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Abstract 
 
Sea- and inner ports are intermodal traffic nodes which play an important role in 
transportation, especially in the transportation of goods. Track defects appearing in a 
harbour railway network have negative impacts on safety, cost and comfort (e.g. noise 
emission). The analysis of data obtained by embedded acceleration sensors, which are 
installed at the axle box of an equipped in-service vehicle, allows for continuous 
condition monitoring of the track infrastructure. The German Aerospace Center (DLR) 
develops prototypical modular multi-sensor systems that are used in different 
operational environments, among others on a shunter locomotive operating in an 
industrial harbour railway network in Braunschweig (Germany). Within the research 
project HavenZuG extensive rail longitudinal profile and track geometry measurements 
have been performed with established inspection methods to obtain the true underlying 
condition of the railway network. In the present paper methods for gaining relevant 
information from the axle box acceleration (ABA) data are presented and validated with 
the given reference data. The focus is on detecting defects which are visible in the rail 
longitudinal profile, mainly rail corrugation. It can be shown that ABA data gathered 
during every day shunting operation can be used for detecting corrugation and for 
inferring rail longitudinal profile parameters. 
 
1.  Introduction 
 
The railway sector plays an important role towards a sustainable and environmentally 
friendly transportation. With the objective to increase its availability, reliability and cost 
efficiency, condition-based and predictive maintenance become important tools. 
Overall, until now a large share of maintenance and repair activities are done either at 
set time intervals (preventively) or after a defect is found (correctively). Especially in 
small railway infrastructures like industrial networks and feeder lines, state-of-the-art 
condition monitoring relies on time-based inspections, visual inspections by field 
workers. In this context, advantages of automated condition monitoring approaches 
using on-board sensors on in-service vehicles are given by the possibility to quasi-
continuously monitor the track quality and thus being able to detect emerging defects 
early and to monitor the development of the asset’s condition. In addition, by supporting 
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the existing maintenance strategies and partly replacing them in the future, it can 
contribute to lower work load for operators, improve cost efficiency of assets and 
increase the availability of the infrastructure. 
 
Numerous rail, track and wheel defects affect the dynamic interaction of an operating 
vehicle and the track(1). The induced vibrations can be captured by measuring the 
accelerations at car body, bogie or the axle boxes of a carriage or the locomotive. Their 
analysis can be used for deriving information on the conditions of vehicle and track 
infrastructure, e.g. on the existence of several defects regarding the wheel (e.g. wheel 
flats(2-3)), track geometry(4-7) and track surface(8-11). As shown in these references, using 
inertial sensor data has already been investigated and found to be suited for detecting 
several track and rail defects. However, the known studies have been conducted on 
main or tram lines where operating speeds are much higher than in industrial railway 
networks or marshalling yards like harbour railways. To our knowledge, besides the 
publications presented in the next paragraph, there are no publically available 
experiments and analysis applied to harbour or other small-size networks. The 
application for shunting operations in harbour areas poses additional challenges for both 
positioning and condition monitoring. 
 
With the objective to investigate the potential and applicability of sensor configurations 
and newly developed algorithms, the Institute of Transportation Systems (TS) of the 
German Aerospace Center (DLR) develops and operates low-cost multi-sensor boxes 
which are being used in different operational environments and with different research 
questions in focus. These comprise online and offline positioning of railway vehicles(12), 
condition-monitoring of wheel(13) and rail(14) in main lines for passenger traffic and in 
industrial railway networks like harbour areas(15). Each of these applications has its own 
challenges. The usage in harbour areas comes with low vehicle speeds, numerous 
accelerating and decelerating actions and shocks caused by shunting operations which 
increase the noise ratio and other unwanted components in the measured signals. In 
addition, vehicle positioning is impeded by lack of reception near bridges and cranes or 
multi-path effects and the existence of close parallel tracks in shunting sides. Recent 
work mainly made use of unsupervised machine learning methods and addressed e.g. 
the separation of vibration components caused by vehicle and rail using blind signal 
separation(16) or clustering of anomalies by usage of convolutional autoencoders(17). In 
this paper, the set-up allows for supervised learning since the processed ABA data can 
be compared to reference data. It investigates an approach for deriving qualitative 
information concerning the rail longitudinal profile from ABA data collected at low 
speeds in a harsh industrial shunting environment. The pre-processed acceleration data 
is transformed to vertical profile via double integration, synchronised and analysed with 
respect to specific wavelength components. Track segments are classified with respect 
to the existence and severity of periodic profile defects and trained and validated by 
means of reference data. 
 
