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Abstract: Battery electric vehicles (BEV) provide an opportunity to balance supply and demand in
future power systems with high shares of fluctuating renewable energy. Compared to other storage
systems such as pumped-storage hydroelectricity, electric vehicle energy demand is highly dependent
on charging and connection choices of vehicle users. We present a model framework of a utility-based
stock and flow model, a utility-based microsimulation of charging decisions, and an energy system
model including respective interfaces to assess how the representation of battery electric vehicle
charging affects energy system optimization results. We then apply the framework to a scenario study
for controlled charging of nine million electric vehicles in Germany in 2030. Assuming a respective
fleet power demand of 27 TWh, we analyze the difference between power-system-based and vehicle
user-based charging decisions in two respective scenarios. Our results show that taking into account
vehicle users’ charging and connection decisions significantly decreases the load shifting potential of
controlled charging. The analysis of marginal values of equations and variables of the optimization
problem yields valuable insights on the importance of specific constraints and optimization variables.
Assumptions on fleet battery availability and a detailed representation of fast charging are found to
have a strong impact on wind curtailment, renewable energy feed-in, and required gas power plant
flexibility. A representation of fleet connection to the grid in high temporal detail is less important.
Peak load can be reduced by 5% and 3% in both scenarios, respectively. Shifted load is robust across
sensitivity analyses while other model results such as curtailment are more sensitive to factors such as
underlying data years. Analyzing the importance of increased BEV fleet battery availability for power
systems with different weather and electricity demand characteristics should be further scrutinized.

Keywords: electric vehicles; sector coupling; energy system optimization; renewable energy
integration; REMix; charging behavior; marginal values

1. Introduction

1.1. Motivation

The Paris Agreement calls for a nearly carbon-neutral global energy and transport system by
2050 [1]. Furthermore, the European Commission announced that Europe will be climate-neutral
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by 2050 [2]. In Germany, the transformation of the power system is well underway; however, the
transition to a greenhouse gas (GHG) emission free transport system is far behind [3]. In order to
achieve transport GHG emission goals, electric vehicles (EVs) are seen as a potential solution when
combined with renewable energy sources (RES) [4]. This in turn requires a new integration of the
energy and transport sectors.

Integrating the energy and transport sectors requires an alignment of power demand from EVs
and power supply from fluctuating RES. In order to address this challenge, increasing flexibility of the
power system is necessary to ensure demand is always met [5]. Measures to increase power system
flexibility include an expansion of battery storage and sector coupling [6]. Sector coupling allows for
the shifting of energy from different sectors such as heating or transport. Designing sector coupling
requires a detailed analysis of the interactions and dependencies between the sectors.

Sector coupling in general and EVs in particular will create an additional load on the power
system. At the same time, EVs often contain oversized batteries and offer an option for added flexibility
in the energy system, assuming they can flexibly charge in contrast to uncontrolled charging [7] (p. 4).
Daily demand patterns depend on individual transport demand, charging behavior, infrastructure
availability, and differences between working day and weekend travel. Consequently, charging
behavior will influence EVs’ role in the electricity system. This serves as the motivation for developing
an integrated user behavior focused modeling approach for the interactions between future EV fleets
and the energy system.

1.2. Literature Review

In this section, we present a selection of literature related to the potential of integrating EVs in
power systems within energy system optimization modeling and more transport related research
assessing driving factors for demand patterns, charging dynamics, users’ acceptance for controlled
charging, and connection choices of EV users.

Integrating endogenous vehicle market development modeling into energy system modeling has
been demonstrated by [8] for the case of the COCHIN-TIMES model for different drive-train technologies.

Transportation research has carried out various research to better understand EV charging related
phenomena. The acceptance of utility controlled charging and its respective factors have been assessed
for 1470 plug-in EV buyers in Canada [9]. The authors find general acceptance for utility controlled
charging among one-half to two-thirds of the respondents interested in buying a plug-in hybrid electric
vehicle. Turning more to transportation demand-oriented driving factors for EV charging, Sun et al.
show that state-of-charge (SOC), interval in days before the next trip, and vehicle-kilometers to be
traveled on the next day are the main predictors for deciding to charge or not [10]. Fischer et al.
complement this finding by also mentioning location and comfortable range as determinants of
recharge decisions and charging characteristics [7].

Another strand of studies examines the build-up of EV charging infrastructure. Gnann et al.
utilized empirical charging data in a queuing model to estimate future fast charging infrastructure
requirements [11]. Chakraborty et al. examine the influence of electricity costs on charging behavior
and thereby on infrastructure needs [12]. Tian et al. similarly use analysis of charging behavior to
optimize the location of charging stations in China [13]. As a final example, Hardman et al. conduct a
review of charging preferences in relation to the build-up charging infrastructure [14]. Thus the main
focus of charging behavior models and investigations has been on determining charging infrastructure
to support the uptake of EVs.

Steck et al. simulate charging behavior of EV users to determine potential emission reductions
from shifting charging events [15]. Taking into account user preferences and user specific alternatives,
their results show that charging demand can be shifted away from demand peaks due to the price
sensitivity of EV users. Schuller shows the impact of controlled charging on RES utilization for EVs. He
describes a concentrating effect of charging events when decisions are taken based on power prices [16].



Energies 2020, 13, 1093 3 of 41

Energy system modeling has been incorporating partly flexible electricity demand by EVs in their
models for some time. Brown et al. (2018) describe an over proportionally high increase in system
cost with uncontrollable electricity demand from the transport sector. Controlling charging times of
battery electric vehicles (BEVs) is described to provide a PV-integrating effect, reducing total system
cost by 10% when 25% of the fleet is flexible for a study of the European power system with 95% GHG
reduction targets for 2030 [4].

Michaelis et al. assess the role of controlled charging for the German power system in 2030 utilizing
the models ALADIN and eLoad taking into account commercial and public charging stations. They
reproduce the finding of Schuller et al. (2013) that price-based charging leads to a load concentration
around noon in summer and a night and a day peak in winter. They find a 1.8 TWh reduction of RES
curtailment and up to 2.2 GW reduction of peak load by controlled charging [17]. However, charging
power is limited to a conservative value of 3.7 kW per vehicle. Furthermore, the power system setup
is not described so results are hard to compare and the authors call for an assessment of different
flexibility options.

Luca de Tena & Pregger assume an additional power demand of 49 TWh/a for EVs in Germany for
2050. In their analysis, system losses are reduced by 1.4 TWh/a in 2030 in the base scenario. Residual
peak demand can be reduced by 1.2 GW in 2030 [18].

Gerhardt et al. assume German transport sector’s power demand in 2050 amounting to
approximately 120 TWh including light duty vehicles. They assume the vehicle fleet is comprised of
20% BEVs and 40% plug-in hybrid and range extended EVs. RES curtailment is reduced from 12.2 TWh
to 10.7 TWh [19].

Taljegaard et al. assess implications of future BEV fleets on power system investments up to 2050
and on power system operation in 2030 for a geographical scope of Scandinavia and Germany. They
find that the increase in needed power plant capacities for fulfilling increased electricity demand for
the BEV fleet is lower than the increase in annual power demand through increased utilization rates of
wind power (2–4%), thermal power plants, and grid interconnectors (increase of 10%), at the same time
implying decreased cycling of thermal power plants. Furthermore, a potential EV fleet may decrease
necessary peak power capacity by 13–15 GW by smoothing the net load curve reducing peak net load
by 7 GW from 120 to 113 GW. Investments for solar power are drastically reduced by 22–42% due to
PV feed-in competing with vehicle-to-grid feed-in in midday peak hours. Taking into account only the
optimization of charging hours without feeding back to the grid, electricity costs from operation lies in
the same order of electricity costs without optimization with slightly lower costs for an assumed 60%
BEV fleet and slightly higher costs for a 100% BEV fleet [20].

Both strands of research, energy system analysis and transport research, provide valuable insights.
However, the research fields of energy system analysis and transport research have been carried out in
a fairly distinct manner, formulating the interest of each field’s research to the other. So far, this gap
has not been bridged to integrate BEV users’ preferences in energy system analytical frameworks. At
the same time, energy system model studies are hard to compare since model experiments cannot be
reproduced, model scopes vary among the studies and energy system model sensitivities to different
aspects of BEV charging has not been assessed in-depth.

Robinius et al. formalize the concept of sector coupling [6] and the challenge of describing different
parts of both power and transport systems in adequate detail. They suggest an open model environment
where sector and technology specific calculations are carried out in sub-models and interfaced with
each other [21]. This approach is adopted in our paper. We use the two terms ‘energy system’ and
‘power system’—differentiating power plants, stationary storage, grids, and power demand (power
system) from power demand in the transportation sector (which is part of the energy system).

This paper contributes to the existing literature by providing a first step towards bridging the gap
between detailed transport modeling tools and energy system optimization models. By comparing
power-system-based and vehicle user-based charging decisions, we identify the most crucial aspects
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that deserve high analytical detail when representing EV fleets as a potential load shifting option in
power systems with high shares of fluctuating renewable energies.

1.3. Scope of This Work

Despite the fact that the flexibility related to the controlled charging of EVs is regarded as
potentially highly relevant to the integration of fluctuating RES power generation, the role of EV
user behavior, as well as a detailed modeling of charging infrastructure, has received relatively little
attention in energy system modeling literature. We address this gap in the literature by specifically
analyzing the limitations of charging flexibility related to individual decisions on when, where, and
to what degree vehicles are charged. Furthermore, we evaluate the impact of representing these
decisions on energy system optimization models results. By combining four models focused on vehicle
buyers’ decision making, BEV charging behavior, and the energy system, we answer the following
research question:

How are energy system optimization modeling results affected by representing BEV charging
based on a power-system oriented perspective vs. a more user-oriented perspective?

We assess this question with regard to annual energy system results such as annual curtailment,
added capacities etc. (Section 3.2.1), cost-optimal charging of EV fleets (Section 3.2.2), show explanatory
insights (Section 3.2.3), and test respective sensitivities (Section 3.3).

The paper is organized as follows. Section 2 gives a brief introduction into representing vehicle
buyers’ and EV users’ decisions, as well as energy system modeling, how we interface the approaches,
and the scope and boundary assumptions of our scenario study. In Section 3, we describe similarities
and differences in the results of the two modeling approaches, and then explain and discuss them. In
Section 4, we summarize our work and identify potential areas for future research.

2. Methodology

In the following, we describe the methodological framework for model coupling and give an
overview on each model. This includes the model structure, implicit modeling assumptions, and the
parametrization of the models. The four models are VECTOR21, VencoPy, CURRENT, and REMix.
The models stem from both energy system analysis and transport research. We apply a stock-and-flow
model, VECTOR21, to model technology diffusion as well as regional differentiation of vehicle fleets
serving as harmonized boundary conditions for further analyses. Individual mobility demand, EV
charging, and respective power system flexibility are represented by two tools. VencoPy is a data
preparation tool that was developed for the application in the REMix analysis framework [22] and
calculates maximum flexibility of a hypothetical fleet based on real German travel data. In a more
detailed manner, CURRENT simulates charging decisions of each EV user depending on locational
preferences, infrastructure availability, and the users’ knowledge of their future trips. Both tools
are based on the German travel survey from 2008 (MiD) [23]. The energy system is represented by
the linear optimization model (REMix) comprising competing power system flexibility technologies
including sector coupling [24]. The BEV fleet charging models and the energy system model are
interfaced via five BEV fleet flexibility profiles. What they represent is described in the subsection
describing BEV charging modeling while their form and function for the energy system is described in
the subsection thereafter.

