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ABSTRACT: Highly and fully automated driving has been under devel-
opment for the past two decades in order to increase comfort, efficiency, 
and traffic safety. Particularly in the latter domain, experts agree on 
automated driving, especially in case of automated vehicles (AV) with 
SAE level 4 or higher, having the most promising effects. Automated 
driving is expected to decrease the number of seriously injured or even 
killed road users to zero (Vision Zero). However, automated driving is 
still in an early stage of development and many AV tend to drive very 
carefully to avoid crashes. So, the goal is to make driving more efficient 
while maintaining the highest level of safety. In the project “Digitaler 
Knoten 4.0” cooperative automated driving was assessed regarding ef-
ficiency and safety aspects. One of the use cases investigated was turn-
ing left with oncoming traffic at an urban intersection as this situation 

represents one of the most complex situations in urban areas yielding 
to crashes with—in many cases—serious consequences for the involved 
road users. At the Application Platform Intelligent Mobility (AIM) Re-
search Intersection in Braunschweig, Germany, an SAE level 3 AV was 
turning left interacting with oncoming manually driven vehicles (MV). 
The performance of the AV was compared to MV executing the same 
manoeuvre. The recorded video-based trajectories of the respective 
AV as well as MV were analysed regarding the influence of situational 
factors (e.g. position of the vehicle in the queue and gap acceptance) 
and kinematic factors (e.g. speed and acceleration) on traffic safety. 
The similarities and differences between this specific AV and MV were 
identified yielding insight for further developing algorithms for more 
efficient driving while maintaining the same traffic safety level. For 
instance, it appears that the AV shows a very conservative left turn-
ing behaviour leading to very safe PET distributions in comparison to 
left turning MV.

1. INTRODUCTION

Although automated driving has become more and more 
realistic in relatively simple traffic environments (e.g. on 
motorways), it has not been assured to reduce the number of 
less severe crashes in urban areas in comparison to manual 
driving (e.g. NHTSA, 2017; Pink et al., 2015). Also, in the 
recent past, several fatal crashes with self-driving cars took 
place (e.g. Fleming, 2016; Green, 2018; Wakabayashi, 2018). 
This, however, intensified the discussion about the techni-
cal degree of maturity of automated driving functions (ADF) 
and requires the research work ahead. The reason for this 
is that urban areas are specifically complex and thus one of 
the greatest challenges for ADF as different road users (mo-
torists, bicyclists, pedestrians, e-scooter drivers, etc.) with 
different intentions (e.g. commuting, shopping, or leisure 
time) and different speed meet each other in different traffic 
areas with different signalling (e.g. traffic lights and traffic 
signs). Therefore, self-driving cars are equipped with a variety 
of sensors and assessment algorithms in order to interpret 
and predict the behaviour of all the surrounding road users in 
the near future. Here, comprehensive and powerful artificial 
intelligence (AI) methods take effect. But due to a large gap 
of required training data, an AI method needs to predict any 
thinkable situation, making this a challenging undertaking. 
Brunner et al. (2019) state that this requires more than a bil-
lion test kilometres, which is economically unacceptable in 

a realistic time period. This is one of the reasons self-driving 
cars currently struggle to avoid crashes. 

When different road users with different mobility inten-
tions meet in the same space and time, they interact with 
each other. These interactions (i.e. a close spatio-temporal 
relationship between motorised road users and between mo-
torised and non-motorised road users) are based on rules 
described in the road traffic regulations defining, for example, 
rules on right of way, overtaking, parking, and turning right 
or left. However, when it comes to interactions between dif-
ferent road users with different needs, the human capability 
of anticipating traffic situations mostly leads to non-critical 
and controlled, but sometimes also critical encounters with 
a higher probability of a collision or a severe crash. In case 
of conflicts, an evasive action of at least one of the interact-
ing road users has to be taken to avoid the crash (e.g. Hydén, 
1987; Ismail et al., 2011; Tarko, 2019). In order to fulfil the 
requirements to reduce the number and severity of crashes 
by bringing automated vehicles (AV) on the roads, eventually, 
ADF need to have a sense of “self” (e.g. Jenssen et al., 2019) to 
understand, anticipate, and predict different road user behav-
iours in complex and sometimes arbitrary situations in order 
to plan, implement, communicate, and—if necessary—correct 
a planned manoeuvre in real-time. Reasons contributing to 
such critical situations are manifold, for instance, deficits 
in the transportation infrastructure (e.g. poor road condi-
tions, incomprehensibly complex intersections, and number 
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of traffic signs), ambiguous traffic control (e.g. conditional 
tolerable left turns), errors of road users, unfavourable envi-
ronmental conditions (e.g. weather, illumination, and visual 
conditions) and the “state” and situation awareness of road 
users (e.g. distraction from secondary tasks or mental condi-
tions). Particularly for ADF in urban areas, it is important to 
not only assure safety and maintain an efficient traffic flow, 
but to understand interaction behaviour between motorised 
road users and between motorised and non-motorised road 
users. This can lead to sensible maturing of ADF “behaving” 
like humans while being safer (and more efficient). 

