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Abstract
Before highly automated vehicles (HAVs) become part of everyday traffic, their safety has to be proven. The use of human 
performance as a benchmark represents a promising approach, but appropriate methods to quantify and compare human 
and HAV performance are rare. By adapting the method of constant stimuli, a scenario-based approach to quantify the limit 
of (human) performance is developed. The method is applied to a driving simulator study, in which participants are repeat-
edly confronted with a cut-in manoeuvre on a highway. By systematically manipulating the criticality of the manoeuvre in 
terms of time to collision, humans’ collision avoidance performance is measured. The limit of human performance is then 
identified by means of logistic regression. The calculated regression curve and its inflection point can be used for direct 
comparison of human and HAV performance. Accordingly, the presented approach represents one means by which HAVs’ 
safety performance could be proven.
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Abbreviations
ANOVA	� Analysis of variance
FOT	� Field operational test
HAV	� Highly automated vehicle
NDS	� Naturalistic driving study
TTC​	� Time to collision

1  Introduction

Autonomous driving is associated with many potential 
advantages, e.g., increased traffic efficiency and safety ben-
efits [1–3]. Highly automated vehicles (HAVs; SAE level 
3 or higher [4]) allow the human driver to attend to a task 
other than the driving task. But before HAVs become part of 
everyday traffic, their safety performance—especially when 
confronted with our constantly changing environment—has 
to be tested and verified [5, 6]. Following the request that 
HAVs should only be released if they are statistically safer 
than human drivers made by the German Federal Ministry of 

Transport and Digital Infrastructure [7], human performance 
should be used as a benchmark for HAV performance (at 
least in Germany). However, appropriate methods to quan-
tify and compare human and HAV performance are rare. 
To facilitate HAVs’ safety assessment, this work presents 
a scenario-based method to quantify the limit of human 
performance, which was developed as part of the project 
PEGASUS [6].

This article is structured as follows: in Sect. 2 human 
performance is defined, followed by a short summary of 
existing approaches to measure human performance (2.1 
and 2.2) and an introduction of the approach presented in 
this article (2.3). The driving simulator study is described 
in Sect. 3 and human performance is quantified in Sect. 4. 
Section 5 discusses the results and the presented approach 
before drawing conclusions in Sect. 6.

2 � Measuring Human Performance

In general, human performance refers to the potential of a 
person to successfully perform a task. In case of driving, 
the task-capability interface model [8] considers human 
performance as a function of the driver’s capability and 
the demands of the driving task. If capability excels task 
demands, the driver controls the situation. If not, control is 
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lost and an accident is highly possible. The driver’s capa-
bility results from skills and abilities, and is influenced by 
human factors (e.g., emotions, inattention or stress). Task 
demands are composed of environmental factors (e.g., 
weather and road conditions), the vehicle and the driving 
task itself.

The driving task consists of navigation, guidance and 
stabilisation according to the three-level model of the 
vehicle driving task [9, 10]. Navigation refers to the plan-
ning of an appropriate route, whereas guidance involves 
adapting driving behaviour to the course of the road, traffic 
conditions and traffic rules. Stabilisation requires drivers 
to keep the vehicle in a steady state by, for example, brak-
ing and steering. The different subtasks demand different 
competences. Depending on the task, drivers regulate their 
behaviour based on knowledge, rules or skills [11]. For 
example, to stabilise a vehicle, experienced drivers will 
mostly regulate their driving behaviour based on highly 
automated skills. If driving a vehicle for the first time, sta-
bilisation might be more regulated based on knowledge or 
rules. In summary, driving covers various subtasks which 
require specific abilities (see Fig. 1). To measure human 
performance, task demands have to be defined and human 
capability has to be determined.

Human performance in traffic can be studied by ana-
lysing accident statistics or driving behaviour in real or 
simulated traffic environments. In previous research, meas-
ures like collision probability, driving errors and response 
times have been used to describe and quantify human 
safety performance [12–17].

2.1 � Data Acquisition Methods

Accident statistics (e.g., German In-Depth Accident Study 
[18]) provide information about the number, severity and 
circumstances of traffic accidents and have already been 
used to compare human and HAV performance [13, 14]. 
It was shown that HAVs would have to drive hundreds 
of millions of miles without an accident to prove their 
superiority in terms of safety—a requirement that seems 
impossible prior to release [14].

If accident data are evaluated with regard to the pre-
sented task-capability-interface model [8], it becomes 
apparent that these data represent cases in which task 
demands exceeded human capability. In order to reduce 
the amount of data needed, it might be useful to first find 
the limit of human performance, i.e. situations in which 
task demands slightly exceed human capability, and to 
then analyse HAVs’ performance in these situations.

As previously mentioned, driving performance can also 
be studied in real traffic or in simulated environments. 
For example, naturalistic driving studies (NDS) and field 

operational tests (FOT) represent field studies, in which 
everyday driving behaviour is observed over a long period 
of time (usually several months, e.g. Refs. [19–22]). Conse-
quently, FOT and NDS data contain a broad range of driving 
behaviour in various traffic situations and thus have high 
external validity. Accidents and near misses, however, are 
very rare. Accordingly, FOT and NDS data mainly include 
cases in which capability exceeds task demands.

Simulated environments, which are used in driving sim-
ulators or virtual reality studies, on the other hand, allow 
to precisely define and control every aspect within a traffic 
situation and to repeatedly assess a specific scenario while 
driving behaviour is observed. Driving simulator studies can 
thus be used to analyse the underlying causal relationships 
of accidents and also to systematically approach and assess 
the limit of human performance by creating an environment 
in which task demands are systematically increased. The 
use of the driving simulator, therefore, serves to close the 
gap between the recording and description of human per-
formance in uncritical and critical scenarios to the point of 
accidents ([23]; see Fig. 1 bottom).