A baseline scenario (S0) acts as a reference and models the power system without additional
demand and flexibility from an EV fleet. We then describe the model coupling framework and its
application for two scenarios. In the first scenario (S1), the EV load shifting potential is calculated by
VencoPy with the assumption that the fleet batteries are highly controllable by the power system. In
the second scenario (S2), CURRENT simulates EV load-shifting potential with increased detail on user
charging behavior, infrastructure, and variability of mobility between weekdays. Boundary conditions
on technology, EV fleet, and transportation demand have been harmonized in both scenarios for
comparability. Figure 1 provides an overview of the four models, their application in the scenario
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study, the presentation of results, and the respective sections of this paper. The flexibility profiles
(Section 2.2) are the only difference between S1 and S2. Both sets of flexibility profiles are model inputs
for REMix and model outputs of VencoPy (S1) and CURRENT (S2). Due to their pivotal function for
further analysis, they are described in Section 3.1.Energies 2020, 13, 1093 5 of 44 
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2.1. Model Descriptions

2.1.1. Vehicle Fleet Model (VECTOR21)

The model VECTOR21 (Vehicle Technologies Scenario Model) is a hybrid of an agent based and
discrete choice market penetration model that assesses the competition between different powertrain
alternatives. It simulates future passenger vehicles’ market shares of powertrain technologies under
effects of changing political and technological conditions in an annual resolution. The basis of the
simulation is the customer purchase decision. Therefore, different customer profiles (agents) choose a
powertrain with the highest perceived value in a predefined framework such as regional policies or
energy prices. To calculate each utility, five unique customer preferences are been identified: purchase
price, operating cost, range, CO2-emissions, and maximum vehicle acceleration [25]. To take into
account current market phenomena we implement boundaries for range anxiety, as well as the lack of
charging infrastructure availability.

The model also incorporates various drivetrain technologies in three size segments (i.e., small,
medium, large). In particular, the model differs between pure conventional internal combustion
engines and minor electrification internal combustion engines both for diesel and gasoline. In addition,
there are alternatives such as plug-in hybrid electric vehicle, battery electric vehicle, fuel cell electric
vehicle, and combustion engine with compressed natural gas. Furthermore, VECTOR21 covers aspects
like manufacturer strategies to comply with CO2 regulations and the regulation’s influence on the
vehicle stock. Throughout the simulated year, customer purchase decisions affect the prices for new
components (i.e., lithium-ion batteries, fuel cell systems) with a learning curve model.

In the second step, all new passenger vehicles are transferred into the stock model. The future
evolution of a vehicle fleet is modeled based on segment specific survival rates [26]. The survival rate
depends on the vehicle age and vehicle miles thus far traveled. As a result, the model offers analysis
on a ZIP-code level to see stock alteration.

For our study, the penetration of battery EVs calculated for the year 2030 by VECTOR21
is aggregated to the two model regions considered in REMix (i.e., Northern Germany and
Southern Germany).
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2.1.2. Electric Vehicle Charging Models (VencoPy, CURRENT)

User-optimal BEV charging strategies are not necessarily system-optimal strategies [7]. Therefore,
the consequence and differences of both approaches have to be considered in order to assess challenges
and opportunities of high BEV-penetration scenarios and to draw conclusions on the detail of
representing BEV charging for energy system optimization models.

In our paper, we compare two methods to simulate charging behavior of an electric fleet and then
evaluate the influence of these different approaches on the energy system. First, we apply VencoPy
(Vehicle Energy Consumption in Python), which is the original data preparation tool in the energy
model REMix to simulate EVs and its load shifting potential in high temporal detail. VencoPy accounts
for the electric demand of an electric fleet, but the charging decision and the average battery level
of the fleet is determined by the power system. Second, we implement an existing transport model,
CURRENT, which simulates charging behavior from a utility based approach, within the framework of
REMix. This replaces the existing approach with VencoPy and accounts for detailed user behavior.
We next present both models in detail. VencoPy does not directly calculate BEV charging but rather a
best-case yielding high flexibility and a worst case yielding low flexibility for the energy system. Thus,
when we talk about BEV charging in VencoPy’s results, we mean charging in its two respective cases.

VencoPy calculates BEV flexibility profiles constraining fleet battery charging and discharging
for controlled charging in hourly temporal resolution. Only home charging is assumed with vehicle
segment-dependent power (small, medium, large, see Table 4). This approach is backed by empirical
findings, showing a 72% of charging energy is from home charging [27]. Long-distance trips requiring
fast charging events are excluded from the analysis. VencoPy calculates the hourly information of
electric mileage, if a BEV is connected to the grid, and the maximum and minimum battery SOC
possible to realize all travel demand. Demand data is taken from the trip dataset of the German travel
survey for German household transportation demand (MiD) [23]. The maximum SOC level profile
represents a case where BEVs always charge when possible with maximum SOC at beginning of the
day, while the minimum battery level describes the opposite case of minimum SOC and only needed
electricity for the next trips is charged before departure. A similar approach is described in e.g., [19].
Each vehicle profile is summed unweighted and normalized to a fleet profile for one day. The share of
the BEV fleet that can shift its charging demand to conduct controlled charging is exogenously defined
in REMix and used as a scaling factor for the normalized profiles (see next section).

CURRENT stands for “charging infrastructure for electric vehicles analysis tool” [28]. It is a
microscopic charging demand tool for BEVs providing time and location-specific information about
charging [15]. CURRENT gives information on the hourly electricity demand of an electric fleet over
the course of a week and shows flexibility potential for controlled charging. The overview of the model
is presented in Figure 2.

Two assumptions form the basis for CURRENT’s calculations. First, BEV users do not significantly
change their travel pattern. Second, users predominantly charge where they already park. These
assumptions are consistent with other research [29,30] and the anticipated user behavior for a
mass-market of EVs. For our case study, we use the 2008 German household travel survey (MiD) [23].
Next, we outline the workings of the model.

First, CURRENT takes the household travel dataset and creates 24-hour vehicle diaries with
information for all trips and parking events for one day. Specific information for each vehicle is added
to model it as an electric vehicle (e.g., electric range, charging power capacity). We then define the
availability of charging infrastructure at different locations (e.g., home, work, shopping), available
charging power, and a minimum parking time for a charging event. Using these assumptions and
the vehicle diaries, every vehicle must run through the charging algorithm as a BEV. In the charging
algorithm, every vehicle must complete every activity of the day (i.e., trip and parking event). Based
on charging preferences and depending on charging opportunities during a day, a BEV is charged
while parking or during a trip interruption at a fast charging station. At a fast charging event, a vehicle
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is charged up to 80% of its battery capacity with an average charging power of 37.5 kW. This results in
an aggregated charging demand per hour of the week and per location for an entire fleet of EVs.
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analysis tool).

A charging event occurs stochastically based on a multinomial logit approach. The model enables
users to account for charging preferences in their decision algorithm. A utility-based approach gives
the probability of charging at each activity of the day and also for interrupting the trip for a fast
charging event. The utility function of each activity considers the preference of charging per location
and price per kWh. The charging decision is made by a Monte Carlo simulation according to the
charging probability at the charging point. In addition, the probability of finding available charging
infrastructure differs for each location (i.e., home, work, shopping, leisure, other). For each household
with a vehicle and a private parking spot at home, we assign a private charging infrastructure with a
maximum charging power of 7.4 kW. When interrupting a trip for a fast charging event, the probability
to find a fast charging station is 100 percent. Fast chargers have a maximum charging power of 50 kW.
At all other locations normal charging infrastructure with a maximum charging power of 11.1 kW is
assumed. Due to a lack of empirical information, we make assumptions on the probability of finding
available charging infrastructure based on [28] and assigned the information for each parking event by
a Monte-Carlo simulation.

As a vehicle user does not have to charge every day—the average German daily mileage of
40 kilometers is far below an electric range of a BEV—a non-choice opportunity of not charging the
vehicle on the same day is included in the choice set of the charging decision in CURRENT. The
non-choice opportunity gives a probability that a vehicle is not charged every day. By simulating
every vehicle diary by several sequential runs, CURRENT can simulate charging events which do not
occur daily. In the end, the utility based approach leads to charging events enabled by preferences for
location, price, alternatives, and current SOC. These charging events do not occur every day and at
every opportunity. The calibration of CURRENT aims to get the same average SOC for the fleet at the
beginning and end of the week. Further detailed information on CURRENT, all assumptions, and the
detailed algorithm are summarized in [15,28].

By using the 2008 German household travel survey (MiD) VencoPy and CURRENT use the same
input data. The number of BEVs by segment and region differentiated for Northern Germany and
Southern Germany are harmonized for both methods and based on the results of the aforementioned
stock-and-flow model VECTOR21. Also, technological assumptions of BEVs such as battery capacity,
consumption, and electric range are harmonized (see Section 2.2.1).

Both models differ in their degree of complexity regarding infrastructure, weekday differentiation,
and users’ preferences. In comparison to VencoPy, CURRENT calculations lead to fewer charging
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events per day, but with the same amount of electric demand in total, and a lower number of vehicles
connected to the grid because of BEV users charging and thus connecting their BEVs sufficiency-oriented
in CURRENT. Also, fast charging during the trip generates a significant load due to the high charging
power of each charging event and leads to high charging power during the day than in VencoPy
yielding charging peaks during night hours. Fast charging events in CURRENT also give the energy
system no potential to shift electricity demand, as charging time equals parking time. Since VencoPy
only allows for charging at home nighttime charging is higher than during the day at other activities
(i.e., work, during shopping). Allowing fast charging and charging apart from home in CURRENT,
leads to more charging events during the day.

Deviating from VencoPy’s interpretation of uncontrolled charging as connecting their EV after
returning home, CURRENT’s uncontrolled charging is a specific sub-part of the travel activities that
require the BEV owner to recharge in order to reach sufficient SOC including fast-charging as an option
of last resort. In CURRENT, minimum and maximum SOC levels of single profiles are determined via
evaluating the charging time of an activity in comparison to the respective parking and thus connection
time. Only if the latter is higher than necessary charging, minimum and maximum SOC profiles
differ where maximum SOC represents direct charging after connection and minimum SOC the latest
possible charging beginning. Thus, the power system has only little control over charging procedures
under the condition of a user-oriented connection decision. This reduces the potential to shift charging
demand as charging time is equal or almost equal to parking time during daytime and fast charging.

On a modeling level, a very relevant difference of the two models is their means of enforcing
boundary conditions at the beginning and end of a day (VencoPy) and week (CURRENT). VencoPy
assumes maximum and minimum SOC at beginning and end of a modelled day for SOC max and
min respectively with a SOC security margin of 3% and secures meeting boundary conditions on each
single profile basis, thus each profile and thus fleet has the same beginning and end SOC min and max.
CURRENT on the other side calculates user specific SOCs for each profile under the assumption that
the average BEV fleet SOC at beginning and end of the week is equal. Table 1 summarizes the main
structural differences between BEV charging representation using VencoPy or CURRENT.

Table 1. Main differences between the BEV charging representation in VencoPy and CURRENT.

