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ABSTRACT
In this paper we focused on the analysis of the continuity risk for a maritime user and on the derivation of the receiver
implementation scheme that ful�lls IMO [2] requirements. We started our analysis by considering the model derived in [6],
which is accurate for aviation applications, while it is not guaranteed to work in other environments. To take into account the
time evolution of the continuity risk, we propose in this paper to introduce Markov models. The derived models can be used to
compute the continuity risk when a receiver not implementing exclusion is used, as well as when a receiver implements both
snapshot and sequential exclusion. The derived conclusion is that without exclusion, it is not possible to achieve the required
performance. It is shown that, considering only satellite faults, over the 3 hours of operation, in principle a snapshot exclusion
mechanism is su�cient. When implementing sequential exclusion, at the cost of an increased complexity, the continuity risk
is furthermore reduced. We also showed that, under some temporal limitations and with some assumptions on the exclusion
mechanism, the results provided by the Markov models and by the model derived in [6] coincide. This �nal consideration shows
that the proposed approach can be seen as a natural extension of the state of the art model from the avionic environment to
the maritime environment.

INTRODUCTION

In the Maritime navigation environment it is under the attention of the scienti�c and technological community the
possibility of standardizing the use of multiconstellation navigation systems that are compliant with the IMO (International
Maritime Organization) requests. Preliminary studies on the required performance show that one of the critical issues is the
requirement related to continuity. According to the de�nition taken from [1]:

"The Continuity of a system is the ability of the total system (comprising all elements necessary to maintain aircraft posi-
tion within the de�ned airspace) to perform its function without interruption during the intended operation. More speci�cally,
Continuity is the probability that the speci�ed system performance will be maintained for the duration of a phase of operation,
presuming that the system was available at the beginning of that phase of operation and was predicted to operate throughout the
operation. "
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The continuity requirement for the maritime user is of 99.97% (0.9997) over 3 hours (10800s) of continuous operation. A
preliminary attempt to criticism of the requirement imposed by the IMO in the maritime navigation environment was presented
by Klepvsvik et al. in [3], where a simpli�ed model of the system performance is proposed, taking into account the presence
of possible failures of one or more satellites during the three hours of the maritime operations. The reached conclusion is that,
at the current state of the system, the requirements are ful�lled only for some of the operational phases.

One of the fundamental questions the researcher communities are trying to address is whether exclusion of faulty satel-
lites is necessary or not. In this paper we answer to this question. In particular we evaluate the probability of loss of continuity
with and without exclusion, by adopting a new mathematical model of the mechanism of integrity monitoring. The model is
quite general and can be applied to di�erent application scenarios. When applied to the maritime environment the conclusion
we obtain is that exclusion is necessary. We started our analysis by considering the model derived in [6], which is accurate for
aviation applications, while it is not guaranteed to work in other environments. Infact, while in the avionic environment some
assumptions can be made without degrading to much the ability of the model to describe the real world scenario, in the mar-
itime applications, instead, these assumptions are too restrictive, mostly because of the di�erent timescales (15s in avionic vs 3
hours in maritime applications). One of the key aspect of this work is the analysis of the di�erence between the true de�nition
of Continuity (where the time evolution of the system is considered) and the popular average sense approximation (done in
avionic environment), that leads to inaccurate estimations of the continuity risk when used in the maritime environment.

To take into account the time evolution of the continuity risk, we propose in this paper to introduce Markov models of
the system state, since they are realistic tools for analyzing the system performance in terms of probability of loss of continuity,
using as input parameters the number of satellites and the probabilities related to the detection and exclusion mechanism. The
derived models can be used to compute the continuity risk when a receiver not implementing exclusion is used, as well as
when a receiver implements both snapshot and sequential exclusion. The derived conclusion is that without exclusion, it is not
possible to achieve the required performance. It is shown that, considering only satellite faults, over the 3 hours of operation,
in principle a snapshot exclusion mechanism is su�cient. However the required e�ciency of the exclusion mechanism is
extremely high and if we consider also other error sources, such as multipath, clock drifts, scintillations, that have much higher
rates of occurrences with respect to the satellite faults (the mean time between failures for a single satellite is roughly 10 years)
snapshot exclusion is not su�cient. A possible alternative solution is a sequential exclusion mechanism.

Moreover, it can be shown that, under some temporal limitations and with some assumptions on the exclusion mechanism,
the results provided by the Markov models and by the model derived in [6] coincide. This �nal consideration shows that the
proposed approach can be seen as a natural extension of the state of the art model from the avionic environment to the maritime
environment.

CONTINUITY RISK ANALYSIS IN AVIONIC ENVIRONMENT

As already mentioned in the intoduction, the model derived in [6] is accepted as simple and e�ective in describing the
true continuity risk for the avionic environment. In this work, a set of assumptions and approximations are made and, while
for the avionic user this model is good for describing the Continuity performance, in maritime environment, instead, these
assumptions are too restrictive mostly because of the di�erent timescales (15s in avionic vs 3 hours in maritime applications).
Moreover, as ICAO suggests, in the avionic environment the Continuity problem is solved in an average sense. To introduce
this "average sense" concept, let us suppose that a certain standard requires that, using a standard compliant receiver, the
probability (P ) of a certain event to occur (for example, losing continuity or integrity) is �xed over a period T (a measurement
frequency, speci�ed in Hertz, fm is also provided). In this standard it is thus implicitly assumed that the receiver has to ful�ll
the requirements considering a sequence of N = T fm consecutive measurements, with an interval between measurements
of 1

fm
( in avionic environment, for example, N = 15 and fm = 1Hz). The receiver designer knows that the probability P of

the occurrence of the considered event is a function of both the receiver characteristics (the design space) and the considered
time window, i.e. P = f (characteristics,N ). The function f (·) , that relates the time window and the characteristics to the
probability of event occurrence, can be analytically very complex and hardly numerically computable. The problem is solved
using an average sense interpretation if the following design procedure is applied: instead of designing the system such that

P = f (characteristics,N ) ≤ P

we can instead design the system constrained to

Pinst = f (characteristics,1) ≤ P inst =
P
N
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Basically the requested probability over the period T is scaled to an equivalent single measurement requested probability
Pinst . The receiver design considering the function f (characteristics,1) is generally greatly simpler than the design analyzing
f (characteristics,N ).

