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ABSTRACT

Today’s aircraft design projects are characterized by in-
terdisciplinary collaboration between a large amount of
heterogeneous disciplines. Each discipline contributes
with specialized knowledge and software tools which are
integrated in automated simulation workflows. The uti-
lization of a common data model significantly reduces the
number of possible interconnections between the mod-
ules and ensures a consistent source of information. This
paper presents the Common Parametric Aircraft Config-
uration Schema (CPACS) and discusses the progress of
establishing it as a common language for aircraft, space-
craft and rotorcraft design. With increased flexibility of
the aerodynamic performance maps, a reformulation of
the wing component segments for defining the wing inter-
nal structure, a new definition for engine nacelles and py-
lons and the possibility to include individual tool-specific
schemas, the current enhancements and the correspond-
ing development process of the latest CPACS release are
presented. The paper concludes by showing that publish-
ing CPACS and its corresponding libraries under an open-
source license has been the enabler for a wide adoption of
the data format in the aeronautical research and industry.

1. INTRODUCTION

An increasing number of aircraft design projects ap-
ply Multidisciplinary Design Optimization (MDO) tech-
niques in decentralized and heterogeneous teams [7].
Aiming at advancing the interdisciplinary collaboration
between the various disciplines and realizing decentral-
ized MDO architectures, about a decade ago researchers
have postulated that the process efficiency within such
a collaborative environment can be enhanced by an
open, central data model that serves as a common lan-
guage [22]. This hypothesis has been proven by apply-
ing the Common Parametric Aircraft Configuration Sche-
ma (CPACS) [22] in advanced preliminary aircraft design
tasks including MDO.

Motivated by these results, subsequent aircraft design
projects, such as IDEaliSM [20, 25] or AGILE [7], have
driven further development of CPACS and successfully
applied the data model within international collaboration
environments involving partners from various universi-

ties, research establishments and industries. This paper
presents the results of this development and addresses the
question whether the use of a common language has in-
deed linked the aircraft design process more closely.

2. DATA MODELING IN AIRCRAFT DE-
SIGN

In this chapter, the challenges on data modeling within
state-of-the-art aircraft design processes are discussed.
Existing data models aiming to cope with these chal-
lenges cover a wide range of aviation disciplines and
are all based on standardized data modeling languages,
such as the Extensible Markup Language (XML), the
Unified Modeling Language (UML) and its derivatives
or the Web Ontology Language (OWL). It is not the in-
tention of this paper to provide a thorough overview of
available modeling languages and their properties, rather
to present the specific implementation of CPACS using
XML. For an overview of the properties of modeling lan-
guages other than XML, the reader is kindly referred to
the extensively available documentation on this topic.

2.1 Challenges on data modeling in collab-
orative design

As indicated in Sec. 1, today’s aircraft design projects
must account for the interaction of various disciplines
such as structural mechanics, aerodynamics or flight me-
chanics. One possibility to consider this interaction is to
integrate the required sub-disciplines in a monolithic soft-
ware architecture used to synthesize an aircraft on con-
ceptual and design level by applying sequential iteration
methods [32]. From a developer’s point of view, the inter-
nal data exchange between analysis modules within the
monolithic system is advantageous concerning the easi-
ness of resolving data and model inconsistencies. Due to
the increased complexity of the design considerations al-
ready in early aircraft design stages nowadays however,
the process cannot be handled by a single person any-
more. Furthermore, if the developer of the monolithic
system is not available anymore, a large amount of im-
plicit knowledge required to correctly operate the sys-
tem is lost. Therefore, today’s research on collabora-
tive MDO is often based on tool integration frameworks
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which allow to integrate analysis modules in decentral-
ized workflows [7] enabling engineering departments at
different sites to be involved in the design process. The
open-source software RCE [4, 5] (Remote Component
Environment) is an example of such a process integration
framework. It enables the connection of analysis modules
via a server-client based network infrastructure. Upon
workflow execution, the execution of individual modules
hosted on their respective server instances is triggered
when required and the required data is automatically ex-
changed. In this construct, only input and output data is
exchanged while the tool itself remains under control of
the tool owner. A challenge arising within this approach
is that the stakeholders might use different data models
and vocabulary resulting in N(N −1) possible directions
of data exchange between N tools. Within such a simu-
lation process, the consistency among the multiple disci-
plinary models and different levels of details of the simu-
lations needs to be guaranteed. One solution to this chal-
lenge is obtained by introducing a central data exchange
format based on common semantics for the whole system
to be designed (e.g., full parametrization of an aircraft)
which is easy to read and interpret by human. As depicted
in Fig. 1, by using this single source of truth the amount
of connections reduces to 2N. This is the main motiva-
tion for the development of common aviation data mod-
els, from which a selection of the most important ones is
presented in the following section.

