DLR

UNIVERSIDAD CARLOS III DE MADRID

DEUTSCHES ZENTRUMFUR LUFT UND RAUMFAHRT

Validation and extension of an MDO framework including
dynamic aeroelastic analysis

Author: Lucas Berndcer Soriano

Supervisor: Rauno Cavallaro
Co-supervisor: Francesco Torrigiani

A thesis submitted for the degree of
MSc Aeronautical engineering

September 7, 2020

Acknowledgements

This thesis was performed during the first semester of 2020 at the DLR - Deutsches
Zentrum fur Luft- und Raumfahrt, at the Institute of System Architectures in
Aeronautics, as a collaboration between the mentioned institution and the University
Carlos III of Madrid. It is my pleasure to acknowledge several individuals who were
significant for the completion of my master’s thesis.

I am deeply grateful to my university supervisor professor Rauno Cavallaro for
bringing me the opportunity to be a part of this collaboration, and for his guidance
along the whole project. I also owe my deepest gratitude to my supervisor Francesco
Torrigiani, who made my stay in the DLR so much pleasant. Without his incessant
help, the presented thesis would not have been as exhaustive as it is.

Last but not least, I would also like to express my most sincere recognition to
all my close relatives and friends who showed me love despite not being physically
around them during the development of the thesis. Your encouragement has allowed
me to keep going through these raw times that unfortunately we have had to live.

ii

Abstract

The optimization discipline has experienced an increase in popularity over the
last years, being published multiple research articles and dissertations in relation
to this field of study. Besides, the seek for new improvements in the aircraft design
process has made the optimization processes to play a huge role due to the new
challenges that nowadays are meant to be faced, such as the need for automation
and robustness. The foundation of the thesis lies in the definition of a structural
optimization problem subjected to an aeroelastic response, being possible to develop
two tools whose aim consists of aiding the task of setting up and providing support
at the time of solving this particular type of optimization scenarios.

The NOI tool is in charge of providing a direct connection between the theoretical
formulation of the problem and its resolution using Nastran, whereas an optimization
framework named FAEDO is responsible for computing the aeroelastic response of
the optimization problem, accounting for the structural, aerodynamic, and stability
analysis. The combination of both tools allows conducting a complete optimization
subjected to an aeroelastic response by means of OpenMDAOQO, as it has been proven
through several test cases which verify the proper working of the developed framework.

iii

Contents

Acknowledgements ii
Abstract iii
List of Figures vi
List of Tables vii
1 Introduction. 1
1.1 Formulation of the structural optimization problem 3

1.2 Types of optimization problems)
1.3 Incorporation of aeroelastic constraints 5
1.3.1 The aeroelastic stability analysis 6

1.4 Design sensitivity analysis o000 8
1.4.1 Numerical methods 8

1.4.2 Analytical methods 9

1.5 Structural optimization in Nastran 11
1.5.1 Input and output data format 12

1.5.2 The optimization solution sequence 12

2 NOI . . . e 16
2.1 NOIoverview 17
2.2 BDF writter module oo 18
2.2.1 Optimization input files 19

2.2.2 Modal and flutter input files 26

2.3 OP2reader module 27
2.3.1 Static analysisresults L. 27

2.3.2 Modal analysis results 28

2.4 FO06 reader module 31

3 FAEDO 33
3.1 FAEDO overview 34
3.2 Structural analysis oo 34
3.3 Aero-structural mapping 36
3.4 Aerodynamic analysis Lo L 38
3.5 Stability analysis oo 38
3.6 Connection with OpenMDAO 39

iv

4 Casesofstudy 40

4.1 Finite element models oo 41
4.1.1 Goland+ FE model 0L 42

4.1.2 Classic Goland beam FE model 45

4.2 DOE for the flutter speed derivatives 49
4.2.1 Methodology 49

422 Results. 20

4.3 Optimization of the Goland+ model 54
4.3.1 Problem definition and set-up 54

432 Results. 55

4.4 Optimization of the Goland beam model 59
4.4.1 Problem definition and set-up 59

442 Results. 60

5 Conclusions 63
Appendix 64
A NOIuser’sguide 64
A1 What is NOI? 64
A2 How toinstall NOI 64
A.3 What is NOI capable of? 64
A.4 Writing an optimization input file 65
A.4.1 NOT’s input for optimization 65

A.4.2 Optimization input dictionaries 65

A.4.3 Analysis input dictionary 67

A.4.4 Example of writing an optimization BDF file 68

A5 Writing a modal analysis file 69
A.5.1 Example of writing a modal BDF file 69

A.6 Writing a flutter analysis file 69
A.6.1 Example of writing a flutter BDF file 70

A.7 Reading of modal and static analysis results 70
A.7.1 Example of reading static analysis results 70

A.7.2 Example of reading modal analysis results 71

A.7.3 Example of reading sensitivity analysis results 71

A.8 Reading a flutter FO6 file 72
A.8.1 Example of reading a flutter FO6 file 72
Bibliography 73

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

List of figures

Design process breakdown L. 1
Nastran optimization input file sequence 14
NOI breakdown diagram 18
BDF writer module breakdown 19
BDFOpt class methods diagram 21
Properties definition example in Nastran 22
OP2 reader module breakdown 28
OP2Modal methods diagram 30
F06 reader module breakdown 31
FAEDO flutter speed analysis diagram 35
Structural and aerodynamic Goland+ grid comparison 37
Structural and aerodynamic Goland+ grid torsion mode comparison . 37

Summary of the conducted casesof study 41
Schematics of the Goland+ FE model 43
Goland+ lumped masseso 44
V-g and V-f plots for the Goland+ FE model 46
Root locus plot for the Goland+ FE model 46
Schematics of the classic Goland beam model 47
V-g and V-f plots for the Goland beam model 48
Root locus plot for the Goland beam model 48
Flutter speed mapping of the DOE 51
Centre of gravity mapping of the DOE 51
Analytical derivatives computed in the DOE 52
Difference between analytical and FD derivatives 53
% error between analytical and FD derivatives 53
Goland+ objective function evolution 56
Goland+ design variable evolution 57
Goland+ constraint function evolution 58
Root locus of the Goland beam optimization 60
Goland beam objective function evolution 61
Goland beam design variable evolution 62
Goland beam constraint function evolution 62

vi

List of tables

1.1 Bridge entries and types of design variables 13
2.1 Elements, properties and design variables in Nastran 20
2.2 BDFOpt supported analysis types and responses 24
2.3 BDFOpt output parameters 26
4.1 Comparison between the classic and “Heavy” Goland wing 42
4.2 Goland+ FE model description 43
4.3 Goland+ FE lumped masses locations 44
4.4 Goland+ model material comparison 45
4.5 Model properties 47
4.6 Material properties 47
4.7 DOE design variables definition 0L 49
4.8 Goland+ model optimization design variables 55
4.9 Lumped masses optimization parameters 55
4.10 Goland+ model optimization results 58
4.11 Goland beam model optimization design variables 59
4.12 Goland beam model optimization results 61
A.1 Summary of the example optimization problem 69
A.2 Writing a flutter file parameters 70

vii

1 | Introduction

Over the last few years optimization has been growing attention, eventually
turning into one of the most important tools in the design process and a recurrent
matter in scientific publications. It can be said that the fundamental idea behind
optimization consists of determining the most appropriate set of components that
fits a given purpose, following certain criteria. This basic concept has been applied
to multiple disciplines such as economics, engineering, and even medicine, in spite of
getting the best possible results. From all of them, the thesis targets the one related
to the structural discipline, and in particular focuses on its integration in the aircraft
design process with the development of an optimization framework.

The aircraft design process is constantly under improvement, seeking new methods
and techniques to obtain an enhanced final product. According to the traditional
design process breakdown, see Figure 1.1, it is usually divided into the conceptual,
preliminary, and detailed phases. Furthermore, and as the product moves along
the mentioned phases, the number of modeling details increases, being reduced the
number of parameters which can be modified. Otherwise, modern aircraft design
approaches try to increase the level of details and fidelity in the early phase of the
design process, while retaining the same large number of parameters. The two main
reasons for this are reducing the design process time and cost, and therefore the
vehicle time-to-market, and also the need for physics-based tools in the early phases
due to the fact that, for example, novel configurations have extreme flexibility that
classical theory cannot predict correctly.

Conceptual Preliminary Detailed

Knowledge

Design and Optimization Process Time

Figure 1.1: Design process breakdown

The nowadays adopted modern design process approach brings mainly two new
challenges. One of them corresponds to the seek for automatization, where disciplines
like unsteady aeroelastic analysis and methods like FEM and CFD need now to
be executed several times and in the shortest possible time. On the other hand,
robustness is also a critical aspect to take into account. Not only there are several
configurations to be analyzed but these are also very different. These two challenges
have been considered at the time of developing the thesis, being directly applied to
its main topic which has been the development of a tool able to perform structural
optimization problems under flutter constraints on an automatized basis.

In relation to structural optimization, a structure in mechanics can be defined
as any assemblage of materials that is intended to endure loads. Hence, structural
optimization directly targets making the structure deal with the imposed loads in
the best way under certain conditions established as constraints in the problem.

From this point, the reader may have a general idea of which is the aim of
optimization, however, it still may be unclear which would be the best way to address
this. Many people think that the overall preferred configuration of a structure would
be the one that offers light weight and lower cost. Actually, the best output of a
structural optimization problem is the one that fulfills all the imposed constraints
and still achieves the purpose in an optimum way. In other words, if a structure is
being designed in order to avoid buckling, the objective would be to make it as stiff
as possible to weave away this phenomenon, but at the same time using the ideal
amount of resources. This approach can be summed up in a simple maximization or
minimization process involving an objective function subjected to given constraints,
which in the structural discipline usually adopt the shape of displacements, stresses,
or geometry. At the same time, these constraints could be either defined as objective
functions of the problem.

Putting special emphasis now on aerospace structures, the aeroelastic and flutter
responses earn much more relevance in the aircraft design process as they can
determine the wellness of the overall results, and can be defined as constraints in the
process. It is common that these kinds of constraints are included in the optimization
problem formulation, in such a way that the output can be profitable due to the fact
that, for example, flutter is a safety and certification-critical phenomenon which must
be able to be accounted as early as possible in the design process. This condition
gives the thesis one of its main purposes, as it has been developed a way of dealing
with these types of constraints at the time of setting-up an optimization problem.

Another important aspect that lies down the basis for the thesis has been related
to the sensitivity analysis. When performing a gradient-based optimization process, it
is extremely useful studying the derivatives, or sensitivity coefficients, of the objective
and constraint functions with respect to the design variables. This practice, which
goes under the name of sensitivity analysis, allows evaluating how a change in the
design variable impacts the problem. Furthermore, its relevance yields in the fact
that it aids the optimizer at the time of choosing the proper direction to be followed,
and the criteria when updating the design variables.

This brief introduction of elemental optimization related notions offers a glimpse
of the topics discussed along the first chapter of the thesis, which mainly concentrates
on offering the reader a general overview of the actors involved in a structural
optimization problem, the different types that there may be found, the relevance of
accounting for aeroelastic constraints, and the remarkable differences with respect
the design sensitivity analysis. Moreover, several commercial software provide the
possibility to perform structural optimization problems, and sensitivity analysis,
focusing on the capabilities offered by Nastran.

After all these concepts have been clarified, the goal of the thesis has been
developing a tool, denominated NOI, which grants an interface between the chosen
structural software and the user-defined optimization analysis, bearing with the
inclusion of aeroelastic constraints. As it was previously introduced, Nastran is a
powerful tool adopted in the industry that allows performing several types of analysis,
having a devoted solution sequence to optimization.

The main focus of the tool has been providing the user the means to create an
optimization input file to be run by this software, and also a way of dealing with
the output results. However, the purpose of NOI does not stop in the optimiza-
tion solution sequence, it has been included the possibility to provide modal and
flutter analysis input files as a way of easing the task at the time of setting-up
aeroelastic problems. Chapter 2 presents a complete discussion about the objective,
implementation, and limitations of the tool.

Being aware that the thesis has been submitted for an aerospace master’s degree, it
has been interesting including NOI in a framework capable of solving an optimization
problem subjected to an aeroelastic constraint. Therefore, the FAEDO framework
was developed in such a way that served as a bridge between the different modules
required to define the problem and to compute the aeroelastic constraint. All the
involved processes have been discussed along Chapter 3, where a detailed description
of the incorporation of NOI into this framework, and the connection with OpenMDAO,
has been provided. One of the most important tasks has been granting the precise
information flow between the structural and aeroelastic analysis.

Once the NOI tool has been included in the FAEDO framework, it has been
required to verify that everything worked in the appropriate way. The fourth chapter
gathers all the numerical results regarding several test cases performed to validate
the adequate working of the tool, at the time of computing the sensitivity coefficients,
and the structural analysis results. Taking as input the Goland wing benchmark
model, a DOE and different optimization processes have been evaluated.

1.1. Formulation of the structural optimization problem

A typical optimization problem is usually composed of an objective function,
to be minimized or maximized, a set of design variables, and certain constraint
functions. The definition of a structural optimization problem can be divided into
the same three main topics, which should be established in order to accomplish its
complete formulation.

In a general matter, the following variables and functions are the ones required
to be specified:

« Objective function (f) definition: Denotes the function that points out the
goodness of the design. Usually f indicates the weight, stress or displacement in
the structure, and a minimization or maximization problem may be formulated,
normally prevailing the first ones in the structural discipline.

« Choice of the design variables (x): The design variables can be a function
or a vector that represents the design. They are usually related to a geometry
feature or even to a choice of material. When talking about geometry design
variables, a distinction between shape and size design variable can be performed.

» State variables (y) designation: Conforms the responses of the problem for
a given design condition. In structural optimization state variables are mainly
related to stresses, strains, displacements or forces.

After discussing its fundamental components, the usual structural optimization
problem may be presented in the following mathematical way:

Minimize f(z,y) with respect to = and y

Behavioral constraints on y (1.1)
Subject to Design constraints on x
Equilibrium constraints

In certain situations it may arise optimization problems where more than one
objective functions may be considered, the so-called multiple criteria optimization
problems. For the purpose of solving them, a Pareto optimility approach is often
followed due to the fact that all the objective functions can not be minimized for the
same set of design and state variables. For simplicity’s sake, in structural optimization
usually there have only been considered single scalar objective function scenarios,
see Reference [1] for a deeper discussion.

According to the different types of constraints depicted in Expression 1.1, a
more detailed description of each one of them has been provided. The behavioral
constraints are the ones acting on the state variable y, in such a way that g(y) <0,
and often represent a displacement or stress limit. On the other hand, the design
constraints would be essentially the same as the behavioral ones, but now involving
the design variables x. In relation to the equilibrium constraint, it it is important to
write down the structural equilibrium equation to understand its relevance.

K(z)u = F(z) (1.2)

where K () corresponds to the stiffness matrix of the structure, w is the displace-
ment vector and F'(x) the force acting on the structure. Addressing the mathematical
development presented in Reference [1], and treating u(x) as a certain function, the
equilibrium constraint can be omitted and replaced by the state variable, reaching
the well-known nested formulation expression of the optimization problem:

{ min, f(z,u(x)) 13

st gl u(r) <0

At the end, the problem stated through Eq. 1.3 can be solved numerically by the
appropriate software, being required the derivatives of f and ¢, which receive the
name of sensitivity coefficients. The process of finding the value of that derivatives
conforms the sensitivity analysis, an important step in all the optimization problems,
and one of the base topics of the presented thesis.

1.2. Types of optimization problems

Depending on the geometric formulation and the relationships between the design
process and the analysis parameters, it is possible to distinguish three different types
of optimization problems:

o Size optimization: Refers to a design task where the design variables have
been defined according to element properties such as thicknesses, cross-sectional
areas, Young’s modulus, etc.

« Shape optimization: For shape optimization, the design variables directly
influence the location, the form, or contour of the structural domain. The
optimization is mainly based on choosing the integration domain for the
differential equations in an optimal way. Boundaries of the problem remain the
same, and the outcome corresponds to the best shape that meets the prescribed
objective and constraints.

« Topology optimization: Mainly based on evaluating if a given element of
the structure should be there or not. Hence, the process allows removing mass
and modifying the connectivity of the model in view of outputting the optimal
response for the proposed objective function.

It is important to note that the shape and topology optimization types refer to
different approaches, and therefore conform two different categories although they
may seem kind of similar. Furthermore, most of the current optimization software
allow setting-up design problems that combine, for example, size and shape design
variables, increasing the range of possibilities.

1.3. Incorporation of aeroelastic constraints

Section 1.1 concisely presented the relevance of constraints in the optimization
problem formulation and, in particular, structural optimization places special focus
on stresses, displacements, and even the geometry, as the main responses that can be
defined as constraints. At the time of setting-up optimization problems for aerospace
structures, all the relevant physics must be represented so in this way the results can
be affordable and constitute a proper response of the model.

As it may be known by the reader, the coupling between the inertial, elastic
and aerodynamic forces that act on the body gain relevance in aerospace structures,
and play a huge role in optimization, as it has been debated in Reference [2], where
wings with very high aspect ratios, and prone to flutter, have been the output of the
optimization due to the fact that no aeroelastic constraints were included.

1.3.1. The aeroelastic stability analysis

The evaluation of aeroelastic stability constraints usually involves the solution
of eigenvalues of non-linear unsymmetrical and complex matrices. This is the main
reason why this section briefly discusses the most common development used to carry
out the aeroelastic stability analysis of the structure subjected to optimization, and
directly follows the reasoning presented in Reference [3].