Therefore, the objective of the study is to investigate the 
differences between AV and MV turning left with oncoming 
traffic based on real interaction data. At an urban intersec-
tion, video-based trajectory data was recorded and the per-
formance of the AV was compared to MV executing the same 
manoeuvre.

2. RELEVANT WORK, RESEARCH QUESTION  
AND HYPOTHESES

2.1 Automated driving functions (ADF)

Several public and commercial R&D projects on automated 
driving were conducted within the last two decades. For 
instance, robotics competitions such as the DARPA Urban 
Challenge were firstly examined in artificial environments 
enabling interactions between AV and MV (e.g. Urmson 
et al., 2009). Since then, ADF were developed and tested in 
real traffic environments with safety drivers, for instance, 
in the German project Stadtpilot (Wille et al., 2010) or the 
Bertha Benz Drive for which Daimler reconstructed the first 
cross-country automobile journey of 1888 with an AV (Zie-
gler et al., 2014).

However, currently, vehicles with SAE level 3 or higher 
are not mass-produced for urban environments. Car manu-
facturers just began implementing autonomous emergency 
braking as SAE level 1 driver assistance system for left and 
right turn scenarios driven by increasing safety demands 
of the European NCAP roadmap (see EURO NCAP, 2017 and 
2019) and legal requirements such as the European regu-
lations on type-approval requirements for motor vehicles 
(see EU Regulation, 2019). In recent years, car manufactur-
ers such as Tesla and Volkswagen, but also internet-related 
technology companies such as Waymo and Uber developed 
automated urban robotaxis for commercial use (e.g. Ber-
man, 2020; Graber et al, 2019; Ohnsman, 2020), but their 
technical realisation is confidential in most cases. Only a few 
insights are given (e.g. Fairfield et al., 2014). In this patent, 
the conditionally tolerable left turn with oncoming traffic 
was chosen as an example for a very demanding task for 
the automated driving function (ADF) in which human as-
sistance may be needed.

The state of the art of ADF can be considered in different 
ways. The following examples give a brief insight in what has 
been done so far to make automated driving possible, particu-
larly the entities relevant for the development of the ADF of 
the vehicle TEASY 3 (Testing and Engineering of Automated 
Driving SYstems), used for realising this study (see section 
3.2.2). These are: system architecture, road user detection 
and prediction, trajectory planning, and lateral/longitudinal 
control. From an architectural point of view, the ADF can be 
divided into the layers navigation, guidance, and stabilization 
(e.g. Matthaei et al., 2015) requiring structural modules of 
the ADF in terms of self-perception (reliable detection and 
localisation of the ego-vehicle), environmental perception 
(reliable detection and localisation of the surrounding traffic), 
and mission accomplishment. Krauns et al. (2019) proposed 
the structural modules environment & context model, deci-
sion making & motion planning, and longitudinal & lateral 

control. This proposed architecture allows to interpret the 
extracted environmental features of the detected road users 
in the traffic context and to predict the road users’ behaviours. 
For instance, Liebner et al. (2013) and Sonka (2020) proposed 
approaches for estimating driver intentions and for predicting 
object movements in intersection scenarios. González et al. 
(2016) gave a comprehensive overview of various algorithms 
for motion and trajectory planning. They classified them into 
the categories graph search, sampling-based planners, inter-
polation methods, and numerical optimisation. Noh (2019) 
proposed a decision-making framework for autonomous driv-
ing on the basis of digital maps and predicted future paths of 
the road users determining appropriate manoeuvres for an 
AV to navigate through an intersection safely and efficiently. 
The AV identifies potential threats and avoids collisions, and 
it avoids overly conservative driving regarding safety lead-
ing to crashes, delays, and deadlocks (e.g. Zhan et al., 2016). 
Shu et al. (2020), Hubmann et al. (2018) and Liu et al. (2020) 
proposed deep learning methods and partially observable 
Markov decision processes on the trajectory planning and 
decision processes for AV to overcome the inefficient driving 
of AV at signalised and unsignalised intersections considering 
the unknown intentions of the oncoming traffic in uncertain 
and noisy environments. Ziegler et al. (2014) showed a be-
havioural state chart for manoeuvre planning and a method 
to create a driving corridor based on detailed digital maps in 
consideration of observed constraints such as static obstacles 
and objects. In Tigges et al. (2017), a lateral control concept 
is discussed. An approach for an optimised continuous dis-
tance control based on a sliding mode control is presented 
in Liesner (2017).