N(N-1) 2N

Figure 1: The possible amount of data interfaces reduces
from N(N −1) to 2N by using a central data format

2.2 Overview of existing aircraft and avia-
tion data models

DAVE-ML is a flight dynamic model exchange format
published by a standards working group of the Ameri-
can Institute of Aeronautics and Astronautics (AIAA) [1].
Inspired by the input-files used for the flight dynam-
ics model software library JSBSim [3], DAVE-ML
is an XML based markup language. Both DAVE-
ML and JSBSim have a strong focus on mathemati-
cal modeling, which is achieved by defining individ-
ual mathematical operators (JSBSim) or by implement-
ing MathML (DAVE-ML). A higher level of multidisci-
plinarity is covered by the Aircraft Design Markup Lan-

guage (ADML) [8]. Developed at the Virginia Poly-
technic Institute & State University ADML is as well
based on XML and rather represents generic systems by
describing its components on a detailed level using ab-
stract mathematical models (this bottom-up approach is
explained in Sec. 3.2). In this way ADML primarily aims
at modeling unconventional aircraft [8].

Various standards exist for data exchange models cov-
ering aircraft operations. Keller [16] summarizes the
most widely-used standards, for example the Flight In-
formation Exchange Model (FIXM), the Aeronautical In-
formation Exchange Model (AIXM), the Weather Infor-
mation Exchange Model (WXXM) or the Maintenance
Management Exchange Model (MMIXM) [16]. All of
these based on UML.

First attempts to model aviation data using OWL are
investigated by Ast et al. [2] focusing on the design of
an aircraft system and Keller [16] with respect to general
aviation data. However, both are still on a research level
and did not yet establish as a widely-used common stan-
dard.

3. AN INTRODUCTION TO CPACS

To adequately meet the challenges of collaborative de-
sign projects listed in Sec. 2.1, the data model CPACS has
been introduced and developed at the German Aerospace
Center (DLR) since 2005. The strengths of XML as mod-
eling language will be explained in more detail. On this
basis, the modeling approach is presented with regard to
a general representation of an aircraft ontology and the
corresponding implementation in XML. Finally, the as-
sociated software libraries are briefly outlined.

3.1 The strengths of XML as modeling lan-
guage

XML is an open standard, which is officially coordinated
and documented by the Wold Wide Web Consortium
(W3C) and nowadays globally accepted in the field of
information technology [28]. In contrast to other markup
languages, such as HTML with a fixed list of tags, XML
has a very generic character and can therefore serve as
a computer-processable meta-language [28] enabling the
development of an aviation ontology as a markup lan-
guage itself. Another strength of XML is the separation
of the data structure from the actual content. This allows
for the definition of complex structural and semantic rules
in a separate XML Schema Definition (XSD) file, while
users can independently describe data using an exchange
format that is easy to read by just using a text editor. In
this context Böhnke et al. [6] compare XML with other
modeling languages, such as the STandard for the Ex-
change of Product model data (STEP) or UML, and point
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out the importance of the extensibility and simplicity of
XML in collaborative design environments.

Relying on an open standard furthermore offers the
advantage of choosing from a wide range of more ad-
vanced editors and APIs, which are often made available
by a large open-source community. Another advantage
is that XML is increasingly used to model process in-
formation and application configurations [28]. With re-
gard to CPACS, this allows to consistently combine an
aviation-specific ontology with tool-specific and process-
specific data. Finally, the XML language family com-
prises a number of additional standards, such as XSL
[30], XPath [31] or XLink [29] which can be used to fur-
ther extend the capabilities of the markup language.

3.2 The applied data modeling approach
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Figure 2: Extract of the hierarchical structure of CPACS

Making use of the hierarchical representation of data in
XML the structure of CPACS mainly follows a top-down
approach which decomposes a generic concept (e.g., an
aircraft) into a more detailed description of its compo-
nents (see Fig. 2). This originates from the conceptual
and preliminary design of aircraft, where the level of de-
tail is initially low and continues to increase as the de-
sign process progresses. The hierarchical structure fur-
thermore promotes the simplicity of the exchange format
which is required in collaborative design environments
(Sec. 2.1) so that the various stakeholders can easily ap-
pend their results. Fig. 2 shows that CPACS offers a sim-
ilar approach for other areal vehicles such as helicopters
and also for information on aircraft operations such as
on airports and airlines, missions and flights as well as
process-specific data used for studies and analysis mod-
ules. A deeper insight into this structure is given by Lier-
sch and Hepperle [19] and is extensively described within
the CPACS documentation [10]. The geometric inter-
pretation of the wing parameterization is furthermore ex-
plained in Sec. 3.4 to serve as illustrative example.

For some concepts within CPACS, however, a bottom-
up approach is applied where the components are first de-
fined in detail and then linked to each other to formulate
a higher-level concept. This is similar to the principles
applied within ADML (see Sec. 2.2) and is advantageous
when used multiple times within complex systems, such
as engines, which only have to be defined once in order
to be referenced several times on the aircraft. The com-
bination of these two methodologies is known as middle-
out approach and enables the goal to fully parametrize
aeronautical systems. In the development of CPACS en-
hancements the challenge is always to find an appropriate
compromise between the very flexible bottom-down ap-
proach and the rigid but semantically more meaningful
top-down approach.

3.3 XML implementation
To implement the hierarchical structure presented in
Sec. 3.2, the majority of CPACS definitions is based
on XML standards specified by W3C and implemented
as schema in XSD. Simple data types (string, double,
boolean, ...) as well as complex data types (containing
pre-defined child-elements) are extended by attributes to
model recurring meta-data, such as parameters for uncer-
tainty quantification or pointers to external data. These
types are introduced as CPACS base-types. Each ele-
ment in CPACS first inherits the properties from these
base-types and extends it with information-specific child-
elements and attributes or restricts the allowed content by
introducing enumerations of simple values.