Fig. 1   Simplified model of human performance in the project 
PEGASUS (top) and relationship between capability (C) and task 
demands (D) across different methods (bottom)
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2.2 � Human Performance Measures

Besides choosing an appropriate method, performance has to 
be adequately operationalised. Because in many critical traf-
fic situations it is essential to react fast to prevent an accident 
[10, 24], response time, i.e. the time from stimulus onset 
to response initiation, is used as a measure of performance 
[15]. Human response time is influenced by several factors 
such as driver expectation, age, cognitive load, and urgency 
[25]. Furthermore, Powelleit and Vollrath [15] showed that 
response time is highly dependent on situational factors like 
road type, driving speed, and stimulus saliency. If the stimu-
lus or the response is not clearly identifiable, response time 
cannot be calculated or only imprecisely. This might be the 
case if anticipatory driving behaviour is shown. Response 
time, therefore, might not always be a sufficient perfor-
mance indicator and, for example, the type of behaviour, 
the strength of the response or the outcome of a behaviour 
should be considered as well [15].

Another measure of human performance could be driv-
ing errors. Different types of human driving errors have 
been defined [26–28]. Graab et al. [29], for example, dif-
ferentiated between information (access, uptake, process-
ing), goal and action errors, and showed that human driv-
ers mainly commit information related errors, with errors 
of information uptake being most prominent (see also [13, 
30]). Common causes of information uptake-related errors 
include inattention, distraction, drug consumption or fatigue 
[29, 31], i.e., purely human factors. It has been shown that 
in nowadays traffic the majority of accidents are caused by 
human errors, whereas technical errors and environmental 
influences (e.g., road or weather conditions) only count for 
a small percentage of accidents [17]. HAVs might therefore 
significantly increase traffic safety [2], but could also show 
other or new types of errors. What is more important: not 
every type of error might be equally critical when driving 
and not every error, even errors of the same type, might 
result in an accident (and might therefore go unnoticed). 
Consequently, a certain error rate does not necessarily cor-
respond to the same level of performance.

Since both response times and driving errors might not 
always be clearly linked to performance, collision probabil-
ity, as the ultimate and decisive outcome of a situation, is 
used as a measure of human performance in this study. In 
the following paragraph, it will be described how the limit 
of human performance could be identified based on collision 
probability in a driving simulator study.

2.3 � The Present Approach

The PEGASUS project focused on the highway chauffeur. 
The highway chauffeur, as defined in the PEGASUS project, 
is a conditional automated driving function (SAE level 3 [4]) 

which performs the longitudinal and lateral driving task on 
highways within a speed range of 0 to 130 km/h (includ-
ing lane changes, stop and go traffic jams, and emergency 
braking/collision avoidance) and has not to be continuously 
monitored by the human driver. Because HAVs could be 
exposed to similar traffic conditions as human drivers, in a 
first step safety–critical scenarios in nowadays traffic were 
identified by analysing accident data. Results were then 
complemented by analysing NDS and FOT data to define 
the upper and lower performance limits (i.e. cases in which 
capability clearly exceeds vs. fails task demands).

Accident data was searched for accidents that might be 
prevented by the highway chauffeur and revealed accidents 
due to lane-change manoeuvres and rear-end collisions to 
be most relevant. Especially cut-in manoeuvres might be 
critical for human drivers and HAVs if the lane change is 
unexpected or abrupt. In line with that, most lane change 
accidents were characterized by a time to collision (TTC; 
[32]) of about two seconds or less. In contrast, very few 
cases with a TTC of less than two seconds were found in 
the NDS/FOT data and none of them ended in an accident 
[23, 33].

Based on the findings of the accident and NDS/FOT data 
analyses, a driving simulator study was conducted in the 
second step to find the limit of human performance when 
confronted with a cut-in manoeuvre. To measure human per-
formance in this scenario, task demands were manipulated 
by systematically varying the criticality of the manoeuvre. 
To assess the limit of human performance, the method of 
constant stimuli was adapted [34]. The method of constant 
stimuli was implemented by many classical psychophysi-
cal experiments to determine thresholds of human sensation 
(e.g., [35, 36]) and represents a stimulus–response model: 
Participants are repeatedly exposed to stimuli, such as tones, 
that vary constantly in their intensity, such as volume. Par-
ticipants are asked to respond when they have perceived 
the stimulus. The threshold is then defined as the volume at 
which the probability of having heard it is 50%. In terms of 
the present driving simulator experiment, the stimulus was 
the cut-in manoeuvre. Stimulus “intensity” was represented 
by the manoeuvre’s criticality, which was operationalised 
by TTC. Drivers responded by avoiding a collision or not. 
In line with the method of constant stimuli, the “threshold” 
of human performance was then defined by the criticality, 
i.e., TTC, at which 50% of drivers failed to avoid a collision. 
By letting HAVs drive the identical set of scenarios, either 
within simulation, on a proving ground or during real-world 
drives, their performance can be estimated in the same man-
ner, so that, finally, the limits of HAV and human perfor-
mance can be compared.
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3 � Driving Simulator Study

3.1 � Participants

Fifty-two volunteers (30 males, 22 females) aged from 20 
to 76 years (mean (M) = 44.36 years, standard deviation 
(SD) = 19.1 years) participated in the study. Participants 
were recruited from the participant database of the Insti-
tute of Transportation Systems at the German Aerospace 
Center. All participants were required to hold a valid driving 
license. The majority of participants reported driving daily 
(n = 30, 57.7%), whereas the minority reported to drive on 
workdays (n = 5, 9.6%), once or twice a week (n = 5, 9.6%), 
once or twice a month (n = 7, 13.5%) or less than once a 
month (n = 5, 9.6%). The annual mileage was reported 
to be low (less than 9,000 km/year) by 53.8% (n = 28) of 
the participants, 28.8% (n = 15) reported driving between 
9,000 and 20,000 km/year, 15.4% (n = 8) between 20,000 
and 30,000 km/year, and only 1.9% (n = 1) reported driv-
ing more than 30,000 km/year. With regard to age, gender 
and annual mileage, the sample roughly corresponds to the 
population of German car drivers. The study protocol was 
conducted in accordance with the ethical standards of the 
Declaration of Helsinki.