2.2 Interactions between AV, MV and other road users

Not a lot of literature can be found on interactions between 
AV and MV in general and left turning AV with oncoming 
MV traffic in particular. Wang et al. (2019) analysed 113 road 
user crashes in terms of crash perpetration of AV in Califor-
nia, USA, between 2014 and 2018. They found that when the 
ADF was activated and in case the AV was responsible for 
the crash, fatalities occurred. In these cases, drivers mainly 
ignored the take-over requests of the ADF. In contrast, the 
injury level decreased when the ADF was deactivated and 
the AV was not responsible for the crash. In Dotzauer et al. 
(2017), a method was developed to compare road user crashes 
and near-crashes with and without involvement of AV, in 
California, USA. On the basis of 40 crashes, it was found that 
AV appeared 4.8 times more often in road user crashes than 
MV. Although these publications suggest the AV is overrep-
resented in (fatal) crashes, it turned out drivers misused the 
ADF of the vehicles.

Studies were found investigating interactions between 
vulnerable road users (VRU, such as pedestrians, cyclists, 
motorcycles, and e-scooter drivers) and AV as well as with 
left turn interactions among MV on the basis of photo stud-
ies, questionnaires, the application of simulators, or virtual 
reality (e.g. Hagenzieker et al., 2020; Rad et al., 2020; Vlakveld 
et al., 2020). Zhou et al. (2014) analysed gap acceptance in 
conditionally tolerable left turn manoeuvres from the major 
road at unsignalised intersections in dependence on the num-
ber of rejected gaps and their duration adopting the general-
ised estimating equations approach. In this simulation-based 
study, for instance, in case of only a non-accepted gap, 50% of 
the drivers turned left when the gap was about five seconds 
and decreased further to approximately four seconds as the 
number of non-accepted gaps increased to 15. Chan (2006) 
analysed and characterised human driving behaviour in con-
ditionally tolerable left turn situations with oncoming traffic. 
Based on field observations at several intersections, it was 
found that the lengths of the signal phases of traffic lights 
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had an influence on the distribution of gap acceptance, while 
speed and traffic volume caused differences in risk-taking 
behaviour of human drivers. Ragland et al. (2006) analysed 
gap acceptance for vehicles turning left across oncoming 
traffic in terms of finding adequate opportunities to initiate 
left turn manoeuvres. They found that acceptable gaps varied 
between three and twelve seconds. Bärgmann at al. (2015) 
analysed conditionally tolerable left turns with regard to the 
drivers’ comfort- and dread-zone boundaries. The authors 
suggested boundaries helping developers of ADF to tune their 
ADF in a way that AV behave more like human drivers. It ap-
peared that in case the drivers were in comfortable driving 
conditions, the PET (i.e. post encroachment time; a surrogate 
safety measure that describes how close two interacting road 
users on a collision course miss each other) showed values 
of 2.26s, whereas the PET was about 1.50s when the drivers 
were in hurried driving conditions. Seo et al. (2018) devel-
oped an algorithm for safe left turns at intersections by the 
use of V2V communications. This safety algorithm informed 
drivers about dangerous situations in left turn manoeuvres. 
Further, a number of current research projects address au-
tomated driving and interactions with other road users. For 
instance, the German project @City AF (see @City, 2020) aims 
to understand interactions between road users and manually 
driven vehicles (MV) in urban areas in order to improve and 
optimise ADF. The interaction and cooperation between mo-
torists and bicyclists in narrow road sections are of specific 
interest. But so far, no publication has been identified. Also, 
in the EU project L3Pilot (see L3Pilot, 2020), AV piloting is 
addressed to enhance, mature, and optimise ADF of self-
driving cars of many European vehicle OEM. In this project, 
an evaluation of ADF in terms of its driving behaviour as well 
as in terms of interaction with other road users takes place. 
In this respect, Trullos et al. (2021) evaluated several SSM in 
a roundabout in Germany. Analog to @City, observations of 
interactions between MV were analysed building the basis 
for the improvement of ADF.

