
Anomaly Detection on the Rail Lines Using
Semantic Segmentation and Self-supervised

Learning
Kanwal Jahan, Jeethesh Pai Umesh and Michael Roth

Abstract—This paper introduces a novel application of
anomaly detection on the rail lines using deep learning methods
on camera data. We propose a two-fold approach for identifying
irregularities like coal, dirt, and obstacles on the rail tracks. In
the first stage, a binary semantic segmentation is performed to
extract only the rails from the background. In the second stage,
we deploy our proposed autoencoder utilizing the self-supervised
learning techniques to address the unavailability of labelled
anomalies. The extracted rails from stage one are divided into
multiple patches and are fed to the autoencoder, which is trained
to reconstruct the non-anomalous data only. Hence, during the
inference, the regeneration of images with any abnormalities
produces a larger reconstruction error. Applying a predefined
threshold to the reconstruction errors can detect an anomaly
on a rail track. Stage one, rail extracting network achieves a
high value of 52.78% mean Intersection over Union (mIoU). The
second stage autoencoder network converges well on the training
data. Finally, we evaluate our two-fold approach on real scenario
test images, no false positives or false negatives were found in
the the detected anomalies on the rail tracks.

Index Terms—Semantic segmentation, self-supervised
learning, autoencoders, deep learning, mIoU, UNet, anomaly
detection, feature extraction, railway environment

I. INTRODUCTION

Camera data is a rich source of information for performing
the tasks like semantic segmentation and object detection in a
given environment. The recent advances in modern hardware
and GPU technology have enabled the adoption of deep
learning methods on camera data for knowledge extraction
and automated decision-making. The neural networks can
be optimally tuned, are accurate and robust against environ-
mental factors like illumination and weather conditions. On
the other hand, traditional image-processing methods have
lower accuracy for tasks like semantic segmentation, object
detection, and classification, which are more susceptible to the
slightest changes in environmental conditions. We use image
data from two industrial cameras installed on a locomotive
running in one of the harbors in Germany to perform anomaly
detection on the rail tracks. In this paper, we propose a deep
learning-based approach to process the collected image data
for detecting dirt, stones, tree leaves, coal, and any other
obstacles which are the unwanted objects found on the rail
tracks. Knowledge about the presence of such objects is critical

1Kanwal Jahan, Jeethesh Pai Umesh and Michael Roth are with the
Institute of Transportation Systems, German Aerospace Center (DLR),
38108 Braunschweig, Germany firstname.lastname@dlr.de ex-
cept m.roth@dlr.de

21st and 2nd both authors contributed equally.

for the smooth operation of the railways. Especially, the port
environment, where locomotives operate at slow speed of 20
km/h, has the presence of irregularities like coal, debris, and
dirt, such rail lines if not cleaned timely can incur huge
maintenance costs. There is a similar need for high-speed
railway operation too, to detect any obstacles on the rail
lines and avoid any unnecessary delays, accidents, or large-
scale damage to the infrastructure. Obstacle detection is an
important component for making informed decisions on the
run time to achieve the goal of autonomous driving too.

Deep learning-based approaches rely mostly on quality
labelled datasets, which are unfortunately very few in the
railway domain. Generally, the process of labelling image
data is tedious and time-consuming. The only dataset which
is publicly available for the railway environment is known
as RailSem19 [1]. It has two schemes of labelling, semantic
labels (pixel-wise labelling of an image) and 2D bounding
boxes. We find the semantic labels from RailSem19 [1] are
useful for extracting the rails from the background. In some
cases, getting the labelled data is difficult or impossible as the
object can be of any shape, size and may appear rarely. Our
task of anomaly detection deals with finding abnormalities,
inconsistencies, and deviations from the standard behavior.
Since such cases are rarely occurring, it is not only difficult
to document and annotate them but also time-consuming to
gather enough instances.