VencoPy CURRENT

Time horizon and weekday
representation 1 day 7 days

BEV user representation Demand has to be fulfilled
As in VencoPy plus temporal and activity

based connection choice including
non-choice option

Data and input assumptions MiD 2008 MiD 2008

Infrastructure representation Segment-specific rated power for
home charging

Activity-specific rated power including
fast-charging and availability probabilities

Boundary condition enforcement level Single profile level BEV fleet level

2.1.3. Energy System Optimization Model (REMix)

The main aim of REMix (renewable electricity mix) is to model future energy systems in high
temporal and spatial resolution to adequately represent the influence of high shares of variable
renewable energy sources. The model is composed of two sub models: the EnDat model for processing
of input data and OptiMo to optimize the system design and operation. Figure 3 shows the main
elements of the REMix model. One of the main pillars of REMix-EnDat is an inventory of renewable
energy source data. It contains potentials of hourly renewable energy generation and maximum
installable capacities. The model and its database are described in detail in [31]. The optimization
model REMix-OptiMo relies on a linear optimization approach, which is formulated in the General
Algebraic Modeling System (GAMS). The energy system is described in a system of linear equations
and inequalities. The model optimizes both the hourly operation of the system during one year and
the investment in additional capacities if needed to balance the energy demand. The objective function
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to be minimized contains the variable operational costs of all considered assets, including fuel as well
as optional CO2 emission costs, and the annuities and fixed operational costs of all endogenously
added capacities.
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REMix-OptiMo is a multi-node model, which implies that power generation, demand, and
transmission are aggregated to predefined regional model nodes. The most important boundary
condition is the power balance, which assures that power demand and supply are equal in each time
step and model region. Power generation, storage, and grid technologies are represented by their
cost, efficiency, availability, and maximum installable capacity. A detailed description of the general
modeling approach and fundamental equations can be found in [33]. Building upon the basic model
setup introduced there, REMix-OptiMo has been continuously enhanced in its scope to not only include
the power sector, but also the most relevant links to the heating and transport sectors as described
in [34].

The representation of EVs was originally developed within [22] and has been developed further
for this work. Due to REMix’ modular structure, the sets, variables, parameters, and equations of
the module representing BEVs can easily be activated or deactivated for the optimization model of
minimizing the overall system cost.

In order to represent load shifting, REMix-OptiMo requires five hourly input profiles, defining
optimization constraints for charging of BEV fleet batteries. These time series input profiles contain
information as follows:

1. The power demand in the case of uncontrolled charging;
2. The electric power demand required to fulfill mobility demand;
3. A maximum fleet battery state-of-charge level (SOC Max);
4. A minimum fleet battery state-of-charge level (SOC Min);
5. The maximum rated power of the vehicle fleet connected to the grid;

More details are given in [22]. Profiles can either be given in normalized or absolute figures in
units of GW and GWh. Scaling of normalized profiles to optimization input constraints is carried out
in REMix’s pre-calculation phase with additional assumptions on battery capacity, vehicle numbers,
charging efficiencies, and BEV segment-specific rated connection power. Non-linear effects such as the
degradation of batteries depending on cycling frequency cannot be accounted for within REMix.

In [22], Venco provided normalized profiles with battery capacity and vehicle consumption given
as input parameters. These profiles were then scaled by regional technology specific vehicle numbers,
battery sizes, and consumption rates in the data preparation stage of REMix. For S1, this approach
is adopted with harmonized technical and fleet-size assumptions. For S2 on the other hand, scaling
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from single-profile level to fleet level as well as infrastructure assumptions are endogenous parts of
CURRENT calculations, thus the scaling step is skipped.

2.2. Linking the Models and Description of the Scenario Study

2.2.1. Linking the Models

Coupling the above described models requires a harmonization of dimensionality of the models,
input assumptions, and at least a partial harmonization of the models’ scopes. This requires parallel runs
of the lower resolution model across the higher resolution model dimension, aggregating results of the
higher resolution model or selecting a relevant subset of the high-resolution dimension. Additionally,
data processing steps—such as normalization, scaling, and reformatting—are needed. Harmonizing
the model scope is the most challenging harmonization technique since often model endogenous
specifics have to be adjusted. Table 2 shows the model dimensionality and harmonization approaches
for respective model dimensions.

Table 2. Model dimensionality and respective harmonization approaches.

Dimension VECTOR21 REMix CURRENT Harmonization Approach

Spatial horizon Germany Germany plus
neighboring countries Germany -

Spatial resolution ZIP code areas Germany in 2 nodes,
others in 1 each 1 node Aggregation of ZIP code areas to

2 nodes in Germany

Temporal horizon 2010–2050 1 year in 2030 7 days in 2030 Filtering for 2030, cloning
CURRENT output for REMix

Temporal resolution Annual Hourly Activity/hourly

No model harmonization
between VECTOR21 and the other

models, CURRENT-adaption to
hourly output

Technological resolution
3 drivetrain
technologies,

3 vehicle sizes

Transport: 6
technologies, Power: X

technologies
1 technology Filtering BEV, parallel CURRENT

runs for each REMix-technology

Infrastructure resolution Input to agent’s
preference

1 plug power value per
transport technology

Probability distributions
of plug power

availability depending
on places

No harmonization with
VECTOR21, REMix-adaptation to

be able to model
CURRENT output

VECTOR21 model output is relevant for both REMix and CURRENT calculations, as it is taken
as a quantitative input for estimating vehicle fleets of BEVs in Germany in 2030. Dimensionality
mismatches are treated by either filtering or aggregation.

Cloning of CURRENT output is conducted to transfer the time horizon of a week to a full year for
REMix, thereby neglecting effects of seasonal mobility behavior changes and holidays [35]. Filtering and
separate runs are carried out for model regions. REMix models Germany and its neighboring countries,
while surrounding countries are not relevant for modeling BEV charging decisions within Germany.

In the first scenario, S1, the BEV flexibility profiles are calculated based on the method described
in [22] assuming that 94% of battery capacities of the BEV fleet are available to the power system as
a battery storage. Thus, in extreme cases, each vehicle’s battery is available as battery storage with
hourly varying capacity, described by profiles 3 and 4 and charge power described by profile 5 (see
Section 2.1.3). In scenario S2, BEV flexibility profiles are calculated based on a harmonized CURRENT
run, taking into account agent’s preferences with regard to charging location and the SOC.

2.2.2. Description of the Scenario Study

This section summarizes the main structural and quantitative model assumptions for our case
study of a hypothetical German power system in 2030 including its neighboring countries. We start
by describing the model scope and continue to present the main assumptions on the EV fleet and its
power demand as well as techno-economic assumptions. The REMix parametrization builds upon
assumptions and data given in [36].

We apply a model setup with two model regions for Germany (North and South) and its
neighboring countries (i.e., Austria, Belgium, the Czech Republic, Denmark, France, Luxembourg, the
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Netherlands, Norway, Poland, Sweden, and Switzerland). The division into Northern Germany and
Southern Germany is done to analyze the impact of the different renewable power plant portfolios.
Southern Germany is dominated by wind power with approximately twice as high wind than PV
installations while this relationship is inversed in Southern Germany with PV fluctuating in diurnal
day and night patterns. Total fluctuating RES capacities before optimization are more than three times
higher in Northern Germany compared to Southern Germany. The division of Germany is based on
21 sub-control zones of the four German transmission system operators (TSOs) [37]. Since our focus
lies on differences in representation of a hypothetical EV fleet and their respective impacts on power
system modeling, the German neighboring countries are taken as constant boundary conditions, even
though investments in power plants and storage are allowed. Grid transmission capacities are based
on [38,39]. Power system dispatch is cost-optimized for the scenario year 2030 in hourly resolution
and with perfect foresight over the overall time horizon. Fluctuating RES time series are taken on the
basis of calculations in [24,31,40].

We implement five conventional power plant technologies, six renewable energy technologies,
as well as three storage and one transmission grid technologies as shown in Table 3. Technology
expansion is optimized in a brownfield approach based on existing capacities with the option to invest
in a technology expansion to meet the power demand. Power demand from other sectors is considered
only with regard to passenger BEVs.

Table 3. Technology resolution of power plant, grid, storage, and EV technologies in REMix. Rows are
not related to each other.

Power Plant Technologies Grid Technologies Storage Technologies Electric Vehicle Technologies

Fluctuating renewable
energies

Photovoltaic, wind onshore,
wind offshore,

run-of-the-river hydro HVDC

Stationary lithium-ion
batteries Small BEVs

Controllable renewable
energies Reservoir hydro dam power Pumped hydro storage Medium BEVs

Thermal power plants

Hard coal steam turbine,
lignite steam turbine,

natural gas combined cycle
gas turbine, natural gas

gas turbine

Hydrogen underground
caverns Large BEVs

The annual electricity demand data are taken from the European Network of Transmission System
Operators (ENTSO-E). Values are disaggregated by German ENTSO-E profiles to yield hourly time
series of electricity demand in order to account for the difference between weekend and weekday
electric demand which is taken into account for BEV flexibility profiles in S2 as well.

In the following, we describe the quantitative basis for modeling the power system flexibility
of a future EV fleet. For scenarios S0 and S1, the annual power demand from the BEV fleet has to
be explicitly given and scaled in the pre-processing phases of REMix, while for scenario S2 the total
EV fleet power demand is an implicit result of CURRENT. Thus, S0 and S1 input assumptions have
to be harmonized in order to assure comparability across all scenario calculations. Results of the
harmonization are shown in the fourth column in Table 5.

Technical assumptions that are constant for all model regions for scenario S1 are shown in Table 4.
Battery capacity assumptions are compared to historic values, ranges given in the IEA EV Outlook
2018, and to literature assumptions on prospective values in Figure A2.

We assume that two-thirds of the vehicles can be charged by controlled charging following an
upper-bound assumption from [9], limiting the flexible charging demand to approximately 18 TWh/a.
A REMix-endogenous model decision regarding the investment enabling controlled BEV charging
is not considered as we are foremost interested in intra-annual implications of user behavior and
increased detail of representing infrastructure. A harmonization of BEV fleet shifting capabilities will
be presented in a sensitivity analysis.
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Table 4. Technology assumptions for EVs for scenario S1 and respective degree of harmonization with
scenario S2 input assumptions. Battery capacity values are assumed based on a comparison of historic
battery sizes and literature projections from [18,20,28,41,42].

Name Unit Value Degree of Harmonization

Battery capacity (gross)
BEV-S kWh 40

harmonizedBEV-M kWh 70
BEV-L kWh 100

Charging capacity
BEV-S kW 3.7

Not harmonizedBEV-M kW 7.4
BEV-L kW 22

Electric demand
BEV-S kWh/km 0.15

harmonizedBEV-M kWh/km 0.20
BEV-L kWh/km 0.25

Share of controlled charging % 67 Not harmonized

Efficiency of vehicle charging
(plug to battery) % 95 harmonized

Variable operation and
maintenance costs of
controlled charging

€/MWh 5 harmonized

Table 5 presents VECTOR21 results for the BEV vehicle fleet aggregated to REMix model nodes
for 2030. For matching geographical boundaries data from [43] was used. With a cumulated BEV fleet
of 8.8 million vehicles in 2030, we assume a stronger BEV adoption than the one given in the scenarios
for the European 10-year network development plan of 2.6–5.4 million EVs for Germany [44].

Table 5. EV fleet spatially dependent parameters as aggregated results from VECTOR21 scenario.

Model Node Vehicle Size Number of Vehicles in Units of 1000 Vehicles Annual Electric Demand in TWh/a

Northern Germany
BEV-S 414 1.31
BEV-M 3365 10.68
BEV-L 215 0.68

Southern Germany
BEV-S 492 1.52
BEV-M 4078 12.61
BEV-L 213 0.66

Sum - 8777 27.47

In scenario S1, we assume two-thirds of the BEV fleet as flexible fleet battery that can be mostly
charged controlled top-down by the power system needs within the given SOC min and SOC max
profiles as described in Section 2.3. In S2, we describe the charging patterns and behavior-related
decisions of representative agents and thus the BEV fleet only provides a load shifting potential at
times where the parking duration exceeds the charging duration.