Results found in the literature suggest that recent research 
addressed interactions between MV and AV, but lacks real 
world data. Therefore, the purpose of this study is to inves-
tigate the interaction between manually and automatically 
driven vehicles turning left with oncoming traffic based on 
real interaction data. 

2.3 Research question and hypotheses

The research question of this paper is: “What are the differ-
ences in conditionally tolerable left turns in oncoming traffic 
between an automated vehicle (AV) and manually driven ve-
hicles (MV)?”. At the Application Platform Intelligent Mobil-
ity (AIM) Research Intersection in Braunschweig, Germany, 
video-based trajectory data was recorded in May/June 2019 
to analyse and compare the left turning behaviour of an SAE 
level 3 AV with manually driven cars. The recorded trajec-
tories of the AV and MV were analysed regarding the influ-
ence of situational factors (e.g. position of the vehicle in the 
queue, and gap acceptance) and kinematic factors (e.g. speed 
and acceleration) on traffic safety. The following hypotheses 
H1-H5 arise:

H1. Speed: The AV is expected to approach, pass, and leave the 
intersection slower than MV. The reason for this is that ADF 
in urban areas are still under research and thus, ADF devel-
opers maintain a maximum level of safety to avoid crashes. 
However, in case a crash is unavoidable the AV should release 
less kinetic energy.
H2. Acceleration: In line with hypothesis H1, the AV is ex-
pected to accelerate and brake less intensive than MV when 
approaching the common conflict point. This assumption is 
supported by the fact that there is only one AV available for 

this study, whereas there are several different human drivers 
and driving behaviours using different vehicle types.
H3. Distance and time needed to arrive at the conflict point: 
In line with the hypotheses H1 and H2, the AV is expected 
to brake earlier before the conflict point than MV. Due to 
approaching the intersection more slowly than MV the AV 
is expected to have more time and a larger distance to reach 
the common conflict point.
H4. PET distribution: Due to its driving at a maximum safety 
level, the AV is expected to have less critical, but instead 
more uncritical PET values. Therefore, the PET distribution 
of the AV will be “shifted” to higher PET values than the PET 
distribution of MV.
H5. Accepted/non-accepted time gaps: In line with the hy-
potheses H3 and H4 the AV is expected to accept larger gaps 
intersecting the oncoming traffic than MV.

3. METHOD

3.1 Data

During May 14 to June 6, 2019, between 11:24 am and 6:08 
pm data were collected. Altogether, 39 left turn situations 
of AV were recorded. Three situations were discarded due to 
corrupted trajectories and another nine situations due to the 
fact that the AV did not interact with vehicles of the oncom-
ing traffic. In case of MV turning left, 72 baseline situations 
(in order to have a 1:2 relation for AV vs. MV) were selected 
from the whole data set ± ten minutes around AV situations 
(i.e. conditions between AV and MV were comparable). Two 
situations were discarded as MV did not interact with oncom-
ing traffic. 27 left turns of the AV and 70 left turns of an MV 
were used for the analysis.

3.2 Material and apparatus
3.2.1 AIM Research Intersection

The data acquisition took place at the Application Platform 
Intelligent Mobility (AIM) Research Intersection: An urban 
intersection at Hagenring/Rebenring in Braunschweig, Ger-
many. The inner part of this intersection was equipped with 
video-based sensors to detect, discriminate and track road 
users. In Figure 1 (left) its schematic sensor equipment is 
shown. Road user trajectories were generated by fusing the 
different camera sensors in real-time (see a trajectory sample 
of one hour in the middle of Figure 1). The resulting data were 
provided in 25 fps and contained information about the time 
stamps of the road users, their positions, speeds, accelera-
tions, headings, sizes and modes of transport (cars, trucks, 
vans, motorcycles, pedestrians, bicyclists). The high-resolu-
tion video data provided by the cameras were anonymised 
in real-time to very low-resolution images to fulfil the GDPR 
restrictions (see augmented video scene in Figure 1 (right)). 
Vehicle number plates as well as faces of pedestrians and 
bicyclists could not be detected or tracked. Additionally, the 
AIM Research Intersection was equipped with infrastructure-
to-X (I2X) communication modules, called road side units, 
in order to transmit messages (e.g. signal phase and timing 
extended message (SPATem); and MAPem1) to road users, and 
also receive messages from V2X-communicable vehicles or 
infrastructure-based devices.