Our main contribution is, we introduce a novel way of using
a self-supervised learning method to reduce the dependency on
labelled data. We propose a method to automate the detection
of anomalies or any unwanted foreign objects on the rail
tracks, which can cause potential delays or accidents in railway
operations. The high value (52.78%) of mean Intersection over
Union (mIoU) for rail segmentation, an accurate and robust
anomaly detection and speed of inference (27 fps) allow us to
deploy our method for real-time anomaly detection in not only
port areas, with a reduced vehicle speed operation, but also
for high-speed rail vehicles. The uniqueness of the our work
lies in combining the semantic segmentation and autoencoder
trained in a self-supervised manner to detect the anomalies of
any kind or shape on the rail lines.

The paper is structured in the following way. We describe
prior developments of the methods used in this paper in section
II followed by a detailed description of our proposed method
and contribution in Section III. The training procedures, met-
rics, and training results are shown in Section IV and lastly, we



conclude and discuss the possible future research in Section
V.

II. RELATED WORK

Semantically segmenting the image is necessary to extract
rail coordinates, as that is the only area of interest to detect the
presence of anomalies in our application. Initial approaches of
image segmentation were performed using traditional binary
threshold, K-Means clustering, and Graph-based segmentation
methods. But these approaches often lacked the semantic
meaning in the labels. Since then, researchers have started
to focus on neural network-based segmentation methods. The
problem with these networks is that it requires costly pixel-
wise labelling of image data, which were not initially available
until a few years ago. With the formation of datasets like
KITTI [2], PASCAL VOC [3], Cityscapes [4] there has been
advancement in this genre of computer vision, specifically
for automotive sector. Early works of semantic segmentation
using neural networks date back to SegNet [5] which is based
on encoder and decoder network inspired from VGG-Net [6].
Later works like U-Net [7] showed that using skip connections
of earlier feature maps with the upstream feature maps can
help to retain the quality of segmentation while upsampling.
A similar approach is used in FRRN (Full Resolution Residual
Networks) [8] in which residual streams carry the information
about the upstream layers and a pooling stream extracts the
features sequentially. The FRRN network is inspired by the de-
sign of ResNet [9] which also has a similar residual carryover
of intermediate feature maps. The challenge related to such
network architecture is that it is computationally expensive
and has large memory requirements while training. Therefore,
it requires efficient algorithms to calculate gradients and store
them on GPU even for low batch sizes to avoid out-of-memory
errors (OOM). Despite its structure and computational cost,
FRRN performs very well on Cityscapes. Other networks like
FCN (Fully Convolutional Networks) [10] as well DeepLab
[11] are also popular for the semantic segmentation tasks. A
model like U-Net extracts features from the given image with
help of Convolutions and max-pooling layers. During each
pooling, a copy of the feature map generated is stored and
concatenated with upsampling layers. This concatenation of
old feature maps preserves spatial features or edges when
compared to vanilla upsampling of pooled layers. Pooled
layers are responsible for extracting features that are necessary
for semantic segmentation tasks. However, these networks
have been mostly used for the automotive sector, medical
diagnosis and credit and fraud detection.

The availability of datasets is abundant in the case of
road scenes, but there was not much research in the case of
railway sector until the RailSem19 dataset [1], introduced in
2019, which gives a weakly supervised annotation of semantic
segmentation in the railway domain using networks trained on
road scenes. The scenes are mainly taken with a camera in ego
perspective view and are ideal for our application.

Anomaly detection has been researched upon for a few
decades in different domains. A short survey by Chandola et

al. [12] discusses anomaly detection using various techniques
in real-world situations. It also covers several applications
like an anomaly in OCR (Optical Character Recognition) and
gives a brief introduction of types of anomalies that can
be detected. A theoretical framework by Fei Ye et al. [13]
presents the concepts related to anomaly detection using deep
encoder-decoder networks on huge datasets like ImageNet
[14]. Earlier, anomaly detection tasks were dealt with, with
the help of clustering, nearest neighbor classification, support
vector machines, and Bayesian networks. But owing to the
changes in illumination, noise, and changing environments of
our application, such conventional techniques fail to capture
the nuances of the anomalies correctly and therefore produce
unstable results. Therefore, we look into methods that are ro-
bust against such environmental factors as well as illumination
changes. To distinguish an anomaly from a given image, it
is necessary to find out features of some specific regions of
the image, which eventually help us to classify if the region
appears normal or anomalous.