Charging connection power of size specific BEV fleets and the share of controllable charging
procedures of the fleets are not harmonized between scenarios S1 and S2. Since CURRENT simulates
both infrastructure availability and user preference to connect a respective vehicle to the grid at a
given location, plug power, and the controlled charging share are both determined endogenously and
resulting hourly week-profiles are cloned to the annual timescale and formatted taking into account
weekday specificities for adjustment of BEV profiles to other sectors’ electricity demand profiles.

2.3. Analytical Methods

We analyze the effects of differing BEV charging representation on annual energy system modeling
results, on detailed sub-annual BEV charging characteristics and shed light on the changing role of the
BEV fleet throughout the year by analyzing the marginal values of model equations and variables.
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Since energy system optimization modeling results are sensitive to GHG ambitions, the underlying
weather and demand data and techno-economic assumptions, we then calculate the same model setup
with three additional degrees of GHG ambitions, six additional weather and electric demand years
between 2006 and 2012, and two other sets of capital expenditures for fluctuating RES technologies.
With this, we test the robustness of shifted energy and annual energy system results. In this section,
we describe our methodological approach to analyze REMix model results.

REMix model results are partly transformed in its post-calculation phase, yielding .gdx files.
These are again aggregated using a Python script, writing pivot-table data to excel files. For analysis,
multiple result files are then combined in an analysis file giving tabular data with filtering, aggregation
and different visualization methods. These files are used for the analysis of REMix results on an
annual basis. Peak load and information about imports and exports are extracted individually from
the .gdx files.

A separate evaluation framework is set up for the analysis of sub-annual BEV fleet charging
characteristics. The calculation of shifted load is carried out in this framework since the shifted load is
calculated slightly different in S1 and S2. In S1, the shifted power is calculated as shown in powerShiftVP

shifted power (S1) =
8760∑
t=1

R(t)−ΨCC(t) powerShiftVP

with R(t) being the cumulative charged energy of the vehicle fleet in each hour in the case of
uncontrolled charging and ΨCC(t) being the real electric vehicle fleet charging energy. In S2, shifted
power is calculated taking into account two of the BEV flexibility profiles, uncontrolled charging, and
the maximum battery SOC

shifted power (S2) =
8760∑
t=1

[(Cunc(t) + Lmax(t) − Lmax(t− 1)) −ΨCC(t)] powerShiftCU

with:

Cunc: Uncontrolled charging (battery inflow) of BEV fleet;
ΨCC/ΨV2G: Controlled charging of BEV fleet battery in the case of only controlled charging (CC) or
with the option to feed electricity back to the grid (V2G);
ΦV2G: Electricity fed-back to the grid from the fleet battery;
Pdrive: Exogenously given electricity demand for driving in each hour;
Λ(t): Battery level in hour t.

In linear optimization, results comprise not only the value of variables at the optimal solution,
but also the value of marginal changes of variables and constraints. These values are referred to as
marginal values of variables and marginal values of equations (equalities and inequalities). Generally,
the marginal value of an inequality is only unequal 0 if the formulated constraint is bounded, for
example if the SOC is at its maximum level. Equalities are transformed to two inequalities, thus
equalities are always bounded.

Marginal values of variables and equations are shortly described using the battery level balance
equation in REMix where Latin letters describe exogenous parameters and Greek letters optimization
variables. For clarity, the parameters’ and variables’ dependency on the model region and the vehicle
segment are ignored. The equation batLevBal is

Cunc(t)+ΨCC(t)+ΨV2G(t)−ΦV2G(t)−Pdrive(t) = Λ(t)−Λ(t− 1) batLevBal

The battery level constraints limiting the SOC of the BEV fleet are given by the equations maxBatLev
and minBatLev
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Λ(t) ≤ Lmax(t) maxBatLev

Λ(t) ≥ Lmin(t) minBatLev

Finally, controlled charging must not be higher than the currently connected charging power of
the EV fleet given by the equation maxCC

ΨCC(t)
ηGtV

≤ Pcharge, avail(t) maxCC

with

ηGtV: Charging efficiency between the grid and the vehicle battery.

Each equation has a marginal value in the solution for each hour corresponding to the increase of
total system cost if the sum of all non-variable terms is increased by 1 unit in the respective unit of
the equation. For the maxBatLev equation this implies increasing Lmax(t). by 1 GWh and for batLevBal
increasing Pdrive(t) −Cunc(t) by 1 GW, respectively.

Since there are only two variables for each hour, namely the battery level and the amount of
controlled charging, the marginal values of the equations are tightly coupled to each other. When the
EV fleet battery SOC is not bounded, the marginal of the battery level balance equation has the value of
the last time that it was constrained minus the marginal value of either the maxBatLev or the minBatLev
equation if it was at upper or lower bound respectively. Since maxBatLev marginal are always negative
and minBatLev marginal always negative, the marginal value of the batLevBal equation increases by
the negative value of the marginal of maxBatLev and continues on this level until the SOC reaches
another constraint.

3. Results and Discussion

We now present the scenario study results as per Figure 1 and described in the previous sections.
We start with an introductory quantitative and qualitative description of the differences between
scenarios S1 and S2 (Section 3.1). Specifically, we examine the amplitudes and temporal distributions
of the five EV flexibility profiles introduced and described in Sections 2.1.2 and 2.1.3. We exemplify the
profiles and identify three major and three minor differences in the two approaches of representing EV
charging dynamics and constraints. Building on this, we describe the results of the scenario study on
an annual scale compared to benchmark scenarios (Section 3.2.1) and differences in intra-annual EV
charging characteristics between S1 and S2 (Section 3.2.2). We then present an analysis of the marginal
values of the main equations and variables of the BEV module in REMix, providing deeper explanatory
insights into the specific importance of different model details. Section 3.3 assesses the sensitivity of
the insights with regard to GHG reduction ambitions, historic weather and load years, and assumed
techno-economic parameters of power-plant technologies.

3.1. Comparison of BEV Flexibility Profiles (Intermediary Results)

As a basis for comparison, scenario S0 calculates benchmarking values without additional power
demand and load-shifting flexibility from BEVs. The consecutive scenarios S1 and S2 assume a
penetration of 8.8 million BEVs in Germany, implying an additional annual power demand of around
29 TWh including 5% electricity losses during charging procedures increasing the electricity demand
given in Table 5.

Table 6 provides an overview on quantitative implications of the two different methods of modeling
BEV charging characteristics aggregated for Northern Germany and Southern Germany, as well as
for all vehicle sizes. The hourly load shifting potential range describes the difference between the
minimum and maximum BEV fleet SOCs in a specific hour. It is significantly reduced in S2. Explicitly
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modeling a non-choice and a fast-charging option leads to a reduction of the fleet connection share
of the BEV fleet from a range between 33–59 GW in S1 to 3–8 GW in S2. The share of uncontrolled
charging is an exogenous assumption in scenario S1, while it is a result of CURRENT’s microsimulation
in scenario S2.

Table 6. Summary of fleet power demand flexibility characteristics in the three scenarios considered
(S0, S1, and S2). Cumulative power demand includes losses during charging. SOC range gives the
minimum and maximum difference between SOC max and SOC min. Fleet connection share includes
uncontrollably charging BEVs. For SOC and fleet connection ranges, VencoPy daily minimum and
maximum hours, for CURRENT weekly minimum and maximum hours are used.

EV Charging Model
(Scenario)

Cumulative Power
Demand from BEV

Fleet in TWh/a

SOC Range Available
to Power System

Load-Shifting in GWh

Fleet Connection Share
Range in GW

Share of Uncontrolled
Charging in %

- (S0) 0 0 0 -
VencoPy (S1) 29 272–419 33–59 33%

CURRENT (S2) 29 5–10 3–8 70%

The following Table 7 systematizes the above described structural differences in BEV
charging modeling.

Table 7. Structural differences in BEV charging representation between VencoPy and CURRENT. Shown
are structural differences in the models VencoPy and CURRENT.

Number Representation Detail Quantitative Effect on BEV Flexibility Profiles

Major structural differences
1 Weekly boundary conditions for

BEV fleet SOC

Reducing available aggregated BEV fleet battery
capacity for load shifting from minimum

272 GWh to maximum 10 GWh

2
Taking into account users’

sufficiency-oriented charge
connection

Reducing grid connection of BEVs from 33 GW
min to 8 GW max

3 Including fast-charging Reduction of controllable charging by 16.2 TWh/a

Minor structural differences
4 Possibility to charge at other

locations than home
Shifts charging availability from

night to daytimes

5
Accounting for non-availability of

private home charging
infrastructure

Reduction of total charging availability and
shifting charging to daytime

6 Accounting for weekday-specific
travel patterns Effects on all profiles (see text)

Including fast charging in CURRENT in comparison to VencoPy leads to an increase in uncontrolled
charging since charging time is always as long as parking time for fast charging. The additional degrees
of detail that were added to the simulation in CURRENT are other charging locations such as work
and shopping, more realistic probabilities of availability of home charging infrastructure, as well as a
differentiation between weekday-specific travel patterns. The expansion of time horizon from one
model day in VencoPy to a week in CURRENT affects all profiles. Uncontrolled charging and grid
connection are shifted to later times in the day during weekends. BEV owners drive more during the
day and less during the morning and evening, which shifts electric demand to daytime hours. Load
shifting potential increases during daytime hours on the weekend due to more BEVs being parked at
home and available for load-shifting. EV flexibility profiles are depicted in Figure 4 for S1 and S2.

Constraining BEV fleet SOC profiles are shown in Figure 4A. There is a significant reduction in
BEV fleet battery capacity available to the power system for load shifting from 270–420 GWh in S1 to
5–10 GWh in S2. This reduction is mainly explained by the first major effect of different boundary
condition enforcement and aggregation procedures in VencoPy and CURRENT (see Section 2.1.2 and
Table 7).

In Figure 4B, the influence of effects 3, 4, and 5 can be seen. Uncontrolled charging is shifted to
daytime hours through fast charging and other charging locations and a probability that no charging
option is available at home. Additionally, the influence of working day and weekend transportation
demand is shown in the CURRENT profiles resulting in a 2:00 p.m. peak on Saturdays while



Energies 2020, 13, 1093 16 of 41

uncontrolled charging reaches a slightly-decreasing plateau between 8:00 a.m. and 7:00 p.m. on
working days.
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differences given in Table 7. CURRENT profiles are given for a working day (TU: Tuesday, light
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The difference in charge connection profiles shown in Figure 4C originates from two causes.
VencoPy assumes, that only home charging is allowed, but that BEV users connect their vehicles as
soon as they arrive home with the rated connection capacities given in Table 4. This leads to a high
fleet charge availability during night hours and an approximately 50% fleet charge availability from
~10:00 a.m.−6:00 p.m. when users start returning home. In CURRENT on the other hand, BEV users
only connect their vehicle when it is required by their respective trip purposes, thus adjusting their grid
connection to their respective mobility needs. This explains the overall lower fleet connection share.
The reversed course of the graphs in Figure 4C is due to a more detailed non-vehicle-size-dependent
infrastructure modeling in CURRENT. Fast charging is taken into account which amounts to 59% of
the total charged electricity and thus significantly shifts vehicle connection from nighttime to daytime
hours. Additionally, probability distributions are assumed for the charge connection availability at the
places home, work, shopping, and other activities.

Electric driving demand profiles are found to be similar as shown in Figure 4D. Slight differences
evolve from CURRENT’s differentiation in weekdays as well as the consideration of weights of
representativeness that are given in the dataset both of which are neglected in VencoPy aggregation
procedures from individual profiles to BEV fleet aggregates.