With this assumption the calculations are greatly simpli�ed but the the ability to well represent the original problem
can be degraded. In fact continuity is de�ned over a continuous time window, and not in an average sense. We will see in a
successive section that while the average sense approximation is reasonable for a 15 seconds time window, it is not adequate
when dealing with a 10800 seconds, as in the maritime environment.

With this interpretation of the average sense approach we can now analyze the model derived in [6]. The computation
of the continuity risk presented in [6] is based on a set of assumptions and on the average time between failures of satellites
and the average time to alert (so making the fault not dangerous from an integrity point of view). The considered fault rate
is assumed to be of 3 SV faults per year (with a total of 24 satellites) and Mean Time to Alert (MTTA) of 1 hour. The set of
assumptions is the following:

• all 3 faulted satellites are visible to the aircraft when the fault occurs

• all 3 faults are detected during an approach (they a�ect continuity)

• once a fault is detected, it will rarely impact the aircraft again

The probability of loss of Continuity (LOC) due to a detected SV fault in the time window of 15 seconds (avionic) computed
in [6] using the average sense interpretation is then:

PFi =
3

24SV × 1year
× 15sec = 6× 10−8/SV (1)

We propose now a di�erent derivation of the continuity risk. Notice that the purpose of this di�erent formulation is not to
invalidate the model for the avionic environment, where the assumptions are reasonable, but only to set a basis for understand-
ing the need of a di�erent model when considering maritime operations. We start by considering that, if we have 3 satellite
faults per year, and a total of 24 satellites considered for this statistics, we can derive that a satellite breaks approximately every
MT BF = 8 years (the failure rate per satellite is thus RT BF = 3

24×year = 3.96×10−9Hz). However, in GNSS applications we are
not directly interested in the failure rate, but rather in the fraction of the total time in which a single satellite is in Faulty state.
Since the mean time to alert is 1 hour (MT TA = 3600s), the user will receive the faulty satellite for one hour (on the average).
Therefore the average percentage of time in which a satellite is in a faulty state is

η =
MT TA

MT TA +MT BF
' MT TA

MT BF
= 3.96× 10−9Hz × 3600s = 1.42× 10−5 (2)

The probability of losing Continuity due to a detected satellite fault is thus 1.42×10−5. Having the probability of the satellite
to be in Faulty state in a single time instant, for computing the continuity risk, using the average sense interpretation, we have
to multiply η by a factor 15. The result is that the computed continuity risk due to a single satellite detected failure, that is
PLOC = 2.14×10−4, is di�erent from the value computed in (1). This di�erence is due to an important assumption made in the
derivation of (1): when a fault occurs it is immediately detected and from the successive time instant it will not cause anymore
a loss of Continuity. This is mainly justi�ed by the authors due to the fact that the pseudorange error introduced by satellite
faults is generally monotonically increasing in time, and thus a fault detected cannot cause in a subsequent time instant a loss
of Continuity. This is clearly depicted in (1) where the number of harmful instants due to a detected satellite fault is considered
to be equal to one. In fact we can interpret (1) as

PFi =
3

24SV × 1year︸            ︷︷            ︸
fault rate

×

number of harmful instants︷︸︸︷
1 × 15s︸︷︷︸

scaling factor

where it is underlined the fact that the number of harmful instants for the receiver, due to a satellite fault, is one: if we are
assuming that only the �rst time instant in which a fault occurs can cause a loss of Continuity this is the case. In this work we
moved away from this simpli�ed analyisis, because it is not accurate for the maritime application environment, since no time
evolution of the continuity risk is considered in the computation of the continuity equations.
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MARKOV MODELS

The �rst motivation behind the derivation of the Markovian model is the necessity to have a continuity risk model for
maritime application where continuity is de�ned on long time intervals, in which also the time evolution of the continuity risk
is considered. With a solid mathematical background, the model is used to compute the continuity risk over the 3 hours as a
function of the average number of in view satellites, the detection probability and, if exclusion is implemented, the exclusion
mechanism performance. The derived models will be used in the next Section to argue about the necessity of implementing
exclusion. Moreover, the new models will be compared with the model derived in [6].From this comparison we will see that
the model [6] is a particular case of one of the new models, under some temporal limitations and with some assumptions on
the exclusion mechanism.

MARKOV MODEL: SATELLITE DOMAIN

The �rst simple model we introduce describes a single satellite behavior and consists of a two states Markov Chain
(Healthy and Faulty) where the transition is ruled by the Mean Time Between Failures (MTBF) and the Mean Time To Repair
(MTTR). The starting point of our derivation is to analyze the random exiting time from the two states (H =Healthy, F =Faulty)
for the single satellite. The exiting time of a state is de�ned as the time di�erence between the instant in which the satellite en-
ters a given state and the time instant in which it exits that state. We assume the two random time intervals to be exponentially
distributed (a common and reasonable assumption in system fault analysis [4]) with a given mean (MTBF and MTTR). De�ning
the random interval from the Healty to the Faulty state transition as TH and the random interval from Faulty to Healthy as TF
their probability density functions (pdfs) are de�ned as followsfTH (t) = λexp(−λt)u(t)fTF (t) = µexp(−µt)u(t)

(3)

where λ = 1
MTBF is the fault rate and µ = 1

MTTA is the alert rate. These rates have the following numerical values: λ =
3SV

24SV year = 3.96× 10−9Hz and µ = 1
hr = 2.77× 10−4Hz. We can derive the equivalent discrete time Markov chain that is the

result of observing the continuous time system (the real satellite states evolve continuously with time) with a �xed interval of
T seconds (in our case T = 1s).