Extraction of features from the image is an evolving topic
for decades. Some conventional methods used in image feature
extraction are given in a survey of feature extraction methods
by G.Kumar et al. [15] which mainly comprise of properties of
gray level co-occurrence matrix-like energy, Gabor filters [16]
and Haar wavelets [17]. However, due to changing environ-
ments like lighting, noise, and weather conditions it is difficult
to devise a robust method using hand-crafted features which
can reliably extract features irrespective of the environment.
However, in the works of R. Roslan et al. [18], an interesting
application using the Gabor filter shows that conventional
methods are reliable only to some extent. Also based on the
fact that the first stages of convolutional filters of convolutional
neural networks (CNN) imitate Gabor filters, we analyze some
deep learning-related feature extraction procedures which are
robust in variable lighting conditions and noise.

Since we have a lack of labelled datasets for anomalies, we
rely on self-supervised learning algorithms to perform feature
extraction. One of the methods, related to self-supervised
learning especially in 2D images, dates back to the work of
Rumelhart et al. in 1986 [19] which introduces autoencoder
as a neural network that learns to encode and decode the
input fed to it. Autoencoders further paved a new way for
self-supervised machine learning, as the constraint of costly
labelling is removed. In cases of self-supervised learning, there
is a large database without labels that can be used for training
a feature extractor. In the paper by Dor Bank et al. [20]
we can see multiple applications of an autoencoder. It also
discusses different types of autoencoders by the nature of their
structure. Autoencoders can be used in fields like clustering
[21] [22], recommendation systems [23], classification [24]
and also anomaly detection [25] [26] where autoencoders are
trained on normal data and are used to detect abnormal data.

III. PROPOSED METHOD

Our anomaly detection framework is based on the analysis
of image data collected from RGB cameras installed on an



operational locomotive, capturing ego-motion, in one of the
ports of Germany. On the collected video frames, a multi-
stage image processing approach, as shown in Algorithm. 1
is applied to detect any inconsistencies and anomalous objects
on the rails.

Algorithm 1 Algorithm for anomaly detection on the rail track

Require: 3-Channel image with rail tracks
1: Extract rails using semantic segmentation
2: if Rail lines found then
3: Perform pixel clustering using DBscan
4: Associate estimated clusters using Euclidean distance

to form the individual rail lines
5: Divide each rail line into patches of 16× 16 pixels
6: Use trained autoencoder to reconstruct the patches
7: Apply threshold on the reconstruction errors of the

patches
8: Declare an anomalous object on path with reconstruc-

tion error above defined threshold
9: else

10: Print Image does not contain any rails

At the first stage, semantic segmentation is performed to
extract all the rail lines from the given image, as there
can be multiple parallel railway tracks. Next, clustering is
performed to link the pixels belonging to one rail together and
to distinguish rail lines from each other. In the final step, an
autoencoder fitting to our requirements is designed to predict
the occurrence of anomalies on the extracted rails.

A. Semantic segmentation

For the extraction of rail tracks, we use U-Net [7] to
semantically segment the images into a rail and non-rail object.
The network has a contracting part and an expansive part,
which gives it a U-shaped structure. The architecture intro-
duces copy and crop connections that concatenate each up-
sampling convolution layer with the respective downsampling
convolution layer. For example, the first downsampling layer is
concatenated with the last upsampling layer and similarly the
second downsampling layer with the second last upsampling
layer. The contracting part consists of repeated convolution
layers followed by ReLU and max-pooling layers. To further
improve the performance of U-Net, we introduce VGG-Net [6]
and ResNet-50 [9] as the backbone network, as suggested in
[27]. We further increase the accuracy with the help of transfer
learning [28]. Instead of initializing the learning weights to
zero or random normal, they are initialized by pre-trained
weights of VGG-Net or ResNet-50 with ImageNet [14]. As
our deployed U-Net and VGG-Net share the architecture we
use the weights of the encoding layers only.