Additional base-types provide the means to represent
vectors and arrays in a more compact form than specified
by the official W3C standard. In aircraft design, large
coefficient-based data sets might occur - especially in the
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Figure 3: Geometric representation of a wing

field of aerodynamic analyses (e.g. aerodynamic coeffi-
cients and their derivatives depending on Mach number,
altitude, angle of attack and angle of yaw) and engine
performance (e.g. thrust, fuel usage and emission values
as function of Mach number, altitude, engine rating, en-
gine condition, shaft speed and power offtake). Within
the official standard, vectors are defined as a sequence of
elements and multidimensional arrays as a nested list of
element sequences. When using this standard to save the
coefficient-based data, most of the XML content would
consist of tags (XML nodes written in angle brackets).
This would be at the expense of clarity and introduce
an unnecessary large file size which would slow down
the network-based simulation approach. For this reason,
CPACS-specific vector and array types are introduced,
inheriting from the string type and allowing semicolon-
separated vector representations within single tags.

The definitions and conventions used in CPACS are
provided by the corresponding documentation written in-
side the XSD file. This forces consistency between the
definitions and its documentation, since these are pro-
vided at the same location within the schema. From
the documentation entries available within the schema,
a HTML-based documentation is derived using an open-
source plug-in for the Sandcastle Help File Builder [18].
Using the HTML-based documentation, the user can
search through the CPACS hierarchy and obtain the re-
spective information on each tag within the data format.

3.4 Example: parametrization of a wing
An example shall illustrate the geometric representation
of aircraft geometries in CPACS. For this purpose, the
parametrization of a wing is demonstrated as used for
both aircraft and helicopters.

A wing consists of at least two sections, where each
section represents a local coordinate system in Cartesian
coordinates. Fig. 3 illustrates a wing composed of three
sections. CPACS offers two approaches to specify the

position of a section in space: (1) by using a position-
ing vector defined by a length, sweep angle and dihe-
dral angle as well as (2) a transformation through rotation
around all three axes and a three-dimensional translation
and scaling. As shown in Fig. 3 both approaches can be
superimposed. While the first section is only defined by a
positioning vector (i.e., the axes are still parallel to each
other) the second section is additionally rotated around
the z-axis and the third section, representing the wing tip,
is rotated around the x-axis.

Each section contains one or more elements which are
used to specify the location of two-dimensional airfoils.
The elements are again defined as local coordinate sys-
tem within a section which can be transformed through
rotation, translation and scaling. Two elements can be
placed in the same section to model a discontinuous jump
in span-wise direction as shown in Fig. 3 and explained
in more detail by Siggel et al. [24].

Finally, a wing segment is defined as volumetric extru-
sion connecting two elements of adjacent sections. The
optional specification of guide curves furthermore allows
to realize curved leading and trailing edges.

This example underlines the potential of XSD to spec-
ify repeating properties as complex types that can be used
for multiple elements (see Sec. 3.3). It allows in this case
to use the same type of wing definition for both aircraft
and helicopters or the same type of transformation for the
parent coordinate system of the wing, its sections and el-
ements. Furthermore does the use of unique XML identi-
fiers (uIDs) allow airfoils from the profile database to be
repeatedly referenced (see <profiles> node in Fig. 2).

3.5 Program interfaces and libraries
To support the integration of tools in collaborative design
environments (see Sec. 2.1) the XML interface library
TiXI [9] has been developed at DLR. TiXI is based on
Libxml2 [27] and is extended by methods to understand
CPACS specific conventions, i.e. reading and writing the
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Figure 4: CPACS-Creator GUI showing a CPACS model
next to an input deck to adjust the corresponding param-
eters.

vectors and arrays introduced in Sec. 3.3. The library
can be used from applications written in C, C++, Fortran,
Java, Matlab and Python [9].

Furthermore, both a Python library generated from the
XSD file via generateDS [17] as well as a Java library
are delivered with each CPACS release. These libraries
provide classes which support the in-memory handling
of CPACS data sets. In this context, the hierarchical
structure of CPACS proves to be advantageous when used
within object-oriented programming languages.

The geometry library TiGL [24] translates the parame-
tric description of aircraft and helicopters to three-
dimensional shapes, which various disciplines require
especially in the preliminary and higher-fidelity design
phases. For this, the open-source CAD kernel OpenCAS-
CADE [23] is used and extended by various geometric
modeling features, for example a detailed surface mod-
eling generator using curve network interpolation on the
basis of Gordon [13]. This increases the quality (smooth-
ness) of surfaces to a level which is required for high fi-
delity analysis, such as Computational Fluid Dynamics.
The TiGL aircraft component module can create both ex-
ternal aircraft components - such as wings, flaps, fuse-
lages, engines - and internal structures - such as ribs,
spars and cutouts [24]. TiGL is written in C++ and pro-
vides interfaces for C, C++, Python, Java and MATLAB.
In addition, the TiGL Viewer visualizes CPACS data sets
in a graphical user interface (GUI) based on 3D OpenGL
and allows visualization tasks to be automated by script-
ing in a console.