The starting point corresponds to the linearized equations of motion, which have
been shown in their discretized form through Equation 1.4. There, the vector u
represents the nodal displacements of the FE model, M the mass matrix, K the
stiffness matrix, and A the matrix of aerodynamic forces. Furthermore, the dynamic
pressure has been defined according to ¢ = 1/2 pv?, being p the air density and v
the flight speed.

Mi+ Ku—¢gAu=0 (1.4)

From this point, solutions of the form u = ue™! may be found, and a brand new
expression of the motion equations can be formulated:

K — w’M — gA(k)| 0 =0 (1.5)

The eigenvalue problem must be solved, being now its main difficulty that the
matrix of aerodynamic forces depends on the reduced frequency, which represents
the unsteadiness of the problem and has been pictured as k = wb/u, denoting b the
semi-chord of the model. This situation makes the eigenvalue problem shown in Eq.
1.5 to be non-linear since A is a non-linear function of the reduced frequency.

It can be said that the objective of the aeroelastic analysis is determining the
critical flight speed for which the structure becomes unstable. Firstly, the special
situation of static instability, where w = 0, must be analyzed by means of computing
the eigenvalues of the real unsymmetric linear eigenvalue problem, see Equation 1.6.
This situation allows obtaining the divergence dynamic pressure, which matches the
smallest positive real eigenvalue, and then the divergence flight speed can be directly

attained following vp = \/2qp/p.

[K — qAla =0 (1.6)

On the other hand, the stiffness matrix K and mass matrix M are in general
sparse, while the matrix of aerodynamic forces A is complex and dense. Even if
the matrix A is assumed constant, in order to solve Equation 1.5 it is required to
employ a subspace in which the eigenvalue problem can be sorted out. The most
common approach has been determining this subspace as the space spanned by the
eigenvectors, see Reference [3], corresponding to the lowest free vibration frequencies
obtained by solving the symmetric generalized linear eigenvalue problem:

K —w’M]z=0 (1.7)

After some development, which has been gathered in Reference [3], it is possible
to reach Expression 1.8, where €2 is diagonal with the free vibration eigenvalues w?
on the diagonal and A = ZTAZ is the matrix of generalized aerodynamic forces.

[— W T—qA(k)|a=0 (1.8)

Different approaches may be found in order to solve the nonlinear eigenvalue
problem. One of them is the famous k-method, where damping is introduced as
a computational aid. Then, the eigenvalue problem can be solved for a number
of different values of the reduced frequency, and finally the non-dimensional speed
and damping factor g, for each eigenvalue and reduced frequency, can be plotted in
a graph. The non-dimensional flutter speed has been defined as the lowest speed
for which the damping factor becomes positive, being the speed for which positive
damping is needed for neutral stability. The resolution followed by other methods
such as the p-method or the p-k method have also been presented in Reference [4].

In practice, and once the relevance of the aeroelastic stability analysis has been
discussed, the results are provided in the way of V-g and root locus plots. The first
one of them represents the speed versus the damping parameter, in this way, it is
possible to spot the behaviour of each one of the modes and if coupling happens
between any of them. Otherwise, the root locus aids at the time of determining
the flutter point of the structure as it illustrates the real and imaginary part of
the eigenvalues, being clear that flutter occurs when a crossing of the imaginary
axis takes place for the considered branches. All along the thesis, and in particular
along Chapter 4, these plots have been used in order to analyze the results of the
optimization, and as a way of checking the aeroelastic response of the model.

This section has presented the practical relevance of including an aeroelastic
constraint, and how the stability analysis of the model plays a huge role in the overall
response of the structure when subjected to aerodynamic loads. Furthermore, and
thanks to these types of constraints, it is possible to avoid too conservative designs
that may provide heavier and stiffer structures, whereas an unconstrained aeroelastic
optimization may also lead to an excessively dangerous flexible response.

1.4. Design sensitivity analysis

As noted in the previous sections, it is important to make a distinction between
the design sensitivity and optimization concepts. Both terms have been highly
related, and for a given design problem, the sensitivity analysis provides the variation
of the structural responses with respect to the design variables. In size optimization,
these design variables may correspond to thicknesses and areas, while for shape
optimization the grid point locations can also be considered. For the particular
scenario of the aerospace sector, it is relatively important to know how a certain
change in a design variable may impact a given component, or even the whole
structure, so in this way it is possible to assess the best path to be followed.

The design optimization concept goes a step further and involves the process of
improving the proposed design. To do so, an optimizer is required and the design
sensitivities serve as an input to guide the optimizer in the proper direction.

Coming back to the sensitivity coefficients of the problem, and paying special
attention to the sensitivity analysis, they represent the change of a structural response,
or objective, with respect to variations in the design variables, serving as the essential
gradient information for the optimizer. A design coefficient can also be defined as
the rate of change of a given response with respect to a design variable, being these
coefficients evaluated at a particular design point:

dg;

81‘]‘ 20

(1.9)

where j indicates the j-th design variable and ¢ the i-th response, as sensitivity
coefficients are required for the whole set of design variables and responses spectrum
of the problem. Note that the sensitivity coefficient presented in Equation 1.9 would
be just the slope of the response with respect to the design variable. Hereafter,
there have been described the two main methods in order to compute the sensitivity
coefficients for arbitrary functions and design variables according to Reference [1].

1.4.1. Numerical methods

The starting point relies on the nested optimization formulation, being represented
the general optimization problem through Expression 1.10. In a numerical approach,
the terms corresponding to 0¢;/0x; are computed by means of finite differences, for
example with a forward or central scheme.

min, Jo(®) = go(, u(z))
st. gi(x) =gi(x,u(x)) <0, i=1,...,1 (1.10)

zeX ={reR 2t <g; <2t j=1,... nf

The following equation illustrates the finite differences forward scheme for the
proposed problem:

o~ ;L (1.11)
where e; = [0,...,0,1,0,...,0]” and the 1 is in row j.

This numerical approach can be easily understood through the set-up of a fictitious
example. Let’s suppose that the reader wants to compute at given design conditions
the sensitivity of the objective response with respect to the thickness of a shell
element j in the structure. Equation 1.11 depicts the required terms to calculate the
sensitivity of go(x) in relation to the design variable ¢;. The contribution coming
from go(x*) can be directly computed, as it corresponds to the value of the objective
at the considered design point. Therefore, a perturbation A has to be added to the
design variable seeking to compute the remaining term. After the design variable
has been perturbed, the displacements field must be solved again by means of finite
element analysis. Then, and once u(z"* + he;) is no longer an unknown, the term
Go(x® + he;) can be obtained, being able to retrieve the whole sensitivity coeflicient.

One of the problems that may appear with this technique would be related to how
the value of the perturbation shall be defined. If A is too large, the approximation of
the coefficient happens to be less accurate. In contrast, a relatively low value of the
perturbation also introduces problems, as the numerical error due to cancellation
increases. Using a central finite differences scheme could help to improve the accuracy
of the method, being its main advantage the ease of implementation in comparison
with the analytical procedure.

1.4.2. Analytical methods

The second approach used to compute the sensitivity coefficients has been based
on the analytical formulation. On behalf of retrieving an analytical expression for
0Gi(x*)/0x;, the chain rule must be applied providing the following equation:

dg; (x* 0g; (xF,u (¥ 0g; (¥, u (x*)) Ou (2F
gdij): i (axj()) | 29 au() a(xj» L12)

where the response function §;(x*) directly depends on the set of design variables
z; and also on the displacement vector w(z*). This aspect explains the two different
terms that appear in Equation 1.12 due to the differentiation process. The following
lines try to summarise two analytical resolution procedures, the direct and the adjoint
methods, and their working principles in order to attain the sensitivity coefficients.

A deeper discussion of the stated approaches can be found in Reference [1], as
the objective of the thesis does not include the theoretical development of these
procedures and just seeks to provide the reader with insight about the different
methods used to compute the sensitivity coefficients.

Essentially, both methods take as their common starting point the differentiation
of the equilibrium equation K (x)wu = F'(z), which can be written as:

0K (ack>
8xj

du (a:k> _ OF (m’“)

u (wk) + K (:1:’“) oz, oz,

(1.13)

After rearranging certain terms, the new sorted expression has been shown in
Equation 1.14, where the right hand side is usually known as the pseudo-loads. From
here on, and in relation to the two previously mentioned analytical procedures, their
corresponding developments have been presented.

ou (mk> oOF (a:k) 0K (mk)
Oz, - Oz, B 0z,

K (mk> u (mk) (1.14)

1.4.2.1. The direct method

The direct analytical method has been illustrated through the computation of
the sensitivity of the compliance go(x) = go(x, u(x)) = F(x)"u(x). Thus, and after
applying differentiation, the terms in the following expression can be found.

dgo (¥, u (x* oF (z+)" i g0 (¥, u (x* AT
o) or Y)

Furthermore, from Expression 1.14 it is possible to solve du(x*)/0z; as presented
in Eq. 1.16, and input this expression all together with the differentiation of the
compliance to finally obtain the formulation of the analytical sensitivity coefficient
through Equation 1.17.

o, B ("’k)_1< oz, o1, “(‘”k)) (1.16)

10

1.4.2.2. Adjoint method

The adjoint method formulation takes place when Equation 1.14 is combined
with Equation 1.12, yielding the following expression for the sensitivity coefficient:

an a al’j 8u an 8xj

() _ 29 —i—ﬁK (wk> () — (>u<:ck> (1.18)

One of the remarkable aspects of the adjoint methodology is the requirement

to define Eq. 1.19 in order to account for solving the derivatives with respect the

design variables. Hence, and operating with Equation 1.14, it is possible to reach
the analytical expression of the sensitivity coefficient as seen in Expression 1.20.

K () A = (gii)T (1.19)
0G; (x* . OF (¥ 0K (¥
gaggj). gi; “"T(aggj) azgj)“(‘”k)) (1.20)

The main difference between the direct and the adjoint method has been found
in the way both procedures compute the coefficients for a given set of 7 =1,...;n
responses and i = 0, ..., [design variables. According to the direct formulation, it is
compulsory to solve Equation 1.14 for each design variable 7, meaning n times in
overall. The result is then requested to solve Equation 1.13 a total of [+ 1 times for
each j. On the other hand, the adjoint method solves Equation 1.19 for the objective
function and for each constraint function [+ 1 times, and recalls the results from Eq.
1.20 n times for each design variable. Therefore, it can be concluded that the adjoint
method ideally shows better performance when the number of constraints is lower
than the number of design variables, otherwise, the direct method is recommended.

1.5. Structural optimization in Nastran

These days it can be found several software packages that implement the finite
element method in order to solve structural problems. From all of them, it has been
decided to pay close attention to Nastran, which can be defined as a multidisciplinary
structural analysis tool that is capable of carrying out static, dynamic, and thermal
analysis. For the reason that Nastran has been considered the industry standard
for structural analysis simulation, it has been decided to use this FE package for
the developed thesis, where the special emphasis has been placed in the structural
optimization module that goes under the name of solution sequence 200. Nonetheless,
and in case the reader is not used to the Nastran format, a brief presentation has
been provided along the following lines.

11

1.5.1. Input and output data format

At the time of performing any kind of analysis using Nastran it is required
to provide the software a properly formatted input text file. These text files are
commonly referred to as decks due to the fact that in the past the information
was actually stored into punch cards that were read by the machine, resembling a
deck. The input file, which can show a BDF or DAT extension, has to contain in a
mandatory fashion the following sections:

o Executive control section: Accommodates the lines where the type of
solution sequence and various diagnostics are specified. As it has been previously
mentioned, Nastran has certain predefined solution sequences for each type of
study. The most popular ones correspond to solution sequences 101 for linear
static analysis, 103 for normal modes and 200 for optimization. Reference [5]
includes the complete list of available solution sequences.

o Case control section: This section of the input text file is the one in charge of
defining the loads, constraints and objective function, determining the contents
of the model results output files, setting the coordinate system, and creating
the subcase structure for all the performed analysis.

o Bulk data section: Considered the main section of the input file as it is
where the geometry model, element connectivities, materials, and loads are
defined. It is not order dependent, and its entries can be provided in three
different formats depending on the kind of delimiter used between tabs, commas
and spaces. Furthermore, it is also the place to set-up the particular entries
corresponding to the selected solution sequence. For example, in case it has
been requested to perform an optimization analysis, the bulk data section must
contain the design variables, objective function and response entries.

Once the simulation takes place, the results can be provided by Nastran in several
output formats. The prevailing one corresponds to the well-known f06 file, which
conforms a text file with results from analysis along with diagnostic messages that
report how the simulation has performed. Nonetheless, it is also popular to store the
results in a binary file, known as OP2, as it is easier to handle the data in order to
post-process it. A more detailed description regarding how the input and output files
are formatted can be found in Nastran’s quick reference guide, see Reference [5], but
for the purpose of the thesis, just the f06 and OP2 output formats have been used.

1.5.2. The optimization solution sequence

One of the most important aspects, at the time of creating an optimization input
file, is the process that relates the finite element model stored in the bulk data
section with the design model used to define the optimization problem. This process,
summed up through Figure 1.2, has been divided into several steps which essentially
gather the ones previously mentioned at the time of formulating the structural
optimization problem. Each one of the steps involves including certain Nastran cards
in the case control or bulk data sections, which would be in charge of defining, for
example, the design variables, objective function, or constraints of the problem.

12

At the time of setting-up the design variables, it is worth to mention that
Nastran allows defining multiple types of design variables such as element properties,
connectivity of elements, or even grid point locations. The DESVAR bulk data
entries are the ones responsible for specifying the design variables of the problem,
however, they can only affect the finite element analysis if they are linked with
designed properties, shapes and/or design responses. This means that the mentioned
features of the finite element model must be explicitly related to their corresponding
DESVAR entries in the bulk data section through particular Nastran bridge cards,
see Table 1.1. Furthermore, it is the user’s responsibility to define the initial values
of these design variables and their upper and lower bounds in the DESVAR card.

Type of design variable Nastran bridge entry

Element property DVPREL
Material property DVMREL
Connectivity of elements DVCREL
Grid point location DVGRID

Table 1.1: Bridge entries and types of design variables

Another remarkable matter is the design responses, which are used by Nastran in
order to specify the objective and constraints functions. Thus, before the objective
function and constraints can be included in the bulk data section, the analysis
responses must be specified using the DRESP set of bulk data entries. There can be
found several types of responses, DRESP1 is the most commonly used card in order
to define, for example, the weight, displacements, or stresses of the model.

Once the responses have been included, it is possible to specify the ones conforming
the set of constraints, or the objective function. The process recalled to implement the
design model constraints involves two new Nastran entries. Essentially, each DRESP
card must be linked with a DCONSTR entry in order to specify the constraint
bounds. These responses must also be gathered in a DCONADD entry depending
on the subcase to which they belong. Besides, and now acting on the case control
section, it must be specified the particular set of constraints to be used for each one
of the subcases through the DESSUB card, or just set the global set of constraints
by means of the DESGLB entry.

The objective function must be a scalar quantity that is either minimized or
maximized by the optimizer. So, it shall be specified in the case control section
using the DESOBJ case control command. This entry points to a design response
defined on either a DRESP1, DRESP2 or DRESP3 bulk data card and must be a
single scalar response. In structural optimization it usually prevails the weight of the
model as the objective function, however, Nastran allows specifying a wider range
of scalar responses as objectives of the problem. It is important to note that each
optimization input file only permits the definition of a unique objective function.

13

Definition of the analysis disciplines for

design optimization:

SOL 200

Specify the design variables:

DESVAR, DLINK, DDVAL...

Relate the design variables to allowable
structural variations:

DVPREL1, DVPREL2, DVMRELL...

Definition of the design responses:

DRESP1, DRESP2, DRESP3...

Addition of the objective function and
constraints:

DESOBJ
DCONSTR, DCONADD, DESGLB...

Provide any parameter overrides and
constraint values:

DOPTPRM, DSCREEN, DTABLE...

Figure 1.2: Nastran optimization input file sequence

The mentioned steps, which have been depicted in Figure 1.2, are the essential
ones to be followed in order to accomplish a properly formatted optimization input
file. A deeper description has been provided in Nastran’s design sensitivity and
optimization user guide, see Reference [6]. There, each one of the steps has been
described in further details and the reader may get a broader understanding of how
Nastran performs. Nonetheless, the briefly provided explanation in the previous lines
happens to be more than enough for the reader to get a general idea.

One of the main advantages of the Nastran optimization module is that it allows
implementing several analysis scenarios, structuring them in different subcases. Each
subcase can be related to a different analysis type, allowing the user to end up
creating an MDO interface. At the moment, the solution sequence 200 module only
supports static, modal and buckling analysis types, however, and attending to the
objective of the thesis, only the first two analysis types have been necessary.

14

According to the design sensitivity and optimization user guide, Reference [6],
and reminding the previous literature discussion about the different procedures to
compute sensitivities, it is important to clarify that the software uses finite difference
techniques where it is not practical using analytical sensitivities, making a distinction
between forward and central finite differences schemes. In relation to the analytical
approaches, it supports two different methods: direct sensitivities and adjoint. The
direct method uses a semi-analytic formulation, while the adjoint employs a scheme
that first solves for the adjoint solutions that were introduced by means of Eq. 1.19.

15

2 | NOI

The developed optimization related tool, which goes under the name of Nastran
Optimization Interface, NOI, serves the purpose of granting a connection between a
user provided input file, which includes the complete definition of the finite element
model, and the solution sequence for design optimization. The main objective that
has driven the development of the tool was the extraction of the sensitivity coefficients
of the proposed design sensitivity analysis, being the tool able to format all the
required Nastran definition cards and to handle the output of the simulation.