3.2 � Simulator Set‑Up

The study was accomplished in the dynamic driving simu-
lator of the Institute of Transportation Systems at the Ger-
man Aerospace Center in Braunschweig, Germany, in com-
bination with the SimCar. The environment was simulated 
using a 270°-back-projection visualization with a resolution 
of 1400 × 2100 for each 30° projection angle (18 projec-
tors in total). The SimCar is a converted passenger car with 
a real operational interface (including steering wheel, gas 
and brake pedals). Instrument panel and side mirrors were 
replaced by displays. To enable observation of rear traffic, a 
LCD-display was placed on the back seats, which was vis-
ible through the rear mirror. The cars’ speakers transmitted 
the engine and traffic sounds. Motion simulation was inac-
tive in the present study.

3.3 � Driving Scenario

The scenario was a cut-in manoeuvre on a straight two-
lane highway with a speed limit of 130  km/h (lane 
width = 3.56 m; see Fig. 2 for a simplified visualization of 
the scenario). In every trial, participants’ ego vehicle (blue 
vehicle in Fig. 2) was placed on the left lane (ego lane) with 
a speed of 130 km/h (“flying start”). On the right lane, a 
platoon of passenger cars and trucks was driving with a con-
stant speed of 80 km/h and distances of 10 to 50 m between 

vehicles. In every trial, one of the platoon’s passenger cars 
(target vehicle; orange vehicle in Fig. 2) abruptly changed 
from the right to the ego lane and cut in in front of the ego 
vehicle. The dynamics of the target vehicle were identical 
in every trial (averaged lateral speed = 2.31 m/s). To pre-
vent participants from anticipating the target vehicle, it was 
randomly placed in one of five positions within the platoon. 
Depending on where the target vehicle was placed in the 
platoon, the lane change occurred approximately 20, 33, 45, 
52 or 72 s (435, 732, 987, 1153, 1601 m) after the beginning 
of a trial. Every target vehicle was closely (approx. 10 m) 
followed by a truck (but not after every truck was a target 
vehicle) and was therefore only visible when the distance 
between ego and target vehicle was short enough. A trial 
ended, when a collision occurred or ten seconds after the tar-
get vehicle started the lane change. In both cases, the screen 
turned black for a short period of time before the next trial 
started. Trial duration ranged from 18 to 125 s (M = 53 s). 
For scenario design, operation and visualization, VIRES 
Virtual Test Drive (VIRES Simulationstechnologie GmbH, 
Germany) was used.

3.4 � Experimental Design

The experimental design contained one independent vari-
able, namely the criticality of the cut-in manoeuvre. It was 
varied as a within-subjects factor by means of the time to 
collision (TTC). TTC represents the time it will take for 
two vehicles to collide if they continue driving on the same 
path with the same speed [32, 37, 38]. In the present experi-
ment, the TTC was defined as the time distance between the 
ego and the target vehicle at that moment, when the target 
vehicle was just in the middle between the two lanes (see 
Fig. 2). Assuming a speed difference of 50 km/h between 
ego and target vehicle, TTC was manipulated at six levels: 
0.5, 0.7, 0.9, 1.1, 1.3, and 1.5 s. Each participant underwent 
ten trials of every TTC level, leading to a total of 60 cut-
in manoeuvres. The 60 experimental trials were presented 
in randomized order. The selection of levels and the rand-
omization of trials were in accordance with the method of 
constant stimuli. TTC values were based on the findings of 
the FOT/NDS data analyses, which suggested that a TTC of 
1.7 s is the bottom line of the criticality in everyday driving 
behaviour [23]. By randomizing trial order and target vehicle 
location, the target vehicle’s lane change was expected but 
not entirely predictable.

3.5 � Experimental Procedure

After arrival, participants were informed about the experi-
ment (including the critical encounters) and provided writ-
ten informed consent to take part in the study. Additionally, 
they were asked to fill out a questionnaire about personal 
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information (e.g., gender, age, and driving experience). 
Before the experiment, every participant drove a training 
session for at least five minutes to familiarize themselves 
with the driving simulator (participants were not supposed to 
shift gears; see Fig. 3). In the actual experiment, participants 
were told to stay on the left lane and keep a constant speed 
of 130 km/h until they face a critical event. In this case, they 
were asked to avoid an accident.