The analyses of the two methods (power system-oriented approach versus user-behavior-oriented
approach) have some limitations. First, the results rely on conventional travel patterns. We assume
that electric vehicle users do not alter their travel patterns. This assumption is supported by the
literature, but we are also limited by the lack of data on detailed travel information of electric vehicle
users [29,30]. Second, electricity demand from BEVs is temperature and seasonally dependent, which
was not considered in this model experiments but suggested, e.g., in [4]. Third, assumptions for
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user-preferences are based on a specific study from Australia [45]. Fourth, capacity limits of medium
and low voltage distribution grids connections are not taken into account. Fifth, CURRENT makes
very conservative assumptions on grid connections, which are only taken from the driver’s perspective
and when charging is needed.

Future work should focus on isolating each effect given in Table 7, thus giving the chance
of decisively quantifying the implications of integrating each aspect into BEV charging modeling.
Additionally, empirically measured charging behavior of BEV users could be taken into account to
gain insights on real BEV users’ behavior. Additional inter-seasonal effects such as electricity demand
by vehicle heating and cooling [4,7] as well as travel behavior due to holidays [35] should be evaluated
on their respective importance to load shifting potential of future BEV fleets.

3.2. Implications of Structural Differences in Representing BEV Fleets

In this section, we give three key implications of the different model approaches on annual energy
system model results, intra-annual BEV charging, and on intra-annual importance of the respective
equations. Each main insight is given at the beginning of each section and then described and discussed
in the following for easier readability. All results are available as .gdx files in the data Appendix A.

3.2.1. Energy System Implications on an Annual Basis

In the following, we describe the results of three scenarios (S0, S1, and S2) and thus the implications
of the different modeling approaches on energy system modeling results. We find that fast charging
and the reduced BEV fleet battery capacities have the strongest influence on energy system results,
significantly reducing BEV fleet flexibility provision from 24 TWh in S1 to 8 TWh in S2 shifted load.
Other flexibility options such as curtailment (+31% curtailed energy) and gas power plants (+5% in
capacity additions) compensate for lower BEV fleet load shifting potential.

Table 8 shows the results of the scenarios S0, S1, and S2 including two intermediary benchmarking
scenarios S1a and S2a, where additional BEV electricity demand occurs without any load shifting
potential for the same scenario study boundary conditions and temporal VencoPy and CURRENT
profiles (green lines in Figure 4) respectively.

Table 8. Overview on scenario definitions and main annual results of the four main scenarios under
analysis. Total system costs are given for the complete system boundary while all other values are
given for Germany. Difference in total system costs between S2a and S2 is more than an order below
numbers shown. Source: Own calculations.
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Total system costs increase by approximately 5% induced by an additional electricity demand from
German BEV fleets. This increase can be reduced to 4% by controllable BEV charging with high control
through the power system. Total system cost values for uncontrolled and user-behavior constrained
charging are similar. In S1, additional load is compensated by both gas turbine and onshore wind
power capacity expansions that can be well balanced by the fleet shifting potential. A higher peak
demand occurs when introducing additional BEV electricity demand. Complete inflexibility increases
peak demand by 7.2 GW or 9.6 GW in S1a and S2a respectively. Assuming BEV fleets’ controlled
charging decreases the peak load by 4.8 GW (S1) and 5.9 GW (S2).

Due to lower flexibility especially on an 3–4-day timescale, in S2 5% lower onshore wind capacity
expansions (−2.7 GW) have to be compensated by increased gas turbine expansions of 5% (+1.7 GW)
reducing the RES share in power generation slightly from 55% to 54%. Gas turbine additions are
around twice as high in northern Germany. Reducing the BEV fleets’ flexibility further increases gas
power plant needs by 0.7 GW in Southern Germany and around 1 GW in Northern Germany. At the
same time, curtailment is increased from 2.6 TWh in S1 to 3.4 TWh in S2 indicating that despite 2 TWh
lower wind power feed-in, the decreased charging controllability leads to a significant amount of hours
in the year where wind oversupply cannot be stored in the BEV fleet.

Import levels are comparable in S1 and S2 and lie around 12% above the benchmark values.
Main importers of electricity to Germany are France, Sweden, Switzerland, and Norway. Germany
exports electricity to Poland and the Czech Republic. Inner-German electricity transport is high at
above 60 TWh from Northern Germany to Southern Germany in all scenarios. It is higher in S1 due to
lower power generation from conventional power plants in the south (−4 TWh) but also in the north
(−2 TWh).

Especially the decreased BEV fleet battery capacity available for load shifting leads to a significant
reduction in quantity and quality of flexibility provision of BEV charging. Load in S2 can only be
shifted diurnally within a day thus diminishing the BEV fleet’s potential to balance wind power feed-in.
This effect of future BEV fleets as a complementary PV balancing option has already been described
by [4,46]. Coal power plant generation is slightly increased in Northern Germany by 1.3% and 1% for
coal and lignite plants respectively and reduced by 2% for coal power plants in Southern Germany.

Curtailment reductions found in [17] are lower even in S1 when high flexibility is assumed. Peak
load reductions are higher which can be explained by the assumptions of very high BEV penetration
rates, considering their 40 kWh BEV battery as the smallest size with the majority being at 70 kWh.
The different assumptions in charging power of our 3.7, 7.4, and 22 and fast-charging is supposedly
not very relevant because of the unimportance of the charge connection constraint (see next section).

Future work should take into account BEV fleets in neighboring countries, empirical indications
of BEV users’ adoption of controlled charging and respective economic incentives as well as feedback
of power generation costs to the users to assess to what degree BEV users could be incentivized to
system-friendly charging by price signals.

3.2.2. Energy System Implications on Charging Dynamics

Charging dynamics vary significantly between S1 and S2 as well as Northern Germany and
Southern Germany as shown in the following. Reduced BEV fleet battery capacity has the strongest
influence on charging profiles resulting in a significantly reduced variability. Including fast charging,
the non-choice option and other daytime charging options lead to higher daytime charging peaks.
Accounting for differences in weekday travel patterns lead to increased weekend daytime hour charging
in Northern Germany (+40%) and Southern Germany (+12%) and to a sharper peak at 1 p.m.

For the power system, three main implications result from BEV usage. First, the mileage of an
electric fleet imposes an increased electric demand in each hour for the energy system. Secondly,
BEV charging events and the respective fleet grid connection power available are subject to temporal
dynamics. Thirdly, controlled charging may occur when the time that a vehicle is connected to the grid
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is longer than the time required for a complete charging process and thus, the beginning of a charging
event can be shifted to a later point in time.

As CURRENT differentiates each day of a week, the BEV electricity demand differs in particular
from working days and weekend. For example on Sunday only 54% of the vehicles are used, while
during the week the share of vehicles with a minimum distance driven is 70%. Not only the number
of vehicles used is different for each day of a week, also travel pattern and time of travelling, which
results in different time and location a charging event occurs.

Figure 5 shows the daily charging patterns for all working days of the year differentiated
in charging in Southern Germany and Northern Germany for a cost-optimal charging with high
controllability by the power system (S1) on the left and lower flexibility (S2) on the right-hand side.Energies 2020, 13, 1093 20 of 44 
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Figure 5. Annual distribution of total charging on weekdays in cost-minimal power system operation.
The red line indicates how charging would take place in case of uncontrolled charging. The black line
indicates the median value for charging in each hour (not the median profile). Figures on the left are
the distributions for Northern Germany and Southern Germany for the medium sized BEV fleets for
scenario S1 (VencoPy profiles). Figures on the right side depict charging distributions in scenario S2.

Even though uncontrolled charging input profiles are very different, a few similarities can be
observed. Generally, electricity demand is shifted from morning and evening hours to midday and
nighttime hours. In S2, the reduced BEV fleet battery capacity leads to a sharply reduced variability of
controlled charging power from up to 14 GW (beyond y-axis cutout of S1) to around 4.5 GW.

Between 6:00 and 9:00 a.m. the median of controlled charging is at its minimum in both scenarios.
For evening hours, this is true for the timeframe between 5:00 and 9:00 p.m. for the high fleet flexibility
since the evening load peak occurs in the same time interval (compare Figure 4). For scenario S2 the
median is not as sharp at the bottom, which is due to varying weekday-dependent travel patterns but
generally up to 1 GW below uncontrolled charging. From midnight on, charging occurs to a higher
degree than in the uncontrolled charging case although uncontrolled charging reaches its minimum
around 4:00 a.m.

The controlled charging median is much higher in S2 (1.1 GW in Northern Germany and 1.4 GW
in Southern Germany) compared to 0.2 GW in S1 due to many working day nights in S1 where charging
is not needed at all, even though electricity load is low. A strong alignment of controlled charging to
PV feed-in can be observed in Southern Germany versus Northern Germany for S1. For S2, this effect
is also observable, yet not as strong and complimented by generally broader charging behavior during
daytime in Southern Germany compared to Northern Germany.

The results indicate the increasing importance of controlled charging at midday in sunny regions
with high shares of solar energy. More charging at nighttime is seen in the north, especially if higher
fleet capacities are available. This valley-filling effect has already been observed by other authors,
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e.g., [47]. In S1 where home charging is available to all BEV users and the whole fleet capacity is
available to the power system, the variability of nighttime controlled charging procedures is higher
with the median of controlled charging being at no charging power. This shows that controlled charging
balances wind feed-in when available in S1, while in S2 nighttime hours are utilized in more than 90%
of working days. Both aspects motivate stronger home charging infrastructure expansion in Northern
Germany compared to Southern Germany.

Weekend and working day charging differences are described comparing Figure 5 and the same
depiction for weekends, Figure A8. In S1, there is a general trend to more charging on the weekends
across all hours increasingly making use of lower electricity demand from other sectors and showing
increased load shifting times compared to S2. This effect is much stronger in Southern Germany where
total BEV charging load is higher than uncontrolled charging in the vast majority of the hours except
for the time between 4:00 and 11:00 p.m. where load peaks occur in the general electricity demand. In
northern Germany, the charging median follows the uncontrolled charging profile except for between
4:00 and 11:00 p.m. with two frequently occurring charging peaks between 1:00 and 7:00 a.m. as well
as between 11:00 a.m. and 3:00 p.m. On weekend days in S2, nighttime hour charging peaks are
diminished and in Southern Germany shifted to 9:00 to 11:00 p.m. where mean charging amounts to
1.4 GW. In northern Germany, no nighttime charging peaks occur on the weekends. Weekend daytime
hour charging peak is increased from 2.5 GW at working days to 3.5 GW in Southern Germany and
2.8 GW in Northern Germany on weekends and occur more sharply at 1:00 p.m. in both model regions.

Of the driving factors, mentioned in Table 7, setting a boundary condition on the fleet level rather
than the single profile level has the strongest effect on cost-optimal charging characteristics, diminishing
wind power balancing potential and limiting EV fleets’ load shifting to diurnal load-shifting. An
additional fast charging option in S2 reduces the evening peak in uncontrolled charging shifting it to
midday. Differentiating between weekend and working days does have a strong impact on BEV fleet
charging as described above.

Results from [17] showing a season-dependent concentration of BEV fleet charging is reproduced
by our analysis as can be seen in Appendix B Figure A5, Figure A6, Figure A7. However, Southern
Germany shows a daytime peak in winter as well in S1. When BEV user preferences are taken
into account, this concentration effect cannot be shown, thus providing insights to what degree the
“technical potential” estimate in [17] will supposedly be limited by BEV users’ decisions.

After having presented the most important differences between S1 and S2 in a descriptive way
we will now explain the quantitative reasons for differences and draw more abstract conclusions for
representing transportation demand in power system models.