The number of pixels in the image belonging to rail lines is
a small fraction as compared to the rest of the image. Due to
the presence of a huge class imbalance, we use and compare
the losses such as weighted binary cross-entropy loss (Lwbce)
and focal loss [29] (Lfocal) to train our network. Weighted
binary cross-entropy loss, as well as focal loss, penalizes the

network more for loss contribution from foreground pixels,
rail pixels, than from the background. The weighted binary
cross-entropy loss as described in Eq.1 introduces the penalty
terms as weights assigned to foreground and background
loss contributions. The class imbalance is taken care of by
increasing the foreground class weight.

Lwbce = −
W−1∑
x=0

H−1∑
y=0

w1Ixylog(Pxy)+

w0(1− Ixy)log(1− Pxy)

(1)

Where, Pxy = predicted probability of the pixel to be target
label (rail pixel), w0 = normalized weight for background
class, w1 = normalized weight for foreground class W,H =
width and height of the image respectively. Ixy is target label
for training example

Lfocal = −(1− Pxy)γ
W−1∑
x=0

H−1∑
y=0

αIxylog(Pxy)

+(1− α)(1− Ixy)log(1− Pxy)

(2)

While Eq. 2, focal loss [29] not only takes care of class-
imbalance with the factor α but also takes care of complex
instances by penalizing more the hard examples over the
simple cases similar to w1 in Eq. 1. It reduces the loss
contribution from easily classified target pixels and focuses
on hard examples through the the modulating factor-γ. The
trained network performing semantic segmentation generates
masks of the original image as predictions, where rail track
pixels are assigned a pixel value of 1 and non-rail pixel values
with 0.

B. Pixel Clustering

The result of semantic segmentation is a binary mask with
all the rail tracks marked with a pixel value of 1. The next
logical step is to co-relate all the white pixels into separate
rail lines. We find a pixel thickness of one to be good enough
to form the rail line. Oftentimes, the generated mask will have
a rail pixel thickness of 2 or more pixels, which we reduce to
only one pixel by taking a mean of them. On the other hand,
there can be multiple rail lines in one image whose coordinates
need to be distinguished from each other to extract the features
robustly.

We associate the pixels based on Euclidean distance. Firstly,
we use DBScan clustering algorithm [30] which yields a total
number of clusters of white pixels in the segmented image.
Each cluster obtained from DBScan represents a part of the
rail of the segmented image. Next, we combine those clusters,
using Euclidean distance, which are the closest based on the
horizontal axis difference of the endpoints of the clusters.
Conclusively, we extend the ends of the clusters (rail line)
to the region of interest boundary which is ideally the bottom
half of the given image, if they are long enough. The extension
of the line is done using the slope of the last 20 points of each
cluster.



Input
Image (I)

16x16x3

3x3x64

Conv2D

576 Units

Flatten
Dense

256 Units

Dense
(Latent space)

128 Units

Dense

256 Units
576 Units

Reshape Conv2D
Transpose

3x3x64

Reconstructed
Image (I′)

Fig. 1: Autoencoder architecture designed for feature extraction.

C. Anomaly detection

Once the coordinates containing the rail tracks in an image
are known and pixels belonging to a single rail are clustered
together, the next step is to extract the feature along the rail
track on the original image. The rail tracks are distorted by the
perspective of the camera with varying width as the camera
is capturing the ego-motion of the vehicle. i.e, farther lines
appear thinner and closer lines appear thicker. To address this,
the rail line is divided along length into the square patches of
varying size. For the patches closer to the installed cameras,
i.e, part of the rail immediately under the camera, we start
with patch of 20 × 20 pixels and reduce the size by two
pixel for every fifth patch along the rail, keeping the aspect
ratio ≈ 1. The patch size ranges between maximum size of
20× 20 to a minimum size of 14× 14 pixels and is re-scaled
to a dimension of 16 × 16 to maintain the uniformity in the
feature extraction. We chose the maximum size to be 20 which
incorporates the size of rail lines appearing nearest to the
camera. The size of the patch is chosen to design an algorithm
sensitive to anomalies, on the rails only, which are small in
size too. However, the size of the patch can be adjusted to
detect anomalies on sleepers as well, utilizing the symmetry
in the design of rail tracks.