In order to ease the comprehension of the tool, its implementation has been
divided into three different modules. The first one has been devoted to transforming
the original BDF input file according to the optimization problem definition, meaning
that in this particular stage the model design variables, responses, and the analysis
subcases are meant to be established. Nonetheless, inside this module there has also
been included the option to write modal and flutter analysis Nastran input files. The
reason behind this yields in the fact that once the FE model has been provided to
the tool, it may be interesting to not limit its capability to the optimization field
and provide the user a greater range of possibilities.

The second module has been oriented to the post-processing of results once
Nastran has provided the output OP2 file, and its purpose would be mainly devoted
to the modal, static, and sensitivity results handling. The extraction of the weight,
sensitivity matrix, stresses, eigenvalues or eigenvectors has been structured in two
different blocks depending on the type of analysis performed. Thus, the user is
able to access the information in a much easier way than trying to understand the
traditional Nastran output formats. This module also aids in the task when the tool
has been included in an optimization framework, in such a way that is responsible of
providing the optimizer with the required data coming from Nastran’s analysis.

Last but not least, the third module of NOI has been devoted to creating a
platform that takes care of the results stored in a F06 file. It must be clarified that
so far there has only been included the possibility to read the flutter results coming
from solution sequence 145, however, this module is expected to be extended in order
to process all the information that can not be stored in an OP2 file. Regarding the
flutter results, the V-g, V-f and root locus representations for the analysis can be
directly displayed. This particular module, and although it is not directly related to
the optimization area, supposes a great relief when dealing with Nastran’s flutter
output files.

16

2.1. NOI overview

This section serves the purpose of providing an initial description about how the
tool has been developed, how it works, and also to deliver a discussion about its
capabilities and limitations. Hence, and as it has been formerly introduced, the tool
can be divided into three different modules, being important to remark that each one
of them is capable of working in an individual basis. The presented modules have
been coded throughout a set of classes in Python, which at the same time include a
series of methods that allow the program to perform all the required actions.

From the optimization point of view, the fact that one of them prepares the
Nastran input file and the other one handles the results allows the tool to be
incorporated in a workflow environment, where its main task would be the one of
extracting the eigenvalues, eigenvectors and sensitivities of the proposed structural
model. Even so, and in the scenario of neglecting this collective approach, the tool
still can be used to prepare Nastran optimization, modal, and flutter files, or as an
output reader for modal, static and sensitivity analysis results.

The core of NOI is the pyNastran package developed by Steve Doyle, which
grants an interface to work with Nastran’s complicated input/output files. The
BDF editor has been used to read and write the optimization, modal and flutter
information, supporting more than three hundred different cards, and being these
cards in charge of setting-up the output file. Card objects have methods to access
data such as design variables, objective functions and constraints definition. Thus,
the first module takes as its starting point the mentioned BDF editor and expands
its capabilities, conforming the XBDF class that at the same time provides support
for the writing of the optimization, modal and flutter input files.

On the other hand, the second module of the tool recalls the OP2 reader in order
to access the static/transient information and creates an extension that goes under
the name of XOP2. From that point, two branches appear depending on the type
of results that should be read. The first one has been directly related to the static
analysis, providing the weight, stress and sensitivity information, while the second
one is oriented to the modal results. This second branch is capable of outputting
the structural matrices of the model, eigenvectors and sensitivities. Furthermore,
pyNastran also includes an F06 reader that accommodates the basis of the XF06 class
that conforms NOI’s third module, being able to process the information written in
an FO6 file and to intercede when the XOP2 capabilities have been exceeded.

As it has been discussed, the pyNastran package only assures the purpose of
reading and writing information according to the Nastran format, NOI is the one
responsible of handling, for example, the input of the optimization problem, writing
the proper entries, and finally provide a user-friendly format for the results. The
breakdown of the tool, which has been depicted in Figure 2.1, eases the comprehension
of how it has been structured. From this point, and all along this chapter, a deeper
discussion about the implementation and functionalities of each one of its modules
has been handed over to the reader.

17

BDFWritter.py
XBDF

Class developed to exploit the creation of different types of BDF files
incorporates modal, static, flutter and optimization solution sequences.

OP2Reader.py

XOP2

Extension of the OP2 class in order to provide support for the modal,
static and sensitivity analysis results stored in an OP2 file.

FO6Reader.py

XF06

Module that expands the F06 results handling capabilities. Includes the
possibility to represent V-g, V-f and root locus plots of flutter results.

Figure 2.1: NOI breakdown diagram

2.2. BDF writter module

The first module, which contains the parent XBDF class, is responsible of creating
input files for optimization, modal, and flutter analysis. As a result of pyNastran’s
restrictions, the input finite element model should be provided in a BDF file with the
executive, case control and bulk data sections already defined. From this point, the
XBDF class allocates the information regarding the geometry, element connectivity,
material, loads, and boundary conditions prior starting the creation of new entities.

Inside the BDF writer module, several classes and methods can be found in order
to account for optimization, modal and flutter Nastran input files. Each one of them
has a devoted class that directly inherits the FE model from XBDF, so in this way
it has been avoided redundant coding and the structure of the module happens to
be much cleaner. Figure 2.2 depicts all the classes stored in the module, sorted
according to the provided output. The first one of them is responsible of including
all the required sensitivity and optimization definition cards in the already user
prepared Nastran model. Otherwise, the second and third classes are in charge of
writing the modal and flutter BDF files. It is important to note that due to the way
the flutter analysis has been defined, a lot of information coming from the modal
class can be used at the time of setting-up the flutter input file.

Each one of the methods inside the classes may require certain input coming from
the user, which is usually supplied in the shape of Python dictionaries. For example,
for the optimization methods there are requested the dictionaries with the design
variables, responses and analysis information. However, for the creation of the modal
or flutter BDF there is only demanded the number of modes, normalization method
and flutter conditions.

18

Due to the fact that the major topic of the thesis falls towards the structural
optimization area, a detailed description about how to properly create an optimization
file has been presented in subsection 2.2.1. Moreover, it is worth mentioning that as
NOI started to mature, the possibilities of providing modal and flutter BDF files
were included and there has also been explained how to take advantage of these
capabilities in subsection 2.2.2.

Input BDF XBDF

Class developed to exploit the creation of different types of BDF files
incorporates modal, static, flutter and optimization solution sequences.

BDFOpt

set new properties (property block dict)

set property dv (property_block _dict, property dict)
set mass dv (masses_dict)

set responses (responses_dict)

set case control deck (analysis dict)
write opt bdf (property block _dict, property dict,

masses_dict, responses_ dict, user _test cases, bdf _filename) Optimization
BDF
BDFModal
write modal bdf (final filename, n_modes, norm) Modal BDF
BDFFlutter

write flutter bdf (final filename, n_modes, density _range,
mach_range, velocity range, velocity ref, Flutter BDF
1 ref rho_ref, sym xz, sym xy, k_range)

Figure 2.2: BDF writer module breakdown

2.2.1. Optimization input files

In place of writing an optimization file, the BDFOpt class of the first module shall
be recalled. This class has been made-up by a set of methods that depend on the
optimization problem statement, and being required certain user input. Hence, the
class methods are in control of taking the user provided information and translate it
into Nastran optimization entries by means of pyNastran’s capabilities. Five main
functions, which have been previously introduced in Figure 2.2, have to be discussed
in relation to the design model definition.

19

Regarding the definition of design variables, the tool allows the possibility to set
finite element properties or lumped masses as design variables, anyhow, in the near
future there has been considered the prospect to introduce shape variables. The prop-
erty related design variables have been defined according to the “set_new _properties”
and “set_property_dv” methods, while just a single “set_mass_dv” function is re-
quired when handling punctual masses. The difference between these two types of
design variables lays on the optimization problem and in the FE model definition.
In certain scenarios it may be interesting to study the influence of the model lumped
masses, the element properties, or the combination of both, so the tool accounts for
all these conditions.

NOI also takes care of the responses and the case control deck implementation
calling the “set_responses” and “set_case_control_deck” methods. It has been al-
lowed two types of subcases, modal and statics, in such a way that the user is free to
combine them. However, and depending on the kind of subcase, the responses of the
model have been limited to the weight, stress, eigenvalues and eigenvectors.

From now on, a detailed description of each one of the methods included in this
optimization class has been presented. Besides, it is strongly recommended to the
reader to recall Figure 2.3 in order to get a general overview of how the BDFOpt
class has been structured and to understand the purpose of each one of its methods.

2.2.1.1. Element properties design variables definition

As the tool has been firstly oriented to size optimization, the available element
properties design variables depend on the element types of the user specified FE
model, meaning that for each element type Nastran establishes certain properties
that are somehow settled. Table 2.1 gathers the most commonly used element
types, their associated Nastran property entries, and the properties that could be
defined as design variables by NOI. The design sensitivity and optimization user’s
guide compiles the complete list of properties associated to each element type, but
up to now only the most remarkable ones have been included. Nonetheless, it is
responsibility of the user to be aware of the FE model elements and their available
properties prior trying to set them as design variables in the tool.

Element entry Property entry Allowed design variables

CBAR PBAR ATy, Io, Iio, J
CBEAM PBEAM ATy, Io, Tio, J .
CROD PROD A, J, C,NSM ...
CQUAD4 PSHELL T, TST, NSM, Z1 ...

CELASI PELAS K1, GE1, S1 ...

Table 2.1: Elements, properties and design variables in Nastran
The first task of the “set_new_properties” method is, taking as input the original

FE model coming from XBDF, creating the adequate property entries according to
the user selected elements that then will be associated with a certain design variable.

20

property _block_ dict

Input dictionary that encloses the definition of the new properties to be appended in
the optimizationl model BDF file. The keys correspond to the label of the new
property block and the values to a list of elements IDs to which these new properties
will be assigned to.

Example: property block dict = { 'skin’: [1, 2, 3|}

property _dict

Properties design variables definition dictionary. The keys represent the user defined
label for the design variable identification and the values a tuple which includes the
property block label, the design variable selection, and its assigned value. The design
variable identifier can be provided by means of its PNAME or in the field position
format.

Example: property_dict = { 'SKT": ('skin’, 4, 0.005)}

masses_dict
Input dictionary that encloses the definition of the lumped masses to be set as design
variables. Keys represent the user specified label and values a tuple composed by the
list of CONM2 IDs and its assigned value.
Example: masses_dict = { 'M1": ([1001, 1002], 10.5)}

responses_ dict

The function of interest dictionary contains the description of the responses to be
taken into account during the optimization process. The keys correspond to the
function of interest labels and the values have been set to be a tuple which contain the
type of response, and a particular dictionary for each kind of them.

Example: responses_dict = { 'FSC’: ('S’, {"clements’ : [1, 2, 3], 'stress_code’: 5})}

analysis_dict
Subcase definition dictionary coming from the user, the keys correspond to the
subcase analysis and the values to a list that depends on the subcase type. In the
statics subcase, values represent a list of the several load conditions that may be

take into account, but for the modal scenario the value entry remains empty.
Example: analysis_dict = {'M': None, 'S’ : [100, 200]}

Figure 2.3: BDFOpt class methods diagram

21

This process has been explained through Figure 2.4, where a new property entry
has been included, making possible to split the upper skin of the presented geometry
in two different blocks. Despite the fact that this operation seems rather trivial, it is
extremely important because it lays down the basis for defining element properties
design variables according to new blocks of properties that have been appended to
the FE model.

In order to clarify the concept of properties definition, it may be reformulated in
the following way: the entries corresponding to element properties design variables
in Nastran need to be linked with a certain property card, which at the same time is
related to an element or block of elements. For example, in the situation the user
wants to consider as a design variable the thickness of a given CQUAD4 element, a
new PSHELL card has to be created pointing to the chosen element, being the tool
responsible of managing this new property creation.

Original properties definition from Modified properties according
the FE model to the user input

Multiple PSHELL entries: Possibility to
split the upper skin and increase versatility
at the time of design variable selection.

Unique PSHELL entry: Same
property definition for all the
upper skin elements.

Figure 2.4: Properties definition example in Nastran

Then, the user is able to set as many design variables as it wants, not being
these design variables limited to just one element. This aspect means that the same
design variable could be specified for a block of the same type of elements that
shared initially the same property card. The user input format for defining the
previously mentioned new blocks of properties has been presented in Figure 2.3,
showing a Python dictionary entry which holds as keys the label for the components
and as values the list of the affected elements for which new properties are going
to be created. Furthermore, this method also recognizes the non-used or repeated
properties and erases them from the model.

Once the new properties have been added to the design model, the optimiza-
tion related DESVAR and DVPRELIL cards have to be included by means of the
“set_property_dv” method. These inputs are required for Nastran to identify the
desired design variables and to associate them with their corresponding properties,
performing the sensitivity analysis in relation to them. In a certain sense, the
DVPREL1 card associates the design variable with the property from the FE model,
serving as a kind of bridge between the FE definition and the optimization sequence.

22

According to Nastran’s optimization manual, the model properties are the quanti-
ties that appear on the bulk data property entries such as thicknesses, area moments
of inertia, elastic modulii or grid point locations, being the DVPREL1 entry in charge
of providing a linear relation between the property and the design variable. It has
been assumed that the user is only able to take as design variables the ones that are
already set as properties by Nastran, the linear relation coefficient would be equal to
one and the constant term of relation to zero. No bound limits have been defined for
the design variables as they do not impact the sensibility computation.

Attending to the element properties design variables input dictionary, see Figure
2.3 for a complete example, the user is capable of establishing the particular design
variables to consider for each one of the element blocks. This action has been
implemented through the PNAME/FID entry, allowing the user to specify the
property name, such as “T” for thickness, or the field position of the property entry
defined in Nastran’s quick reference guide. Not all the element properties have been
defined yet as design variable, see the tool’s repository information in order to check
the available properties or to request the implementation of newer ones.

There has also been required from the user to input the initial value of the design
variable, having this definition a deeper purpose as NOI could also be implemented in
a recursive loop with an external optimizer. In that situation, the tool would provide
the optimizer with the sensitivities, and the feedback coming from the optimizer
would supply the design variables values for the next iteration. Here lies one of the
main features of NOI, which allows to updates the DESVAR entries once the model
has been initialized. However, it is also possible to call the tool in a non-nested way.

2.2.1.2. Lumped masses design variables definition

As it was previously introduced, NOI also recognizes the definition of punctual
masses of the FE model, CONM2 entries, as design variables for the sensitivity
analysis. From the implementation point of view, the process of setting-up the
masses related design variables happens to be quite similar to the one described
for the element properties, with the main difference that in this scenario it is not
required to create additional lumped masses entries. This is due to the fact that it
has been assumed that the CONM2 cards that have been provided in the FE model
are immutable, being only possible to update their value.

The “set_mass_dv” method takes as input a Python dictionary that includes as
keys the labels for the new design variables, and as values a tuple with the list of
masses identifiers to consider, and its corresponding assigned value. From that point,
the method adds the required DESVAR and DVCREL1 cards to the optimization
model. Due to the fact that it is possible to group lumped masses to create new
design variables, the method also accounts at the time of adding new design variables
for the already existing ones, updates them in case the same masses have been
selected, and removes the non-used cards. Lastly, the only remaining task has been
redefining the value of the concerned CONM2 entries with the same one set in the
design variable entry.

23

Again, it has been established that the connectivity relation between the lumped
masses and the design variables is direct, using a null constant term of relation
and being the linear coefficient equal to one. A more detailed example of the input
dictionary and description of the method has been presented in Figure 2.3.

2.2.1.3. Design model responses

One of the most important steps in the optimization sequence module is including
the responses linked to the design model. Certain degree of flexibility, in terms of
user input, has been take into account. Nonetheless, and keeping in mind that the
main focus of this work yields in the static and modal analysis for optimization, the
possible responses have been restricted and presented in Table 2.2. Even though the
mentioned consideration reduces in some sense the applicability range of the tool,
solution sequences 101 and 103, for static and modal subcases, are currently ones of
the most used in the Nastran structural optimization environment.

Subcase type Supported responses

Modal WEIGHT, EIGN, DISP
Static WEIGHT, STRESS

Table 2.2: BDFOpt supported analysis types and responses

It has been presumed the weight of the structure to be always enforced as an
active response, and it has been defined in the tool as the fixed objective function due
to the fact that Nastran requires in a mandatory way the definition of an objective
function. Thus, it was concluded that the weight would be rather cheap to compute
once the FE model has been provided, in comparison with the rest of responses.

In relation to the remaining responses definition, and recalling Table 2.2, the user
is able to consider several options depending on the analysis type. The responses are
handled by means of the DRESP1 entries in the bulk data section, where it must be
specified the label, type of response, and its own characteristics. The Nastran design
sensitivity and optimization manual compiles all the possible responses accepted
by the DRESP1 card. However, in NOI there have only been accepted the stress,
eigenvalue, displacement and weight ones up to now.

For the static subcase, there only exists the possibility to define the stress as
response. Nonetheless, NOI allows the stress constraint to be applied to multiple
sets of elements. The tool is also capable of identifying the kind of stress that the
user wants to consider by means of the information stored in the responses input
dictionary and to write it into the DRESP1 response attribute field. This process
involves the fact that each element has a set of associated stress item codes. For
example, the Von Mises stress in a CQUAD4 element has a value of nine for its stress

code, however, the only recognized element types for stress responses in BDFOpt are
the CROD and CQUAD4, and in view of expanding this capability.

24

With respect to the modal analysis, the user can select as responses the eigenvalues
or eigenvectors for a given mode. The eigenvector implementation had to be specified
for each node of the FE model, being that the reason behind using the displacement
response type. At the end, this feature allows retrieving the sensibilities for the three
displacement components x, y, z per node and stated mode.