Finding the discretized version of a continuous Markov chain is, per se, a �eld of study. However, when the continuous
time transition rates are order of magnitude greater than the observation rates a simpli�ed approach can be taken, where we
derive the discrete time transition probabilities simply integrating the continuous time transition probabilities over a period
equal to T , thus neglecting the probability of multiple transitions in a single second. We consider for example the derivation of
the probability of transiting from a Healthy state in a given time instant t0 to the Faulty state at time instant t0 + T . De�ning
Φ(T ) as the number of transitions from one state in the time interval (t0, t0 + T ), given that at time t0 the system is in an
Healthy state, the probability that at time t0 + T the system is in a Faulty state is

P (F(t0 + T )|H(t0)) = P (
∞⋃
n=0

2n+1 transitions in (T )) = P (
∞⋃
n=0

Φ(T ) = 2n+1)

=
∞∑
n=0

P (Φ(T ) = 2n+1)−
∑
n1<n2

P (Φ(T ) = 2n1 +1,Φ(T ) = 2n2 +1)−
∑

n1<n2<n3

...

Since the probability of the intersections is equal to 0 (Φ(T ) cannot have simultaneously two di�erent values), we have that

P (F(t0 + T )|H(t0)) =
∞∑
n=0

P (Φ(T ) = 2n+1) ' P (Φ(T ) = 1)

where the last approximation is done because, given our system transition rates, we have that

∀n > 0 P (Φ(T ) = 2n+1) << P (Φ(T ) = 1)
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This approximation can be mathematically proved but it is also heuristically easily understandable considering the following:
if the mean time between breaks is roughly 10 years and the mean time to repair is 1 hour, the probability of having three
transitions (H → F,F→H,H → F) is a random variable with mean equal to roughly 20 years (10 years+1hour +10 years), and
it is easily understandable that this probability is completely negligible with respect to the single transition probability. In the
same way the probability of having 5,7,9,... transition is in�nitely smaller than the probability of having a single transition. A
specular consideration can be done also for the transition sequence ( F→H,H → F,F→H ).

The probability of having a single transition from healthy to faulty state in the time interval [0,T ] is equal to the proba-
bility that the exiting time TH from the healthy state occurs in the interval [0,T ] (since TH is positive it is equivalent to say that
TH < T ) and that the system exits the faulty state after T , that is equivalent to say that the exiting time from the faulty state
TH must be greater than T −TH . Given that fTH (t) = λexp(−λt)u(t) and that fTF (t) = µexp(−µt)u(t) and that the probability
P (Φ(T ) = 1) can be expressed as

P (Φ(T ) = 1) = P (TH < T ,TF > T − TH ) = P (TH < T ,TH + TF > T ) =
T∫

t1=0

∞∫
t2=T−t1

fTH (t1)fTF (t2)dt2dt1 =
λ

µ−λ
(exp(−λT )− exp(−µT ))

(4)

We can �nally derive the discrete transition probability from Healthy to Faulty state p01 as

p01 = P (F(t0 + T )|H(t0)) ' P (Φ(T ) = 1) =
λ

µ−λ
(exp(−λT )− exp(−µT )) ' λT (5)

Figure 1 shows the Markov chain rappresentation of the system state with their two possibile states for a single satellite
(Healthy and Faulted). The matrix transition rate of the system is de�ned as

T =
[
p00 p01
p10 p11

]
(6)

where it is possible to approximate the four probabilities as
p00 ' 1−λT
p01 = 1− p00 ' λT
p10 = 1− p11 ' µT
p11 ' 1−µT

(7)

Moreover, solving the following equation (the steady state equation of the system)

π = πT (8)

it is possible to derive the steady state probability distribution of the system (whereπ = [π0 π1] are the steady state probabilities
for Healthy and Faulty state respectively). Rearranging (8) as

π(I −T ) = 0

we can solve for π0 through the following system of equationsπ0(p00 − 1) +π1p10 = 0
π1 = 1−π0

(9)

where the second equation is due to the total law probability theorem (π0 +π1 = 1). The derivation is the following:

π0(p00 − 1) + (1−π0)p10 = 0

π0(p00 − 1− p10) = −p10
π0 =

−p10
p00 − 1− p10

and, �nally,
π0 =

p10
p10 +1− p00

'
µ

µ+λ
' 1− λ

µ
(10)

π1 '
λ
µ

(11)
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Healthy Faulty

p01

p00

p10

p11

Figure 1: Single satellite model

Healthy Faulty

LOC

p01(1− PD )

p00(1− PFA)

p10(1− PFA)

p11(1− PD )

p11PD + p10PFA

p01PD + p00PFA

Figure 2: Single Satellite and Receiver model

MARKOV MODEL: POSITION DOMAIN

Until now, we have just considered the probabilistic evolution of the state of a single satellite, regardless the presence of a
receiver. The next step is to include in our model the receiver behaviour for calculating the continuity risk.

USER RECEIVER AND SINGLE SATELLITE (NO EXCLUSION)

The �rst simple model we consider is a single satellite system with a receiver that implements fault detection but not exclusion.
It is obvious that such a system cannot exist because of practical reasons (we need at least 3+M satellites to have a positioning,
where M is the number of constellations), but it is useful for introducing the problem. A receiver implementing detection but
not exclusion when detects a satellite fault in the position domain declares the system as not available. This leads the system
to a Loss of Continuity (LOC) state. It is crucial to understand that the LOC state is an absorbing state: in fact if we consider
continuity in its true sense, and not in the average sense, we understand that once continuity is lost during our operation time
window, it is lost for all the mission. This is intrinsically hidden in the meaning of the word "Continuity": the system is de�ned
continuous if and only if for all the mission the system is continuously declared as available.

We can introduce now the three state (Healthy, Faulty, LOC) model, shown in Figure 2, where p00, p01, p10, and p11
are the probabilities indicated in �gure 1, PD is the detection probability, and PFA is the false alarm probability. The transition
probabilities indicated in �gure 2 are explained hereafter.