Mathematically, the center points of one rail surface can
be denoted as (ip, jp) given that one rail line is divided into
p patches. Generally, in our case each rail line surface has
p ∈ [1, 16]. The formula for center points of square patch p is
given by the equation.

Cp = (
l

2
, pl − l

2
) (3)

For the used dataset, l starts with 20 and changes after every
4th patch and is reduced by 2 pixels. No patch in given
p overlaps with the adjacent patch. After converting a rail
line into p symmetric patches, having same aspect ratio of
rail to background pixel, as shown in Fig. 2, the features of
each patch are extracted and analyzed for the presence of an
anomaly on the tracks. Whenever an obstacle appears on a rail
line, the extracted features of that square patch appear different
from the rest of the rail surface. For feature extraction, we
use deep autoencoders. This autoencoder takes an input image
and tries to reconstruct the same input image. Autoencoders

Fig. 2: Extracting features along the rail line.

[31] have an encoder-decoder structure to extract the hidden
features of an image. The encoder structure ensures that the
image fed in is converted into a compressed and compact form
called code. The decoders learn to reconstruct the generated
code into the input image again. During the encoding and
decoding of the training set, the network learns to extract
useful features. The architecture of the autoencoder we have
designed designed for our algorithm is given in Fig. 1

The encoder structure consists of a Conv2D layer and a
dense layer. The Conv2D (Convolutional layer) has a filter size
of 64 and kernel size 3× 3. Using the flatten layer the output
of the convolutional layer is converted into a 1D array which
is passed on to ReLU activation and a batch normalization
layer. The dense layer consists of 256 units, its output is also
passed on to ReLU activation and batch normalization layer
resulting in code/latent space. The latent space dimension of
the autoencoder is 128. The number and properties of the
layers are the same in encoder and decoder except for the
order of layers is reversed in decoder, i.e. latent space is
fed to a dense layer and then a Conv2D layer to reconstruct
the image. Due to the unavailability of any labelled data, the
autoencoder is trained only on normal images which do not
have any obstacles or dirt covering the rail tracks. To classify
a patch as an anomaly or normal rail track, we calculate the
reconstruction error (Lr) obtained from it. The reconstruction
error between ground truth image (I) and reconstructed output
image (I ′) from the autoencoder is given by,

Lr(I, I ′) =

√√√√(

W∑
x=0

H∑
y=0

(I(x, y)− I ′(x, y))2 (4)



where, I i.e, ground truth image is same as the input image
of the autoencoder. To calculate the threshold, we run the
trained auto-encoder on the test dataset which does not have
any obstacles or abnormalities, and record the reconstruction
error values of all the patches in a list for every image, which
we consider as normal range of reconstruction error values.
Then we find out minimum and maximum thresholds using
the minimum and maximum occurring value in this recorded
list. During inference, We treat reconstruction errors falling in
this range as normal and those falling outside this range as
an anomaly. The following section discusses details regarding
the training configurations and the respective results of our
experiments.

IV. EXPERIMENTS

Our approach consists of training the two networks. One for
semantic segmentation and the second for anomaly detection.
This section elaborates the used datasets, training configura-
tions, and evaluation of the network performances.

A. Datasets
The data used for training the network to perform semantic

segmentation is publicly available as RailSem19 [1]. The
RailSem19 dataset consists of total 8500 images with 19
semantic labels mapped to JSON (JavaScript Object Notation)
files. We use only the rail semantic label and represent the rest
of them as background class. We split the dataset into 8390
training images, 60 validation images, and 50 test images. The
used dataset with rail image and its corresponding label can
be seen in Fig. 3. The data needed for training our second

(a) Image with rail track. (b) Semantic label.