After the DRESP1 entries have been included, and in order to account for them
in the sensitivity analysis, they must be gathered by a DCONSTR card so Nastran
sets them as constraints in the optimization process. In reality, and because of
the fact that the tool is only interested on computing the sensitivity, they are not
strictly considered constraints of the optimization problem but Nastran requires this
formality to provide the sensitivity. Besides, these responses stored in DCONSTR
entries shall be grouped in two different DCONADD cards to make a distinction
between the static and modal subcases responses.

All in all, the user is only responsible of properly setting-up the responses input
dictionary, which contains as keys the label for the response, and its values correspond
to a nested dictionary with the response type identifier as the new key. The response
identifiers have been set to be “S” for stress, “EVAL” for eigenvalues and “EVEC”
for eigenvectors. Furthermore, the nested dictionary must include, for the stress
response the elements and the stress item code, and for the modal responses the
mode number information. See Figure 2.3 for a proper example of the responses
input dictionary and a detailed description of the “set_responses” method.

2.2.1.4. Executive control section and case control deck

The tool is able to properly set the executive control section, the case control deck,
and the bulk section parameters in the BDF input file, being these actions performed
by means of the “set_case_control_deck” method. These particular lines of code are
the ones subjected of allowing the user to specify the number of statics and /or modal
subcases to be performed and of specifying Nastran’s solution sequence.

The case control deck, in case the reader in not familiarized with the Nastran
environment, is the section of the input file devoted to compiling the subcase structure,
certain control parameters, boundary conditions, load scenarios, and constraints
of the model. On the other hand, and for the executive control, the optimization
solution sequence 200 must be specified.

In relation to the subcases incorporation, it has been required from the user to
define the ones it wants to perform through the analysis input dictionary. This
dictionary compiles the subcase definition, so its keys are meant to be the subcase
identifiers, “S” for static and “M” for modal. The static subcase recognizes an extra
input list which corresponds to the load identifiers to be appended as additional static
subcases in the subcase definition. Another important aspect about the subcases
section is the scenario when a modal analysis is being specified by the user. There,
a EIGRL entry must be included in the bulk data section, printing the maximum
number of modes to evaluate and the eigenvector normalization method.

25

Once all the subcases have been appended to the model, the DESSUB entry has to
be specified for each one of them, pointing to the previously mentioned DCONADD
set of responses to be evaluated. Moreover, the DESOBJ card is also involved, being
its task to designate the DRESP1 entry to be considered as the objective function,
which for NOI always will be the weight of the structure. At the end, the main
outputs of the optimization which are witten in the OP2 file are the sensitivity
matrix, DSCM2, and the DSCMCOL table that comprises the coefficients identifiers
of Nastran’s sensitivity matrix.

Regarding the output parameters, which are defined at the beginning of Nastran’s
bulk data section with the PARAM card, there have been included the ones that
write the sensitivity results in an external OP2 file, see Table 2.3. Besides, and as
the main purpose of NOI yields in the sensitivity analysis of the model, Nastran
allows to just stop there and not keep going with the full optimization process, so
this has also been specified with the corresponding POST equal to -1 entry value.

Output parameter Value

POSTEXT Yes
OPTEXIT -4
SPARSEDR No

Table 2.3: BDFOpt output parameters

One of the most important remarks in relation to the sensitivity matrix coefficients
is the screening process, which is defined as the operations used to identify those
responses that are likely to drive the redesign process. This means that by default
Nastran removes all the sensitivity coefficients that are not meaningful enough in the
optimization. However, NOI is capable of clearing away these actions and to provide
the user with the corresponding sensitivity coefficient using the DSCREEN entries.

2.2.2. Modal and flutter input files

The last two blocks that belong to the BDF4OPT class are related with allowing
the user to output modal and flutter analysis files to be run by Nastran. The
implementation of these blocks was included in NOI once the tool started to grow in
complexity, and after the optimization part was already finished. In behalf of the fact
that in the optimization sequence there is the possibility to perform modal analysis,
and that one of the most popular constraints in the aero-structural optimization is
the flutter speed, it was concluded that being able to check beforehand the response
of the model under either a modal or flutter analysis, without having to set-up the
complete optimization problem, was an appealing feature.

In the first place, and in relation to the modal analysis file, there has not been
required any input dictionary coming from the user, as it was at the time of dealing
with the optimization block. For this scenario, there is only demanded from the user
to define the number of modes that Nastran has to account for.

26

To assemble the modal file, it is needed to recall the solution sequence 103 in
the executive control section, and to define the proper subcases, which are already
established in the FE model input file. The Nastran entry responsible to define the
modal analysis parameters goes under the name of EIGRL, collecting the number of
modes to consider and the normalization method for the eigenvectors, being the user
able to select between normalizing respect the unit value of the generalized mass or
the value of the largest eigenvector displacement.

On the other hand, the flutter analysis definition directly embeds from the modal
block as the EIGRL card and number of modes are requested by the solution sequence
145. Additional parameters related with this particular analysis such as velocity,
Mach, and density ranges, stored in FLFACT entries, can also be provided by the
user. It is also important to set-up properly the reference magnitudes of the problem
like the length, velocity and density. Altogether, the tool is able to output a properly
formatted flutter analysis file, being its only limitation that it does not account for
setting-up the CAERO and PAERO entries, which must be provided in the FE input
file and that are related with the aeroelastic analysis.

2.3. OP2 reader module

The purpose of the output processing module is providing the user a tender way
of handling the simulation output. The XOP2 class, by means of the pyNastran
package, is capable of reading the OP2 files that Nastran provides after each run
and to extend its potential. These results are usually stored in a raw format, and
not sorted in any kind of way, that’s why this module had to be developed. Figure
2.5 offers a general overview of the different classes and methods that have been
discussed along this section.

As it was previously introduced, two branches can be found that directly inherit
from the XOP2 class. The mentioned parent class is capable on its own of providing
results related to the weight, its sensitivity, and the center of gravity of the considered
model. In this way, the extracted results are some kind of generic and independent
of the considered analysis scenarios, being this the main reason why these methods
belong to the partner class. Then, two child classes have been sorted and named
depending on the type of subcase for which they have been developed.

2.3.1. Static analysis results

The OP2Static class gathers the methods in charge of the static analysis results,
being able to extract the stresses recorded for the finite model elements and also to
output the sensitivity matrix in a general basis when this type of analysis has been
performed. Up to now the main focus of the thesis, in relation to the handling of
results, has been oriented towards the modal resolution, being this the reason why
only two methods can be found in this class. The “stress_output” method provides
the stresses in each element when an static analysis type has been performed. This
particular method outputs a dictionary that has been sorted according to the element
type, subcase, and element identifier.

27

Input OP2 XOP2

Extension of the OP2 class in order to provide support for the modal,
static and sensitivity analysis results stored in an OP2 file.

get _model weight()
get _model cg()
get weight derivatives(sens)

OP2Static

stress _output()
sensitivity global()

OP2Modal

eigenvalues output()

sensitivity custom (responses_dict)

get structural shapes dict()

get structural shapes derivatives dict(sens)
get generalized structural matrices

get generalized structural matrices derivatives(sens)

Figure 2.5: OP2 reader module breakdown

On the other hand, the global sensitivity matrix can be accessed throughout the
“sensitivity_global” method, providing a dictionary that includes all the sensitivity
coefficients sorted by their response type and Nastran’s identifier. This first method
for outputting the sensitivity covers the reading of any sensitivity matrix which
contains whatever type of response, with the only restriction that it must be supported
by the DSCMCOL table. However, its interpretation may be difficult as the output
dictionary is sorted according to the response identifiers. That’s why an additional
method to handle the sensitivity matrix has been developed for the modal branch.

2.3.2. Modal analysis results

The OP2Modal class has been oriented towards building an interface for the
sensitivity and modal analysis results computed by Nastran. This branch was born
after attempting to include NOI in an optimization framework, and serves the purpose
of aiding the handling and formatting of modal results. As it was presented along the
introduction of the former thesis, the structural model, apart from its geometrical
definition, is characterized by a set of matrices known as stiffness, mass and damping,
which play a huge role with respect its aerodynamic behaviour.

28

In this way, the OP2Modal class is responsible of retrieving the modal and
sensitivity results and building the corresponding matrices and their derivatives
whenever possible. All the methods stored in the class are available for OP2 files
that include results coming from solution sequences 103, 145 and 200 when a modal
analysis has been executed. Nonetheless, not only the structural matrices are being
considered, the eigenvectors can also be written in an output array sorted according
to the FE model nodes. All in all, these would be the main considerations of the
OP2Modal class, whose overview and 1/O structure has been presented in Figure
2.6. A deeper discussion is going to be provided for each one of the methods

In a first instance, it is required to provide as inputs to the OP2Modal class
the analysis results stored in an OP2 file, and the number of modes to take into
consideration. The number of modes is going to define the modal shapes to be stored
and also the dimensions of the structural matrices.

After the class has retrieved the corresponding input values, the first method
named “eigenvalues_output” stores the eigenvalues up to the user defined number
of modes. This method is then recalled at the time of setting-up the structural
matrices through “get_generalized_structural_matrices”, where once the values of
the generalized stiffness, mass and damping have been obtained for each one of the
evaluated modes, they are stashed in the corresponding position of the generalized
matrices. It is important to note that due to the fact that the eigenvectors have
been subjected to mass normalization, the resulting mass matrix mirrors the identity
matrix. Furthermore, and as no structural damping has been considered, the damping
matrix is a null. Lastly, the stiffness matrix is conformed by the eigenvalues of each
one of the modes in their corresponding position of the diagonal matrix.

In relation to the eigenvector output, they have been stored in an array which its
shape has been determined according to the number of nodes of the finite element
model. This output is provided by the “get_structural_shapes_dict” method, storing
in the numerical array up to the defined number of shapes sorted by the node number
and coordinate. Nonetheless, and due to a Nastran constraint, it is not possible
to output the eigenvectors when a solution sequence 145, flutter analysis, has been
performed for the reason that these displacements are not stored in the input OP2.

The previously discussed methods do not involve the treatment of the sensitivity
analysis results, meaning that they can be applied directly to solution sequences
103 and 145 in order to retrieve the mentioned matrices, or the modal shapes of
the model. One of the most important features of the OP2Modal class has been
enabled in the “get_generalized_structural _matrices_derivatives” method, which is
capable of outputting the derivatives of the structural matrices when the sensitivity
analysis results are stored in the input OP2 file. This method allows to account
for analytical derivatives when an optimization problem is being set-up and NOI
is used to cover the structural section of the optimization framework. Moreover,
and in the scenario an aero-structural mapping process has to be performed in-
volving the eigenvector derivatives, their values can be extracted by means of the
“get_structural _shapes_derivatives_dict” method.

29

responses_dict

The function of interest dictionary contains the description of the responses to be
taken into account during the optimization process. The keys correspond to the
function of interest labels and the values have been set to be a tuple which contain the
type of response, and a particular dictionary for each kind of them.

Example: responses _dict = { "FSC’: ('S", {"clements’: [1, 2, 3], 'stress_code’: 5})}

Figure 2.6: OP2Modal methods diagram

It is also worth mentioning, as the reader may notice, that the two methods
related to the derivatives output contain as input a certain dictionary. Thus, the
the main drawback of these methods is that there has been requested to input a
dictionary containing the eigenvector responses definition due to the fact that Nastran
does not provide information about the evaluated mode number in the DSCMCOL
table for each one of the eigenvector entries. In this way, the tool is now able to
match the displacement responses with their corresponding mode number.

30

The extraction of the sensitivity matrix results has been performed throughout the
“sensitivity_custom” method, whose output gathers the sensitivity coefficients in a
nested dictionary according to their response type, subcase, element /mode and design
variable. Besides, for responses that include dependencies with element numbers
or grid entries, such as the stress and eigenvectors ones, this kind of information
has also been included. Keeping in mind that the tool may be incorporated in an
optimization loop, this procedure eases the way of dealing with sensitivity coefficients
in order to input them to an external optimizer, being this process recalled in several
methods of the OP2Modal class at the time of dealing with sensitivity results.

2.4. FO06 reader module

The reason behind the implementation of this module lies in the fact that the user
may require reading results contained in a F06 file, being the OP2 reader not capable
of assessing this matter. Although this particular module is still in development,
some features have been included regarding the FO6 flutter solutions as Nastran has
not been able to provide an straight forward way of processing the solution sequence
145 results. Further work includes expanding the competences of this modules, as
it may be easier for the user to work with F06 files despite the fact that from the
computational point of view its performance is much lower than handling OP2 files.

Right now, and in relation to the flutter results, the user is able to display the V-g,
V-f and root locus plots recalling the methods presented in Figure 2.7. Furthermore,
this module can be combined with the BDFFlutter class from the BDF writer module,
conforming a powerful blend when the user wants to set-up and perform a flutter
analysis using Nastran. The unique requested input in order to display the results
happens to be the raw F06 file that Nastran outputs once the flutter analysis has
been completed. From that point, and via the pyNastran package, it is possible
to access the flutter results such as damping, frequency, complex eigenvalues and
velocity. Moreover, the user is able to specify the desired modes to be represented,
with the only restriction that they must had been stored in the F06 file.

XF06

Input F06 Module that expands the F06 results handling capabilities. Includes the
possibility to represent V-g, V-f and root locus plots of flutter results.

plot vg wvf()

plot root locus()

plot pyNas vg()

plot pyNas vg vf()

plot pyNas root locus()

Figure 2.7: F06 reader module breakdown

31

The first two methods shown in Figure 2.7 have been own implemented and
provide the V-g, V-f and root locus plots, being able to identifying the flutter speed
and removing the non-valid points where the imaginary component of the eigenvalue
goes to zero. Nonetheless, the output value of the flutter speed can show certain
variability as it directly depends on the range of speeds considered by Nastran when
setting-up the flutter analysis.

The coded method to retrieve the flutter point only evaluates the individual
velocity points defined by Nastran, meaning that for example if the flutter speed falls
within the 110 and 120 m/s range and the only considered points by Nastran are
that two, the method is going to output 120 m/s as the flutter speed because it is the
first evaluated point with a positive damping sign. This method is subjected to be
improved in the near future in order to provide a more robust determination of the
flutter speed, but up to now the obtained results are adequate. On the other hand,
the remaining methods have been directly embedded from the pyNastran package,
showing the same purpose but with the main difference that they are not able to
identify the flutter speed or to select the modes the user wants to represent.

To verify the proper working of the module, a test has been conducted taking
as input the FE model of the Goland+ wing benchmark problem that has been
presented in Subsection 4.1.1, nonetheless, certain changes were performed. The
first one has been transforming the units of the FE model from imperial to the I.S,
and the second to increase the number of velocity points to evaluate. It should be
remarked that all these actions have been made by means of the BDFFlutter class.
Finally, and once the flutter BDF file has been produced, and Nastran has stored
the results in the F06, it is possible to display the V-g and V-f plots for the first 4
modes of the Goland+ wing, see Subsection 4.1.1 for the complete discussion about
the results and for the visualization of the plots.

32

3 | FAEDO

This chapter of the thesis draws together the discussion concerning the framework
developed to solve a structural optimization problem with the incorporation of an
aeroelastic constraint. The framework has been entrenched in such a way that allows
a great degree of flexibility at the time of setting-up the design optimization problem,
allowing the possibility to define different types of objective functions and responses,
being NOI the one in charge of the sensitivity and structural analysis. Once the
structural results have been computed by Nastran and handled through NOI, a
particular set of tools has been recalled in order to account for the aerodynamic and
stability analysis of the model. This means that the framework is capable of fully
performing the structural and aeroelastic analysis, however, OpenMDAO would be
the one responsible for the optimization when nested with FAEDO.

Assessing the described framework, Figure 3.1 illustrates all the required steps
to be followed. The process, which starts with the structural analysis and ends up
providing the flutter speed and its derivatives, has been divided into different blocks
that also encompass the aero-structural mapping and the aeroelastic analysis. It is
important to take care of all the dependencies between the different blocks of the
framework, being critical to guarantee the proper flow of information between them.
Once all the information demanded by the optimizer has been gathered, the recursive
loop can take place, updating the starting values of FAEDO for each iteration, always
attending to the optimizer requests.

Regarding the optimizer, the framework has been coupled with OpenMDAO,
Reference [7], which is an open-source high-performance computing platform written
in Python. A noticeable aspect that conditioned the selection of the optimizer has
been the possibility to account for analytic derivatives, which in the framework have
been provided by NOI. OpenMDAO not only endorses this feature, as it is focused
on supporting gradient-based optimization, but also provides assistance at the time
of checking the values of the analytic derivatives, comparing them with a finite
difference method in order to verify that they have been properly computed.

The following pages briefly discuss the implementation of FAEDO, drawing special
attention to the structural analysis section of the tool in which NOI has been included,
but also granting the reader a general description of all the involved processes.
Moreover, it has been presented the way OpenMDAO has been incorporated into
the framework, the details regarding the preferred optimization algorithm, and its
working parameters.

33

3.1. FAEDO overview

According to the workflow presented in Figure 3.1, the work performed along
the thesis has been focused on the structural analysis section and its embodiment
into the FAEDO framework. In a first instance, it is worth mentioning that in order
to account for the stability analysis of the model, and thus its aeroelastic response,
it has been required to carry out a modal analysis that provides all the necessary
information. NOI has been the platform responsible for writing the optimization
problem BDF file, and once the modal analysis results have been provided by Nastran,
to make them available to the rest of the framework. By means of its XOP2 class,
NOI is capable of transferring the data regarding the generalized stiffness, mass
and damping matrices, and also the eigenvectors and sensitivities for the evaluated
number of modes and design variables.