Next to the TiGL geometry viewer, a CPACS-Creator
has been released. Developed by CFS Engineering, this
editor is based on TiGL and allows the parametric modi-
fication of aircraft geometries as well as its creation from
scratch. CPACS-Creator is published as open-source
software as well and its functions can be directly called
by analysis modules by using the high-level functions of
the corresponding C++ library. A GUI directly integrates
in the TiGL Viewer and allows for the synthesis and mod-
ification of CPACS data (see Fig. 4).

4. RECENT ENHANCEMENTS OF THE
DATA FORMAT AND EXPERIENCES
IN ITS UTILIZATION WITHIN COL-
LABORATIVE DEVELOPMENT
PROCESSES

4.1 Major enhancements introduced in
CPACS 3

The third major-release version of CPACS was published
in July 2018. Some of the experiences gained from previ-
ous projects were used to improve and add new elements
and types. The most important enhancements introduced
in CPACS 3 (including minor releases up to version 3.2)
are outlined in more detail below.

Enhanced aerodynamic data sets

One of the modifications concerns the definition of
aerodynamic data sets. In previous CPACS releases
these so-called aero performance maps consisted of four-
dimensional arrays containing the aerodynamic force and
moment coefficients as well as damping derivatives of an
aircraft depending on Mach number, Reynolds number,
angle of yaw and angle of sideslip. It turned out that such
a full-factorial representation of aerodynamic data lacks
physical relevance, since many combinations of the in-
dependent variables describing the aircrafts’ state do not
represent realistic flight conditions. To allow for a more
flexible definition of the aero performance maps, the co-
efficients and derivatives are now stored as vectors of the
same length, whereby entries having the same index to-
gether represent a single flight state. Furthermore, the
aerodynamic data representation is transformed from the
body-fixed into the aerodynamic coordinate system. This
allows quick judgments of the correctness of the pro-
vided values by the aerodynamic specialists, since they
often bring experience in the expected magnitude of co-
efficients expressed in this coordinate system. Additional
elements are added to the performance maps to specify
boundary conditions, including atmospheric data as well
as settings of movable devices (e.g., landing gear status,
control surface deflections, etc.). Operational limits can
now be specified in terms of angle of sideslip and angle
of attack limitations for a given set of Mach and Reynolds
numbers. Maps with delta values of aerodynamic coeffi-
cients for incremental control surface deflections are still
defined as a CPACS array type as introduced in Sec. 3.3.
However, due to the aforementioned reformulation of the
basic aerodynamic coefficients these arrays are only two-
dimensional and not five-dimensional as in previous ver-
sions of the data format. An additional element referenc-
ing the state of the flight control system allows to specify
the change in aerodynamic characteristics due to simulta-
neous control surface deflections.
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Lessons learned from the development of the aerody-
namic coefficients representation is that it requires a large
effort to find the right balance between the simplicity
of the chosen representation strived for versus the gen-
eral applicability to all identified use-cases, often requir-
ing complex constructs. With the current representation,
the development team believes to have obtained the least
complex representation covering all use-cases identified:
as simple as possible, as complex as necessary. Next to
this - even when the syntax of the representation is fully
understood by all users - the semantically correct inter-
pretation of the provided data by engineers from disci-
plines other than aerodynamics is experienced to not be
trivial. To make a first step towards a better alignment
of data provision and interpretation among the engineers
of different disciplines, an interpolation library will be
established and provided next to the TiXI and TiGL li-
braries described in Sec. 3.5.

Modeling of component segments for defining wing in-
ternal structures

Another major modification affects the geometric mod-
eling of component segments within the wing defini-
tion. Component segments are areas between certain
wing sections containing the wing structure, control sur-
faces or wing tanks defined in the normalized coordi-
nates ξ (chordwise direction) and η (spanwise direction).
In CPACS 3 these coordinates changed from rectangular
to body fitted coordinates to prevent the possible defini-
tion of points between 0 and 1 being outside the wing.
This required significant adaptions of the geometry li-
brary TiGL, which is, after the release of TiGL 3, no
longer backward compatible to previous CPACS releases.

The possibility to define structural components actu-
ally (partly) being outside the wing became apparent
when using CPACS to define non-conventional aircraft
such as box-wing configurations and by considering more
advanced geometric considerations such as aeroelastic
deformation of wings and analyzing the corresponding
effect on the wing internal structure in detail. CPACS
has developed into the current version by testing its ap-
plicability within many projects considering a multitude
of different configurations. Introducing a major non
backward-compatible change provides a large effort - es-
pecially if the corresponding libraries need to be over-
hauled as well. The new release however allows the even
more flexible definition of all kinds of aircraft configura-
tions.

Addition of a parametric model of engine nacelles

A parametric description of engine nacelles and py-
lons, of which a prototype was introduced in the pre-
vious release, is now fully implemented in CPACS 3.
Fig. 5 shows a nacelle geometry TiGL derived from

Figure 5: Engine nacelle displayed in TiGL viewer.

the new parametrization. The center, core and fan
cowl are defined by radial sections in flow direction
(two-dimensional profiles in cylindrical coordinates) and
guide curves to control the extrusion of these profiles.
A comprehensive description of the nacelle and pylon
parametrization and its implementation in TiGL is given
by Siggel et al. [24].