3.6 � Measurements

Driving simulator data, which included kinematic driving 
parameters of the ego vehicle and environment parameters, 
were recorded with a sampling rate of 25 Hz. The following 
variables were calculated for further analysis: (1) Due to the 
variance in ego speed, the actual TTC might slightly deviate 
from the aspired TTC. The Actual TTC​ was therefore used 
for further analysis and is defined as the actual time distance 
(in seconds) between the ego vehicle and the target vehicle 
at that moment, when the target vehicle is just in the middle 
between the two lanes. (2) The binary variable Collision 
indicates if there was a collision in a trial or not (0 = no col-
lision, 1 = collision; dummy coded). (3) The Collision prob-
ability provides the ratio of the number of trials with colli-
sion to the number of all experimental trials. (4) Response 
time is defined as the time (in milliseconds) between the 
onset of the event (here defined as the moment, when the 
target vehicle touches the road marking between the two 
lanes) and the first response of the participant (here defined 
as the earliest point in time within five seconds before and 
after event onset when the normalized brake pedal position 

is greater than zero; range = 0–1). The event onset was cho-
sen because the target vehicle was definitely visible at this 
point in time and a lane change was inevitable. It has to be 
noted that the target vehicle’s lane change might have been 
visible before the defined event onset (please refer to Supple-
ment A for alternative response times). However, response 
time was primarily calculated to get a rough estimation of 
whether participants were attentive.

3.7 � Analysis

As described in the introduction, the present study adapted 
the method of constant stimuli. According to this method, 
the discriminant threshold corresponds to the stimulus inten-
sity (continuous variable) for which the response (binary 
variable) is random (i.e., both response types have a prob-
ability of 50%). Binary logistic regression is a means to 
indicate the relationship between a binary variable and a 
continuous variable in a sample of data and is described by

In this study, binary logistic regression was therefore 
implemented to relate the binary variable Collision ( y ) to 
the continuous variable Actual TTC​ (x1), p(y) represents 
the collision probability. The inflection point of the logistic 
regression, which was supposed to correspond to a colli-
sion probability of 50%, was (in line with the method of 
constant stimuli) defined as the threshold of human drivers’ 
collision avoidance performance. Iteratively reweighted least 
squares were used to estimate coefficients β0 and β1 of the 
regression models. The analysis was done in RStudio (ver-
sion 1.2.5019) using the function glm of the package stats 
(version 3.6.1).

4 � Limit(s) of Human Performance

4.1 � Data Pre‑processing

In the first step, trials with negative response times (i.e., 
response time ≤ 0 ms; N = 24) were excluded from fur-
ther analysis. The average response time of the remain-
ing trials (N = 3096) was 270.53  ms (SD = 139.37  ms, 
range = 40–1480 ms).

In the second step, it was verified that the experimental 
manipulation of criticality was successful. Table 1 shows 
that the more critical the cut-in manoeuvre (i.e., the shorter 
the TTC), the more likely a collision. This finding was 
supported by a chi-squared test [χ2(5, N = 3096) = 2113.40, 
p < 0.001].

(1)p(y) =
1

1 + e−(�0+�1x1)
.

Fig. 2   The cut-in scenario: a target vehicle (orange) abruptly changed 
from the left to the right lane and cut in in front of the ego vehicle 
(blue)

Fig. 3   Experimental procedure
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In the third step, it was tested whether collision proba-
bility differed across the experiment or with respect to age 
or driving experience. In order to test the effect of time on 
collision probability, which could be caused by, for exam-
ple, fatigue or learning effects, the correlation between 
trial number and collision probability was tested. A t-test 
indicated that the collision probability decreased over time 
[t(58) = -2.32, p = 0.024, r = −0.29] (see Fig. 4). To assess 
possible age effects, participants were divided into three 
age groups: 18–24 years (n = 11), 25–44 years (n = 16), and 
above 45 years (n = 25). An univariate analysis of variance 
(ANOVA) showed that age had no significant effect on 
collision probability [F(2,49) = 0.90, p = 0.415, η2 = 0.04] 
(see Fig. 5). Driving experience was measured by annual 
mileage: < 9,000 km/year (n = 28), 9,000–20,000 km/year 
(n = 15), and > 20,000 km/year (n = 9). The corresponding 
univariate ANOVA revealed that collision probability did 
not differ significantly between the three levels of driv-
ing experience [F(2,49) = 1.49, p = 0.236, η2 = 0.06] (see 
Fig. 6). Due to the absence of differences in collision prob-
ability with regard to age and driving experience, all trials 
were considered for regression analysis.  

4.2 � Logistic Regression

To compare different performance groups with respect 
to collision probability, the top 10% (n = 7), the median 
50% (n = 26), and the last 10% (n = 6) of the sample were 
grouped. Mean collision probability and standard error of 
each group and the full sample are illustrated in Fig. 7.

Logistic regression was calculated for the full sample 
and for every performance group to determine the rela-
tionship between collision probability and the actual TTC. 

Table 1   Absolute number and 
percentage of trials with and 
without collision across the 
aspired TTC levels (s)

NCo, No collision; Co, Collision

TTC​ 0.5 0.7 0.9 1.1 1.3 1.5

NCo 3 97 368 483 503 546
0.6% 19.3% 72.7% 94.2% 98.6% 98.6%

Co 506 407 138 30 7 8
99.4% 80.7% 27.3% 5.8% 1.4% 1.4%

Fig. 4   Relationship between trial number and collision probability. 
The regression line is displayed in blue

Fig. 5   Distributions of collision probability within the three age 
groups

Fig. 6   Boxplots show the distributions of collision probability 
depending on annual mileage
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Regression curves and inflection points of all four regression 
models are displayed in Fig. 8.

It was revealed that the actual TTC was a significant fac-
tor in all four regression models (see Table 2). The inflec-
tion point, i.e., the actual TTC at a collision probability of 
50%, ranged from 0.72 to 1.09 depending on the group of 
participants.

5 � Discussion

The release of HAVs requires proof of safety. Exactly how 
HAVs’ safety can be proven, however, is still under discus-
sion. The use of human performance as a benchmark seems 
reasonable, but needs appropriate methods. By adapting the 
method of constant stimuli, a scenario-based approach to 
quantify the limit of human performance was developed 

and humans’ collision avoidance performance in a cut-in 
manoeuvre was identified. The first part of the discussion 
will focus on the method itself, followed by a discussion of 
the actual results.