• If, at time instant 0, we are in Healthy state, the next time instant we can be in

– Healthy state again, with probability p00(1− PFA), i.e. nothing happened and no false alarm occurred
– in undetected Faulty state with probability p01(1− PD )
– in LOC state, due to a detected fault, since we are not implementing exclusion, or due to a false alarm, with proba-

bility p01PD + p00PFA

• If, at time instant 0, we are in Faulty state, the next time instant we can be in

– Faulty state again, with probability p11(1−PD ), i.e. the fault has not been repaired and again we have not detected
the fault

– Healthy state, with probability p10(1− PFA): the fault has been repaired and no false alarm occurred
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H
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LOC
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LOC

p00(1− PFA) p00(1− PFA)

p 01
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− P
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)
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0
P F
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P D
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10 (1−

P
FA )

p
10 (1−

P
FA )

p 11
P D
+ p

10
P FA

p 11
P D
+ p

10
P FA

Figure 3: Trellis rappresentation of Single Satellite and Receiver model

– LOC state with probability p11PD +p10PFA, if the fault persists and we detect it or the satellite returns Healthy but
we have a false alarm event. Again the transition due to a detection happens because we are not implementing
exclusion

• If, at time instant 0, we are in LOC state, the next time instant we can be in

– only in LOC state again, since at the previous time step we were in an absorbing state LOC, and by de�nition the
system cannot exit an absorbing state. Once Continuity is lost in our observation time window (15s in aviation, 3
hours in maritime application) it is lost for all the time window.

Figure 3 shows the trellis representation of the evolution of our Markov chain. The multi satellite system transition diagram is
a simple generalization of the model for a single satellite.

USER RECEIVER AND MULTIPLE SATELLITES (NO EXCLUSION)

Instead of considering a single satellite system we consider now the more realistic case of multiple satellites. The assumption is
that every satellite evolves independently from the other satellites, and from the receiver point of view it is su�cient to detect
a fault for declaring the system unavailable (if no exclusion is implemented). The theoretical background that links the model
for the single satellite evolution to the multiple satellite evolution is presented in the following.

Suppose that we have two independent separate Markov chains, with known properties, and we want to study the
simultaneous evolution of the two systems. To describe the new aggregate system, we consider two independent Markov
chains and de�ne as X(n) the random variable that describes the state of the �rst chain at a generic instant and Y (n) as the
variable describing the second chain state. The sets Ωx = {ω

(1)
x ,ω

(1)
y , ...,ω

(1)
N }, Ωy = {ω

(2)
x ,ω

(2)
y , ...,ω

(2)
N } are the state spaces of

X,Y and the matrices TX , TY are the transition matrices of the two systems respectively, where

TX (i→ j) = P (X(n) = {Ωx}j |X(n− 1) = {Ωx}i) (12)
TY (i→ j) = P (Y (n) = {Ωy}j |Y (n− 1) = {Ωy}i) (13)
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The purpose is to merge the two Markov chains and derive the properties of the new unique system. We start our analysis by
observing that the couple X(n),Y (n) (as well as X(n− 1),Y (n− 1)) belongs to a space that is the cartesian product of Ωx,Ωy .

(X(n),Y (n)) ∈Ωx ×Ωy = {(x,y) |x ∈Ωx, y ∈Ωy}

Obviously, the cardinality of Ωx ×Ωy is the product of the original cardinalities. If we focus on a particular case, in which the
two independent systems are two independent copies of the same system (as in the case of considering the mutual evolution
of two satellites) then the couple (X(n),Y (n)) belongs to

(X(n),Y (n)) ∈Ω×Ω = {(x,y) |x ∈Ω, y ∈Ω}

and the two transition matrices are equal, then

TX = TY = T

If we write the composition of Ω×Ω as

Ω×Ω = {(ωx,ωx), (ωx,ωy), ..., (ωx,ωN ), (ωy ,ωx), (ωy ,ωy), ...(ωy ,ωN ), ...(ωN ,ωN )}

we can easily derive that the generic couple (ωiA ,ωiB ) maps to the (iA−1)N + iB element of Ω×Ω. Notice that this correspon-
dence is bijective (i.e. ∀k ∈ {1, ...,N }2 ∃!(iA, iB) : (iA −1)N + iB = k iA, iB ∈ {1, ...,N }). The �rst question we want to answer
is: what is the probability of transition from one state to another of our new state space. Or, in equations,

P (Z(n) = {Ω×Ω}jC |Z(n− 1) = {Ω×Ω}iC ) (14)

where Z(n) is the new time dependent random variable that describes the state of the overall system. Existing a biunique
relationship between iC , jC and (iA, iB), (jA, jB) we can rewrite (14) as

P (Z(n) = {Ω×Ω}jC |Z(n− 1) = {Ω×Ω}iC ) =
P (X(n) = {Ωx}jA , Y (n) = {Ωy}jB |X(n− 1) = {Ωx}iA , Y (n− 1) = {Ωy}iB ) =
P (X(n) = {Ωx}jA |X(n− 1) = {Ωx}iA )P (Y (n) = {Ωx}jB |Y (n− 1) = {Ωx}iB )

where the last step of our chain of equalities is due to the independence of the two systems described by X,Y . It is also
straightforward to demonstrate that the random variable Z(n) has a Markovian property, i.e.

P (Z(n) = {Ω×Ω}jC |Z(n− 1) = {Ω×Ω}iC ,Z(n− 2) = {Ω×Ω}lC ) = P (Z(n) = {Ω×Ω}jC |Z(n− 1) = {Ω×Ω}iC ) (15)

If we de�ne a new matrix TZ as an N ×N matrix whose generic entries (iC , jC) is equal to

TZ (iC , jC) = P (Z(n) = {Ω×Ω}jC |Z(n− 1) = {Ω×Ω}iC )

then we can derive that

TZ (iC , jC) = TZ ((iA − 1)N + iB, (jA − 1)N + jB) =

P (X(n) = {Ωx}jA |X(n− 1) = {Ωx}iA )P (Y (n) = {Ωx}jB |Y (n− 1) = {Ωx}iB )
T (iA, jA)T (iB, jB)

where, focusing on

TZ ((iA − 1)N + iB, (jA − 1)N + jB) = T (iA, jA)T (iB, jB)

we notice that the new transition matrix is exactly the Kroenecker Product of the �rst transition matrix with itself, that is

TZ = T ⊗T (16)

In conclusion, the new system is a Markov chain whose state space is the cartesian product of the original state spaces and the
transition matrix is the Kroenecker product of the starting matrices.