To what degree charging connections limit load shifting in both scenarios will be discussed in
the next section. The higher degree of modeling charging infrastructure availability depending on
different types of locations has a strong effect on the profiles shown in Section 3.1. Its respective
impact on energy system models can be estimated by the marginal value of the charge connection
constraint equation.

3.2.3. Linear Optimization Marginality Analysis

Based on the description of marginal values of equations and variables in Section 2.3, we compare
the marginal values of the relevant REMix equations that model a partly flexible power demand of
BEV charging in the following section. From a comparison of absolute marginal values and temporal
dynamics within the power plant dispatch, we provide explanatory insights on the importance of
different components of BEV modeling and their respective implications for energy system optimization
modeling. Here, we present the key insights of the marginality analysis; the detailed analysis is laid
out in the respective section of Appendix B.

In scenario S2, an increase of electricity demand for driving generally leads to a more direct pass
through of power generation costs. BEV fleet batteries expand the availability of otherwise curtailed
fluctuating RES to hours (and in scenario S1 to days) before and after low residual load situations occur.
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This can be observed in scenario S1, in which a load increase or charging decrease does not always
lead to power system cost increases due to possible shifting of fluctuating RES feed-in as shown in
the period between mid-November and mid-December in Figure A10. However, in these periods,
controlled charging has a pivotal role for expanding periods of low residual load.

The number of hours in which the marginal value of an equation is above a fixed threshold makes
it possible to compare the importance of that constraint for total power system cost in each scenario S1
and S2 as well as between the two model regions. Table 9 gives the numbers of hours for which the
marginal value of the grid connection constraint maxCC of the medium-sized BEV fleet is above the
thresholds given in the first column. Two cutoff values are compared in order to reflect the presence of
peak marginal values. Their value corresponds to the increase of the total system costs that originate
from an increase in electricity for driving or a decrease of uncontrolled charging (or a mixture of both)
by 1 GW. For S2 compared to S1, the constraint gets more important in northern and less important in
Southern Germany. Increases in Northern Germany occur due to higher peaks in S2 and narrower
SOC bands, necessitating steeper charging at times of low residual load at decreased BEV fleet charge
connection compared to S1. Decreasing number of hours in S2 in Southern Germany occur due to
increased utilization of other flexibility options such as gas power plants and imports. The effect of
extending low cost electricity availability can be observed in the third row of Table 9 showing the
number of hours in which the marginal value of the battery balance equation batLevBal is low. While
this effect does not occur in Southern Germany due to low wind availability, in Northern Germany the
constraint is below the threshold in twice as many hours in S1 compared to S2.

Table 9. Number of hours in which the marginal value of the constraints maxCC (BEV fleet charging
connection) and batLevBal (battery balance) is higher or lower than the cutoff-values given in the second
column. All numbers are only given for the fleet of medium-sized BEVs.

Constraint Cutoff Marginal Value S1
GER-N

S1
GER-S

S2
GER-N

S2
GER-S

maxCC
>1000€ 6 88 90 63

>1€ 34 227 185 126
batLevBal <1000€ 1135 0 500 0

3.3. Sensitivity Analysis

In order to test the robustness of the results, a sensitivity analysis has been carried out varying the
GHG reduction ambitions, the weather years for load and fluctuating RES feed-in profiles as well as
capital expenditure assumptions of wind and PV power plant technologies. Weather and electricity
demand data for the years 2006–2012 are based on the analysis in [36]. Specific capital expenditure is
varied based on two independent sets of values given by [48] and [49]. Tables A8, A10 and A11 present
annual energy system model results of all carried out sensitivity scenario calculations. In scenarios b–d,
the German greenhouse gas emission limits have been reduced to 80, 50 and 0 Mt per year. In scenarios
e–j, weather and electric demand data years have been varied taking into account data from 2006 to
2012. Scenarios k and l correspond to two deviating specific fluctuating RES technology investment
costs sets. Scenario m reduces the load shifting potential in S1 to 30% of flexible charging as in S2.

Sensitivity run results are shown as difference between a model result e.g., system cost between
S1x–S2x in a sensitivity scenario x e.g., b compared to the baseline difference S1–S2. Equation sens
shows the definition.

sensitivityResult =
ResultS1x −ResultS2x
ResultS1 −ResultS2

sens

Figure 6 shows the resulting sensitivities. The four input sensitivity types are clustered via color.
Differences in BEV fleet load shifting between S1 and S2 are robust to all tested sensitivities except
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for scenario run S1m, in which a reduction of the share of controlled charging from 66% to 30% is
exogenously given. However, despite the reduction of the charge control by more than half, the load
shifting only drops by 20%. Differences of total system cost are quite robust. The peak load reduction
achieved by shifted BEV charging is notably affected by almost all input parameters variations, which
can be explained by the changes in the fluctuating RES capacities and power generation as well as
load profiles heavily affecting the balancing requirements. Differences in power plant installations are
increased in all sensitivity scenarios except for k where lower costs lead to increased PV installations in
Southern Germany reducing the importance of the BEV fleets for wind power balancing. Differences
in RES capacity additions are generally increased except for scenario d, the 0 t CO2 emission limit.
Here, more needed expensive flexibility options such as battery storage reduces the importance of the
BEV fleet as a balancing option. Differences in gas power plant capacity additions are inverted for
sensitivity scenario m, where the share of uncontrolled charging is harmonized. Thus, in S1m more
gas power plant capacities are needed than in S2, which can be explained partly by better alignment
of charging to PV feed-in in S2 due to available daytime and fast charging infrastructure. Annual
fluctuating RES power production is increased by 7 TWh in the baseline. In most sensitivity scenarios,
this is not the case and S2 model runs have between 7 and 12 TWh more RES production due to
significantly increased inner-German transmission, imports from neighboring countries, and lower
curtailments. The specific capital expenditure sensitivity runs drastically change the fluctuating RES
portfolio. This explains that while fluctuating RES shares are 1.1% higher in S1 in the baseline runs,
they are around 3% lower in sensitivity scenario k utilizing global cost assumptions. This is due to
10 GW more PV and 5 GW more onshore wind power plant capacities in S2k compared to S1k also
implying increased battery capacities in S2k.
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Figure 6. Sensitivity of the difference of REMix model results (categories) between S1 and S2 on German
GHG ambitions (b–d, blue), different underlying weather and electric demand data (e–j, green), CAPEX
assumptions (k–l, yellow) and controlled charging in S1 (m, red). Values between 0 and 100% indicate
decrease in difference, values above 100% indicate increased difference, and values below 0 indicate
an inversion.
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Annual curtailment of fluctuating RES is strongly sensitive to all tested input variations. Especially
for varying specific capital expenditures this is due to changes in the power plant portfolio that can be
observed between the baseline scenarios S1 and S2 on the one hand and the sensitivity runs k and
l, introducing increased shares of PV. These effects also imply changes in transmitted power from
Northern Germany to Southern Germany. While these are highly sensitive to weather and demand
year variations, imports to Southern Germany are less but still sensitive to GHG limitations with a
maximum of 44% increase in the 0 t CO2 scenario.

These analyses show the robustness of BEV fleet as a load-shifting option in different model setups.
Also, fluctuating RES and gas power plant capacity additions, fluctuating RES shares and annual
curtailment of solar and wind power feed-in have the same effect direction as in the baseline scenarios
S1 and S2. At the same time, in some sensitivity scenario calculations, energy system model results
are inverted within similar sensitivity scenario calculations motivating further analyses of underlying
intra-annual profile data as well as specific capital expenditure assumptions.

4. Conclusions and Outlook

Strengthening the bridge between energy systems modeling and transport research, we compare
the load shifting potential of power-system controlled battery electric vehicle charging modeling with
a user-preference oriented charging modeling approach. In a scenario study for Germany, implications
of both approaches on cost-optimizing power system investment and dispatch modeling are presented.

The first major finding of the paper is that taking a user centric view and more charging options
especially fast charging into account significantly reduces the load shifting potential of electric vehicles
compared to a simplified approach to charging flexibility. Main drivers affecting electric vehicle load
shifting characteristics are including fast charging, the consideration of sufficiency-oriented charging
decisions, and boundary constraint enforcements for electric vehicle fleet state of charge to be equal at
beginning and end of the transport model time horizon. Minor factors are weekday-specific travel
patterns. By considering these drivers, the hourly electric vehicle fleet battery capacity availability to
the power system is reduced by roughly 98%. Similarly, the hourly fleet connection power is reduced
by about 90% which does not have a significant effect on electric vehicles’ load shifting capabilities for
the power system.

The second major finding of the paper is that load shifting patterns relate to the prevailing weather
patterns of fluctuating renewable energy grid feed-in. More shifting towards night hours occurs in
northern Germany, where wind energy is the dominating fluctuating renewable energy source. In more
solar-energy dominated Southern Germany, there is a shift of electric vehicle fleet charging towards
midday when solar energy is strongest. This effect is driven by flexibility provision in a power-system
oriented charging modeling while it is mainly driven by inflexible fast-charging in a more user-oriented
charging modeling.

The third major finding of the paper is that wind integration capabilities are significantly affected
by the way of modeling electric vehicle fleet charging. While wind power curtailments are reduced by
10% in a power-system controlled electric vehicle fleet, curtailment is increased by 17% in the case of
user-oriented charging modeling compared to the benchmark scenario that assumes neither additional
load nor load shifting from electric vehicles. In the first case, larger electric vehicle fleet batteries are
capable of shifting wind feed-in across multiple days, day-by-day releasing its energy to the electricity
demand for driving. On the other hand, electric vehicle load-shifting reduces peak load in both
scenarios significantly compared to benchmark runs since multi-day flexibility is less important for
decreasing peak load. Compared to inflexible additional electric vehicle electricity demand, necessary
gas power plant additions can be reduced by up to 9%.

Load shifting reductions from a power system centered to a user-preferences oriented electric
vehicle fleet charging are highly robust across all sensitivity runs. Also, the way a changed electric
vehicle charging modeling affects the required power plant capacities, fluctuating RES share in total
power generation and curtailments is shown to be quite robust. However, charging modeling induced
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changes in annual RES power generation and electricity transmission to and within Germany is
found to be sensitive to changes in emission limits, underlying weather years and specific capital
expenditure assumptions.

One limitation of the paper is that we use today’s driving patterns for the analysis, not taking into
account that travel behavior may change in the future to reduce the overall traffic of individual cars.
Similarly, analyzing the effect of ridesharing or gig economies may become increasingly important,
depending on the geographical scope of the analysis. We use simplified assumptions on the charging
behavior, as users always connect their car when they reach their home in one case or only when they
need charging in the other. The use of periodic boundary conditions for the state of charge limits
long-term balancing of wind feed-in in the case of user-oriented charging modeling.

Further research needs to systematically isolate factors, reducing the load shifting potential in
both types of charging modeling. Identifying driving factors to increase the willingness of electric
vehicle users to participate in power system-friendly charging is deemed important to support the
integration of renewable energy sources even if there is no urgent need to charge the car. Also, vehicle
user preference modeling needs to be expanded beyond a week to allow for longer load balancing of
wind feed-in, which tends to have longer weather dependent cycles.

The model coupling setup provides promising analytical opportunities. Electric vehicle user
preferences for power prices are already implemented but not yet time-dependent, thus charging
sensitivity to power system price feedbacks are yet to be addressed. Also, the potential of feeding
electricity back to the grid has been shown to significantly impact energy modeling results. Since the
energy system model used does not assess electricity distribution below a voltage level of 220 kV, a
plausibility of model results on a single vehicle profile basis by disaggregation would further validate
the modeling approach. Furthermore, assessing dynamic vehicle adoption pathways through a stronger
incorporation of VECTOR21 into the proposed model framework seems promising for assessing the
interrelations of charger availability at a household level and its respective implications for electric
vehicle adoptions.