As has been described in the introduction, current 
approaches to determine HAVs’ safety performance mainly 
rely on an immense amount of data obtained in real traf-
fic [13, 14]. A scenario-based approach, in contrast, offers 
the advantage of reducing the amount of data needed by a 
systematic and structured selection of test cases [6]. These 
test cases can then be implemented in real traffic, on proving 
grounds or in simulation. Simulation and, in case of human 
performance, driving simulator studies offer the advantage 
of controlling all aspects of a driving scenario without put-
ting anyone at risk. In addition, different participants/HAVs 
can repeatedly go through exactly the same scenario, which 
is optimal for comparison of HAV and human performance. 
It should yet be noted that, in contrast to simulation, only 
a few scenarios can be tested within one driving simulator 
study. This requires careful selection of safety–critical fac-
tors and scenarios. Severity and exposure, following e.g. ISO 
26262, and the functional scope of the system to be tested 
might guide the selection process. Finally, the efficiency of 
this method will heavily depend on whether results for a spe-
cific scenario are generalizable to a broad range of scenarios. 
As this study focused on one very specific scenario, this 
has to be studied in further experiments. Another important 
aspect concerns the technical configuration: if simulation 
or driving simulators are used for comparison of human 
and HAV performance, it is most important to have realistic 
input signals and driving dynamics to obtain a realistic driv-
ing performance (e.g., collision probability). If the observed 
driving behaviour does not generalize to real driving, the 
comparison of human and HAV might be invalid.

To determine the limit of (human) performance, adequate 
methods are needed. This study borrowed from psychophys-
ics by adapting the method of constant stimuli, which is 
originally used for sensory threshold detection [34]. This 
method (in combination with logistic regression) seems 
appealing because it allows quantifying performance by 
one value, which can then be directly used for comparison. 
However, one could question whether a collision probability 

Fig. 7   Mean collision probability and standard error of three perfor-
mance groups and the full sample across the aspired TTC levels

Fig. 8   The relationship of actual TTC and collision probability in the 
form of logistic regression curves. Inflection points are displayed in 
red, original data points are displayed in black

Table 2   Results of logistic regression of full sample and three perfor-
mance groups

C, Coefficient; IP,  Inflection point

Model n C z p IP

Full sample 52  − 10.74  − 26.57  < .001 0.86
Top 10% 7  − 13.85  − 8.14  < .001 0.72
Median 50% 26  − 14.44  − 17.00  < .001 0.85
Last 10% 6  − 11.35  − 9.03  < .001 1.09
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of 50% represents the limit of human performance. To avoid 
specifying a definite limit of performance (in terms of a spe-
cific collision probability), it would be possible to compare 
the full regression curve and not just one value. The method 
of constant stimuli is limited so far as it needs (continuous) 
stimulus “intensity” and a binary response. Additionally, it 
should be noted that the presented method requires stimulus 
repetition and therefore allows participants to prepare, at 
least partially, for the upcoming stimulus. It thus identifies 
the upper limit of human performance, i.e., what humans are 
capable of under optimal circumstances. This is seen as an 
advantage since it sets higher expectations for HAVs.

Even though the focus is on developing a method, the 
aim of this study is also to quantify the upper limit of human 
performance. For this it was important that participants were 
not distracted but focused on the task. Their level of alert-
ness was rated based on response times. Following Green 
[25], response times for expected brake signals take about 
0.7 to 0.75 s, whereas brake reactions to unexpected events 
follow 1.25 to 1.5 s after the signal. In critical situations 
response times might fall below 1 s for unexpected events 
[39]. The average response time in this study (approx. 0.27 s) 
is thus shorter than would be expected. As described in the 
method section, the lane change might have been visible 
before the selected stimulus onset (the moment when the tar-
get vehicle touched the line between the two lanes). The time 
between the beginning of the lane change and the defined 
onset was approximately 0.5 s. The actual average response 
time should, accordingly, lie between 0.27 and 0.77 s (see 
Supplement A), which is still far less than one second. This 
indicates that participants expected the cut-in manoeuvre 
and therefore concentrated on the task.

Human performance, in this study, corresponds to colli-
sion avoidance. It describes the final output of an encounter, 
but does not provide any information about the strategy used 
to avoid the collision or how “well” a collision was avoided. 
The critical driving task in the cut-in scenario was stabili-
sation [9]. Because of the instruction (keep lane and speed) 
and the suddenness of the lane changes, participants had 
to rely on highly automated skills, i.e., stimulus–response-
automatisms, to avoid a collision [11]. Further studies 
should address whether the presented method can measure 
other facets of (human) performance.

Although collision probability did not differ significantly 
with respect to age and experience, it decreased over time 
and varied between participants. The difference between the 
inflection points, i.e., the limit of performance, of the top 
and last 10% was 0.37 s, which might make a difference for 
HAVs’ performance rating. This raises the question of which 
group of participants should serve as the reference for HAV 
performance. In the present study, the sample was aligned 
with the total population of German car drivers and then 
divided into performance groups. In the future, it could be 

considered to select a specific performance group from the 
outset, e.g. novice or professional drivers. In addition, one 
might only use certain trials to decrease variance in perfor-
mance caused by fatigue or learning effects. The selection 
of trials and reference group will be a question of the desired 
safety performance level of HAVs.