Once the extension from a single satellite to multiple satellites is clear, we can include in the system description also the
receiver behaviour, similarly to the single satellite case, introducing the Loss of Continuity state (Loc). In this case both the
probability to detect an existing fault and the probability to have a false alarm depend on the number of satellites. For this
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Figure 4: Multi Satellite and Receiver Model trellis
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reason they are indicated respectively as PD (Nsat in fault) and PFA(Nsat). Notice that the detection probability is a function of
the number of faulty satellites Nsat in fault, while the false alarm probablity depends only on the overall number of satellites
Nsat . In the following we will consider PD (Nsat in fault) a constant with respect to the number of faulty satellites. However, this
hypothesis is not a necessary for the work to be consistent. The new overall trellis description of the system is depicted in
Figure 4 for the case Nsat = 2.

In the general case, to derive the transition matrix, we order the 2Nsat +1 possible states of the system such that the �rst
state is the all satellites Healthy state, the states from the second to the second to last are the states were at least one satellite
is Faulty (but non fault is detected), and the last state is the Loss of Continuity state (the set of states is: {(H,H,H,H, ...H),
(F,H,H,H....H), (H,F,H,H, ..H), ....(F,F,F,F, ...H), (F,F,F,F, ...F),Loc}).
The transition matrixM of the system can be then easily shown to be

M =
[
TNsat

tNsat

0T 1

]
(17)

where

TNsat
= (⊗NsatT )D

and

D = diag{[(1− PFA), (1− PD ), (1− PD ), (1− PD ), (1− PD )....]}

Notice that the fact that the matrixD is present is due to the fact that we can transit from the all satellites Healthy state to the
Loc state due to a False Alarm or from a state in which one or more satellites are Faulty and we detect the fault. This information
is also included in the vector tNsat that describes the probability of transition from a generic non absorbing state to the absorbing
(Loc) state. Infact, being M a transition matrix, tNsat is easily derived as tNsat = 1−TNsat1 where 1 =

[
1 1 1 1... 1

]T
.

The initial state probability is instead described by the vector τNsat
:

τNsat
= ⊗Nsatπ

where π is the steady state distrubution of the state of the single satellite.
The cumulative distribution function that gives us the information about the probability that at a certain time instant k

we are in the absorbing state, that in our case coincide with having lost Continuity is

F(k) = 1− τT kNsat
1 (18)

Thanks to the introduced model and using equation (18) we can thus compute the continuity risk considering also the time
evolution of the system.

USER RECEIVER AND MULTIPLE SATELLITES (SNAPSHOT EXCLUSION)

In case we want to consider also a snapshot exclusion mechanism we can simply modify the system described previously. When
the receiver detects a fault it tries to perform exclusion by isolating the Faulty satellites. This operation can be successful, i.e.
exclusion is correctly performed, or unsuccessful. An unsuccessful exclusion happens when there are Faulty satellites that
triggered the Integrity Risk threshold (see the concept of Failed Exclusion [5]), but the receiver was not able to identify the
Faulty satellites. In this case the system is declared unavailable and continuity is lost. The probability of failing an exclusion is
de�ned as PNEX and has to be speci�ed considering IMO requirements. We can de�ne a new probability P = PDPNEX , that is
the probability of detecting the presence of a fault and failing the exclusion. Notice that in a snapshot exclusion mechanism,
when a satellite is excluded at a given epoch it is reinserted in the set of possible satellites used for positioning in the successive
epochs, and a new test is performed for determining whether it has to be re-excluded or not.

Also in this case, we can derive the complete trellis, shown in Figure 5, for a user that is using Nsat satellites. The
di�erence with respect to the previous case is the fact that implementing exclusion, we improve the performance of the system
in terms of Continuity because we lose Continuity only when we detect a fault and we are not able to exclude the Faulty
satellites. In numerical terms we have as weight of the edges of the transition to the LOC state the probability P = PDPNEX
instead of PD , where it is easy to understand that since the failed exclusion probability must be a small number P << PD . Notice
that in the proposed model we consider also the case in which exclusion is not possible. This happens for all the system states
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in which the number of Healthy satellites is smaller or equal to M + 3 Concerning the algebraic details, also in this case the
transition matrix of the system is in the form

M =
[
TNsat

tNsat

0T 1

]
(19)

and the initial state distribution is τNsat
. As in the previous case

TNsat
= (⊗NsatT )D

meτNsat
= ⊗Nsatτ

However, this time the diagonal matrix D is di�erent, due to the fact that when a fault is detected, when possible,
exclusion is attempted. The �rst element of the matrix is the same as in the previous case and re�ects the e�ect of False Alarms
D|{1,1} = 1 − PFA. The other elements of the diagonal will have the two di�erent values depending on the number of Faulty
satellites, i.e. the generic diagonal component of the matrix will be de�ned as

D|{1,1} =

1− p if the number of healthy satellites >M+3
1− PD otherwise

(20)

There will be respectively N1 elements of the diagonal matrix with value 1− p and N2 with value 1− PD , where

N1 =
Nsat−4−M∑

i=1

(
Nsat
i

)
and, obviously

N2 = (2Nsat − 1)−N1

Again, the probability of being in the absorbing state (Loc) at the generic time instant k is equal to

F(k) = 1− τT kNsat
1 (21)

USER RECEIVER AND MULTIPLE SATELLITES (SEQUENTIAL EXCLUSION)

In this section we introduce the Markov model for a receiver implementing sequential exclusion. The proposed model is de-
picted in Figure 6, where a single satellite system is rappresented. The generalization to the multi satellite case will be easily
done in the same way as for the previous cases.

Considering a sequential exclusion mechanism we introduced a new state, the excluded satellite state. When a Faulty
satellite is detected and correctly excluded it will remain excluded as long as the successive epoch detection and exclusion
mechanism will work correctly. We de�ned PD,2 as the secondary detection probability of a fault and Pex,2 as the secondary
correct exclusion probability in a successive epoch to the �rst in which the fault is correctly detected and excluded. The obvious
de�nition of secondary failed exclusion probability follows Pnex,2 = 1 − Pex,2. If a fault is continuously going on for a given
satellite, it will be easier to keep track of that fault (having a continuous detection) and correctly excluding it. In the proposed
system model to rappresent the fact that detection and exclusion are easier after the �rst epoch in which a fault is correctly
excluded, the new detection probability and exclusion probability are greater than the �rst time instant probabilities, i.e.