The combination of a central planner energy system model with a user-oriented electric vehicle
charging model shows a significantly reduced potential for load shifting of electric vehicles for the
energy system. However, impacts depend on specific temporal dynamics and are specific to the model
parametrization. Marginal values of equations and variables are rarely explicitly analyzed in energy
system analysis studies but offer the opportunity to assess temporal dependencies especially in relevant
RES fluctuation dynamics in detail and can be interpreted as an indicator for sensitivity of the model
setup. We call for thorough investigations of the dependency between different availabilities of electric
vehicle fleet battery capacity for power systems on the one hand and historic weather and electric
demand patterns on the other side. Expanding the marginality analysis to all equations and variables
to identify specific constraints and variables that are most important may yield deeper insights. It also
seems promising to look at characteristic residual load developments across different temporal ranges
and identify respective flexibility demands. We took the first steps in this direction.
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Appendix A. Assumptions, Scenario Study, and Results

Model Description and Parametrization

Regarding the model set-up and scope, the main characteristics are summarized in Table A1 below.

Table A1. Model characteristics of REMix as used in this case study.

Optimization type Target year optimization
Optimization method Linear programming

Objective function Total cost including CAPEX of all endogenously added capacities, OPEX of all
capacities, and penalty costs for unsupplied load

Temporal resolution Hourly (8760 timesteps)
Geographical horizon and resolution 13 nodes: Germany in two nodes plus neighbors

Optimization variables Investment in power plant capacities and flexibilities as well as technology dispatch
Energy demand sectors Power, transport

Transport mode Private passenger road transport
Transport technology resolution 3 battery electric vehicle (BEV) fleets (S, M, L)

Variation of wind and PV power feed-in patterns 2006–2012 yearly
Variation of load patterns 2006–2012 yearly

Scenario Study Assumptions

Overarching assumptions regard the following points:

• Power demand stays the same in quantity and in its hourly variability as in the underlying data
years (2011 for baseline runs and 2006–2012 for sensitivity scenarios e–j)

• Weather patterns stay the same as in the historic years considered
• Socio-economic development: The populations in Germany and its neighboring countries develop

according to assumptions in the ENTSO-E TYNDP [38]
• For REMix: The flexibility options are chosen solely based on a (total) cost basis, disregarding

power grid phenomena occurring at sub-minute time-scale, import dependency, acceptance of
grid- or power plant expansion, etc.

Assumptions regarding technical transfer capacities between all model nodes considered in the
case study are based on the German “Netzentwicklungsplan” (NEP) [39] (p. 110), the ENTSO-E
TYNDP [38] (p. 30), and older data. The capacities are assumed to be equal to the given capacities
as “before 2035”. Except for the connection from Germany to Sweden these are equivalent to the
capacities given in the NEP.

The largest differences in export and import capacities are for the links between Belgium and
France, Belgium and Luxembourg, Denmark and Sweden, France and Switzerland, Germany and
Poland as well as Germany and Switzerland.

Assumptions had to be made on the model link length between Northern Germany and Southern
Germany, which is assumed to be 150 km and the link length between Belgium and Luxembourg
which is assumed to be 100 km. Other link lengths are averaged over given data in the TYNDP.

Power Demand

Power demand for Germany and its neighboring countries are based on the “Sustainable Transition”
scenario of the TYNDP 2018. It includes power demand from heat and transport sector. Power demand
of a 2030 EV fleet was approximated based on data given in [38] and subtracted for Germany in order to
avoid double counting. The German power demand is disaggregated based on population census data
from 2011 [43] yielding disaggregation factors of 53% for Northern Germany and 47% for Southern
Germany. Historic development of power demand as well as projections are shown below in Figure A1.
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Figure A1. Historic power demand, TYNDP best estimates for 2020 and 2025 as well as scenario values
for the scenario "Sustainable Transition" for 2030. The three markers in 2030 present the variety of two
TYNDP scenarios, “Sustainable Transition” and “Distributed Generation” as well as an EUCO scenario.
Green and orange crosses show the here assumed values from the scenario “Sustainable Transition”
corrected by an approximated power demand of the 2030 PEV fleet.

Power Plant Park

The existing power plant park is used based on REMix-parametrization from the INTEEVER
project [36]. There, a base run for 2030 was carried out to quantify a base power plant, grid and storage
park in a first step as a quantitative basis for the next step of optimizing the expansion of different
flexibility options. INTEEVER model results that are assumed for this study are shown in Table A2
and contrasted with the TYNDP 2030ST scenario assumptions.

Table A2. Quantitative assumptions for the existing power supply capacities as an input for the
scenario study runs, aggregated for Germany and its neighboring countries. Pumped hydro power is
not shown. All values in GW.

Parameter
TYNDP 2030ST [36] Own Assumptions

Germany German Neighbors Germany German Neighbors

Conventional thermal
power plants * 66 141 61 134

Fluctuating
renewable energies

PV 66 69 47 26
Wind onshore 59 82 50 36
Wind offshore 15 26 6 12

Hydro run-of-river 4 24 4 27

Controllable
renewable energies

Biomass power ** 0 2 0 0
Hydro reservoir 11 95 1 70

* Including oil and other conventional power plants in [38]. ** “Biofuels” in [38].

Flexibility Options

One strength of REMix is the modeling of different competing flexibility options to balance
fluctuating renewable energy power generation. REMix optimizes the investment in and the operation
of different flexibility options, e.g., power plants or energy storage. We consider the following
flexibility options:

• Gas power plants (CCGT and OCGT);
• Curtailment of wind and PV power generation;
• Controllable renewable energies;
• Import and exports;
• Battery storage and hydrogen caverns;
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• BEV fleet controlled charging;

The need for balancing renewable energy feed-in is mainly determined by the power balance
constrained in a few hours of the lowest fluctuating renewable energy power feed-in. These hours
differ from model node to model node and depend on the respective residual load curve.

Similar to power plant capacities, we apply a brownfield approach implying that certain flexibility
capacities are already installed in the power system before optimization. Flexibility options’ expansion
restrictions are shown in Table A3 and are only set for PV, wind and hydro power plant capacities as
well as for hydro power technologies and hydrogen caverns. The expansion of BEVs is not modelled
REMix-endogenously but fleet values are taken from the more specialized stock and flow model
VECTOR21. Thus, investments in the fleet are not possible but only the utilization of the vehicle fleet
battery is optimized subject to annual constraints such as state-of-charge (SOC) limitations, charging
infrastructure availability, and electric power outflow from the battery due to driving (see main
document for more details).

Table A3. Quantitative and qualitative flexibility options’ restrictions. Sources given in last column.

Flexibility Option Technology Unit
Expansion Constraint Operational Constraint

Source
Northern Germany Southern Germany Northern Germany Southern Germany

Thermal power
plants CCGT, GT GW - - - -

Surplus VRE and
curtailment

PV GW 1316 505 Hourly feed-in timeseries
Wind power

onshore GW 1172 452 Hourly feed-in timeseries

Wind power
offshore GW 210 0 Hourly feed-in timeseries

Hydro
run-of-river MW 1044 388 Daily feed-in timeseries

Controllable RE
Biomass MW - - - -

Hydro reservoir TWh 0.043 0.488 - -

Power storage
Pumped hydro GWh 24 14 - -

Lithium ion
batteries - - - -

Hydrogen
caverns GWh 113639 1395 - -

EV fleet controlled
charging BEV (S, M, L) - - Hourly flexibility profiles (see below) [20]

Table A4. Net transfer capacities from and to Germany.

Node Technology Value Source

Northern Germany to neighbors HVAC 380 kV 23.3 GW [38]
DC 4.7 GW [38]

Southern Germany to neighbors HVAC 380 kV 15.23 GW [38]
DC 0 GW [38]

Northern Germany to Southern Germany HVAC 380 kV 14.3 GW [39]
DC 10 GW [39]

Techno-Economic Assumptions on BEVs

Historic battery electric vehicle battery capacities as well as literature projection and our own
scenario assumptions are shown below in Figure A2.
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Literature projections for 2030 and 2050 are given in light blue as indications. Own assumptions for 
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Dispatch optimization in REMix is carried out taking into account hourly profiles for the target 
year for each node for power demand and VRE feed-in (four separate profiles). In Figure A3, we 
show the load duration curves of the here utilized 2011 load series as well as simulated feed-in of the 
four fluctuating RE technologies for Northern Germany, Southern Germany, and the German 
neighbors.  
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Figure A2. Historic development, prospective values from literature and own assumptions of BEV
battery capacity values in kWh. Historic values are given in light red and differentiated between
small (S), medium (M) and large (L) BEV models. Historic values are not weighted by sales or stocks.
Ranges given in the IEA EV Outlook for 2018 as well as average fleet ranges for 2030 are given in
green. Literature projections for 2030 and 2050 are given in light blue as indications. Own assumptions
for the REMix model runs 0 and 1 are given as dark red crosses. Sources: Own composition based
on [18,20,28,41,42].

Fluctuating RE and Electricity Demand Profiles

Dispatch optimization in REMix is carried out taking into account hourly profiles for the target
year for each node for power demand and VRE feed-in (four separate profiles). In Figure A3, we show
the load duration curves of the here utilized 2011 load series as well as simulated feed-in of the four
fluctuating RE technologies for Northern Germany, Southern Germany, and the German neighbors.
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Figure A3. Duration curves of power demand and feed-in series of the four fluctuating RE power plant
technologies. Hydro run-of-river profiles are given in 24-hour resolution. Fluctuating RE profiles are
given based on the respective rated capacity. Power demand was normalized with the respective peak
load in the model node. Source: Own composition based on [24,31,40].

Emission Targets

Emission targets used are based on an 80% GHG reduction target for Germany up to 2050
compared with 1990. In the three sensitivity scenarios b–d, these will be varied between this moderate
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political target and a 0 t CO2 emission power system (d). CO2 costs of 60 €/t CO2 are assumed. All
assumptions are shown below in Table A5.

Table A5. Emission targets for Germany and its neighboring countries as well as CO2 costs.

Node Unit Value Source

Emission reduction
targets Germany MT CO2

123 + sensitivity
scenarios (b–d)

Cumulated emission target
of neighboring countries Mt CO2 193

CO2 costs all €/t CO2 emitted 60

Overview Table of All Model Runs Carried out in the Scenario Study

Table A6. Overview on model runs and respective scenario acronyms

Scenario Acronym Varied Value and Unit Amount of Variation

S0 Electricity demand from BEV fleet in TWh To 0
S1
S2
a Maximum share of controlled charging in % To 0
b

Max climate targets in Germany in Mt
Changed from 122 Mt to 80 Mt

c Changed from 122 Mt to 50 Mt
d Changed from 122 Mt to 0 Mt
e

Varied underlying weather and electricity
demand data years

2006
f 2007
g 2008
h 2009
i 2010
j 2012
k Specific investments of fluctuating

RE technologies
See Table A9

l See Table A9
S1m Share of controlled charging of BEV fleet 30%

Transparency Checklist—List of Secondary Data Sources

Table A7. Secondary sources for the transparency checklist.