The results show that collision probability was only close 
to zero for a TTC of 1.3 s and 1.5 s, respectively, which is 
in line with the suggestion to rate encounters with a TTC 
of 1.5 s or less as safety critical [40]. However, since the 
participants of this study were prepared to encounter critical 
situations, the use of higher TTC values as safety limit seems 
also reasonable [37, 38]. When reviewing the observed TTC 
values, one should keep in mind that TTC calculation was 
based on the moment when the target vehicle was in the 
middle of the two lanes and that the lane change was visible 
before that. Accordingly, the reported TTC values should 
only be used for comparison if calculation is identical.

6 � Conclusions

Taking a human factors point of view on the issue of verifi-
cation methods, human performance was used as a bench-
mark to assess HAVs’ safety performance. Because methods 
to quantify and directly compare HAV and human perfor-
mance are rare, an appropriate method was developed. This 
method was based on a classical psychophysical approach 
and allows to quantify (the limit of) human and HAV per-
formance in a specific scenario by means of logistic regres-
sion. In addition, it was shown that implementation as part 
of a driving simulator study enables testing of critical sce-
narios that are otherwise not available in sufficient numbers 
or too dangerous. The presented method therefore closes 
the gap between the recording and description of human 
performance in uncritical and critical scenarios to the point 
of accidents and adds to the ongoing development of ade-
quate testing and verification methods for HAVs. Whether 
the identified limit of human performance holds for differ-
ent scenarios and whether the method can be used for other 
facets of human performance has to be addressed in further 
research.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s42154-​021-​00152-2.

Acknowledgements  The authors thank Eric Nicolay and Dirk Ass-
mann for their technical support.

Authors’ Contributions  KP and CS designed the work, KP acquired the 
data, LQ and MZ analysed the data, and LQ, CS and MZ interpreted 
the data. The work was drafted by LQ and MZ and revised by KP and 
CS. All authors have approved the submitted version.

https://doi.org/10.1007/s42154-021-00152-2


Human Performance in Critical Scenarios as a Benchmark for Highly Automated Vehicles﻿	

1 3

Funding  Open Access funding was enabled and organized by Pro-
jekt DEAL. The work of this paper was part of the project PEGASUS 
funded by the German Ministry for Economic Affairs and Energy 
(Bundesministerium für Wirtschaft und Energie).

 Availability of Data and Materials  The dataset analysed during the cur-
rent study is available from the corresponding author on reasonable 
request.

Declarations 

Conflict of interest  The authors declare that they have no conflict of 
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Alonso Raposo, M., Grosso, M., Després, J., Fernández Macías, 
E., Galassi, C., Krasenbrink, A. et al.: An analysis of possible 
socio-economic effects of a Cooperative, Connected and Auto-
mated Mobility (CCAM) in Europe - Effects of automated driving 
on the economy, employment and skills. EUR 29266 EN. Publica-
tions Office of the European Union, Luxembourg (2018). https://​
doi.​org/​10.​2760/​777

	 2.	 Fagnant, D.J., Kockelman, K.: Preparing a nation for autonomous 
vehicles: opportunities, barriers and policy recommendations. 
Transp. Res. Pol. Pract. 77, 167–181 (2015). https://​doi.​org/​10.​
1016/j.​tra.​2015.​04.​003 

	 3.	 Kolarova, V., Steck, F., Bahamonde-Birke, F.J.: Assessing the 
effect of autonomous driving on value of travel time savings: a 
comparison between current and future preferences. Transp. Res. 
Pol. Pract. 129, 155–169 (2019). https://​doi.​org/​10.​1016/j.​tra.​
2019.​08.​011

	 4.	 SAE International: Taxonomy and definitions for terms related 
to driving automation systems for on-road motor vehicles 
(J3016_201806). https://​www.​sae.​org/​stand​ards/​conte​nt/​j3016_​
201806/ (2018). Accessed 18 May 2021

	 5.	 Lee, D., Hess, D.J.: Regulations for on-road testing of connected 
and automated vehicles: assessing the potential for global safety 
harmonization. Transp. Res. Pol. Pract. 136, 85–98 (2020). https://​
doi.​org/​10.​1016/j.​tra.​2020.​03.​026

	 6.	 PEGASUS: PEGASUS method. An overview. https://​www.​pegas​
uspro​jekt.​de/​files/​tmpl/​Pegas​us-​Absch​lussv​erans​taltu​ng/​PEGAS​
US-​Gesam​tmeth​ode.​pdf (2018). Accessed 18 May 2021

	 7.	 Federal Ministry of Transport and Digital Infrastructure: Ethics 
commission automated and connected driving. https://​www.​bmvi.​
de/​Share​dDocs/​EN/​publi​catio​ns/​report-​ethics-​commi​ssion.​html?​
nn=​187598 (2017). Accessed 18 May 2021

	 8.	 Fuller, R.: Towards a general theory of driver behaviour. Accid. 
Anal. Prev. 37, 461–472 (2005). https://​doi.​org/​10.​1016/j.​aap.​
2004.​11.​003

	 9.	 Donges, E.: A conceptual framework for active safety in road traf-
fic. Veh. Syst. Dyn. 32, 113–128 (1999). https://​doi.​org/​10.​1076/​
vesd.​32.2.​113.​2089

	10.	 Donges, E.: Driver behavior models. In: Winner, H., Hakuli, S., 
Lotz, F., Singer, C. (eds.) Handbook of Driver Assistance Sys-
tems. Basic Information, Components and Systems for Active 
Safety and Comfort, pp. 19–33. Springer International Publish-
ing, Switzerland (2016)

	11.	 Rasmussen, J.: Skills, rules, and knowledge; signals, signs, and 
symbols, and other distinctions in human performance models. 
IEEE Trans. Syst. Man. Cybern. 3, 257–266 (1983)