Inclusion of a generally applicable mission definition

From applications of previous CPACS versions within
aircraft design and analysis tasks, the need arose to in-
clude an extensive and generally applicable mission def-
inition within the data format. Next to coping with the
relatively straightforward mission definitions used for the
design of transport aircraft, the more flexible definition
introduced in CPACS 3 can cope with detailed flight
paths (flying actual waypoints, applying step-climb pro-
files, etc.) and with missions for non transport aircraft
such as military jets or UAV’s and rotorcraft. The new
<missionDefinitions> node is positioned directly at the
root CPACS-node (see Fig.2), so a multitude of missions
for which an aircraft or rotorcraft has to be designed can
be defined. Within each vehicle definition, a correspond-
ing <performanceRequirements> node is introduced, in
which the link to the respective mission definition(s) to
be fulfilled is established. A mission is built up of a
sequence of segments - optionally grouped in segment-
Blocks - in which the respective constraints and end con-
ditions on the mission profile can be defined. Further-
more, point performance requirements - such as a ser-
vice ceiling or sustained turns - can be defined and linked
to specific mission segments. Creating the mission def-
inition has been a largely iterative process in which the
opinion of multiple DLR internal and external special-
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ists in mission simulation and flight performance analy-
ses have been involved. The major challenge has been
finding the right balance between the provided flexibility
and simplicity of the definition.

Possibility to include individual toolspecific schemas

Fig. 2 shows that CPACS provides a node called <tool-
specifics> which contains tool-specific process param-
eters for a given list of tools that can automatically
be executed in decentralized workflow environments
(see Sec. 2.1). An example is given by Liersch and
Hepperle [19] for the aerodynamic analysis tool LIFT-
ING LINE. Having these parameters together with the
aircraft or helicopter model in a consistent data set signif-
icantly supports the workflow integration. However, the
application of this feature in multidisciplinary projects
like IDEaliSM [20] or AGILE [7] revealed that main-
taining this part of the XML schema is quite challeng-
ing since the development speed of tools usually dif-
fers from the CPACS release cycles. To avoid releasing
a new CPACS version just for tool-specific updates or
slowing down tool development since no direct release
of CPACS is planned, it was decided to include these
nodes in the schema while using separate namespaces.
This is achieved by the XSD <any> element. It allows
to include an individual namespace but requires a corre-
sponding XML Schema Definition to validate data. The
creation and maintainance of this separate schema will be
in the responsibility of the tool owner. Thus, the release
cycles of the tool-specific schemes can be adapted to the
development speed of the corresponding tools, whilst en-
suring the validation of all provided input data is possible.

4.2 Establishing a collaborative develop-
ment process

The CPACS development is coordinated by DLR’s In-
stitute of System Architectures in Aeronautics and regu-
larly released under the Apache 2.0 open-source license.
It is maintained via the software development platform
GitHub, which allows to document the development and
discussions in a transparent way using a variety of man-
agement methods. Problems are discussed via an issue
forum and the status of these issues is tracked in Kanban
boards. This provides developers and users an overview
of the changes and extensions planned for a certain re-
lease and provides the means to keep track of the devel-
opment process. It also facilitates to involve new stake-
holders during the development process and to document
possible decisions for future reference.

To ensure acceptance of the proposed updates through-
out the entire community, all changes are implemented
in a release candidate which is announced at least four
weeks before an official release is planned. This an-
nouncement is made via a CPACS mailing list and a

blog entry on the CPACS homepage [10]. The homepage
furthermore provides an online documentation of all re-
lease versions including the next release candidate and
provides links to the corresponding XSD documents for
validation of CPACS data sets. In CPACS 3.2 example
files have been added and a unit testing method is imple-
mented to ensure that the examples are always valid with
the current schema. Feedback from the community shows
that such examples are extremely helpful when learning
how to use CPACS.

In addition to passive notifications via GitHub, e-mail
and homepage, the authors consider requesting active
confirmation or rejection of major changes, so that pos-
sible inconsistencies can be discovered well in advance
of a planned release. For this purpose, representatives of
the participating institutions and disciplines could either
make such decisions in the name of their discipline or
pass on current developments to the persons concerned.

A very important aspect in the development process is
to align CPACS modifications and new features with the
library development. As outlined in Sec. 3.5 the geom-
etry library TiGL has become a comprehensive and very
important software for the CPACS community, not only
because it translates the CPACS parameters into a three-
dimensional geometry, also because it is a collection of
methods that the community has agreed on in terms of
how to interpret the geometry parametrization. When
all partners involved in the design process use TiXI and
TiGL to wrap their analysis modules, next to the syntacti-
cal, also the semantically correct interpretation is guaran-
teed. Regular online meetings between the corresponding
developers help to avoid incompatibilities between TiXI,
TiGL and CPACS.

Extensive discussions and agreements take place in the
form of regular developer meetings targeted to be held
two times per year. Experience has shown that due to
the wide range of aspects covered by CPACS, the topics
for discussion must be limited. Nonetheless, the on-site
exchange is very helpful in accelerating the development
process and promotes community building.