PD,2 > PD , Pex,2 > Pex

In the result section PD,2 as well as PD will be �xed while the design will take place for the two correct exclusion proba-
bilities (Pex, Pex,2) and the false alarm probability (PFA). Concerning the correct exclusion mechanism the following assumption
has been made: when more than one satellite is Faulty exclusion is either correctly performed on all the Faulty satellites or
failed, i.e. it is not possible to correctly exclude only one of the Faulty satellites and fail the exclusion of the other satellite(s).

HYPOTHESES ON THE INITIAL STATE DETECTION MECHANISM: BLIND
WAKE UP (H0) OR PAST INFORMATION AVAILABLE (H1)

In this brief section we will understand the di�erence between two di�erent assumptions on the detection mechanism when
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Figure 6: Single Satellite and Sequential exclusion Receiver model

the receiver starts an operation: the past information available wake up or the blind wake up. The past information available
wake up is the hypothesisH1, done in [6], that when the receiver starts an operation has the past information about the Faulty
satellites. If this is the case when an operation is started all the considered satellites in view are Healthy (the Faulty ones have
been excluded previously). The blind wake up hypothesis H0 is instead the one assumed in the derivation of our model: when
the receiver starts an operation, some of the satellites can be in Faulty state according to the initial distribution probability
vector τNsat

since no information about the Faulty satellites in the previous epochs is available.

However, our model is �exible with respect to this hyphotesis: infact, we can analyze the continuity risk time evolution
under the past information available wake up hypothesis simply by imposing that the initial state of the system is constrained
to be in the all satellites Healthy state, or, in equations, that the vector τNsat

is equal to

τNsat
=

[
1 0 0 ... 0

]T
Independently on the fact whether information about the past is a reasonable hypothesis and when it is applicable, the formal-
ism introduced for the initial state distribution provides �exibility in the analysis of di�erent systems.

PERFORMANCE ANALYSIS

In the previous sections we developed Markovian models for the three cases of a receiver not implementing exclusion, im-
plementing snapshot exclusion and implementing sequential exclusion. In this section we will see that exclusion is always
required in maritime environment. We must warn the reader that in our analysis the only �xed parameter is the Detection
Probability (PD ) that is driven by integrity requirement and is �xed to the value 1−10−2. This value is derived by [5] where it is
stated that: " The EMT test prevents faults that are not large enough to ensure detection from creating vertical position errors greater
than 15 m more often than 0.00001% of the time" The probability that a fault that creates a great vertical error is undetected is
smaller than 10−7 . This event is the joint occurrence of a fault (with probability Pf ault) and a miss detection (with probability
PMD ). If we consider the apriori probability of having a fault equal to Pf ault = π0 = 10−5, then the probability of miss detection
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Figure 7: Time evolution of continuity risk

is equal to 10−2. All the analyses for the three di�erent cases (no exclusion, snapshot exclusion and sequential exclusion) will
be carried out considering both the hypothesis of having satellites past information available or the blind wake up hypothesis.

DETECTION (NO EXCLUSION) SYSTEM ANALYSIS AND DESIGN

When no exclusion mechanism is implemented, the only degree of freedom the receiver designer has is the determination of the
False Alarm probability, since as already explained the detection probability is �xed and driven by integrity requirements. We
will see for both hypotheses that sometimes, even with a zero false alarm probability, the continuity risk is not met. Remember
that the continuity risk is the maximum allowed probability of losing Continuity during the 3 hours of operation ([2]) and is
equal to 3× 10−4.

As already explained before, the continuity risk is computed thanks to (18), where the transition matrix is a function of
the number of satellites and the detection and false alarm probabilities. Figure 7 shows the time evolution of the continuity risk
for the case ofNsat = 10 and PFA = 10−7. As we can see in both cases at the end of the 3 hours the continuity risk requirement
is not met since the actual continuity risk is higher, implying that the False alarm probability is too high (actually we will see
that for a constellation of 10 satellites even a zero false alarm probability is not su�cient for meeting the IMO requirements).
Moreover we can see that the di�erence between the continuity risks for the two hypothesis gets smaller as time passes: the
advantage we have at the start of the operations when we are using information about past is that the number of average Faulty
satellites is zero, but as time passes the average number of Faulty satellites starts to reach again is steady state value, as we can
see from �gure 8. Somehow counterintuitively this is another di�erence we can underline with respect to the avionic case due
to the large time scales in maritime operation. In fact, while the di�erence in terms of performance in avionic �eld under the
two di�erent hypotheses is great, in the maritime �eld it is small.

We analyzed the required False Alarm probabilities as a function of the number of in view satellites (from 7 to 14) and
for both the hypotheses. The result is that only in the case of 7 satellites in view, under the hypothesis of past information, and
with a False Alarm probability smaller than 10−10.45 (that is an unrealistically low number considering that PD = 1−10−7) it is
possible to ful�ll the IMO requirements. In all the other cases, even a zero false alarm probability is not su�cient for having a
continuity risk smaller than 3×10−4. It is then deduced that the only alternative is an exclusion mechanism implementation.

DETECTION AND SNAPSHOT EXCLUSION SYSTEM ANALYSIS AND DESIGN

As we have seen, a detection mechanism without exclusion is not su�cient for ful�lling the IMO requirements. Introducing
an exclusion mechanism, with an associated failed exclusion probability, we can analyze for di�erent numbers of in view
satellites and for the two hypotheses the required couple of False Alarm probability and Failed Exclusion probability. Figure
9 reports the unallowed operating point for the receiver for di�erent number of satellites in view (from 7 to 14) . The blue
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Figure 8: Average number of Faulty satellites