After the structural part has been introduced, the aerodynamic related processes
can take place. All the methods for this block of the framework have been supplied
by Francesco Torrigiani, one of the supervisors of the thesis, in such a way that
it was only needed to rearrange them to build the aerodynamic section of the
framework. Although the implementation of FAEDO has not been one of the main
objectives of the thesis, due to the contribution to its development, and for the
sake of completeness, along this part of the project there has been included a brief
discussion corresponding to each one of the involved blocks rather than just providing
a description of the structural analysis section.

The main inputs of the FAEDO framework, when solving for the flutter speed
and its sensitivities, correspond to the FE model to be considered, the set of
Python dictionaries used in order to fully define the optimization problem, and the
aerodynamic mesh of the evaluated geometry. Furthermore, additional parameters
involved in the aerodynamic analysis can be also defined by the user inside the
tool, but not directly provided on an external basis. In the end, it has only been
required to provide the exact same inputs previously discussed in the NOI section,
the aerodynamic mesh, and also the OpenMDAO related parameters.

3.2. Structural analysis

The set-up for the structural analysis block includes the FE model definition,
which is directly associated with a certain structural grid and constitutes the main
input for this section of the framework. From this point, NOI has been adopted in
order to constitute the optimization problem design model, and with the purpose of
handling the results coming from Nastran’s sensitivity and modal analysis.

Although NOI allows a great degree of flexibility at the time of producing an
optimization BDF file, and according to the target of the framework, it has been
mandatory to carry out a modal analysis that would lie down the basis for the
stability study capable of computing the aeroelastic response. This has been the
main reason why the responses and analysis dictionaries required by NOI have been
already defined inside FAEDO, instead of being provided by the user.

34

Structural grid

Design variables dictionaries

FE model

Creation of the optimization BDF

Run the modal and sensitivity analysis

Build the structural model

Eigenvectors and their sensitivities

Aerodynamic grid

Translation of eigenvectors and
derivatives to the aerodynamic grid

Aerodynamic shapes

Panel method parameters

Build aerodynamic model

Run GAF analysis

GAF matrix

Speed range

Flutter analysis conditions

Build aerodynamic approximation

Create aeroelastic root locus

Find the flutter point

‘Weight and its sensitivity

K, M, C and their derivatives

Flutter speed and its sensitivity

Figure 3.1: FAEDO flutter speed analysis diagram

This circumstance implies that there has only been required to specify the number
of modes to evaluate, and then FAEDO takes care of writing the appropriate responses
dictionary including the eigenvalues and eigenvectors up to the preferred number of
shapes. Besides, and as it was brought in along the NOI discussion, the objective
function has been set to be the weight of the structure, however, the design variables
directly depend on the problem the user wants to solve, being this the reason why
its corresponding dictionary is a mandatory input of the structural block.

35

Therefore, NOI allows the addition of all this type of information to the input FE
model and provides the final optimization BDF file for Nastran. This file accounts
for a sensitivity and modal analysis, including the user-selected number of modes and
defining only as responses the eigenvalues and eigenvectors. Since the tool is going to
be subjected to an optimization loop, the only entries that have to be updated when
moving on along the iterations would be the values of the design variables dictionary.

Once Nastran has provided the results for the sensitivity and modal analysis,
and stored them in an OP2 file, NOI is able to extract the structural matrices,
eigenvectors, and sensitivities. At this point in the thesis, it has been already
justified the need for the OP2Modal class, which has been discussed along Section
2.3.2, as all the information for the aeroelastic portion of FAEDO can be provided
in a straight forward basis. The mentioned class also outputs the generalized mass,
stiffness, and damping matrices, which are further requested by the stability analysis.
Moreover, there have been stored the eigenvectors, the objective function value and
their corresponding derivatives in a set of dictionaries handled inside the framework.

In the end, the activities that take place inside this block can be summed up into
the creation of an optimization BDF file according to the user-defined optimization
problem, running Nastran in such a way that the modal results can be obtained,
and finally handling these results which are being required by the aero-structural
mapping and stability analysis sections of FAEDO.

3.3. Aero-structural mapping

The second block of the FAEDO workflow comprises the aero-structural mapping
of the model. The required information in order to complete this process corresponds
to the aerodynamic grid of the geometry, the eigenvectors that have been previously
computed by the structural analysis section, and the structural grid that contains the
FE model description. After the mentioned data has been retrieved by FAEDO, a
set of methods supplied by Francesco Torrigiani perform a mapping of the structural
modal displacements to the aerodynamic grid of the geometry. Due to the fact that
NOI also provides the sensitivity information, it has been required to include the
mapping of the modal shape derivatives due to the fact that they may be further
requested in the aerodynamic and stability analysis blocks.

In place of completing the mapping between both grids, the Infinite Plate Spline
(IPS) has been deployed. A more detailed discussion on the topic has been offered
through References [8] and [9] in case the reader is not familiar with these techniques.
Furthermore, and before proceeding with the aerodynamic analysis, the user is able to
check the output of the aero-structural mapping through an external generated VTK
file. This feature, and although it may seem trivial, holds great importance at the
time of checking if the mapping has been successful. The straightforward visualization
and comparison of both structural and aerodynamic shapes can determine if the
information between grids has been properly transferred and also its accuracy degree.

36

(a) Structural grid (b) Aerodynamic grid

Figure 3.2: Structural and aerodynamic Goland+ grid comparison

Figure 3.2 shows the reader the differences that may arise between the employed
structural and aerodynamic grids, and the relevance of carrying out the aero-structural
mapping process in a proper manner. The mentioned figure depicts two different
grids that represent the Goland+ wing benchmark model, see Section 4.1, where the
displacements computed in the structural nodes must be translated to every single
node of the aerodynamic grid by means of a least-square RBF method or a similar
procedure. As it can be clearly seen, the number of nodes and locations may vary
between the two grids, being this the main reason why an accurate mapping has
been required to get accurate results. Moreover, this transformation happens to be
more relevant when translating modal shapes between both grids, as seen in Figure
3.3. There, the second modal shape, torsion, of the Goland+ FE model has been
represented in both grids.

(a) Structural grid (b) Aerodynamic grid

Figure 3.3: Structural and aerodynamic Goland+ grid torsion mode comparison

37

3.4. Aerodynamic analysis

After retrieving the modal shapes in the aerodynamic grid, which correspond
to the eigenvectors and their derivatives, this section of the framework springs into
action aiming at computing the aerodynamic analysis. For this purpose, it has been
used an unsteady panel method that formerly goes under the name of GAF analysis
in the framework. The Morino’s method, see Reference [10], has been implemented
and employed to perform steady and unsteady potential aerodynamic analyses, and
the methods developed in References [11] and [12] have been directly incorporated
into the aerodynamic section of the framework.

Following the workflow presented in Figure 3.1, this section of FAEDO gathers
the information coming from the aero-structural mapping of the model. Additional
parameters connected to the panel method set-up, such as the number of panels in
the wing and in the wake, have also to be defined, as well as, the set of evaluated
reduced frequencies or the reference length. Usually, the number of panels in the
body and wake are decided according to a compromise between the accuracy of the
results and the expense of the computation. All these actions related to the panel
method set-up have been defined inside FAEDO with a set of default parameters
that can be modified by the user depending on the characteristics of the selected
geometry to be solved.

After everything has been properly defined, the aerodynamic analysis can take
place providing as its main output the GAF database and its derivative. Both results
are required by the finite state analysis, which is in charge of computing the flutter
speed of the model. It is important to note that the derivative of the aerodynamic
forces’ database plays a huge role at the time of computing the sensitivity of the
aeroelastic response that may be imposed in the optimization problem formulation.

3.5. Stability analysis

The final block of the framework corresponds to the the stability analysis, which
includes the finite state approximation for the aerodynamic results. This first process
has been performed following the guidelines provided by Reference [13]. Furthermore,
the methods described in Reference [12] have been the ones employed in order to
account for the flutter speed computation and its sensitivity.

As stated in the mentioned references, the finite state aerodynamic modelling
allows for the use of a simple root locus method for the computation of the flutter
point. In this way, the complex iterative procedure typical of p-k methods is avoided,
and the accuracy of aeroelastic eigenvalues computation far from the flutter point is
increased. Moreover, and according to Reference [12], by using the finite state finite
state approach it is possible to define analytically the flutter speed derivative starting
from the derivative of the structural and the aerodynamic terms. The derivatives
of the structural mass, stiffness and damping matrices can be obtained analytically,
whereas for the GAF matrix, a discrete adjoint procedure is set up.

38

That being said, the stability analysis can take place, taking as inputs the results
provided by the finite state and from the structural analysis. Besides, it has been
needed to account for the generalized stiffness, mass and damping matrices, the
flight conditions and the speed range. FAEDO also grants the user the possibility
to define the flight conditions inside the framework, being their default values the
ones matching standard ISA sea level. In the end, the stability analysis is capable of
providing the flutter speed and frequency by means of computing the root locus and
its intersection points. Besides, it has also been implemented the computation of the
flutter speed and frequency derivatives with respect to the design variables, in such
a way that these sensitivities directly guide the optimizer at the time of selecting
the new design variable values.

3.6. Connection with OpenMDAO

The preferred optimization platform with which the FAEDO framework has
been coupled happens to be OpenMDAO. Several options may be found regarding
optimizers, nonetheless, and after considering all the available alternatives, it has
been concluded that OpenMDAO was the most attractive option, being one of its
most remarkable aspects that it has been focused on supporting gradient-based
optimization with analytic derivatives.

Furthermore, its ease of use and research background, regarding being used for
several multidisciplinary optimization publications, have been also positive aspects to
consider. It is also worth mentioning that although OpenMDAO has been the selected
option, the framework could be perfectly coupled with any other external optimizer
capable of supporting gradient-based optimization. From this point, the attention
falls towards OpenMDAOQO, and how it is capable of solving coupled systems by means
of Newton-type algorithms that ease the the assembly of the global derivative [7].

According to Reference [14], OpenMDAO was developed at NASA Glenn and uses
the modular analysis and unified derivatives theory to allow for modular construction
and execution of complicated models. Besides, several models can be arranged in a
certain manner with any user-defined hierarchy of solver, and it has been employed
to optimize a variety of problems, including composite fan blades [15] or even a
boundary layer ingestion aircraft [16].

The interface required in order to bond OpenMDAO with FAEDO allows the user
to take control of many optimization parameters such as the optimization algorithm,
tolerance, maximum number of iterations, etc. For the purpose of FAEDO, it has
been required to define the desired design variables, the objective function, and also
the aeroelastic constraint. Then, it is possible to point out the location where the
sensitivities are stored in such a way that OpenMDAO is capable of retrieving their
values and account for the new updated ones. For a deeper explanation regarding
how it internally works, and how to set it up, the reader may visit Reference [17].

39

4 | Cases of study

After the fundamental topics of the thesis have been discussed, now the focus
lies in the cases of study performed over a certain wing structure that has been
subjected to a flutter constraint. The objective of the presented chapter is verifying
the proper working of NOI in an autonomous basis, and what is more important,
its integration in an optimization framework serving the purpose of providing the
required information regarding the structural analysis. In the evaluated test cases,
FAEDO and OpenMDAO have also been set to assessment in order to check the
correct flow of information between its components and the accurate computation of
the aeroelastic response. Altogether, a design of experiments and several optimization
scenarios have been conducted based on two different FE models of the well-known
Goland wing configuration, see Reference [18].

The test cases have been grouped according to the employed geometry, where a
detailed discussion of the models themselves has been presented in Subsection 4.1 of
this chapter. Figure 4.1 offers a quick summary of all the solved cases of study. In the
first instance, it is important to note that two FE models have been used due to the
fact that it has been required to test different types of design variables. Attending
to the cases of study that deal with the Goland+ model, their main feature would
be that the design variables correspond to the set of lumped masses that compose
the front and rear spars. Thus, a DOE in charge of verifying the accuracy of the
sensitivity coefficients and an optimization process have been carried out.

Once the DOE grants the proper working of the framework, the first optimization
on the Goland+ focuses on accomplishing a lighter structure while keeping its flutter
speed within a given range. The design variables have been defined as the set of
lumped masses that conform the front and rear spars of the model, so a more realistic
approach has been followed instead of acting on each one of the single lumped masses
that compose the wing.

Regarding the classic Goland wing scenarios, which take as input a FE model
based on a beam approximation, just a single optimization study has been performed.
The main difference between the Goland+ cases and this one can be found in the
design variable definition, as their objective function and aeroelastic constraint are
exactly the same. The cross-sectional area of the beam has been set as the design
variable, exploring the capabilities of NOI when dealing with finite element properties
design variables.

40

DOE for the flutter speed derivatives

Test case focused on verifying that the flutter speed derivatives computed
with respect the design variables are reliable and accurate enough.

Optimization of the Goland+ model

Optimization process taking the mass as objective function and including a
constraint on the flutter speed. The selected design variables represent the
set of lumped masses that compose the front and rear spars.

Optimization of the Goland beam model

Optimization of the classic Goland wing mass modifying its cross-sectional
area and restrincting the flutter speed within a given bounds.

Figure 4.1: Summary of the conducted cases of study

4.1. Finite element models

The Goland wing has been considered a reference model mainly used to perform
analysis and validations of aeroelastic methods in the aeronautical community. In the
presented cases of study, and in order to validate the proper working of the developed
tool, two finite element representations of the Goland wing have been recalled to
perform the required computations. Taking as starting point the geometry described
in Reference [18], the FE models have been evaluated by means of Nastran. Before
assessing the employed finite element models, a brief introduction about the Goland
wing shall be provided to the reader in order to understand the relevance of this
model and its evolution over the years.

The original Goland wing was firstly introduced in 1945 by Martin Goland [18],
who aimed to study the flutter speed of a uniform cantilever wing by the integration
of the differential equations for the wing motion. Since its first appearance in 1945,
many research articles have been conducted using the classic Goland wing as a way
of verifying aeroelastic results. Nonetheless, in 1980 the first modification of the
model appeared, going under the name of “Heavy” Goland wing.

Due to the analytical difficulties to predict the flutter stability when in transonic
range, F.E. Eastep and J.J Olsen [19] recalled the finite-difference relaxation method
to determine the oscillatory transonic aerodynamic forces on a uniform stiff cantilever
rectangular wing. The model resembled the classic Goland wing, keeping almost the
same elastic properties and introducing changes regarding a heavier mass distribution
in order to fulfill a certain flutter performance, see Table 4.1 for the main differences
between both wing models.

41

Parameter Goland “Heavy” Goland

c 1.828 m 1.828 m
l 6.096 m 6.096 m
m 35.7 kg/m 534.7 kg/m
I 8.642 kg/m 129.5 kg/m
S 6.514 kgm/m 97.71 kgm/m
EI, 9.786-10% N m? 9.786-10% N m?
GJ 0.989-10% N m? 0.989-10% N m?

Table 4.1: Comparison between the classic and “Heavy” Goland wing

Taking as a starting point the “Heavy” Goland wing, a FE model was developed in
Reference [20], modeling the wing according to a box structure in order to enable the
option of attaching a given store. The authors intended to study the store-induced
limit-cycle oscillation of a rectangular wing with tip store in transonic flow, and this
FE model of the “Heavy” Goland wing is nowadays known as the Goland+, being the
only difference the wing box structure. A full description of the wing characteristics
and of the finite element model was presented in [20], being this the basis from which
the FE model for the lumped masses optimization has been developed. However,
and at the time of evaluating element properties design variables, a beam model of
the traditional Goland wing has been recalled, see Reference [21].

4.1.1. Goland+ FE model

One of the main characteristics of the Goland+ model is that the mass distribution
of the wing has been modeled by means of lumped masses instead of considering
the material density, so this situation offers the possibility to test how NOI behaves
under this particular type of design variables. As the objective of the test case
would be the structural optimization of the wing under a flutter constraint, it seems
convenient to study how the placement of lumped masses in the structure may impact
its aeroelastic behaviour.

The main reason why the Goland+ model decided to use lumped masses was
in order to obtain a certain aeroelastic response. Avoiding the weight contribution
of the elements allowed the authors to use specified thicknesses that provided a
given elastic response of the model that would not be possible to accomplish without
placing lumped masses. In the end, properties such as the elastic axis and the center
of gravity locations where two of the main contributors to the flutter response that
were governed independently by means of lumped masses.

According to the FE model, see Figure 4.2 for its schematic representation, there
has been depicted a cantilevered wing with a span corresponding to 6.096 m and a
1.219 m chord. As it was previously mentioned, the FE model represents a simplified
wing box through a combination of around 230 elements. The skin has been modelled
by means of membrane elements, and the ribs and spars with shear panels.

42

It is also worth to mention that the geometry includes rod elements posts which
are in charge of connecting the skin with the matching spar or rib at each intersection.
Table 4.2 summarizes the Nastran element type and their dimensions, thicknesses
for the CQUAD4 and cross-sectional areas for the CROD elements, for each one of
the mentioned components.

Figure 4.2: Schematics of the Goland+ FE model

Component Element type Number of elements Dimensions

Wing skin CQUAD4 40 0.004724 m
Front spar web CQUAD4 10 0.000183 m
Front spar cap CROD 20 0.0038600 m?
Rear spar web CQUAD4 10 0.000183 m
Rear spar cap CROD 20 0.003860 m?