4.3 Application of CPACS in collaborative
design projects

To provide an insight in the application range of CPACS,
the current section lists an overview of some of the
projects in which the data format has been applied and ex-
tended until the time of writing this paper. In fact, most
extensions of the data format are driven by needs from
these projects, focusing on the utilization of collaborative
design methods to perform complex product design exer-
cises.
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Figure 6: Aircraft configurations investigated in the FrEACs (configurations c and e) and AGILE (all configurations)
project.

FrEACs

As fourth in a series of projects focused on building
up a design environment for the collaborative and dis-
tributed analysis of aircraft configurations within DLR,
the Future Enhanced Aircraft Configurations (FrEACs)
focused on applying the established tools and methodolo-
gies to the design of non-conventional aircraft configura-
tions (Fig. 6(c) and (e)). Within an automatic simulation
workflow spanning multiple levels of analysis fidelity,
the potential of a strut-braced wing configuration as fu-
ture short- to medium-range aircraft was successfully in-
vestigated [21]. Furthermore, the flight mechanical and
handling qualities of a blended-wing-body configuration
were investigated and tested within DLR’s AVES flight
simulator [15]. During the project, the team progres-
sively built up and utilized CPACS-based workflows for
both configurations including over 24 analysis modules
from 11 different DLR institutes. The introduction of de-
sign camps - special meetings focused on conducting a
specific task, e.g. the downselection of possible design
concepts - proved to be a very useful addition to the de-
sign process within the project. During the final design
camps, the built-up simulation workflow spanning multi
fidelity levels was utilized to perform designs of experi-
ments. Focus during these design camps was on compar-
ing results on the three involved fidelity levels and col-
laborative result interpretation, in which combining the
knowledge of all participating team members is of invalu-
able importance.

ATLAs

Within the Advanced Technology Long-range Aircraft
Concepts (ATLAs) project, which was successfully com-
pleted in December 2019, CPACS served as common lan-

guage in a collaborative aircraft design project involving
13 DLR institutes. In ATLAs, advanced assessment pro-
cedures were employed to evaluate the impact of mod-
ern technologies, such as hybrid laminar flow control or
a CO2 management system for cabins - on future aircraft
configurations in a more holistic way [14]. The underly-
ing use-case for these studies is the design of an advanced
mid-range aircraft. The various disciplines and technolo-
gies shown in Fig. 8 underline the importance of not only
considering the aircraft itself, but also modeling opera-
tional aspects in CPACS, e.g. to assess the climate impact
of new designs. Within the ATLAs project, the paramet-
ric logic of CPACS has proved to be an enabler for per-
forming technology evaluation studies combining multi-
ple promising technologies in a single configuration.

AVACON

Figure 7: Over-wing nacelle configuration studied in the
AVACON project.

Similar to ATLAs the research project AVACON fo-
cuses on advanced technologies in collaborative design
within a consortium of nine partners from industry, re-
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Figure 8: Functional breakdown of disciplines involved in the ATLAs project [14].

search entities and universities funded by the national
aeronautic research program LuFo V-3. Starting from the
same baseline configuration, the target aircraft configura-
tions and selected technologies differ from ATLAs. For
example, a central study within AVACON focuses on the
impact of an over-wing engine integration as sketched in
Fig. 7 [14]. Within the project, the parametric definition
of engines, nacelles, wings and fuselages in CPACS en-
abled performing aircraft-engine integration studies.

IDEaliSM

Within the project Integrated and Distributed Engineer-
ing Services framework for MDO (IDEaliSM), a formal-
ized framework for the creation of a service-oriented
product development process has been established and
successfully utilized to connect an aircraft OEM with
a tier-1 and tier-2 supplier for aircraft structural com-
ponents. The formalized framework serves as basis to
perform front-loading of the design process by creating
and combining engineering services and connecting these
both within and across company borders using automated
business and simulation workflows [26]. Upon comple-
tion of a conceptual aircraft design task - involving analy-
sis modules progressively adding information to CPACS
- its resulting CPACS data deck is uploaded to a cen-
tral data server within a neutral IT domain [20]. Af-
ter the Tier-1 supplier receives the corresponding request
for proposal - in this case for the design of a vertical
tailplane, - the CPACS data deck is downloaded and its
geometry definition is automatically converted to the data
format natively used at the supplier. The same holds true

for the subsequent connection between the tier-1 and tier-
2 supplier, the latter providing a single structural compo-
nent for the structural assembly. The resulting structural
assembly and its properties are added to the CPACS data
deck and re-uploaded to the central data server. In this
way, the aircraft OEM has the ability to take detailed con-
siderations into account already in relatively early design
stages. In the described application, the data consistency
between the parties involved is ensured by automating
data exchange through the central data server and through
adoption of common data formats such as CPACS. Both
the automation and integration of the design processes
lead to a significant reduction in overall process lead time
[25], which at its turn allows for executing an increased
amount of design iterations.

Agile

The Horizon 2020 project Aircraft 3rd Generation MDO
for Innovative Collaboration of Heterogeneous Teams
of Experts (AGILE) was conducted from 2015 to 2018
addressing multidisciplinary optimization based on dis-
tributed analysis frameworks (demonstrated with RCE,
see Sec. 2.1). The consortium composed of 19 interna-
tional partners from EU, Russia and Canada has proven
a speed up of 40% in solving realistic MDO problems
for conventional, strut-braced, box-wing and BWB con-
figurations (see Fig. 6) compared to today’s state-of-
the-art approaches in overall aircraft design [7]. Based
on CPACS as central data exchange model it has been
demonstrated that its current development status allows
to model a variety of unconventional aircraft configura-
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tions including the corresponding analysis results.