grid represents the unallowed zone when considering hypothesis H0, the red grid instead the unallowed operating zone when
considering hypothesis H1. The �rst straightforward comment we can make is that as the number of satellites increases we
need to have a smaller false alarm probability as well as a smaller failed exclusion probability. This is due to the fact that a
higher number of satellites implies a higher probability that at least one satellite is Faulty and thus a higher probability of
failing an exclusion. Moreover, as expected, with the past information available hypothesis the requirements on the false alarm
probability and failed exclusion probability are looser, even if, as previously discussed, a long time scale decreases the gap
between the probabilities of losing Continuity under the two hypotheses. The results presented in �gures 9 show that, besides
having a very small false alarm probability, also a very e�cient exclusion mechanism is required. Repeating the simulations
also for di�erent values of detection probability PD , it is observed that when exclusion is performed the dependency of the
continuity risk on the detection probability is loose. When considering a large number of satellites and very low fault rates
such as in this paper, the continuity risk is principally composed by the false alarm events and by the failed exclusion events.
The failed exclusion event, qualitatively speaking, depends on the quantity p = PDPnex = Pnex − PMDPnex and when the miss
detection probability is small, we can easily approxiamate p as p ' Pnex, showing that the dependency of the continuity risk
component due to the failed exclusion il slowly varying with respect to the detection probability. Notice that by increasing the
fault rates the probability of having a critical number of satellites is not negligile and the dependency of the continuity risk on
the detection probability is noticeable.

DETECTION AND SEQUENTIAL EXCLUSION SYSTEM ANALYSIS AND DESIGN

The required performance of a receiver if a sequential exclusion mechanism is adopted are hereafter analyzed. Obviously the
continuity risk is decreased when a sequential exclusion mechanism is adopted. In designing a receiver implementing sequen-
tial exclusion we have two extra degrees of freedom that are the secondary detection probability and the secondary failed
exclusion probability PD,2, Pnex,2. We decided to �x the new detection probability PD,2, that is a less critical parameter, and
studied the performance in terms of Continuity Risk versus the triplet PFA, Pnex, Pnex,2.

The main result is that introducing a sequential exclusion mechanism we can a�ord to reduce the required false alarm
and failed exclusion probabilities at the cost of an increased complexity. In �gure 10 are reported the required False alarm
probabilities and primary Failed exclusion probabilities Pnex for di�erent values of the secondary failed exclusion probability
Pnex,2 for hypothesis H0 and H1 respectively. We decided to show the required performance for the cases when the secondary
exclusion probability is equal to the primary exclusion probability times a constant γ < 1, i.e. Pnex,2 = γPnex. In particular the
following cases have been analyzed Pnex,2 = [1 0.5 0.01]× Pnex, corresponding respectively to the purple, blue and orange
grids.
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Figure 9: Required False Alarm and Failed Exclusion probabilities
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Figure 10: Sequential exclusion allowed operating area (H0)
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DIFFERENT HYPOTHESES H0 AND H1 WHEN DEALING WITH SEQUENTIAL
EXCLUSION

In this section we will brie�y show that when dealing with sequential exclusion on the long time scale, the Markov models
compute the same probability of losing Continuity. This is due to the fact that conceptually, if at the �rst time instant we
are assuming H0 that we have no information about the past, but we implement a good detection and sequential exclusion
mechanism, in the second epoch, we have with an high probability that the Faulty satellites have been excluded in the previous
epoch.This is equal to being from the second time instant, with high probability, in the same conditions assumed with hypothesis
H1. The di�erence between the two cases tend to naturally converges vanishes as time evolves, as we can see from Figure where
the quantity

∆(H1,H0) = log10(CRH1 )− log10(CRH0 )

is depicted.

PROOFOFCONCEPTANDCONSISTENCYWITHRESPECTTOTRADITIONAL
APPROACHES

The purpose of this section is to show the di�erences and the similarities between the approach classically used in the avionic
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environment and the approach derived in this paper.

The �rst part of this analysis will be focused on short time scales (up to 15s) as in avionic Continuity and Integrity
requirements. Interestingly, we will show that for short time scales the derived continuity risks using the two models are nu-
merically the same, and give a mathematical explanation of the phenomenon. On the other hand, enlarging the time scale, the
two computed continuity risks start to diverge, and we will conclude that the estimation of the continuity risk for long time
scales is not correct when using the same approach used in avionic applications.

We will refer to the classical approach as the Bernoulli model, where the probability of losing Continuity is computed
by �rstly computing the probability of losing Continuity on a single time instant (we will call this probability p) and then the
overall continuity risk is computed using the well known formula for Ninst repeated Bernoulli trials:

PLOC,Bernoulli = 1− (1− p)Ninst (22)

As a last comment we should warn the reader that the calculation had been carried out only for the hypothesis of blind wake
up of the receiver. However, it is straightforward to demonstrate that the same results hold also for the hypothesis of past
information available.

SHORT TIME SCALE ANALYSIS

In this �rst part we will consider the case of a short time scale (15 s) and a receiver implementing a good exclusion mechanism
(Pnex → 0). Considering the classical approach, the probability p of losing Continuity in a single time instant is equal to the
probability that all the satellites are Healthy and a false alarm event is present or at least one satellite is Faulty, we detect the
fault, but we are not able to exclude it. This probability is equal to

p = πNsat0 PFA +
Nsat∑
i=1

πi1π
Nsat−i
0 PDPnex ' π

Nsat
0 PFA +Nsatπ

1
1π

Nsat−1
0 PDPnex (23)

where π0 and π1 are de�ned respectively in (10) and (11). The last approximation in (23) is due to the fact that for the computed
probability on a single time instant we can neglect the case of multiple satellite faults. Notice that when running the numerical
simulations the exact probability p has been used for the computation of the continuity risk, and that this approximation is
done here just for simplicity in showing the calculations. By substituting (23) in (22) we obtain

PLOC,Bernoulli = 1− (1− p)Ninst 'Ninstp =Ninst(π
Nsat
0 PFA +Nsatπ1π

Nsat−1
0 PDPnex) (24)

where the approximation is due to the fact that pN << 1. Basically for short time scales using the Bernoulli formula or a simple
scaling factor is numerically equivalent.