2.  Reference data 
 
The status quo of condition monitoring in industrial railway networks like harbour 
railways is, depending on the size of the network, relying on interval-based inspections 
that are manually performed using measurement trolleys. Various parameters related to 
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the quality of rail and track geometry are typically captured. These are often 
complemented by visual inspections of the operating staff. Performing these inspection 
measurements requires the closure of the track sections under consideration and a high 
amount of manual labour. Therefore, time intervals between inspections are comparably 
long, especially for small networks. Maintenance actions are frequently taken 
correctively. 
 
2.1.  Data acquisition 
 
With the described state-of-the-art methods for obtaining and assessing the track 
quality, ground truth data were collected for a large part of the railway network in 
Braunschweig harbour in form of measurements of the rail longitudinal profile and track 
geometry parameters, namely track gauge, cant and twist. Measurements were 
performed twice, i.e. in two subsequent years, for the main tracks and once for tracks 
that are not passed frequently. The data basis was complemented by several visual 
inspections where visible, e.g. surficial, defects and track features such as welds were 
recorded. 
 
2.2  Data description 
 
The part of the aforementioned reference data used in the present paper concerns the rail 
longitudinal profile measurements. The device records a height value every 2 mm and 
so provides a height profile of the measured rail where vertical surficial defects as rail 
corrugation become detectable. The measurements were assigned to positions in the 
railway network (identifiable via track identifiers specifying the track segment and track 
positions giving information on the longitudinal position with respect to a segment-
specific reference point, e.g. the frog of the turnout). To obtain high-accuracy and track-
selective positions of the reference data, the positions of the measurement start and end 
points were logged with a differential GNSS-receiver. They were projected onto the 
related tracks and used to assign track positions to all measurement points. 
 
Figure 1 shows the rail longitudinal profile of one of the tracks showing strong vertical 
dips where welds were detected as result of the visual inspections. The given track is 
heavily affected by rail corrugation on several track sections that are alternating with 
sections where no rail corrugation is found. In Figure 1 one example of a transition from 
non-corrugated to corrugated parts of the track can be seen at the welds at position 
40 meters on both rails. 
 
Corrugation is a periodic surficial rail defect that can develop from different 
mechanisms. It is characterised by its wavelength and amplitude. Corrugation induces 
high dynamic loads on both rail and vehicle and can, depending on the wavelength, 
cause strong noise disturbance(18). The corrugated segments in Braunschweig harbour 
originate from main lines as old rails from main lines have been re-used and put 
together from different sources. This represents a typical situation especially for small 
industrial networks. The development of corrugation due to operation in industrial 
networks is especially known for transfer lines with higher average train speeds in mid-
size networks (> 50 km total track lengths). 
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Figure 1: Longitudinal profile of both rails belonging to one of the tracks in Braunschweig harbour 
and recorded positions of welds on the given track. Left and right are defined with respect to the 
measurement direction (coinciding in this case with the track direction, i.e. with increasing position 
values). 
 
2.3.  Data processing 
 
The profile measurements are bandpass filtered to different wavenumber components in 
order to assess the track quality respective to periodic defects with specific wavelengths. 
Acceptable amplitudes differ for different wavelength domains and so different 
assessment rules are applied. One approach is to classify track segments into normal and 
defective according to the fulfilment of the condition that the ratio of points where the 
absolute amplitude exceeds a threshold is above a certain quality threshold. This 
corresponds to track segment assessment of German Railways (DB AG, corporate 
policy rule (RIL) 824.8310) and international standard EN 13231-3:2012. 
 