Fig. 3: Sample training data from RailSem19 [1] dataset.

network, autoencoder, is generated with the help of a semantic
segmentation model trained on the above-mentioned dataset.
We train autoencoder with the patches of the rail lines which
are normal (i.e, free from dirt or any other foreign elements).
The patches generated for training, which are extracted from
the RailSem19 training set, are given in Fig. 4. The generated
dataset has a total number of 9694 images divide into 8443
images used as training set, 373 for validation and 878 for
test set. Since it is difficult to acquire data for finding a
threshold for anomaly detection. We use the RailSem19 test
set to generate test patches and run our trained auto-encoder on
them and subsequently calculate the reconstruction errors as
mentioned in the Section-III-C. The RailSem19 dataset reflects
the normal conditions of railway operations and therefore, they
are suitable for generating a threshold for anomalous tracks.

Fig. 4: Generated dataset to train the designed autoencoder.

B. Training semantic segmentation network
The network is trained on 2 NVIDIA GeForce GTX 1080

Ti GPU’s with a batch size of 4 and image size of 892 x 596 x
3 (RGB image) as input. The image dimensions are chosen to
reflect similar results on images captured by the camera fitted
on our locomotive. Also, we use augmentation techniques like
random noise, horizontal flip, random brightness, and random
contrast while training the network to bridge the delta between
images captured on a commercial camera, which we use on
our locomotive, and the images from a digital camera, which
is available in the dataset.

We keep w0 = 0.2 and w1 = 0.8 in the loss equation
of weighted binary cross-entropy (Eq. (1)). We also train
with a focal loss of α = 0.8 with other parameters same as
the weighted binary cross-entropy loss. We use Adam [32]
optimizer with a learning rate of 0.0001 for 50 epochs with
a batch size of 4. Since the learning can be improved by
supplementing U-Net with different backbones like ResNet
and VGG-Net, The following table I shows the results of our
training results with different backbones. As depicted in the

TABLE I: U-Net training results

Backbone Loss function Test Metrics
Network with params mIoU

VGG Weighted B.C.E 49.16%
VGG Focal loss (Gamma=2)b 52.78%
VGG Focal loss (Gamma=4)b 50.78%

ResNet Weighted B.C.E 48.05%
ResNet Focal loss (Gamma=2)b 50.78%
ResNet Focal loss (Gamma=4)b 42.36%

bfocal loss alpha = 0.8 for all observations

Table I, U-Net with VGG backbone performs better in terms
of mean Intersection over Union (mIoU) than other networks
and therefore is chosen for performing segmentation tasks.
Utilization of focal loss has contributed to some accuracy
but, as the hyperparameter gamma increases, we can see that
the focal loss decreases the loss value for correct predictions
whereas the mIoU does not improve. So we choose the U-
Net with VGG-Net Backbone model trained with α = 0.8
and γ = 2 parameters for drawing inference. We found this
optimal weight at the 46th epoch which we use for further
procedures.

C. Training Auto-encoder network
We train the auto-encoder for 50 epochs with a learning rate

of 0.0001 on the images of size 16× 16× 3. The structure of



the designed auto-encoder is already mentioned and explained
in Fig. 1. We use regularization techniques during the training
owing to the quantity of data used in the training and also
because it tends to overfit. We deploy Batch Normalization
[33] for normalizing the outputs of the activation functions to
prevent overfitting.