3.2.2 Automated vehicle TEASY 3

For performing fully automated left turning manoeuvres in 
an urban area, the AV TEASY 3 (Testing and Engineering of 
Automated Driving SYstems) was used (Figure 2). This AV 
was equipped with sensors by the Institute of Automotive 
Engineering of Technische Universität Braunschweig. In ad-

1	 Message with detailed road topology information used by RLT service: ETSI 
I2C message type about the road topology, see ETSI (2018).
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dition to the series production sensors, mid-range radar, and 
mono camera, the vehicle was equipped with a laser scanner 
perception system. During the measuring period, it consisted 
of six object detection Ibeo LUX laser scanners with an open-
ing angle of 110° as well as two rear-facing SICK LMS511 
one-layer scanners dedicated for lane marking detection. The 
latter were mainly used for referencing and data recording 
purposes to reconstruct a comprehensive model of the road 
marking environment. TEASY 3 was capable of sending and 
receiving V2X messages.

Precise localisation for in-lane positioning within the in-
tersection was performed by a Genesys ADMA speed iner-
tial measurement unit, obtaining a GPS signal with d-GPS 
correction via mobile network. Information from the digital 
infrastructure, such as the traffic light status and status pre-
diction were provided through a SPATem, which was received 
via WAVE (wireless access in vehicular environments) com-
munication (Flormann et al., 2018). On the actuator side, the 
vehicle was furthermore equipped with CAN interfaces allow-
ing the reception and transmission of relevant messages and, 
therefore, a manipulation of the acceleration, brake torque 
as well as the steering angle.

The vehicle’s intelligence was embedded in a multi-layer 
functional architecture running on a dSpace AutoBox, a rap-
id control prototyping platform connected to the percep-
tion and actuator side. The architecture was comprised of 
an environment model, behaviour planning, and a control 
layer. The ADF implemented within this environment were 
domain and use-case focused and include a highway pilot, 
automated valet parking applications, and multiple inter-
section use cases. 

3.3 Explorative observation
T﻿he observation took place at the AIM Research Intersec-
tion, in Braunschweig, Germany. Of interest were vehicles 
turning left from West to North (WN vehicles) as well as the 
oncoming vehicles from East to West (EW vehicles). One 
dedicated left turn lane was provided at the intersection 
while oncoming traffic could choose between two lanes for 
crossing the intersection, the right and the left lane. The WN 
vehicles queued up either at the first or the second position. 
WN and EW vehicles interacted regularly since left turning 
vehicles and the oncoming traffic accessed the intersection in 
the same traffic light phase. Therefore, this situation can be 
called ‘conditionally tolerable left turn’. Such situations can 
be critical. Both interacting vehicles share the same conflict 
area and, if at least one of the interacting partners does not 
behave adequately or the resulting gap of oncoming vehicles 
is assessed falsely by the turning vehicle (or driver), a critical 
situation may evolve to a severe crash.

The recorded video and trajectory data were reduced to the 
relevant interaction situations between left turning vehicles 
from West to North (including the drives with TEASY 3) and 
oncoming vehicles from East to West. For the purpose of the 
analysis, matched MV situations were extracted from the data 
set. In order to ensure comparability of AV and MV situations, 
the following extraction criteria were applied:

−− Same traffic conditions: The time period of the extraction 
of MV situations was set to ten minutes before and after 
the AV situation. 

−− Grouping by queue position: Since the AV was found to 
queue either at the first or second position, MV also need-

Figure 1. Schematic representation of AIM Research Intersection, its sensors and detection areas (left): blue: mono-cameras, green 
and amber: stereo-cameras; one-hour trajectory data sample of the relevant trajectories for the different transport modes cars: red, 
bicyclists: blue (middle); augmented video scene showing AV TEASY 3 with ID C862 in different camera views (right).

Figure 2. Automated vehicle TEASY 3 with relevant environment sensor systems.
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ed to be positioned first or second in the queue. Further, 
all AV and MV of these relevant cases that queued up 
at first position came to a standstill before crossing the 
conflict area.

−− Grouping by lane of the oncoming traffic: The oncoming 
traffic was characterised by vehicles adopting either the 
right lane to pass the intersection or the left lane. A sepa-
ration of the target lane of the left turning vehicle was not 
considered due to its negligible impact on the conflict area.