3.  Axle-box acceleration data 
 
3.1.  Data acquisition 
 
The data are collected by a modular multi-sensor system installed on a shunter 
locomotive and composed of various low-cost sensors(15, 19). Axle Box Accelerations 
(ABA), representing the dynamic vehicle-track-interaction, are captured by tri-axial 
broadband accelerometers covering a frequency range from 0.8 to 8000 Hz attached to 
the front axle of the shunter locomotive. The six acceleration channels are sampled with 
20,625 Hz. The sensors used for condition monitoring are complemented by a Global 
Navigation Satellite System (GNSS) receiver and an inertial measurement unit (IMU) 
used for offline vehicle positioning and hence positioning of the collected ABA data. It 
is completed by cameras in front and on the back of the locomotive which can be used 
for landmark recognition, weather condition estimation or dirt detection (e.g. near 
container terminals where coal is loaded near the tracks). Results from camera data 
analysis can complement the work on ABA data but are beyond the scope of this paper. 
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Figure 2 shows the locomotive with one of the installed sensors and the sensor box 
(without external sensors). 
 

 
Figure 2: Mounted acceleration sensors on the front axle box of the shunter locomotive (left side, 
overall view and close up), shunter locomotive (upper right), sensor box without external sensors 
(bottom right) 
 
 
3.2  Data pre-processing: Positioning 
 
To make use of the ABA data in terms of condition monitoring of the track 
infrastructure, the data have to be assigned to positions in the harbour railway network 
with high a priori accuracy. In particular, the positions have to be track-selective and 
with preferably small longitudinal deviation along the track. The GNSS receiver offers 
first global positions and speed which have to be refined in order to be track selective. 
In addition, the lack of positional and speed information due to no or compromised 
reception (bridges, high buildings, cranes) has to be compensated. This objective is 
reached by fusing GNSS (position, speed) and IMU (acceleration) data with a digital 
map of the railway network(12). In a first step the data is split into journeys defined from 
standstill to standstill. Using the start and end positions of a given journey and a graph 
modelling the network (track segments are represented by vertices and allowed 
connections between tracks correspond to edges connecting the respective vertices), 
path hypotheses covering all allowed paths which connect the given start and end 
position are created. Then one path is selected for further processing by comparing the 
projection errors of the provided GNSS positions on these paths and choosing the 
minimiser. Speed and longitudinal position then are obtained using a Kalman filter 
based on GNSS position and speed as well as longitudinal accelerations provided by the 
IMU. Finally, the results can be improved by applying a Rauch-Tung-Striebel smoother. 
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Final improvements can be made by using the ABA data itself and are obtained from 
the analysis of the rail longitudinal profile as described in section 3.3. 
 
Aside from assigning georeferences to the ABA data, positioning of the railway vehicle 
can give an impression of track loads in form of the number of segment crossings and 
driven speeds which can be used for further purposes, e.g. for deciding on inspection or 
maintenance prioritisation or determining estimations for suited inspection intervals. 
 
3.2  Data set description 
 
The data used for this publication comprises passages of the track described in Chapter 
2. For the first analysis, journeys were chosen where the track is crossed as a whole. 
Data of all driven speeds such that the minimum speed on the track segment is larger 
than 1 m/s and with speed variations up to 0.5 m/s are considered. The data comprise 
100 journey-sensor combinations and a time interval of approximately 10 months. 
Figure 3 shows the raw ABA data for seven journeys collected by the acceleration 
sensors attached to the right side of the axle with respect to the track direction. 
 

 
Figure 3: Vertical acceleration along one of the tracks in Braunschweig harbour, measured during 
seven different journeys by the acceleration sensor placed on the wheel bearing on the right side of 
the vehicle with respect to track direction. 
 
3.3  Data processing 
 
The goal of the present research is to analyse and to evaluate the potential of extracting 
information on relevant parameters and quality measures of the rail longitudinal profile 
from data acquired by on-board acceleration sensors. To this end, several processing 
steps are necessary. In the given set-up, the data are processed as follows: 
 

1. Low-frequency components below the cut-off frequency of the acceleration 
sensors are removed by a zero-phase high pass filter to avoid low frequency 
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noise caused by non-linear transfer function and corrupting the output of the 
double integration. 

2. A journey-specific low pass filter removing high frequency components is 
applied. The cut-off frequency is defined by half the smallest wavelength of 
interest, using the driving speed of the journey. 