Center spar web CQUAD4 10 0.027096 m
Center spar cap CROD 20 0.01386 m?
Rib spar web CQUAD4 22 0.010576 m
Rib spar cap CROD 44 0.003920 m?
Posts CROD 33 0.000074 m?

Table 4.2: Goland+ FE model description

43

The most remarkable feature of the Goland+ FE model is the lumped masses,
whose locations have been presented in Figure 4.3. In reality, happens many times
that the theoretical response of the wing does not match with the experimental one,
being the weight distribution and placement of punctual masses one of the easiest
things to modify rather than redesigning the wing. Nonetheless, the value of these
punctual masses was determined following two criteria according to Reference [20].

Firstly, the value of the mass entry depends directly on its chord-wise position,
meaning that different values can be found depending on if the mass entry belongs
to the front, central or rear spar. Moreover, the value also finds influence by the
span-wise coordinate, meaning that entries in the root and tip of the wing locations
share the same value, which differs from the others in the rest of the spar. These
circumstances have been clarified with Table 4.3, where each lumped mass entry has
been sorted by its FE model identifier and value.

Figure 4.3: Goland+ lumped masses

FE model identifier Value
1000, 1001, 1020, 1021 14.338 kg

1002 ... 1019 28.677 kg
1100, 1101, 1120, 1121 28.780 kg
1102 ... 1119 57.561 kg
1200, 1201, 1220, 1221 38.964 kg
1202 ... 1219 77.928 kg

Table 4.3: Goland+ FE lumped masses locations

44

With respect to the material properties, all the elements of the model have been
defined with a Young’s modulus of 71.7 - 10° MPa, a shear modulus of 26.9 - 10°
MPa and a structural density of 107> kg/m3. It is important to note that due
to the fact that the Goland+ benchmark model was oriented to attain a certain
aeroelastic behaviour, the material density was set to almost zero due to the lumped
masses approach. According to the Goland+ Young’s and shear modulus, it has been
presumed that the selected material resembles the characteristics of an aluminum
alloy, whose characteristics have been compiled in Table 4.4.

Property Goland+ AT7075-T6

Young Modulus 71.7 GPa 71.7 GPa
Shear Modulus 26.9 GPa 26.9 GPa
Poisson ratio 0.33 0.33
Density 1075 kg/m3 2810 kg/m3

Table 4.4: Goland+ model material comparison

Once the model has been set-up, a modal and flutter Nastran analysis have been
conducted in order to validate the response of the wing. According to the modal
solutions, the first eigenvalue shows a frequency of 1.98 Hz while the second one
yields a frequency of 4.05 Hz. It is also worth mentioning that the modal results
have been compared against the ones provided in Reference [20], showing a good
agreement in terms of eigenvalues and eigenvectors.

With respect the flutter solutions, which have been evaluated by means of the
corresponding NOI module presented in Section 2.4, in Figure 4.4 there can be spotted
a frequency coalescence of the two first modes, being the second one responsible for
producing the flutter of the structure due to the positive damping shown around 120
m/s. Attending to the root locus representation displayed in Figure 4.5, it is even
easier to spot that the second mode is the one causing flutter as the root locus branch
that represents this particular mode transitions from the positive to the negative
plane. Besides, an exact value of 119.09 m/s for the flutter speed has been obtained.

4.1.2. Classic Goland beam FE model

The classic Goland beam finite element model, which was firstly presented in
Reference [21], keeps the same geometric features of the classic wing shown in Table
4.1, being the main difference with the Goland+ model that now the structure has
been represented by means of CBEAM elements and RBE2 rigid body entities. This
type of elements allows defining the distance between the elastic and the inertial
axial, which responsible of the coupling between bending and torsional modes. The
aeroelastic response of the described FE model happens to be the same as the classic
Goland, being this the reason why this beam approximation has been used for one of
the studies performed along the thesis. In relation to the mentioned study, because
of this FE model it is possible to consider element properties design variables, such
as the cross-sectional areas, neutral axis location, or even the moments of inertia.

45

=— Mode 1

~ = Mode 2

L 4

a“ x

=

@

g_ | __....-——-.._______‘__‘

g 2

e

0 T T T T T T T
0 20 40 60 80 100 120 140 160
2
=— Mode 1
— 14 —— Mode 2
E /
IE_ 0_
£ \
(1]
8 _q
_2 T T T T

T T T
0 20 40 60 80 100 120 140 160
Velocity [m/s]

Figure 4.4: V-g and V-f plots for the Goland+ FE model

250
25 VF=119.09
f=2.82 Hz
200
20
150 T‘él
% 15 1 E‘
£ G
8
[1F]
100 =
10 -
50
5 M

Re.

Figure 4.5: Root locus plot for the Goland+ FE model

46

Figure 4.6 represents a first overview of the beam, where its CBEAM elements
have been highlighted. The aerodynamic lifting surface has been aligned with the
freestream and modelled as a flat plate divided into an appropriate number of
CAERO panels placed along the wing span and chord. The RB2 elements have
been designed to match the leading and trailing edge of the aerodynamic surface,
providing a natural support for splining. On the other hand, the employed material
happens to be very similar to the one used in the Goland+ wing, clearly being
an aluminium alloy whose characteristics have been laid out in Table 4.6. A more
detailed description of the model can be found in Reference [21].

Figure 4.6: Schematics of the classic Goland beam model

Property Value Property Value
A 0.01323 m? Young Modulus 71.02 GPa
I 0.00262 m* Shear Modulus 25.9 GPa
I 0.0001396 m* Poisson ratio 0.35
J 3.809 - 107 m* Density 2700 kg/m3

Table 4.5: Model properties Table 4.6: Material properties

From this point, it has been presented the aeroelastic response of the Goland
beam model by means of a Nastran modal and flutter analysis. Once the modal
response of the structure has been computed, the first eigenvalue shows a frequency
of 7.66 Hz, while the second one falls towards 15.22 Hz. These values, all together
with the obtained eigenvectors, show a relatively low deviation with respect the
expected response of the classic Goland wing discussed in [18], validating the modal
response of the beam model. Then, and in relation to the flutter solutions, the V-g
and root locus representations have been computed recalling the corresponding NOI
module and presented in Figure 4.7 and Figure 4.8 respectively. Again, it is easy to
notice the coupling between the bending and torsion mode at a speed of 154.8 m/s
with a frequency of around 11.02 Hz, which are similar to the results shown in [12].

47

15.07 — Mode 1
™ —— Mode 2
L 12.5 1
=y
o
g 10.0
o
@
I 75 J—— ——-—-'"-"_""\\

T T T T T T T T
0 20 40 60 80 100 120 140 160 180
0.5
0.0 1]

(=N
E —-1.04
a8

54— Mode 1

— Mode 2
_2.0 T T T T T T T T
0 20 40 60 80 100 120 140 160 180

Velocity [m/s]

Figure 4.7: V-g and V-f plots for the Goland beam model

200
Vr=154.80
= L
% 4 fr=11.02 Hz 175
150
80
125 5
o 701 %
© 100
E g
9
4 D
6o 5=
50 4 \ 50
25
40
T T T T T
—-30 -20 -10] 10

Re.

Figure 4.8: Root locus plot for the Goland beam model

48

4.2. DOE for the flutter speed derivatives

This section brings together the design of experiments performed with the objective
of verifying that the flutter speed derivatives computed by the optimization framework
are reliable and accurate enough. In order to do so, the analytical derivatives of a
proposed optimization scenario have been subjected to comparison with the ones
obtained by means of the finite differences method. Being aware that the sensitivity
of the flutter speed ends up coming from a combination of several procedures, which
all of them have discussed along Section 3.1, this situation justifies the need of
proving that the sensitivities show the proper values due to their huge influence in
the optimization process, as they drive the direction to be followed by the optimizer.

4.2.1. Methodology

The evaluated DOE takes as its starting point the Goland+ wing geometry and
defines a baseline optimization problem with two design variables, which respond
to the groups of front and rear spar masses. Table 4.7 clarifies the design variables
definition, however, it should be noted that in this scenario all the lumped masses
that share the same chord-wise component have been subjected to an identical value.

Design variable Set of masses identifiers

FSM 1000 ... 1021
RSM 1200 ... 1221

Table 4.7: DOE design variables definition

The remaining aspects of the optimization problem happen to be exactly the
same, being the mass of the structure the objective function and the flutter speed its
aeroelastic constraint. Nonetheless, it is important to clarify that the information
provided by FAEDO during the DOE is not going to be handed over by OpenMDAO.
Instead of an optimization loop, there has been implemented a recursive process
that intends to map a user-defined domain composed of multiple design variable
combinations. These combinations correspond to all the possible pairs of design
variables when their respective masses have been allowed to range between 1 and
100 kilograms, being evaluated twenty values for each design variable. In this way,
the process ends up conforming a bi-dimensional design of experiments where the
main output of the framework corresponds to a map of the flutter speed, and its
derivatives, for around 400 pairs of values of the design variables.

The actual analytical derivatives computed at each point of the map have been
compared with the ones calculated with the FE method. The followed process to
obtain the finite differences derivatives has been relatively easy to implement. For
each combination of design variables, this means for each point in the flutter speed
map, two finite differences scenarios arise. Each one of them is solved setting fixed
one of the design variables and introducing a small perturbation of value 10~% in the
other one, meaning forward differences.

49

Then, FAEDO recomputes the flutter speed and it is possible to figure out the
sensitivity with respect to the perturbed design variable according to Expression 4.1.
After repeating the described process for all the design variable combinations, there
is also possible to represent a map of the finite differences flutter speed derivatives
for each design variable, allowing a direct comparison of the sensitivity coefficients
through the two mentioned methods.

Of (w1, x2) — lim flz1, 20+ Axy) — f(21,22)
0z Azz—0 Az,

(4.1)

4.2.2. Results

The conclusions coming from the design of experiments have been presented
in the following lines. In order to assess them, it has been determined that using
contour plots that represent the mapping of the studied magnitudes was the most
understandable way. Firstly, the results for the flutter speed mapping have been
displayed in Figure 4.9. There, the reader is able to spot how the flutter speed of the
Goland+ model changes according to the different combinations of design variables.
The z axis of the plot represents the value of each one of the masses located in the
front spar, while the y axis is in charge of the masses that compose the rear spar.

One of the first phenomenons that the reader may notice are the void regions in
the contour plot, meaning that the FAEDO framework has not been able to provide
a valid flutter speed for that combination of design variables in the considered range
of evaluated flutter speeds. These situations, analyzed from the aeroelastic point of
view, can be explained due to two main reasons. The first one would be that, and
due to the fact that acting in the front and rear spar masses directly impacts the
center of gravity position, the elastic axis location is now rearwards with respect to
the center of gravity of the wing. This can be checked plotting the center of gravity
position, as shown in Figure 4.10. There, and for the scenarios where there is a
greater increase of the front spar mass compared with the rear spar one, the center
of gravity position moves forward and overtakes the 33% chord position of the elastic
axis, meaning that no flutter can be found in the predefined velocity range.

So, this situation directly answers the lower right boundary of null flutter speed
values shown in Figure 4.9. On the other hand, the upper right boundary of null
results may hold similar reasoning, but now the center of gravity positions moves
towards the rear spar, making the wing flutter very early and providing wrong reading
in the FAEDO flutter speed computation.

It is also interesting to discuss how the flutter speed directly reacts when modifying
the design variables, and this can be done in a much easier way attending to its
derivatives. Figure 4.11 shows the analytical values of the flutter speed respect both
design variables. In the left image, which illustrates the sensitivity with respect to
the front spar masses, two regions can be spotted. The fact that there have been
found two regions means that depending on the combination of design variables, the
behavior of the flutter speed respect the front spar masses would be one or another.

50

RSM [kg]

FSM [kg]

Figure 4.9: Flutter speed mapping of the DOE

0.9263
0.8473
0.7684
0.6895

0.6106

RSM [kal

0.5317

Cg position [m)]

0.4528

0.3738

0.2949

0.2160

40 60
FSM [kg]

Figure 4.10: Centre of gravity mapping of the DOE

The red regions hold a positive sensitivity coefficient, meaning that increasing
the design variable directly rises the flutter speed, while in the blue regions the effect
is just the opposite. An increase in the front spar masses supposes that the flutter
speed decreases. However, and now paying attention to the right side image, the
trend followed by the sensitivity of the rear spar masses only shows one possible
region in which increasing the rear spar masses ends up reducing the flutter speed.

o1

RSM [kg]

9.8 g 80 /Q%g
)
84 E /
=
7.0 n . 60+
¢ F
56 = -
a £
4.2 o 40
]
1]
28 &
-
£
14 35 20
[T
0.0
20 40 60 80 100 20 40 60 80 100
FSM [kg] FSM [kg]
(a) FSM (b) RSM

Figure 4.11: Analytical derivatives computed in the DOE

Being aware that the overall objective of the design of experiments has been
verifying the values of the analytical derivatives, now there has been presented a
comparison between the values of the analytical and finite differences sensitivities
according to the previously introduced methodology. This study has been performed
in a two stages fashion. The first one, see Figure 4.12, portraits the difference
in the value of the sensitivities provided by each one of the methods. For both
design variables, there can be seen how the difference is fairly low, showing a greater
error between sensitivities located around the regions close to the boundaries, where
discrepancies happen to be greater due to the flutter speed computation method
limitations.

On the other hand, Figure 4.13, depicts the same comparison but now displaying
the error in percentage between the analytical and finite differences sensitivities. The
percentage error in both maps happens to be quite low, except in the areas where
the value of the sensitivities tends to zero. In those regions, and due to numerical
errors, the percent error shows a sudden increase. Overall, and after analyzing both
figures for the sensitivities of the front and rear spar masses design variables, it
can be confirmed that the FAEDO framework has been accurately computing the
derivatives of the flutter speed.

The conclusions achieved along this test case hold a significant meaning because
enable the use of NOI and FAEDO for solving optimization problems that include a
flutter constraint. From this point, and further in the thesis, several optimization
scenarios have been solved with the confidence that the computed sensitivities guide
the optimizer in the proper direction at the time of computing the minimum of the
considered objective function and fulfilling the imposed constraints.

52

i L
(=] (=]
Flutter Speed Der wrt RSM [m/(s*kg)]

-18

0.100

[(B¥+5)/W] WSH UM J2a paads Jannjd uo eljag

0.000

—0.025
—0.050
—0.075

=]
S
=
(=]
[

0.075
0.050
0.025

0.100

[=]
u =
O
LS
[=+]
O
Lo
[] o
. -]
=
u]
| | | o
~
Fo
o o (=] (=] [=] o
(=] =] 0o =+ ™~
=
[6] WSy

[(B3+s)/w] WS4 Hm 130 paads J=qinj4 uo e32a

0.000

—0.025
—0.050
—0.075

(=]
=1
!
(=]
|

0.075
0.050
0.025

T T
80 100

60

FSM [kg]

T T
[=] [=]
[l=] s

100 4
80
20 A

04

[63] WSy

FSM [kg]

(b) RSM

(a) FSM

Figure 4.12: Difference between analytical and FD derivatives

[%] WSY 1M 12a pazds Jshn|4 uo Jou3

[=+] o = ~ [=]

T
[=] f=]
™~

80
60
40

100 4

[63] wsy

[%] WS4 WM 12a paads 421In|4 uo Jou3
o
=

[R

100
80 -
0
40 4
20 1
0

[63] sy

80 100

6Il)
FSM [Kg]
(b) RSM

40

20

EEEN Lo

==} (=] = ™~ o

100

T
80

FSM [kg]

(a) FSM

Figure 4.13: % error between analytical and FD derivatives

93

4.3. Optimization of the Goland+ model

As a matter of verifying that NOI is capable of properly working with lumped
masses, it has been included in this section of the thesis the study of an optimization
process with this kind of design variables. From an aircraft design perspective, and in
order to obtain meaningful results, the static aeroelastic constraints should be added,
but this is not the purpose of this study. For this particular scenario, the selected
design variables correspond to the set of lumped masses that compose the front and
rear spar. In this way, it has been appealing to determine how the mass distribution,
and the lumped masses placement, impact the flutter speed of the model at the time
of minimizing the objective function.

4.3.1. Problem definition and set-up

In a first instance, and attending to the theoretical formulation, the design
optimization problem has to be defined. Expression 4.2 represents the problem
constitution, where for the case of study the objective function corresponds to the
mass of the structure and the aeroelastic constraint has been presented in such a way
that the flutter speed has to fall inside a certain range. As it has been previously
introduced, the Goland+ FE model makes a distinction on the lumped masses of
each one of the spars depending on their spanwise coordinate. Taking this into
account, it has been decided that only two design variables are going to be subjected
to study, being each one of them composed by a set of lumped masses. For the two
groups of design variables that portrait each one of the spars, only the masses that
do not belong to the tip and root positions have been selected, see Table 4.8 for
further details on the design variable definition.

Minimize m(x)
wrt xeR™ (4.2)
Subject to Vimin < Vi(2) < Vimas

Keeping in mind that the main goal of the optimization has been the mass
minimization of the structure, the objective function defined within NOI and FAEDO
happens to be the mass of the FE model. The aeroelastic constraint to be considered
acts directly on the Golands’s wing flutter speed, which must fall within the range of
100 and 140 m/s. The bound values of the flutter speed range have been selected in
such a way that it is not desirable to get early flutter speeds as they compromise the
integrity of the structure, however, relatively higher flutter speeds can also penalize
the response and characteristics of the final wing, for example, in terms of weight
or materials. In order to account for the flutter speed computation, the FAEDO
framework has been employed and then OpenMDAOQO carries out the optimization.