We test our approach on the video data collected from
the installed cameras on the running locomotive. We run the
proposed approach on a total of 132 frames (a video of 13
seconds) containing anomalous and non-anomalous images.
We used a black bag and a note book, introducing different
shapes and colors, as anomalies on the rail tracks. Fig. 5
illustrates the performance of our network with a high true
positive rate. For a network to be deployed in the real-time

Predictions
Normal Anomaly

Ground Truth Normal 120 0
Anomaly 0 12

Fig. 5: Confusion matrix

application, not only the high true positive rate is important
but also a low false positive rate. During our test run no false
positives are detected and clean track is classified as a clean
track as shown in Fig. Fig. 6-i. The Fig. 6 illustrates the results
of our approach on the rail images collected from our installed
set up. Fig. 6-a, Fig. 6-d and Fig. 6-g show the raw images.
Fig. 6-b, Fig. 6-e and Fig. 6-h show the extracted rails
using the semantic segmentation network and Fig. 6-c and
Fig. 6-f with the red boxes highlights the area of anomalous
objects (placed book and bag). While Fig. 6-i shows rail lines
highlighted with pink color which means the rail is safe to
traverse and does not contain any anomalies. The extracted
rails from semantic segmentation are overlayed on the original
image to show the performance of the algorithm. The threshold
for reconstruction values of the used dataset are 1.1 and 0.349.

V. CONCLUSION

This paper presents an approach to robustly detect anoma-
lous objects, of any size and color, like obstacles, coal, and
dirt present on rail tracks. The approach is functional in real-
time settings with a detection speed of 27 fps and is being
tested in one of the German harbors. The images collected
from installed cameras on operational shunter locomotive, low-
speed vehicles with a max speed of 20 km/h, are used to detect
the presence of any dirt, coal, or debris on the rail tracks.

Our data processing pipeline can achieve a segmentation
mIoU accuracy of 52.78% and does not produce any false
positives or false negatives on deployment. The high accuracy
achieves the purpose in low-speed vehicles. Yet can be well
generalized for higher-speed rail cars as a preventive mainte-
nance routine also with advance GPUs providing higher de-
tection speed. The approach is successfully tested on different
types of rail lines i.e. embedded rail, elevated rail, etc. Due to
the unavailability of labelled data for anomalies, we perform

(a) Original Image (b) Segmented (c) Detection

(d) Original Image (e) Segmented (f) Detection

(g) Original Image (h) Segmented (i) Detection

Fig. 6: Anomaly detection on images from a German harbor.

self-supervised learning and distinguish anomalies as small as
9× 12 inches. Our future work includes testing the approach
for high speed railway vehicles.

The current work is focused on anomaly detection at rail
lines only. The work can be extended to other interesting
infrastructure too, like railway sleepers as they are placed adja-
cent to rail lines, by adjusting the size of patch and retraining
the proposed autoencoder in section III-C. The accuracy of
the semantic segmentation network can be further improved
by using deeper networks, but at the cost of inference time.

ACKNOWLEDGMENT

This research is part of the project HavenZuG funded by
the IHATEC (Innovative Hafentechnologien)1 initiative of the
German Federal Ministry of Transport and Digital Infrastruc-
ture (BMVI).

REFERENCES

[1] O. Zendel, M. Murschitz, M. Zeilinger, D. Steininger, S. Abbasi, and
C. Beleznai, “Railsem19: A dataset for semantic rail scene understand-

1https://www.innovativehafentechnologien.de/



ing,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2019, pp. 1221–1229.

[2] H. Alhaija, S. Mustikovela, L. Mescheder, A. Geiger, and C. Rother,
“Augmented reality meets computer vision: Efficient data generation for
urban driving scenes,” International Journal of Computer Vision (IJCV),
2018.

[3] M. Everingham, L. Gool, C. K. Williams, J. Winn, and A. Zisserman,
“The pascal visual object classes (voc) challenge,” Int. J. Comput. Vision,
vol. 88, no. 2, p. 303–338, Jun. 2010.

[4] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for
semantic urban scene understanding,” 2016.

[5] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convo-
lutional encoder-decoder architecture for image segmentation,” 2016.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2015.

[7] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” 2015.

[8] T. Pohlen, A. Hermans, M. Mathias, and B. Leibe, “Full-resolution
residual networks for semantic segmentation in street scenes,” 2016.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[10] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” 2015.

[11] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” 2017.

[12] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surv., vol. 41, 07 2009.