3. Linear trend is removed from the data. 
4. The pre-processed acceleration signal is integrated twice and linear trends are 

removed. 
5. The integrated signals are sampled equidistantly in the distance domain and 

down-sampled to the same sampling frequency of 500/m as the one used for 
collecting the reference data (rail longitudinal profile measurements). 

6. Positioning is refined (relative spatial signal alignment). 
 
Concerning the last processing step, the a priori positioning provides good track 
selective and longitudinal positions with an accuracy of up to a few meters, often below 
1 m. Small deviations in position and speed occur and are not uniformly distributed 
along the track segment or journeys. For further analysis, these positions can be 
improved by comparing the processed ABA data to the rail longitudinal profile or, if the 
latter is not available, by comparing it to a reference journey and to obtain an improved 
estimate of the absolute position by averaging over all journeys. 
 
In this application the alignment is done by a two-step approach. The data used for 
synchronising is the pre-processed (double integrated) ABA data. Other methods and 
input data, that is, different stages of processed data to be used for synchronisation, are 
possible. In this context, the described method has proven to be most successful and 
adequate for the presented analysis. Comparing a new journey to a reference one (or the 
reference data), the input data are split up into larger segments of tens of meters and the 
cross correlation with subsets of the reference data is calculated. The best shift for each 
subsegment is determined and the obtained longitudinal profile is shifted by the mean 
value of all segment shifts (linear interpolation between varying shift values is not 
applied since it is done in the next step using local minima). The new distance 
information already provides a very good result that depends on the resolution of the 
shifts for which the cross correlation is calculated. The last step is done by comparing 
distinctive local minima in the data which are especially given by welds. The a priori 
position is then good enough to avoid incorrect minima mappings. The profile is 
stretched and compressed linearly between the known shift positions. After this 
processing step, the data are again resampled to an equal and identical distance 
resolution. Figure 4 shows the vertical rail profile obtained from several crossings (more 
precisely: from the raw ABA data shown in Figure 3) that have been synchronised with 
respect to the reference data. It can be seen that the results are, beside a certain variation 
in the absolute heights, indeed similar and repeatable for different journeys. 
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Figure 4: Processed ABA data (obtained vertical profile) on a subsection of length 25 meters. 
Before (upper row) and after (bottom row) alignment and removal of linear trend. 
 
3.5  Data analysis 
 
The desired results from the ABA data processing and analysis concern several aspects. 
First, qualitative information is of large benefit, especially from the user (habour) 
perspective. Classes obtained by reference data-based assessments should be obtained 
from ABA data with high accuracy. In addition, detection of welds and other distinctive 
spots or anomalies is of interest. As can already be seen from the alignment process, the 
detection of welds and strong anomalies can be obtained from the sensor data. 
Estimating their depth and additional quantitative information on the profile is content 
of current research and beyond the scope of this paper. 
 
Concerning the first aspect which will represent the focus of this paper, track sections 
are assessed to be normal (i.e. no corrugation is present on the section) or abnormal. 
More precisely, reference data-based assessment mainly involves amplitudes of 
bandpass filtered components of the rail longitudinal profile; track segments are 
classified based on the resulting amplitudes. Thus, the classification of track segments is 
performed with respect to the wavelengths. Corrugation can appear in wavelengths from 
25 to 1,500 mm, where corrugation of 25-80 mm is called short wavelength 
corrugation(18). Furthermore, as already discussed in Chapter 2, the considered track is 
composed of several sections of used rails from main lines partly affected by 
corrugation and therefore offering a well-suited example for the analysis. The 
corrugation on the track considered in this analysis is of wavelengths about 50 mm. 
Hence the wavelength bands including this wavelength are of special interest. 
 
For assessing track segments of a given length, multiple yet similar options have been 
tested. The assessment is based on segments of 1 m length, with 10 % overlap. Possible 
input parameters are given by the absolute amplitudes of the bandpass filtered 
components or by their envelope. The envelope is given by the instantaneous amplitude, 
this is, as the absolute value of the analytic signal of the input. In order to evaluate track 
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segments, e.g. the ratio of data points where the input parameter exceeds a wavelength-
specific threshold or the mean value per track segment can be considered. Segments 
then are found to be normal/abnormal by comparing these values to additional 
thresholds. Assessment rules and thresholds may be adopted from international standard 
or rules of main line operators, but should be handled flexibly to take needs of the 
infrastructure operators in focus into account. 
 