VicToria

The DLR internal research project VicToria (Virtual Air-
craft Technology Integration Platform) aims at a compre-
hensive digital description and development of aircraft
including flight-physical effects on a high-fidelity level.
This is achieved by the development of a distributed
collaborative MDO environment which combines high-
fidelity analysis for aerodynamics and structures with
conceptual aircraft design methods [12]. The use of
CPACS in the consortium of 12 DLR institutes and facili-
ties helps to reduce the gap between low and high-fidelity
modeling. One of the results is the detailed parametriza-
tion of engine pylons and nacelles presented in Sec. 4.1.
For selected disciplines, the bridge to use CPACS as ini-
tial basis for consecutively performing high-fidelity anal-
yses is established.

TRIAD

A DLR project called Technologies for Rotorcraft in Inte-
grated and Advanced Design (TRIAD) has been initiated
in January 2018 to investigate the impact of new tech-
nologies (e.g., electric propulsion or the design of fiber
reinforced materials for fuselage cells using Finite Ele-
ment Methods) on the overall rotorcraft design consid-
ering different rotor, wing and propeller configurations.
Five DLR institutes are involved exchanging geometry
and aerodynamic performance data using CPACS in a
simulation workflow. The application of the helicopter
node in such projects ensures consistency between the
aircraft and rotorcraft ontology, especially when new or
updated definitions - such as the aerodynamic perfor-
mance map described in Sec. 4.1 - shall be used for both
vehicle types.

IFAR-X Challenge

The ”IFAR-X Challenge” is a voluntary framework for
young engineers and scientists from over 20 countries to
collaborate in developing a multi-disciplinary aircraft de-
sign process. The common goal is to assess and inte-
grate green technologies in future aircraft. Organized by
the Russian Central Aerohydrodynamic Institute (TsAGI)
and DLR, both CPACS and other tools focused on col-
laboration were introduced in a three-day seminar. Such
an opportunity allows CPACS developers to understand
how the technology can be most efficiently explained
to new users. In this context, additional training mate-
rial (e.g., example files, tutorials) was created and made
freely available to the community. Furthermore, the in-
clusion of new users is a good way of identifying in-
herent weaknesses in the definitions within the data for-
mat which are sometimes overseen by experienced users -

within the IFAR-X challenge, certain data interpretations
were taken for granted by the experienced users and could
have revealed the possible cause of inconsistencies. The
IFAR-X challenge significantly contributes to the expan-
sion of the community and the establishment of a com-
mon language in aircraft design. Within the challenge,
CPACS enables the quick integration of technologies and
ideas from research establishments across the globe.

HOLISHIP

The H2020 European Research Project HOLISHIP
(Holistic Optimisation of Ship Design and Operation Life
Cycle; 2016-2020) project gives CPACS developers the
opportunity to think outside the box by using the model-
ing approach described in Sec. 3.2 to support the develop-
ment of the data exchange format Holispec [11]. During
a workshop in Ålesund, Norway, a first data hierarchy for
the design process of vessels was developed combining
CPACS with previous work from the Maritime Research
Institute Netherlands (MARIN). Just as the aforemen-
tioned TRIAD project, HOLISHIP shows that the princi-
ples of CPACS can be applied to all kinds of collaborative
product design initiatives.

5. CURRENT STATUS OF ESTABLISH-
ING CPACS AS A COMMON LAN-
GUAGE IN AIRCRAFT DESIGN

As mentioned in Sec. 3, the development of CPACS
started in 2005. Seven years later Nagel et al. [22] evalu-
ated the data model with respect to its application in var-
ious collaborative projects asking whether and how it is
possible to establish a common language in aircraft de-
sign. In this context, CPACS has been used to demon-
strate that a standardized data model can have a signif-
icant impact on the efficiency of collaborative research
and design efforts. The authors also derive a list of re-
quirements which are crucial for the implementation of a
standard for communication in aircraft design.

As a summary of the experiences discussed in the
present paper a brief up-to-date overview of with respect
to the most important requirements is provided below.

Public availability of all technical information

By using GitHub, all adaptations to the XML schema
are publicly accessible. Technical reports about current
changes have contributed to focus the discussions. Al-
though using the software development platform is help-
ful in keeping track of all issues and modifications, many
features are hesitantly accepted by the community due
to the complexity of GitHub. Therefore, the importance
of providing a user-friendly homepage that informs users
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and provides access to technical details has been recog-
nized. The combination of a development (GitHub) and
information platform (Homepage) finally increased the
distribution of technical information in the community
and in turn decreased maintenance effort for developers.

Availability of training material, training courses and
technical help

The automatic generation of documentation based on Mi-
crosoft Compiled HTML Help significantly reduced the
development effort of CPACS. The compiled CHM files
are delivered with every release, but are reluctant to be
used by the community due to the less intuitive user inter-
face and, in part, platform-dependent visualization prob-
lems. To solve this problem, the documentation is addi-
tionally integrated in the CPACS homepage and can be
viewed directly in the browser. This feature is used inten-
sively by the community, even though useful extensions
such as a search function or a navigation bar are still miss-
ing.

