methods for spatial
data in R”, in R News, 5 (2), pp. 9 - 13, 2005.

[26] E. Pebesma, “Simple Features for R: Standardized Support for
Spatial Vector Data”, in The R Journal, 10 (1), pp. 439-446,
2018, doi: 10.32614/RJ-2018-009.

[27] H. Wickham, “tidyverse: Easily Install and Load the
'Tidyverse'”, R package version 1.2.1, 2017. https://CRAN.R-
project.org/package=tidyverse, accessed: 2019.11.26

[28] T. Giraud and N. Lambert, “cartography: Create and Integrate
Maps in your R Workflow”, in JOSS, 1(4), 2016, doi:
10.21105/joss.00054.

[29] H. Wickham, “ggplot2: Elegant Graphics for Data Analysis",
Springer-Verlag New York, 2016.

[30] M. Tennekes, “tmap: Thematic Maps in R”, in Journal of
Statistical Software, 84(6), pp. 1–39, 2018, doi:
10.18637/jss.v084.i06.

[31] J. Cheng, B. Karambelkar, and Y. Xie, “leaflet: Create
Interactive Web Maps with the JavaScript 'Leaflet' Library”,
R package version 2.0.2, 2018. https://CRAN.R-
project.org/package=leaflet, accessed: 2019.11.26

[32] J. Kunst, “highcharter: A Wrapper for the 'Highcharts'
Library”, 2019. https://github.com/jbkunst/highcharter,
accessed: 2019.11.26

[33] D. Granjon, “shinydashboardPlus: Add More 'AdminLTE2'
Components to 'shinydashboard'”, R package, 2019.
https://CRAN.R-project.org/package=shinydashboardPlus,
accessed: 2019.11.26

[34] C. Ladroue, “Multilingual Shiny App”, 2014.
https://github.com/chrislad/multilingualShinyApp, accessed:
2019.11.26

[35] S. Schönefelder and K. W. Axhausen, “Urban Rhythms and
Travel Behaviour: Spatial and Temporal Phenomena of Daily
Travel”, Transport and Society, Ashgate, 2010, ISBN: 978-0-
7546-7515-0.

85

International Journal on Advances in Internet Technology, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