Dataset Source

Annual power demand of non-transport sectors Assumption based on [38]
Power demand, wind and PV time series [24,31,40]

Disaggregation base: Census data [43]
Power plant park [36]

Net transfer capacities [38,39]
Techno-economic assumptions of power plant

technologies
Data sheets Leitstudie 2010 https:

//elib.dlr.de/69139/1/Leitstudie_2010.pdf

Techno-economic assumptions of storage Data sheets Leitstudie 2010 https:
//elib.dlr.de/69139/1/Leitstudie_2010.pdf

CO2 emission targets assumption
CO2 costs assumption

Techno-economic assumptions of BEVs Battery size, consumption, Own assumptions based on [18,20,28,41,42]
BEV electricity demand in 2030 [38]

https://elib.dlr.de/69139/1/Leitstudie_2010.pdf
https://elib.dlr.de/69139/1/Leitstudie_2010.pdf
https://elib.dlr.de/69139/1/Leitstudie_2010.pdf
https://elib.dlr.de/69139/1/Leitstudie_2010.pdf
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Appendix B. Results of Scenario Study Modeling Runs

Annual Distributions of Daily Charging Dynamics
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and small sized BEV fleets in Northern Germany (top row) and Southern Germany (bottom row) on
weekends. The first and the third column show S1 results and the second and third column show S2
results. A case of completely uncontrolled charging is shown as red line.

Marginality Analysis

For our case of controlled charging without feeding electricity back to the grid, ΨV2G = 0 and
ΦV2G = 0 hold true and bringing all variables to the left-hand and all parameters to the right hand side
of the batLevBal equation (see Section 2.3 for all equations), yields

ΨCC(t) −Λ(t) + Λ(t− 1) = Pdrive(t) −Cunc(t)

The marginal value of this equation corresponds to the increase of the total system costs that
originate from an increase of the right-hand side of the battery level balance equation by 1. Since the
equation is formulated in units of GW, in this case, we can interpret the marginal value of the equation
by either an increase of electricity for driving or a decrease of uncontrolled charging (or a mixture) by
1 GW. The three other relevant equations are the battery level constraints for minimum (minBatLev) and
maximum (maxBatLev) SOC as well as the equation limiting controlled charging by the fleet connection
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power to the grid (maxCC). Additionally, the marginal value of power generation is shown since it
presents the cost of an additional unit (GWh) of electric demand for the German power system.

The analysis will be carried out on two different timescales to show effects on a weekly and a
monthly timescale. The marginal values of the equations for the full year are given in Figures A9
and A10. Two time intervals were chosen for a more in-depth analysis of the marginal values since
they provide an interesting array of load and feed-in situations. Figure A9 shows BEV fleet battery
operation and marginal for the first 15 days while Figure A10 shows the same quantities for the last
42 days of the year.
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Figure A9. Marginality analysis of first 15 days (360 h) in the scenario for 2030 comparing scenario S1
(VencoPy input) (left) and scenario S2 (CURRENT input) (right) for Northern Germany. In the first row,
EV fleet SOC constraints (turquoise) and levels (black) are depicted. The second-row plots show the
marginal values of the equations of the REMix module and the power generation marginal for Northern
Germany. The third row shows the marginal value of the controlled charging variable. The fourth row
shows the power plant dispatch in Germany with fossil power plant dispatch in grey, renewables in
shaded green, and curtailment in shaded red, imports in yellow. Uncontrolled charging is in dark
turquoise while controlled charging is in light turquoise. The demand line comprises both electricity
demand by households, industry, and service sector as well as EV charging demand. Duration curves
of all marginal are shown in Figures A12–A14.

SOC constraints (model input parameters), levels (model solutions), marginal values of equations
and variables as well as the power plant dispatch are given in Figure 6 for the first 15 days of the model
year for scenarios S1 (left) and S2 (right).

The SOC plots on the top of Figure A9 show the implications of the reduced BEV fleet battery
potential. In S1, the fleet battery is always discharged during daytime and charged every 3–7 days
at times of low residual load. This can be observed on the dispatch plot on the bottom left. This
concentrating effect of charging has been shown for the concentration from a relatively continuous
charging power to hours of night and partly of daytime [17]. In scenario S2, the difference between the
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SOC min and SOC max constraints is significantly decreased to 5–10 GWh. Since the axes of the SOC
plots have a different scaling, the effect is even larger than visualized (compare Figure 4). Especially on
weekday evening hours, the load shifting potential is almost completely diminished. In the dispatch
plot for S2, both increased uncontrolled charging occurring on a daily pattern basis and the diurnal
characteristic of controlled charging is depicted. Adjustment to high fluctuating RE feed-in still occurs
but to a significantly lower degree.

Turning to the marginal values of BEV charging constraint equations, Figure A9 reveals a
correlation between the marginal of the battery balance equation (in violet) with the power generation
marginal. This correlation is higher for the case of lower flexibility indicating a more direct pass
through of an increased electric driving demand or decrease of uncontrolled charging to total system
costs at the respective cost of hourly power generation. BEV fleet batteries expand the availability
of otherwise curtailed fluctuating RE to hours (and in S1 days) before and after low residual load
situations occur. This can be seen in scenario S1, in which a load increase or charging decrease does not
always lead to power system cost increases due to possible shifting of fluctuating RE feed-in as can be
seen in the period between November 20 and December 14 in Figure A10. However, in these periods,
controlled charging has a pivotal role in balancing wind feed-in as can be seen by the marginal value
of the controlled charging variable in the same time frame.
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The marginal value of the battery balance equation increases by the negative value of the marginal
value of the constraint equation (batLevMax or batLevMin) at the last point in time where charging or
discharging was constrained by SOC constraints (compare Section 2.3). For S1, the marginal value of
batLevBal shows a lower temporal dynamic and an overall lower absolute value which is exemplified
in Figure A10, where over the course of three weeks, a RE fluctuation characteristic occurs that lies in
the range of the BEV fleet load shifting potential. Thus, in this time, increasing electric driving demand
does not affect total system costs.
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In some times in S2, the marginal value of the battery level equation becomes negative, indicating
a potential reduction in total system cost if exogenous discharging increases. As can be seen in
Figure A10 on November 19, this effect cannot be explained by either curtailment or the BEV fleet SOC
being at its bounds. Supposedly, this is correlated with time intervals in which the relative BEV fleet
SOC significantly increases, although this cannot be observed on November 20.

In general, the marginal value of controlled charging is drastically reduced in S2 in comparison
with S1 indicating its decreased importance to overall system cost in S2. The higher importance to
overall system cost can also be observed by the larger area under the duration curve of the marginal
value of the controlled charging variable for S1 compared to the same area for S2 given in Figure A15.

Controlled charging has a more important role for the power system in the case of higher flexibility.
This is due to a two-fold effect of reduced flexibility from BEV load-shifting. For one, BEV charging
load occurs more often in peak load situations as can be seen by increased peak load demand in S2
compared to S1 (see Table A8). Secondly, general balancing is strongly limited to approximately a day
thus diminishing the balancing effect of the BEV fleet battery for wind power feed-in. More costly
flexibility options such as curtailment and increased gas power plant capacities are necessary in S2.
Through the investment need in especially gas power plants and their respective availability, marginal
value of controlled charging is reduced.

Upper and lower bounds of the BEV fleet battery state-of-charge are less often important in S1.
The effect is shown in the duration curve of the marginal values of the two battery limitation constraints
for the full year in Figure A13. The main determinants for the difference between the SOC min and
max profiles in CURRENT are the difference between parking time and necessary charging time as
well as the users’ option not to charge. This motivates increased charging powers resulting in shorter
charging periods and incentivizing users to connect their cars to the grid over-sufficiently in order to
increase connected parking periods.

Marginal values of the charging connection constraint (maxCC) are generally low and constraints
occur in general not very often as shown in Table A8. In these hours, the full connected capacity is
utilized for charging the BEV fleet, usually in hours of curtailment. In the case of a higher detail of
modeling BEV users’ connection behavior with a sufficiency-oriented BEV connection, this constraint
gets more important in Northern Germany and less important in Southern Germany. Increases in
Northern Germany can be explained by higher peaks in S2 and narrower SOC bands, necessitating
steeper charging at times of low residual load. Decreasing number of hours in S2 in Southern Germany
occur because of increased utilization of other flexibility options such as gas power plants, imports,
and curtailment.
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Figure A11. Marginal values of equations of the BEV modeling equations in REMix for the full year for
scenario S1 (left) and S2 (right).
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Figure A12. Duration curve of the marginal value of the battery balance equation (violet) compared to
the load duration curve of the power generation marginal (grey). Solid lines show scenario S1 results
and dashed lines scenario S2 results. Values for Southern Germany are given in light violet.
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Sensitivity Analysis

In the following, result tables of the annual energy system model results of the sensitivity scenarios
b-m are given for GHG emission ambitions (scenarios b–d), weather and electric demand years
(scenarios e–j), specific power plant technology investments (scenarios k and l) and controlled charging
share (scenario m).

Table A8. Overview on scenario definitions and main annual results of the sensitivity analysis on
the CO2 emission limit and historic weather year used. Total system costs are given for the complete
system boundary while all other values are given for Germany.
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S0 0 - 122 2011 68.4 0 83.9 214 153 46.2 31.3 501 279 55.7 2.9 45.9 64.7
S1 27 66 122 2011 71.2 24.2 86.3 223 159 51.5 35.5 526 291 55.3 2.6 51.3 65.1
S2 27 30 122 2011 71.7 8.4 87.8 222 156 48.8 37.2 524 284 54.2 3.4 51.6 62.2

S1b 27 66 80 2011 71.4 24.6 87.4 222 166 59.0 26.4 453 309 68.2 4.9 124.0 77.6
S2b 27 30 80 2011 72.0 8.4 87.6 219 161 54.3 28.7 447 299 66.9 4.9 130.3 73.2
S1c 27 66 50 2011 72.1 24.9 89.3 237 187 79.6 21.3 431 331 76.8 6.3 147.1 77.3
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CAPEX Sensitivity

Capital expenditure sensitivities are carried out taking into account two alternative data sources.
The first are the IRENA projections for 2025 [48] but assuming respective values for 2030 assuming
slower but effective political dynamics needed to leverage cost reduction potentials for the production
of PV and wind power technology. This yields the values given in Table 9 assuming an average
exchange rate of 0.9 2015 €/2015 USD. It represents the global weighted average of an optimistic cost
reduction for PV and wind power technologies. The second set is based on an analysis by the Danish
Energy Agency and Energinet [49] and better reflects European projections. All values in Table 9 are
given rounded to 10 €/kW.

Table A9. Specific CAPEX sensitivity assumptions based on [48,49].

PV Wind Onshore Wind Offshore

Scenario assumptions €/kW 860 1100 1800

CAPEX sensitivity set 1 [14]
USD/kW 790 1370 3950
€/kW 710 1230 3560

CAPEX sensitivity set 2 [15] €/kW 660 1 1040 1800 2

1 PV specific installation costs assumed to be the average of small (870 €/kW), medium (800 €/kW) and large scale
plants with large scale plants being made up half of tracking (310 €/kW) and half of non-tracking (300 €/kW) systems;
2 Offshore wind plants assumed to be half near shore (1660 €/kW) and half offshore (1930 €/kW).

Table A10. Overview on scenario definitions and main annual results of the sensitivity analysis on
specific capital expenditure assumptions for fluctuating RE technologies. Total system costs are given
for the complete system boundary while all other values are given for Germany.
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S1m with 30% Load Flexibility

An additional model run tests the exogenous assumption of S1 of 66% of the electric demand
being flexible. In scenario S1m, this share is reduced to CURRENT’s share of flexible charging of 30%.
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Table A11. Sensitivity scenario results of scenario S1m in comparison with all reference and baseline
scenarios S0–S2. Total system costs are given for the complete system boundary while all other values
are given for Germany.
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