	12.	 Caird, J.K., Simmons, S.M., Wiley, K., Johnston, K.A., Horrey, 
W.J.: Does talking on a cell phone, with a passenger, or dial-
ing affect driving performance? An updated systematic review 
and meta-analysis of experimental studies. Hum. Factors 60, 
101–133 (2018). https://​doi.​org/​10.​1177/​00187​20817​748145

	13.	 Dotzauer, M., Preuk, K., Patz, D., Schießl, C.: Das autonome 
Fahrzeug oder der Mensch: Wer ist besser und leistungsfähiger? 
In: VDI-Berichte 2335, 34. VDI/VW-Gemeinschaftstagung 
Fahrerassistenzsysteme und automatisiertes Fahren, pp. 299–
314. VDI Wissensforum GmbH, Wolfsburg, Germany (2018)

	14.	 Kalra, N., Paddock, S.M.: Driving to safety: How many miles 
of driving would it take to demonstrate autonomous vehicle 
reliability? Transp. Res. Pol. Pract. 94, 182–193 (2016). https://​
doi.​org/​10.​1016/j.​tra.​2016.​09.​010

	15.	 Powelleit, M., Vollrath, M.: Situational influences on response 
time and maneuver choice: development of time-critical sce-
narios. Accid. Anal. Prev. 122, 48–62 (2019). https://​doi.​org/​
10.​1016/j.​aap.​2018.​09.​021

	16.	 Precht, L., Keinath, A., Krems, J.F.: Identifying the main fac-
tors contributing to driving errors and traffic violations—results 
from naturalistic driving data. Transp. Res. F Traffic. Psychol. 
Behav. 49, 49–92 (2017). https://​doi.​org/​10.​1016/j.​trf.​2017.​06.​
002

	17.	 Winkle, T.: Safety benefits of automated vehicles: extended find-
ings from accident research for development, validation and test-
ing. In: Maurer, M., Gerdes, J.C., Lenz, B., Winner, H. (eds.) 
Autonomous Driving, pp. 335–364. Springer, Berlin (2016)

	18.	 GIDAS (German in-depth accident study) project. https://​www.​
gidas.​org/​en/​willk​ommen/ (2021). Accessed 18 May 2021

	19.	 Barnard, Y., Utesch, F., van Nes, N., Eenink, R., Baumann, M.: 
The study design of UDRIVE: the naturalistic driving study 
across Europe for cars, trucks and scooters. Eur. Transp. Res. Rev. 
(2016). https://​doi.​org/​10.​1007/​s12544-​016-​0202-z

	20.	 Dingus, T.A., Klauer, S.G., Neale, V.L., Petersen, A., Lee, S.E., 
Sudweeks, J. et al.: The 100-car naturalistic driving study, Phase 
II - Results of the 100-car field experiment (DOT HS 810 593). 
United States Department of Transportation. National Highway 
Traffic Safety Administration. https://​rosap.​ntl.​bts.​gov/​view/​dot/​
37370 (2006). Accessed 18 May 2021

	21.	 Lyu, N., Deng, C., Xie, L., Wu, C., Duan, Z.: A field operational 
test in China: Exploring the effect of an advanced driver assistance 
system on driving performance and braking behavior. Transp. Res. 
F Traffic. Psychol. Behav. 65, 730–747 (2019). https://​doi.​org/​10.​
1016/j.​trf.​2018.​01.​003

	22.	 Weinberger, M., Winner, H., Bubb, H.: Adaptive cruise control 
field operational test - the learning phase. JSAE Rev. 22, 487–494 
(2001). https://​doi.​org/​10.​1016/​S0389-​4304(01)​00142-4

	23.	 Preuk, K., Schießl, C.: Menschliche Leistungsfähigkeit als 
Gütekriterium für die Zulassung automatisierter Fahrzeuge: Meth-
ode zur Ermittlung der Grenzen menschlicher Leistungsfähigkeit. 
Paper presented at the 9th VDI-Fachtagung Der Fahrer im 21. 
Jahrhundert, DLR Braunschweig, 21–22 November 2017

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2760/777
https://doi.org/10.2760/777
https://doi.org/10.1016/j.tra.2015.04.003
https://doi.org/10.1016/j.tra.2015.04.003
https://doi.org/10.1016/j.tra.2019.08.011
https://doi.org/10.1016/j.tra.2019.08.011
https://www.sae.org/standards/content/j3016_201806/
https://www.sae.org/standards/content/j3016_201806/
https://doi.org/10.1016/j.tra.2020.03.026
https://doi.org/10.1016/j.tra.2020.03.026
https://www.pegasusprojekt.de/files/tmpl/Pegasus-Abschlussveranstaltung/PEGASUS-Gesamtmethode.pdf
https://www.pegasusprojekt.de/files/tmpl/Pegasus-Abschlussveranstaltung/PEGASUS-Gesamtmethode.pdf
https://www.pegasusprojekt.de/files/tmpl/Pegasus-Abschlussveranstaltung/PEGASUS-Gesamtmethode.pdf
https://www.bmvi.de/SharedDocs/EN/publications/report-ethics-commission.html?nn=187598
https://www.bmvi.de/SharedDocs/EN/publications/report-ethics-commission.html?nn=187598
https://www.bmvi.de/SharedDocs/EN/publications/report-ethics-commission.html?nn=187598
https://doi.org/10.1016/j.aap.2004.11.003
https://doi.org/10.1016/j.aap.2004.11.003
https://doi.org/10.1076/vesd.32.2.113.2089
https://doi.org/10.1076/vesd.32.2.113.2089
https://doi.org/10.1177/0018720817748145
https://doi.org/10.1016/j.tra.2016.09.010
https://doi.org/10.1016/j.tra.2016.09.010
https://doi.org/10.1016/j.aap.2018.09.021
https://doi.org/10.1016/j.aap.2018.09.021
https://doi.org/10.1016/j.trf.2017.06.002
https://doi.org/10.1016/j.trf.2017.06.002
https://www.gidas.org/en/willkommen/
https://www.gidas.org/en/willkommen/
https://doi.org/10.1007/s12544-016-0202-z
https://rosap.ntl.bts.gov/view/dot/37370
https://rosap.ntl.bts.gov/view/dot/37370
https://doi.org/10.1016/j.trf.2018.01.003
https://doi.org/10.1016/j.trf.2018.01.003
https://doi.org/10.1016/S0389-4304(01)00142-4