[13] F. Ye, H. Zheng, C. Huang, and Y. Zhang, “Deep unsupervised image
anomaly detection: An information theoretic framework,” 2020.

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 248–255.

[15] G. Kumar and P. K. Bhatia, “A detailed review of feature extraction in
image processing systems,” in 2014 Fourth International Conference on
Advanced Computing Communication Technologies, 2014, pp. 5–12.

[16] D. Terzopoulos, Y. Lee, and M. A. O. Vasilescu, “Model-based and
image-based methods for facial image synthesis, analysis and recogni-
tion,” in Proceedings of the Sixth IEEE International Conference on
Automatic Face and Gesture Recognition, ser. FGR’ 04. USA: IEEE
Computer Society, 2004, p. 397–402.

[17] R. Reisenhofer, S. Bosse, G. Kutyniok, and T. Wiegand, “A haar
wavelet-based perceptual similarity index for image quality assessment,”
Signal Processing: Image Communication, vol. 61, p. 33–43, Feb 2018.
[Online]. Available: http://dx.doi.org/10.1016/j.image.2017.11.001

[18] R. Roslan and N. Jamil, “Texture feature extraction using 2-d gabor
filters,” in 2012 International Symposium on Computer Applications and
Industrial Electronics (ISCAIE), 2012, pp. 173–178.

[19] D. Rumelhart., G. Hinton, and R. Williams, “Explorationsin the mi-
crostructure of cognition,” in Parallel distributed processing. MIT
Press, Cambridge, MA, USA, 1986, ch. Learning Internal Represen-
tations by Error Propagation, pp. 318–362.

[20] D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders,” 2021.
[21] X. Guo, X. Liu, E. Zhu, and J. Yin, “Deep clustering with convolu-

tional autoencoders,” in International conference on neural information
processing. Springer, 2017, pp. 373–382.

[22] C. Song, F. Liu, Y. Huang, L. Wang, and T. Tan, “Auto-encoder based
data clustering,” in Progress in Pattern Recognition, Image Analysis,
Computer Vision, and Applications, J. Ruiz-Shulcloper and G. Sanniti di
Baja, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp.
117–124.

[23] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, “Autorec: Autoencoders
meet collaborative filtering,” in Proceedings of the 24th International
Conference on World Wide Web, ser. WWW ’15 Companion. New
York, NY, USA: Association for Computing Machinery, 2015, p.
111–112. [Online]. Available: https://doi.org/10.1145/2740908.2742726

[24] L. Le, A. Patterson, and M. White, “Supervised autoencoders:
Improving generalization performance with unsupervised regularizers,”
in Advances in Neural Information Processing Systems, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, Eds., vol. 31. Curran Associates, Inc.,
2018. [Online]. Available: https://proceedings.neurips.cc/paper/2018/
file/2a38a4a9316c49e5a833517c45d31070-Paper.pdf

[25] D. Gong, L. Liu, V. Le, B. Saha, M. R. Mansour, S. Venkatesh, and
A. van den Hengel, “Memorizing normality to detect anomaly: Memory-
augmented deep autoencoder for unsupervised anomaly detection,” 2019.

[26] M. Hasan, J. Choi, J. Neumann, A. K. Roy-Chowdhury, and L. S. Davis,
“Learning temporal regularity in video sequences,” 2016.

[27] R. Zhang, L. Du, Q. Xiao, and J. Liu, “Comparison of backbones for
semantic segmentation network,” Journal of Physics: Conference Series,
vol. 1544, p. 012196, 05 2020.

[28] L. Torrey and J. Shavlik, “Transfer learning.”
[29] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for

dense object detection,” 2018.
[30] M. Hahsler, M. Piekenbrock, and D. Doran, “dbscan: Fast density-based

clustering with R,” Journal of Statistical Software, vol. 91, no. 1, pp.
1–30, 2019.

[31] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Internal
Representations by Error Propagation. Cambridge, MA, USA: MIT
Press, 1986, p. 318–362.

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

[33] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” 2015.