The final task is to handle multiple journeys. The output parameters obtained for each 
journey are averaged. The assessment is performed on basis of the mean values of the 
included journeys. 
 
3.6  Results 
 
The ground truth assessment of the considered track is done by using the envelope of 
the bandpass filtered rail longitudinal profile and comparing its window mean to the 
wavelength-specific threshold applied to monitor main lines in Germany. Alternatives 
as utilising absolute amplitudes or ratio of threshold exceedance yield very similar yet 
slightly worse results. The ABA data is processed analogously. For training, i.e. 
choosing a classification threshold, a subset of half of the journeys only using data in 
forward direction is used (6 journeys out of overall 38 journeys for the sensor on the left 
side; 11 out of 62 for the sensor on the right side), covering a wide speed range. The 
threshold is determined to maximise accuracy, for each side separately. For the 
wavelength band covering 0.03 to 0.08 m and the threshold 0.01 mm for the reference 
data, an optimal threshold of 0.023 mm is determined for the sensor on the left side, 
resulting in an accuracy of 1 if only journeys used for training are considered, and 
99.2 % for journeys in forward motion not considered in training (6 journeys); finally, 
98.4 % accuracy for assessment based on all journeys where the locomotive was 
moving backwards (40 journeys) is reached. For the right side the optimal threshold 
equals 0.016 mm with accuracies 96.8 %, 96 %, 96.8 %, respectively. Considering the 
wavelength band 0.1 - 0.3 m, where no corrugation is present on the given track but 
nevertheless sometimes the threshold (0.05 mm) is exceeded in the reference data, the 
optimal thresholds are given by 0.076 mm (left, 99.2 % - 96 % - 98.4 %) and 
0.0755 mm (right, 92 % - 91.2 % - 92 %), using the same journeys for optimisation as 
in the first example. Figure 5 and Figure 6 show the obtained mean values of the 
envelope of the bandpass filtered profile per window for the left rail and journeys in 
forward direction, the mean of all these journeys, the corresponding values obtained 
from the reference data of the left rail and the classification based on the named 
thresholds. 
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Figure 5: Mean values per window (1 m, 10 % overlap) of the filtered profile’s envelope, obtained 
by different journeys and their mean (first row), the latter and assigned assessment (second row), 
reference data (mean of 1 m windows with 10 % overlap of the envelope of the filtered profile) and 
corresponding assessment (bottom row). Thresholds are given by 0.01 mm (reference data) and 
0.023 mm (ABA data). Wavelength band: 0.03 – 0.08 m. 
 

 
Figure 6: Analogously to Figure 5, wavelength band: 0.1 – 0.3 m. Thresholds: 0.05 mm (reference 
data), 0.076 (ABA data). 
 
4. Conclusion 
 
The present paper has investigated the potential of deriving qualitative information 
concerning the rail longitudinal profile from axle-box acceleration data collected in an 
inland harbour network during shunting operations. An approach based on double 
integration of the acceleration data was tested on a data set comprising sensor data 
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together with reference measurements reflecting the true underlying condition of the 
track. The data was synchronised and analysed with regard to corrugation detection and 
wavelength-specific track section classification. Despite the presence of small vehicle 
speeds and strong noise components in the data, the results show that the approach is 
indeed suited for this small harbour network. Corrugation and abnormal track sections 
can be determined with high accuracy. In addition, as exemplified on the considered 
track, weld detection is possible by the usage of ABA data. 
 
Future research will focus on evaluating the results on a larger dataset. Furthermore, the 
collected data show that defects which appear only on one of the two rails also are 
visible in the accelerations measured by the sensor on the opposite side of the vehicle 
due to vibration transfer via the axle. This fact has to be included in the evaluation 
process. Finally, a speed dependency is observed for particular wavelengths that is 
assumed to originate from resonance effects at certain speeds. Quantitative estimation of 
the profile via wavelength-dependent regression of multiplication factors and its 
validation is content of current research. Finally, instead of involving absolute 
thresholds, relations of the amplitude magnitudes of different wavenumber components 
of the longitudinal profile can be tested and used for detecting corrugated segments 
more robustly in future. 
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