Furthermore, and due to the nature of the considered FE model, there have been
only evaluated the first two structural modes, as they have been found to be enough
in order to study the aeroelastic behaviour of the Goland+ wing. After setting-up the
design optimization model, now it is mandatory to properly arrange the aerodynamic
section of the FAEDO framework.

54

Design variable FE identifier Initial value Lower bound Upper bound

FSM 1002 ... 1019 28.677 kg 1 kg 100 kg
RSM 1202 ... 1219 77.928 kg 1 kg 100 kg

Table 4.8: Goland+ model optimization design variables

Attending to the FAEDO framework diagram, see Figure 3.1, and in place of
accounting for the aero-structural mapping and the aerodynamic analysis, it has
been required to provide an aerodynamic mesh of the geometry to be solved. The
preferred one has been a Goland wing grid that employs a NACA 0001 airfoil, which
has been arranged by a total of 840 nodes and 740 cells. Another remarkable aspect
to set-up prior solving the aerodynamic analysis corresponds to the flight conditions,
being selected ISA and sea level for this specific optimization scenario.

In addition, it is also important to properly establish the optimizer parameters
that OpenMDAO allows acting upon, which have been presented in Table 4.9. The
adopted method has been the SLSQP, being a sequential least squares programming
algorithm that uses the Han—Powell quasi-Newton method. The maximum number
of iterations and the tolerance for termination have also been defined according to
the optimization requirements and in order to avoid excessive waste of resources or
wrongful results. Scaling of 0.1 has been introduced in the objective function as a
matter of easing the method and to avert the nervous behaviour of the optimizer.

Opt. method Max. iterations Tolerance Obj. function scaling

SLSQP 50 10~° 0.1

Table 4.9: Lumped masses optimization parameters

4.3.2. Results

The final results of the optimization have been shown in Table 4.10, however, it is
interesting to represent the variation of the objective, design variables, and constraint
values along the optimization so it is possible to understand the reasoning behind
the results. An important remark is that the process ends with a total number of
50 iterations and 409 function evaluations, and although the optimizer reached the
maximum number of iterations, it can be considered that the process converged as
the difference between the proposed design variables and the values of objective, and
constraint, are within adequate margins.

For the former analysis of results, it has been assumed that the function evaluations
play the same role as the optimization iterations although it is well-known their
difference. Phenomenons such as gradient computations increase the number of
function evaluations, being this one of the reasons behind the difference between
these two magnitudes. In the further depicted plots, the values of the functions of
interest have been presented versus the function evaluations but labeled as iteration
number for the previously discussed reasons.

95

In a first instance, and paying attention to the objective function evolution of the
Goland+ wing, see Figure 4.14, it is noticeable the substantial drop in its overall
value at the early stages of the optimization process. After that response, the change
in the mass of the structure stabilizes all along with the remaining iterations until
further convergence to the minimum. Besides, it is clearly noticeable how a constraint
violation has been encountered, in which the flutter speed upper limit has not been
fulfilled and the optimization direction must be reconsidered. The small peaks in the
objective function, which can also be spotted in the design variables and constraint
plots, correspond to the previously mentioned spurious behaviour of the optimization
algorithm but do not compromise the validity of the results. The Goland+ wing mass
final value, which keeps almost constant after 40 function evaluations, corresponds
to a reduction of around the 44 % of the starting mass of the model.

% Constraint violation

3500

3250

3000

2750 A

Mass [kg]

2500

2250

2000

. .

1750 A

T
0 4 8 12 16 20 24 28 32 36 40
Iteration No.

Figure 4.14: Goland+ objective function evolution

This drop on the wing’s mass of the FE model has been caused mainly due to the
decrease in the lumped masses that compose the front and rear spear, and that have
been defined as the design variables. Figure 4.15 shows how there can be found a
reduction in both design variables, meaning lighter front and rear spars, however, the
most remarkable drop is the one presented in the rear spar. This change on the mass
distribution directly swifts the center of gravity location of the model and impacts
its aeroelastic response, being this the reason why the constraint in the flutter speed
was required. The appreciable trend supposes that depending on the combination of
rear and front spar masses, it impacts the flutter speed in such a way that increases
with heavier front spars and lighter rear ones.

Again, the noticeable spikes in both design variable histograms find reasoning in
the way the optimization algorithm works, introducing greater variations in order to
account for situations where a local minimum could be reached instead of the global
one, or also due to its nervous behaviour along the process.

o6

% Constraint violation
90

80 A
70
= 601
=
5 501
o
40 -
30
—— ——
20
1.0 T T T T T T T T T
0 4 a8 12 16 20 24 28 32 36 40
Iteration No.
(a) FSM
* Constraint violation
35
30 1
25 A
=
vy
= 504
=
i

15

10 A

" .

T
0 4 8 12 16 20 24 28 32 36 40
Iteration No.

(b) RSM

Figure 4.15: Goland+ design variable evolution

The flutter speed variation versus the iteration number, see Figure 4.16, shows also
an interesting behaviour. There, it can be directly spotted how the upper bound has
been violated at the start of the optimization, nonetheless, the optimizer modifies the
design variables values accordingly to the sensitivity analysis information provided
by NOI and redirects the flutter speed inside the allowable bounds. Through the
mentioned picture it is also worth mentioning how the flutter speed increases when
decreasing the front and rear spar masses, as it has been mentioned. To get a clearer
overview of this phenomenon, in Figure 4.10 there has been presented the tendency
of the flutter speed when modifying the considered design variables.

57

% Constraint violation

160

150 ~

140 v’ “v* " v’ “v* ik |

Ve [m/s]

130 ~

120 ~

110 ~

1.00 T T T T T T T T T
0 8 16 24 32 40 48 56 64 72 80

Iteration No.

Figure 4.16: Goland+ constraint function evolution

Paying attention now to the optimization results shown in Table 4.10, some
further conclusions may be found. First, it is clearly seen how a significant reduction
in the structure mass has been achieved by acting on the front and rear spar groups of
lumped masses. This circumstance supposes a 44% decrease that has been achieved
following a 90% and 77% reduction on FSM and RSM respectively. On the other
hand, and as it has been previously mentioned, this mass optimization comes along
with an increase in the flutter speed of the Goland+ model of around a 22% over
its initial baseline. All in all, it has been possible to confirm the success of this
optimization case of study at the time of verifying the capabilities of NOI and
FAEDO when working with lumped masses design variables. Furthermore, it has
been optimized the mass of the Goland+ FE model keeping its flutter speed inside
an acceptable range.

Parameter Initial value Final value % change

m 3283.33 kg 1812.359 kg -44%
FSM 28.677 kg 2.787 kg -90%
RSM 77.928 kg 22.097 kg -TT%

v 114.808 m/s 140 m/s +22%

Table 4.10: Goland+ model optimization results

o8

4.4. Optimization of the Goland beam model

The presented optimization scenario takes into account the classic Goland wing
with the objective of verifying the appropriate working of NOI and FAEDO at
the time of setting-up finite element properties as design variables. The effects of
the beam’s cross-sectional area on the aeroelastic response of the wing have been
analyzed, and its total structural mass has been minimized. For this purpose, the
FE beam model discussed in Subsection 4.1.2 has been considered, paying close
attention to the fact that the aeroelastic constraint applied on the flutter speed must
be satisfied at the end of the optimization process.

4.4.1. Problem definition and set-up

Recalling the optimization case of study presented in Section 4.3, the theoretical
formulation of the problem to be solved matches exactly Expression 4.2. For this
particular scenario, the objective function happens to be the total mass of the FE
beam model, which directly depends on the geometric characteristics and material
properties of the beam. Due to the fact that the material properties remain constant
along the optimization process, the considered parameter to act on the objective
function of this case of study happens to be the cross-sectional area, defined as the
unique design variable according to Table 4.11. Otherwise, the aeroelastic constraint
has been imposed in such a way that the flutter speed has to fall inside a given range
of values, between 100 and 140 m/s, being the reasoning and values of the flutter
speed limits the same as the ones shown in Section 4.3.

Design variable Initial value Lower bound Upper bound

A 0.0132 m?2 0.005 m? 0.05 m?

Table 4.11: Goland beam model optimization design variables

Once the problem has been properly defined, it is possible to set-up the FAEDO
framework parameters. The first two eigenvalues of the Goland beam model have
been assessed, as the flutter of the structure has been found to be caused due to
the coupling of the first bending and torsion modes. Furthermore, the employed
aerodynamic mesh has been identical to the one used in the previously carried out
optimization process, keeping the same number of panels in the body and wake when
solving for the aerodynamic analysis of the model. The atmospheric conditions at
which all the computations have been performed directly match ISA sea level, being
possible to verify the initial results with Reference [18].

The optimizer’s running parameters have been gathered in Table 4.9, where it is
important to note that scaling on the objective function has been applied for the
shake of smoothing the spurious behaviour of the algorithm that may show up along
the optimization. Besides, a maximum number of iterations has been set in case the
method is not able to reach the specified tolerances and to avoid excessive waste of
computational resources.

29

80 4

60+

Imag.

40

204

0

4.4.2. Results

The solved optimization problem reaches an optimum minimum of the objective
function after 17 iterations and 104 function evaluations. The reader may not be
familiar with the difference between iterations and function evaluations, being the
second one greater because, for example, gradient estimations increase the function
count over the iteration one. For the shake of ease, and along the presented discussion
of results, the function evaluations have been treated as iterations, being fully aware
of their difference and with the objective of getting a global overview of how the
functions of interest vary along with the optimization. In this way, it has been
decided to represent the values of the objective, design variable, and constraint
function at every single step of the optimization process.

Prior assessing the final results, it may be possible to predict what may happen
beforehand. As the final intention is minimizing the mass of the classic Goland wing
acting on its cross-sectional area, it can be assumed that lower areas directly mean
a mass reduction of the structure. However, the value of the cross-sectional area
also impacts the flutter speed of the model. According to the flutter response of
a generic wing, several factors play a huge role, being the relative location of its
center of gravity and elastic axis two of the most important ones. When acting on
the value of the beam’s area, its inertia properties are directly modified, influencing
its aeroelastic response. For the considered scenario, lower areas are translated into
lower flutter speed due to the fact that an earlier coupling of the torsion and bending
modes happens. This can be directly seen when comparing the root locus plots of
the initial and end results of the optimization, see Figure 4.17.

Root Locus Root Locus
U= 155.44 [m/s] 100 7 U= 100.00 [m/s]
f=10.87 Hz * f£=1448Hz \
400 80 -
60 -
300 E 40
£
= g 20
g E
200
L 0+
_20 -
100
—40
- —60 -
—60 -40 -20 0 20 40 60 80 100 —200 ~150 -100 -50 0
Re. Re.
(a) Iteration No. 1 (b) Iteration No. 17

Figure 4.17: Root locus of the Goland beam optimization
Once it has been clarified what it can be expected from this optimization scenario,

it is possible to analyze the conclusions provided by the coupling of FAEDO with
the optimizer. A summary of the actual results has been gathered in Table 4.12.

60

400

w
<]
5]
1

1]
(=]
o
Velocity [mjfs

100

Focusing on the objective function history, which corresponds to the mass evolution
of the Goland beam model, Figure 4.18 represents the previously mentioned trend
when acting on the cross-sectional area, and how its value has been reduced until
reaching a certain minimum. The initial plateau happens due to the initialization
of the method, where two evaluations of the function have been performed without
introducing any perturbation on the design variable. There, several constraint
violations can be found due to the fact that in the early stages the optimizer is still
trying to guess the proper minimization direction following the gradient information.

% Constraint violation

225 1

200 1

175 A

150 A

Mass [kg]

125 A

100 A

75 1

50 T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20

Iteration No.

Figure 4.18: Goland beam objective function evolution

Moreover, it is important to compare this behaviour with the optimization history
of the design variable and the flutter speed. Figure 4.19 depicts the optimizer guess
values for the cross-sectional area of the beam, and how each time that it changes
the flutter speed and mass of the model are also modified. When representing the
constraint evolution, see Figure 4.20, the limits on the flutter speed have also been
portrait in the shape of a blue-colored area. There, it is even easier to spot the
constraint violation, as the lower limit on the flutter speed has not been met for
the earlier function evaluations. From that point, the method is able to correct this
deviation and keep on with the optimization until reaching a minimum.

Parameter Initial value Final value % change

m 217.75 kg 85.29 kg -61%
A 0.0132 m? 0.0052 m? -61%
Vi 155.44 m/s 100 m/s -36%

Table 4.12: Goland beam model optimization results

61

In the end, the results have been presented in Table 4.12 for the objective, design
variable, and flutter speed. It is worth to mention that the framework has been able
to achieve a reduction of around a 61% in the FE model mass while keeping a flutter
speed of 100 m/s and acting only on the cross-sectional area. The obtained results
allow concluding that the FAEDO framework, all together with NOI, is capable of
solving optimization processes with finite element properties design variables, and
aeroelastic constraints.

% Constraint violation

0.014

0.012 4

0.010 4

0.008 4

Alm]

0.006 A

0.004 4

0.002 T T T T T
0 2 4 6 8 10 12 14 16 18 20

Iteration No.

Figure 4.19: Goland beam design variable evolution

% Constraint violation
170

160 A

150

140 A

130

Ve [m/s]

120

110 A

100

90 T T T T T
0 2 4 6 8 10 12 14 16 18 20

Iteration No.

Figure 4.20: Goland beam constraint function evolution

62

5 | Conclusions

The modern aircraft design process requires the inclusion of new methods capable
of dealing with automatization, and which provide a high degree of robustness,
being this the main reason under the development of the NOI tool and the FAEDO
framework, which is capable of dealing with aeroelastic constraints. In that particular
sense, the presented set of tools fulfil these requirements and add new features that
could be directly applied, and aid the improvement of the aircraft design process.

In the first instance, the NOI tool has been proven to be a reliable asset at the
time of solving structural and sensitivity analysis by means of Nastran. Additional
features have been included, which allow the creation of optimization, modal and
flutter input files, and also the post-processing of OP2 and f06 flutter output result
files. Its integration in the FAEDO framework has granted the possibility to account
for the structural analysis, while additional modules have been developed in order
to solve for the aerodynamic and stability analysis at the time of computing the
aeroelastic response of the input FE model. Once all the required methods have
been properly arranged, the FAEDO framework brings the possibility to solve for
the optimization of a given geometry, directly dealing with a flutter constraint, and
being possible to couple it with an optimization platform such as OpenMDAO.

The characteristics described at the time of creating NOI and FAEDO happen
to be appealing aspects to be potentially included in the aircraft design process.
Furthermore, the FAEDO framework and NOI have been validated through several
different test cases and models such as beam elements, shell elements, concentrated
masses, and different design variables. Overall, the obtained results give an idea of
the huge degree of flexibility and robustness of the developed tools.

Different improvements and test cases have been left for the future, being possible
to expand the capabilities of both NOI and FAEDO. An attractive feature to be
included in NOI would be accounting for shape design variables, as right now it is
only able to work with size design variable, and also the implementation of a wider
range of element properties to be set as design variables. On the other hand, the
FAEDO framework could be also an object of improvement in terms of program
comprehension, including the possibility to work with a global input file.

63

A ‘ NOI user’s guide

A.1. What is NOI?

Nastran Optimization Interface, also known as NOI, is a self-developed Python
tool that provides the capability of writing Nastran optimization, modal and flutter
input files given the finite element or design model description. NOI is also able of
reading the modal, static, and sensitivity analysis results stored in a OP2 file, and
to represent the flutter response when a proper F06 file has been supplied.

A.2. How to install NOI
For DLR users:

pip install git+https://gitlab.dlr.de/sl-fsi-mdo-collaboration /noi

For developers:

git clone https://gitlab.dlr.de/sl-fsi-mdo-collaboration /noi
cd noi
python setup.py develop

A.3. What is NOI capable of?

— Writing optimization, solution sequence 200, Nastran input files.

— Writing normal modes, solution sequence 103, Nastran input files.

— Writing flutter analysis, solution sequence 145, Nastran input files.

— Reading the optimization OP2 file and providing the sensitivity analysis results.
— Reading the optimization OP2 file and providing the structural analysis results.
— Reading the normal modes OP2 file and providing the structural results.

— Reading the flutter analysis F06 file and represent the V-g, V-f, and root locus.

64

A.4. Writing an optimization input file

This section of the user’s guide gathers a detailed discussion concerning how
to operate the tool at the time of writing an optimization BDF file. Some of the
information provided here has already been introduced in Section 2.2.1 of the thesis,
which is highly recommended to be carefully reviewed prior trying to work with the
tool. Furthermore, the needed input dictionaries, which should be provided by the
user, have been presented with practical examples so in this way the reader may find
it even easier to understand how the tool has been structured.

A.4.1. NOI’s input for optimization

The main blocks of information that must be supplied by the tool’s user correspond
to a properly formatted Nastran BDF file, which must contain the finite element
model, and a set of Python dictionaries in charge of setting-up the optimization
problem. Attending to the characteristics of the input BDF file, it has been required
to include in a mandatory fashion the FE model and a set of entries that NOI may
demand depending on the analysis type to be performed. In a general basis, the tool
requires from the user supplied BDF' the following information:

— FE model (nodes, element and properties entries)
— Materials

— Loads

— Boundary conditions

On the other hand, the following lines concerning the writing of an optimization
input file have been devoted to show the reader how the input Python dictionaries
have been in charge of setting-up the design optimization model, the proper way to
define them, and also to discuss their limitations and the tool’s range of capabilities.