Experience has also shown that example files such as
described in Sec. 4.2 are the most efficient way to support
the introduction to CPACS and to accelerate the integra-
tion of own software in CPACS-based workflows. Thus,
this aspect will be considered more thoroughly in future
releases.

Additional training material was created as part of the
IFAR-X design challenge (see Sec. 4.3) and made pub-
licly available on GitHub. It has been observed that a
certain momentum has emerged in the community, where
users have supported each other and contributed with ex-
ample programs and tutorials on GitHub.

Finally, it should be mentioned that training courses
can contribute significantly to a fast understanding
of CPACS. First experiences were gained, for exam-
ple, with an introduction for doctoral students at TU-
Braunschweig or for the participants of the IFAR-X de-
sign challenge. The training material for these courses is
again freely available on GitHub.

Effort for learning the standard significantly lower
compared to the technical problem to be solved

It has been shown that a basic introduction to CPACS via
seminars takes about two to three days. Since CPACS is
based on XML and thus on an open standard, the compre-
hensive documentation reduces the additional workload
to a few hours (mainly to implement XML processors and
APIs), which is usually less than the solution of techni-
cal problems addressed in aircraft design. The autodidac-
tic training period is furthermore reduced by sample files
provided since CPACS 3.2.

Possibility to use the model without charge

Due to a lack of experience with the usage of proprietary
standards, the influence of this factor can only be assessed
hypothetically. However, it can be assumed that the ac-
ceptance for CPACS would be significantly lower if the
use of the file format or the associated software libraries
were subject to paid licenses.

Continuity of conventions

In some cases, this aspect is difficult to assess. On the one
hand, CPACS is used as a de-facto standard in aircraft de-
sign and therefore changes should not be introduced too
frequently. On the other hand, a fast development process
is often necessary, especially when new definitions are re-
quired for upcoming projects. Therefore, two approaches
are followed: First, changes are introduced more dynam-
ically when a major release has just been released, as ex-
perience has shown that many tools require time to adapt
to new CPACS versions. Furthermore, project-specific
XML schemas are used in some cases, in which changes
are introduced and tested only within a limited number of
users before they are incorporated into the public release.

Structured development process with predictable re-
lease cycles

A structured development process has been introduced as
described in Sec. 4.2 which contributes to the establish-
ment of CPACS as an exchange format. Feedback from
the community revealed that predictable release cycles
are important.

Establishing a steering committee coordinating the
development process

There is a strong interest from DLR to involve Univer-
sities and Industry in forming a common steering com-
mittee. Exemplary for this are the procedures of W3C
in establishing web standards. The framework for the
implementation of such a committee are currently being
elaborated.

High propagation of the standard through an ecosys-
tem of libraries and applications

CPACS has established as a de-facto standard for DLR
internal aircraft design projects and is increasingly used
by a large number of national and international research
institutions and industrial partners (see Sec. 4.3). The
straightforward and proper application of the definitions
within CPACS is enabled by the open-source develop-
ment and availability of the corresponding software li-
braries TiXI and TiGL. Together with the Remote Com-
ponent Environment (RCE) as open-source process inte-
gration framework, CPACS, TiXi and TiGL form an ad-
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vanced ecosystem in support of collaborative aircraft de-
sign.

6. CONCLUSION

The present paper highlights that collaborative aircraft
design projects involving heterogeneous disciplines may
significantly benefit from using a common language for
data exchange. It not only supports the integration of de-
centralized workflows, but also assures that all partners
are correctly interpreting the data and working with con-
sistent models. Next to other aviation data models for var-
ious disciplines, CPACS provides an extensive parametric
ontology for fixed-wing aircraft and rotocraft. Based on
the XML Schema Definition CPACS is flexibly expand-
able and both human readable and computer processable.

Recent enhancements of CPACS include a detailed pa-
rametrization of engine nacelles and pylons, more flexi-
ble aerodynamic performance maps, body-fitted coordi-
nates for wing component segments and the possibility
to include individual tool-specific data. These modifi-
cations result from a collaborative development process
based on GitHub and on-site meetings with the respec-
tive users and developers.

Publishing CPACS and its corresponding libraries un-
der an open source license and applying it in various de-
centralized aircraft design projects promoted its use in
heterogeneous teams and led to a significant community
growth. Thus an important step towards a standard for a
common language in aircraft design has been achieved.
In the course of projects like AGILE or IDEaliSM it
has been quantitatively proven that collaborative design
tasks based on CPACS can significantly increase in per-
formance and quality. This positively answers the ques-
tion from Sec. 1 whether the use of a common language
has linked the aircraft design process more closely.

Upcoming challenges include a detailed representation
of aircraft systems to meet the requirements of various
research projects on the climate impact of aviation and
the design of sustainable aircraft. To enable the increased
complexity and heterogeneity of these projects while en-
suring a clear semantic interpretation of data, future re-
search will also focus on combining advanced data mod-
eling methodologies from the field of Semantic Web with
state-of-the-art approaches in aircraft design (e.g., Model
Based Systems Engineering).
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