Instead, if we consider the Markov model the derivation is in the following. First, we notice that since the failed exclusion
probability is a very small number (Pnex→ 0), then also the probability of detecting an error and failing an exclusion approaches
zero( p → 0). For small values of Ninst it is then possible to study the continuity risk, de�ned in (18) using perturbation
techniques for eigenvectors:

τNsat
((⊗NsatT )D)Ninst ' τNsat

(D)Ninst (25)

This approximation holds because we can write τNsat
(⊗NsatT ) = τNsat

D ' I
(26)

and
τNsat

D(⊗NsatT ) ' τNsat
D

Moreover, as long as DNinst is numerically close to an identity matrix I , that is the case for Ninst = 15, the reasoning can be
iterated and equation (25) can be proved to be correct. Remember that the �rst element of the diagonal matrixD has the value
1−PFA and that the other elements of the diagonal, that are de�ned by (20), contains either the value 1−p or 1−PD depending
on the number of Healthy satellites. The result of a diagonal matrix elevated to the power ofNinst is equal to a diagonal matrix
whose diagonal entries are the Ninstth power of the original diagonal entries. Considering moreover that:
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• the power of the �rst element of the diagonal matrix can be approximated as (1− PFA)Ninst ' 1−NinstPFA

• the power of the elements of the diagonal matrix corresponding to the Faulty cases where exclusion is possible (1−p)Ninst '
1−Ninstp

• and that the quantity (1− PD )Ninst is completely negligible and can be approximated with the 0 value

we can �nally derive that a good approximation for the diagonal matrixDNinst is

DNinst = diag(1−NinstPFA, 1−Ninstp, 1−Ninstp, 1−Ninstp, ...0 0) = I −Ninstdiag(PFA, p, p, ...0) (27)

Finally, thanks to (25) and (27) it is possible to compute the probability of LOC ((18)) at the end of theNinst = 15 seconds:

F(Ninst) = 1− τNsat
T
Ninst
Nsat

1 =

1− τNsat
(I −Ninstdiag(PFA, p, p, ...0))1 =

1− τNsat
1+ τNsat

Ninstdiag(PFA, p, p, ...0)1 =

τNsat
Ninstdiag(PFA, p, p, ...0)1 '

Ninst(π
Nsat
0 PFA +Nsatπ1π

Nsat−1
0 PDPnex) = PLOC,Bernoulli

For short time scales (avionic environment) and implementing a good exclusion mechanism, the results of the two models
are the same.

LONG TIME SCALE ANALYSIS

Since we have just shown that the probability derived with a Markov model and the Bernoulli probability are numerically
equivalent, a natural question is the following: why do we have to built a such complicated model? The answer is the follow-
ing: if it is true that for a short time period and with good exclusion mechanism the results coincide, this is not true anymore for
a period of 10800s (3hrs). Moreover, these models gives us the ability to characterize di�erent types of multiple faults (multiple
faults with number of Healthy satellites greater or smaller than 4).

Figure 11 shows the time evolution of the continuity risk, �xed all the system probabilities, for the two di�erent hypothe-
ses (blind wake up and past information available) for the Bernoulli method of computation and for the Markov method. We
can see that, if for short duration the 3 graphs basically concide (as mathematically proved in the previous Subsection) , they
converge to di�erent values at the end of the 3 hours.

Under the hypothesisH0 of blind wake up, the Bernoulli model is over conservative. To understand why, it is fundamental
to have clear in mind the di�erence between the true Continuity requirement and the average sense Continuity requirement.
Consider the following thought experiment: suppose that you have to move from point A to point B , taking 100 steps, and
that you have a hole in your pocket.

At every step you take, you lose your wallet with a probability p. To be fully precise, at every step you take, you lose
your wallet with probability p if your wallet is still there and with probability 0 if you already lost your pocket. This is why, if
you compute the probability that once you reached point B using a Bernoulli distribution you are overestimatng the probability
of losing your wallet. Infact, with a Bernoulli like approach you include in the computed probability also multiple falls of the
same wallet, while this is not possible. When the probability of losing your wallet is very very small and you have to take
few steps, then the Bernoulli computation is an accurate approximation because numerically, the multiple falls event has a
negligible probability (maybe serveral order of magnitudes smaller than the total probability) and this is why on short time
scales (15 s of avionics) it is reasonable to use an average sense approach while in maritime applications it is not.

On the other hand, when hypothesisH1 is selected, the Bernoulli model is underconservative. This is due to the fact that
under the hypothesis H1, we are assuming for all the 3 hours of duration of the operation that the perfect knowledge of the
Faulty satellites in the previous time instant is available and that the only satellites that can be Faulty are the satellites that
transit to a Faulty state between the previous time instant and the considered measurement time. It is obviously an unreasonable
assumption for a 3 hours long operation. In terms of equations the probability p used for the computation of the continuity
risk is the following:

pH1
= pNsat00 (1− PFA) +Nsatp01p (28)
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Figure 11: Markov, Bernoulli and scaling models to comparison,Nsat=10,PD = 1− 10−5,Pnex = 10−3.5,Pf a = 10−8

since we are assuming that all the Faulty satellites have been excluded in the previous time instants. Basically, under the
hypothesis H1 and considering the Bernoulli trials the leading term is the term related to the false alarm probability and
assuming

pH1
= pNsat00 (1− PFA) (29)

numerically is the same for the computation of the continuity risk.

Finally we can conclude that the Bernoulli approach used classicaly in aviation is very accurate for short time scales
(we considered 15 second) and coincide with the Markov approach, while for long time scales it is necessary to adopt a more
complicated model such as the one proposed in this paper.

CONCLUSIONS

In this paper we proposed a new markovian model for the computation of the continuity risk in maritime environment. The
derived model is �exible with respect to di�erent important parameters such as the number of in view satellites, the average
fault and repair rates, the detection and false alarm probabilities and the receiver implementation structure. With the derived
tool we showed the necessity for exclusion to full�ll the maritime continuity risk requirements. Moreover when implementing
sequential exclusion, at the cost of an increased complexity, the continuity risk at the end of the 3 hours is reduced. Furthermore
the information that the receiver implementing sequential exclusion has about the faulty satellites when starting an operation
has a time decreasing impact on the continuity risk with respect to the case when the receiver has no available information
at the start of the operation. We also showed that when the time scale is reduced to 15s, such as in aviation operation, the
proposed model and the preceeding models [6] lead to the same numerical results. The proposed model could be considered
as a valid tool for the computation of the continuity risk for a wide range of applications with di�erent requirements and time
scales.
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