A.4.2. Optimization input dictionaries

The input dictionaries have been the preferred way to define the characteristics of
the optimization problem. In such manner, they have been sorted in three different
categories depending on the information that they provide:

— Design variables input dictionaries
— Responses input dictionary

— Analysis input dictionary

A.4.2.1. Design variables input dictionaries

According to Nastran, and for the shake of defining the design variables of the
model, it has been needed to include a set of DESVAR entries which have to be
linked to a given element property, connectivity or grid point location through the
DVPREL, DVCREL and DVGRID cards.

65

At the moment, NOI is only capable of including design variables related to
element properties and lumped masses, meaning this last group the CONM?2 entries
stored in the FE model. The element properties design variables have been handled
by means of the set_property_dv method and the property_dict and property_block_dict
dictionaries. Otherwise, the lumped masses design variables have been included
attending to the set_mass_dv method and the masses_dict input dictionary.

— Element properties design variables: Due to the fact that in order to
deal with element properties it has been needed to write new property cards
depending on the specified design variables, two user-input dictionaries are
directly requested by NOI. The first one, property_block_dict, is responsible
of writing the new property blocks, while the second one, property_dict, is
accountable of appending the corresponding DESVAR and DVPREL cards
following the user supplied information.

— Lumped masses design variables: In this particular scenario, just the
definition of the masses_dict has been required, granting the set of masses to

be defined as design variables, their corresponding values, and appending the
DESVAR and DVCREL entries to the optimization BDF file.

The following blocks of code depict the structure that must be followed at the time
of setting-up the design variables input dictionaries and also two practical examples.
In a general matter, the keys of the dictionaries correspond to a representative label,
and the values to a tuple that contains the design variable information.

property_block dict = {‘label of the block of properties’: [list of affected
elements|}

property_dict = {‘label of the design variable’: (‘label of the block of properties’,
type of design variable, value of the design variable)}

masses_dict = {‘label of the design variables’ ([list of affected masses|, ‘value of
the design variable’)}

Definition of skin thicknesses of elements 1 and 2 as a design variable:
property_block dict = ‘skin’: [1,2]
property_dict = ‘SkT": (‘skin’, 4, .0155)

Definition of a set of CONMZ2 entries as a design variable
masses_dict = ‘M1’: ([1001, 1002, 1003], 15)

A.4.2.2. Responses input dictionary

The model responses have been included in the optimization BDF file through
the DRESP1 Nastran entry and recalling the set_responses method which takes as
input the set_responses_dictionary. Depending on the type of responses considered,
different analysis may be included in the BDF file, see Section 2.2.1.3.

66

The responses dictionary compiles the definition of the responses to be taken
into account along the optimization. The keys of the dictionary correspond to the
user defined labels for the responses, and values have been set to be a tuple that
contains the type of response and a dictionary dependent on each of them. The user
is free to specify whatever label for the response, but it is recommended to use a
representative one depending on the type of response considered. For eigenvalues
and eigenvector responses it has been required a normal modes analysis subcase, as
well as, for a stress response it has been mandatory including a statics one.

In case of including a stress response, it has been allowed to specify the elements
of the FE model to which this response shall be applied and the type of stress to
be evaluated through Nastran’s stress code formulation. Otherwise, for eigenvalue
and eigenvector responses it is needed to supply the mode number. Bounds have not
been required for either the stress, eigenvalue, or eigenvector responses.

The presented blocks of information represent the formatting to be followed
by the responses dictionary depending on the type of included responses, and also
several practical examples for an easier understanding. The first of them compiles
the differences between the dictionaries that must be supplied after the responses
identifier depending on each type.

Stress (S): {‘elements’: [eids|, ‘stress_code’: stress_code, ‘bounds’: [lw, ub]}
Eigenvalue (EVAL) : {‘mode’: mode_number, ‘bounds’: [lw, ub]}
Eigenvector (EVEC): {‘mode’: mode number, ‘bounds’: [lw, ub]}

Von Misses stress response in elements 1, 2, 3:
responses_dict = {‘FsS”:(‘S’, {’elements’: [1,2,3],‘stress_code’:5})}

First two eigenvalues with a stress response in element 1:
responses_dict = {‘FsS’:(‘S’,{‘elements’:[1],‘stress_code’:5}), ‘EVI:(‘EVAL’,
{mode: 1}), ‘EV2::(‘EVAL’, {mode: 2})}

First eigenvalue and eigenvector:
responses_dict = ‘EV1:(‘EVAL’, {mode: 1}), ‘EVC1":(‘EVEC’, {mode: 1})

A.4.3. Analysis input dictionary

The case control deck of the optimization BDF file compiles the analysis that
shall be performed, and it has been required to input the analysis_dict. Then, by
means of the set_case_control_deck method NOI includes all the information regarding
the analysis types, subcase structure, output parameters, etc. The structure of the
analysis_dict is relatively easy to understand, the keys of the dictionary correspond
to the identifier of the subcase type that the user wants to perform, ‘M’ for modal
and ‘S’ for static, and the values provide NOI additional information to be appended
in the subcase definition section, for example the load identifier in the static subcase.

67

analysis_dict = {‘identifier of the subcase type’: ‘information on the subcase’}

Modal analysis:
analysis_dict = {‘M’: None}

Modal and static analysis under the action of a load:
analysis_dict = {‘S’: [100] , ‘M’: None}

A.4.4. Example of writing an optimization BDF file

This section illustrates how NOI allows writing an optimization Nastran file
requesting as input the FE model described in Section 4.1.1. The obtained output
corresponds to a properly formatted solution sequence 200 file that defines as design
variables the thickness of the FE model skin elements and a set of three lumped
masses. Besides, a modal and static analysis has been included due to the fact that
the preferred responses correspond to the Von Misses stress in elements 1 and 2, the
first eigenvector and the first eigenvalue, see Table A.1.

The presented block of code compiles all the necessary steps to be covered in the
Python script. Firstly, it has been required by the user to properly install the NOI
tool, see Section A.2, and to call the BDFOpt class in order to access the methods to
write the optimization BDF file. Then, the user must include the input dictionaries
that set-up the design optimization model. In this particular situation, a combination
of element properties and lumped masses design variables has been established, being
this the reason why both the property_dict and masses_dict dictionaries must be
provided. Finally, the user must recall the write_opt_bdf method included in the
BDFOpt class to output the final optimization file.

Initialization:
from noi. BDFWriter import BDFOpt

Input dictionaries definition:

property_block_dict = {‘skin’: list(range(1, 20))}

property_dict = {‘SKT": (‘skin’, ‘T", .1)}

masses_dict = {‘M1": ([1210, 1211, 1212], 6.)}

responses_dict = {‘FsS”: (’S’, {‘elements’: [1,2], ‘stress_code’: 5}),'EV1": (‘EVec’,
{‘mode’: 1}), ‘EV1": (‘EVal’, {‘mode’: 1})}

analysis_dict = {‘M’:None, ‘S’:[]}

Requesting the output file:

bdf_filename = ‘goland_clean_103.bdf’

mdl = BDFOpt(bdf_filename)
mdl.write_opt_bdf(‘goland_optimization_output.bdf’, responses_dict, analy-
sis_dict, property_block dict=property_block_dict, property_dict=property_dict,
masses_dict= masses_dict)

68

Design variables Thickness of elements [1 to 20], set of lumped masses [1210, 1211, 1212]
Responses Figenvalue and eigenvector no. 1, Von Misses stress in element 1
Analysis types Modal and static

Table A.1: Summary of the example optimization problem

A.5. Writing a modal analysis file

The process required to output a modal analysis file happens to be much easier
in comparison with the optimization one. The user has only been requested to input
the finite element model. Then, NOI is capable of properly formatting a solution
sequence 103 output file, recalling its BDFModal class. Through the implemented
methods the tool is able to account for the desired number of modes to evaluate, and
also recognizes multiple spc entries to conform different analysis subcases. Besides,
the tool allows the possibility to define the normalization mode for the eigenvectors,
and the default number of shapes to be considered has been set to two.

A.5.1. Example of writing a modal BDF file

Attending to the input finite element model described in Section 4.1.1, the
presented block of code details the process to accurately output its corresponding
modal analysis file. For the evaluated scenario, the normalization mode matches the
mass one, and there have been included up to three modal shapes.

Initialization:
from noi. BDFWriter import BDFModal

Calling the tool:

bdf_filename = ‘goland_clean_103.bdf’

mdl = BDFModal(bdf filename)
mdl.write_modal_bdf(‘goland_modal_analysis.bdf’, norm=‘MASS’, n_modes=3)

A.6. Writing a flutter analysis file

At the time of writing a flutter analysis file, and according to the way Nastran
works, the BDFFluter class directly relies upon the BDFModal one and contains
the write_flutter_bdf method. It is also worth to mention that the input BDF must
include the CAERO and PAERO entries in order to generate the appropriate solution
sequence 145 file. Furthermore, the user is able to specify the most remarkable flutter
analysis parameters, see Table A.2, such as velocity, reduced frequency, and density
range, symmetry, or even the number of modes.

69

Flutter parameters Number of modes, density range, Mach
number range, velocity range, k range,
reference length, reference density,
symmetry and reference velocity

Table A.2: Writing a flutter file parameters

A.6.1. Example of writing a flutter BDF file

The flutter analysis Nastran file has been obtained according to the BDFFlutter
class, and attending to the geometry discussed in Section 4.1.1. The depicted block
of code features the required actions to output the flutter analysis file. Along this
particular example, there has been included the definition of the reference length
and the velocity range parameters.

Initialization:
from noi. BDFWriter import BDFFlutter

Calling the tool:

bdf_filename = ‘goland_clean_103.bdf’

mdl = BDFFlutter(bdf_filename)

mdl.write_flutter_bdf(‘goland flutter.bdf’, 1.ref=1.83, velocity _range=[10... 200])

A.7. Reading of modal and static analysis results

As it has been discussed along the thesis, NOI also allows the post-processing and
verification of the obtained results when modal, static and sensitivity analysis results
have been stored in an external OP2 file. For this purpose, it is possible to rely
upon two different classes which go under the name of OP2Static and OP2Modal,
depending on the type of results the user wants to analyze.

A.7.1. Example of reading static analysis results

Initialization:
from noi.OP2Reader import OP2Static

Calling the tool:

op2_filename = ‘goland _static_results’
op2 = OP2Static(op2_filename)
op2.stress_output()

70

A.7.2. Example of reading modal analysis results

Initialization:
from noi.OP2Reader import OP2Modal

Calling the tool:

op2_filename = ‘goland _modal results’
op2 = OP2Modal(op2_filename)
op2.eigenvalues_output()

A.7.3. Example of reading sensitivity analysis results

A particular scenario arises at the time of trying to read the sensitivity analysis
results, as two ways may be followed. In the situation the user wants to output the
general, and unsorted, sensitivity matrix, it has been required to use the method
stored inside the OP2Static class. However, a more precise method for the modal
scenarios has been developed, as discussed in Section 2.3.2, where the responses
dictionary must be provided, and the sensitivity matrix has been provided in a more
structured fashion according to the OP2Modal class.

Initialization:
from noi.OP2Reader import OP2Static

Calling the tool:

op2_filename = ‘goland _sensitivity results’
op2 = OP2Static(op2_filename)
op2.sensitivity_global()

Initialization:
from noi.OP2Reader import OP2Modal

Input dictionaries definition:
responses_dict = {‘EV1": (‘EVec’, {’'mode’: 1}), ‘EV1’: (‘EVal’, {'mode’: 1})}

Calling the tool:

op2_filename = ‘goland _sensitivity results’

op2 = OP2Modal(op2_filename)
op2.sensitivity_custom(responses_dict=responses_dict)

71

A.8. Reading a flutter FO06 file

NOI also supports reading and post-processing the results of a conducted flutter
analysis that have been stored in a F06 file. Once the input file has been evaluated
by the tool, the user is able to request the V-g, V-f and root locus plots by means of
the methods coded inside the FO6Reader class.

A.8.1. Example of reading a flutter F06 file

A concise example in relation to the analysis of a solution sequence 145 F06 file
has been presented in the following block of code. There, the first two modes have
been the ones selected to be depicted in the V-g, V-f and root locus representations.

Initialization:
from noi.FO6Reader import XF06

Calling the tool:

f06_filename = ’goland_model 145.f06’
flutter = XF06(f06_filename, modes=[1, 2])
flutter.plot_root_locus()

flutter.plot_vg_vf()

72

| Bibliography

[12]
[13]

[14]

Peter W Christensen and Anders Klarbring. An introduction to structural
optimization. Vol. 153. Springer Science & Business Media, 2008.

Gaetan Kenway, Graeme Kennedy, and Joaquim Martins. “A scalable parallel
approach for high-fidelity aerostructural analysis and optimization”. In: 53rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materi-
als Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th
ATAA. 2012, p. 1922.

UT Ringertz. “On structural optimization with aeroelasticity constraints”. In:
Structural optimization 8.1 (1994), pp. 16-23.

Dewey H Hodges and G Alvin Pierce. Introduction to structural dynamics and
aeroelasticity. Vol. 15. cambridge university press, 2011.

MSC Software. Quick Reference Guide. MSC Software, 2018.

MSC Software. Design Sensitivity and Optimization User’s Guide. MSC Soft-
ware, 2017.

Justin S. Gray et al. “OpenMDAQ: An open-source framework for multidisci-
plinary design, analysis, and optimization”. In: Structural and Multidisciplinary
Optimization 59.4 (Apr. 2019), pp. 1075-1104. por1: 10.1007/s00158-019-
02211-z.

Armin Beckert and Holger Wendland. “Multivariate interpolation for fluid-
structure-interaction problems using radial basis functions”. In: Aerospace
Science and Technology 5.2 (2001), pp. 125-134.

Thomas CS Rendall and Christian B Allen. “Unified fluid—structure interpola-
tion and mesh motion using radial basis functions”. In: International journal
for numerical methods in engineering 74.10 (2008), pp. 1519-15509.

Luigi Morino. “A general theory of unsteady compressible potential aerody-
namics”. In: (1974).

Francesco Torrigiani and Pier Davide Ciampa. “Development of an unsteady
aeroelastic module for a collaborative aircraft MDO?”. In: 2018 Multidisciplinary
Analysis and Optimization Conference. 2018, p. 3879.

Francesco Torrigiani et al. “FLUTTER SENSITIVITY ANALYSIS FOR WING
PLANFORM OPTIMIZATION". In: (2019).

L Morino et al. “Matrix fraction approach for finite-state aerodynamic model-
ing”. In: ATAA journal 33.4 (1995), pp. 703-711.

John P Jasa et al. “How Certain Physical Considerations Impact Aerostructural
Wing Optimization”. In: AIAA Aviation 2019 Forum. 2019, p. 3242.

73

https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.1007/s00158-019-02211-z

[15]

[16]

[17]

Rula M. Coroneos. “Structural Analysis and Optimization of a Composite Fan
Blade for Future Aircraft Engine”. In: NASA/TM 217652. Aug. 2012.

Justin S. Gray et al. “Coupled Aeropropulsive Optimization of a Three-
Dimensional Boundary-Layer Ingestion Propulsor Considering Inlet Distortion”.
In: Journal of Aircraft (2020). DOL: 10.2514/1.C035845.

Christopher Heath and Justin Gray. “OpenMDAQ: framework for flexible mul-
tidisciplinary design, analysis and optimization methods”. In: 53rd AIAA/AS-
ME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Con-
ference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA.
2012, p. 1673.

Martin Goland. “The flutter of a uniform cantilever wing”. In: Journal of
Applied Mechanics-Transactions of the Asme 12.4 (1945), A197-A208.

FE Eastep and JJ Olsen. “Transonic flutter analysis of a rectangular wing with
conventional airfoil sections”. In: ATAA Journal 18.10 (1980), pp. 1159-1164.
Philip S Beran et al. “Numerical analysis of store-induced limit-cycle oscillation”.
In: Journal of Aircraft 41.6 (2004), pp. 1315-1326.

Marco Berci and Rauno Cavallaro. “A Hybrid Reduced-Order Model for the
Aeroelastic Analysis of Flexible Subsonic Wings—A Parametric Assessment”.
In: Aerospace 5.3 (2018), p. 76.

https://doi.org/10.2514/1.C035845

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Formulation of the structural optimization problem
	Types of optimization problems
	Incorporation of aeroelastic constraints
	The aeroelastic stability analysis

	Design sensitivity analysis
	Numerical methods
	Analytical methods

	Structural optimization in Nastran
	Input and output data format
	The optimization solution sequence

	NOI
	NOI overview
	BDF writter module
	Optimization input files
	Modal and flutter input files

	OP2 reader module
	Static analysis results
	Modal analysis results

	F06 reader module

	FAEDO
	FAEDO overview
	Structural analysis
	Aero-structural mapping
	Aerodynamic analysis
	Stability analysis
	Connection with OpenMDAO

	Cases of study
	Finite element models
	Goland+ FE model
	Classic Goland beam FE model

	DOE for the flutter speed derivatives
	Methodology
	Results

	Optimization of the Goland+ model
	Problem definition and set-up
	Results

	Optimization of the Goland beam model
	Problem definition and set-up
	Results

	Conclusions
	Appendix
	NOI user's guide
	What is NOI?
	How to install NOI
	What is NOI capable of?
	Writing an optimization input file
	NOI's input for optimization
	Optimization input dictionaries
	Analysis input dictionary
	Example of writing an optimization BDF file

	Writing a modal analysis file
	Example of writing a modal BDF file

	Writing a flutter analysis file
	Example of writing a flutter BDF file

	Reading of modal and static analysis results
	Example of reading static analysis results
	Example of reading modal analysis results
	Example of reading sensitivity analysis results

	Reading a flutter F06 file
	Example of reading a flutter F06 file

	Bibliography