	 L. Quante et al.

1 3

	24.	 Enke, K.: Possibilities for improving safety within the driver-
vehicle-environment control loop. In: 7th International Technical 
Conference on Experimental Safety Vehicle Proceedings, Wash-
ington, USA, 5–8 June 1979

	25.	 Green, M.: “How long does it take to stop?” Methodological 
analysis of driver perception-brake times. Transp. Hum. Factors 
2, 195–216 (2000)

	26.	 Hacker, W.: Allgemeine Arbeitspsychologie: Psychische Regula-
tion von Wissens-, Denk- und körperlicher Arbeit. Schriften zur 
Arbeitspsychologie: Vol. 58. Huber, Bern (2005)

	27.	 Rasmussen, J.: Human errors. A taxonomy for describing human 
malfunction in industrial installations. J. Occup. Accid. 4, 311–
333 (1982)

	28.	 Zimmer, A.: Wie intelligent darf/muss ein Auto sein? Anmerkun-
gen aus ingenieurspsychologischer Sicht. In: Jürgensohn, T., 
Timpe, K.P. (eds.) Kraftfahrzeugführung, pp. 39–55. Springer, 
Berlin (2008)

	29.	 Graab, B., Donner, E., Chiellino, U., Hoppe, M.: Analyse von 
Verkehrsunfällen hinsichtlich unterschiedlicher Fahrerpopula-
tionen und daraus ableitbarer Ergebnisse für die Entwicklung 
adaptiver Fahrerassistenzsysteme. Paper presented at 3. Tagung 
Aktive Sicherheit durch Fahrerassistenz, TU München, Garching 
bei München, 7–8 April 2008

	30.	 Chiellino, U., Winkle, T., Graab, B., Ernstberger, A., Donner, 
E., Nerlich, M.: Was können Fahrerassistenzsysteme im Unfall-
geschehen leisten? Zeitschrift für Verkehrssicherheit 3, 131–137 
(2010)

	31.	 National Highway Traffic Safety Administration: National motor 
vehicle crash causation survey: Report to congress (DOT HS 811 
059). https://​crash​stats.​nhtsa.​dot.​gov/​Api/​Public/​ViewP​ublic​ation/​
811059 (2008). Accessed 18 May 2021

	32.	 Hayward, J.C.: Near-miss determination through use of a scale of 
danger (Report TTSC-7115). The Pennsylvania State University. 
Pennsylvania Transportation and Traffic Safety Center (1972)

	33.	 PEGASUS: Bericht zu Meilenstein 1: Festlegung grundlegende 
Anforderungen an das Testen (2016)

	34.	 Fechner, G.T.: Elemente der Psychophysik. Breitkopf und Härtel, 
Leipzig (1860)

	35.	 Lewald, J., Ehrenstein, W.H.: Influence of head-to-trunk position 
on sound lateralization. Exp. Brain Res. 121, 230–238 (1998)

	36.	 Nolden, S., Haering, C., Kiesel, A.: Assessing intentional bind-
ing with the method of constant stimuli. Conscious Cognit. 21, 
1176–1185 (2012)

	37.	 Mahmud, S.S., Ferreira, L., Hoque, M.S., Tavassoli, A.: Appli-
cation of proximal surrogate indicators for safety evaluation: A 
review of recent developments and research needs. IATSS Res. 
41, 153–163 (2017). https://​doi.​org/​10.​1016/j.​iatssr.​2017.​02.​001

	38.	 Vogel, K.: A comparison of headway and time to collision as 
safety indicators. Accid. Anal. Prev. 35, 427–433 (2003). https://​
doi.​org/​10.​1016/​S0001-​4575(02)​00022-2

	39.	 Summala, H.: Brake reaction times and driver behavior analysis. 
Transp. Hum. Factors 2, 217–226 (2000)

	40.	 Svensson, Å.: A method for analysing the traffic process in a safety 
perspective. Dissertation, University of Lund, Sweden (1998)

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811059
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811059
https://doi.org/10.1016/j.iatssr.2017.02.001
https://doi.org/10.1016/S0001-4575(02)00022-2
https://doi.org/10.1016/S0001-4575(02)00022-2

	Human Performance in Critical Scenarios as a Benchmark for Highly Automated Vehicles
	Abstract
	1 Introduction
	2 Measuring Human Performance
	2.1 Data Acquisition Methods
	2.2 Human Performance Measures
	2.3 The Present Approach

	3 Driving Simulator Study
	3.1 Participants
	3.2 Simulator Set-Up
	3.3 Driving Scenario
	3.4 Experimental Design
	3.5 Experimental Procedure
	3.6 Measurements
	3.7 Analysis

	4 Limit(s) of Human Performance
	4.1 Data Pre-processing
	4.2 Logistic Regression

	5 Discussion
	6 Conclusions
	Acknowledgements 
	References