To compare the situations of AV and MV, the traffic area for 
left turning vehicles was separated into ten sections including 
different driving scenarios: (i) approaching the intersection, 
(ii) entering the conflict area with the oncoming traffic and 
(iii) leaving the intersection (Figure 3). Each of the sections 
was chosen to be equidistant. Of all relevant WN situations, 
the interacting trajectories were selected enriching the video 
data with information about the queue position (first/sec-
ond position) and lane positioning (right/left lane) of the 
oncoming traffic. Relevant variables were time stamp, road 
user kinematics (position, speed, acceleration), the surrogate 
safety indicator PET, accepted and non-accepted net time 
gaps, the distance covered to reach the conflict point (d

cp
) 

in the moment of first acceleration or brake and the corre-
sponding time needed to arrive at the conflict point (t

cp
). In 

order to investigate difference of AV and MV approaching and 
leaving the common conflict point, two different cases were 
considered: the distance covered to reach the conflict point 
d

cp
(±a) and the time needed to arrive at the conflict point 

t
cp

(±a) given the acceleration of the vehicle. The variable “±a” 
was the independent parameter acceleration indicating either 
a deceleration (-a) or an acceleration manoeuvre (+a). Due to 
acceleration noise of the underlying trajectory data, several 
thresholds were considered: First, the threshold for deceler-
ating was set to -1.3m/s². The threshold to count an event as 
an accelerating manoeuvre was set to +1.0m/s². The absolute 
values of both values differed slightly since vehicles usually 
accelerate more moderately than they decelerate. Second, ac-
celerating and decelerating are not singular events, instead, 
they are kinetic processes lasting some time to change the 
speed of the vehicle significantly due to its inertia. Therefore, 
a speed changing manoeuvre was considered and counted 
as accelerating/decelerating process only in case the accel-

erating/decelerating thresholds were exceeded for at least 
0.7s. All variables were derived from the trajectory data. The 
kinematic variables were computed for the ten sections on 
the WN relations (see Figure 3).

3.4 Analysis

Methods of descriptive and inferential statistics were applied 
to the underlying AV and MV data. The following significance 
tests were applied:
•	 All variables selected for answering the research questions 

in section 2.3 were tested for normality of the residuals by 
applying the Shapiro-Wilk test. Some of the data samples 
were significant to reject the normality assumption.

•	 PET, time gap acceptance/non-acceptance, d
cp

, t
cp

:
−− Due to the different number of sample sizes and the 

violations of normality, a parametric T-test to analyse 
the differences between AV and MV behaviour could not 
be applied. Thus, the non-parametric Mann-Whitney-U 
test was used.

•	 Speed and acceleration data:
−− Speed and acceleration data were tested for homosce-

dasticity. In most cases, this requirement was not met.
−− Due to the different sample sizes and the violation of the 

homoscedasticity condition, a parametric ANOVA-test 
could not be applied. Therefore, the Kruskal-Wallis-H 
test was applied.

4. RESULTS

Generally, all tests were applied with a level of significance 
of α < 0.05. In case of the post hoc tests, the Bonferroni cor-
rection was applied.

4.1 Interaction behaviour

For this analysis, the interaction behaviour was analysed 
based on the PET, accepted/non-accepted gaps as well as 
the distance to arrive at the conflict point (d

cp
) and the time 

needed to arrive at the conflict point (t
cp

) for the first accel-
eration/deceleration manoeuvre of the left turning vehicle.

4.1.1. PET

In Figure 4, the derived PET histogram of all situations 
(n = 1235) of left turning vehicles (including the drives with 

Figure 3. Division of the relevant parts of the intersection in 10 sections for vehicles turning left from West to North (sections 0-4: 
approaching; section 5: conflict area; sections 6-9: leaving). The red curves are sample trajectories for the WN vehicles and the EW ve-
hicles. The yellow boxes define the conflict area; the piecewise yellow lines define the equidistant sections. The long black lines mark 
two relevant loops (Western and Northern loop) for distance-time diagram computation.
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the AV) interacting with vehicles of the oncoming traffic are 
shown: M = 4.25s, SD = 3.03s, Mdn = 3.33s. For each PET, it 
was expected that the interaction took place between the 
vehicle pair that showed the minimum PET. The most fre-
quent PET values lay between 1.5 and 2.0 seconds, whereas 
the frequency of PET values larger than 2.0 seconds tended 
to decrease. PET values of less than 1.0 second appeared to 
be relatively rare.

In the left of Figure 5, the PET values for AV and MV (base-
line) situations are plotted. The AV showed PET values with 
a Mdn = 6.35s, whereas the PET values for MV drives showed 
a Mdn = 1.73s. In this example, a comparison of the PET val-
ues applying Mann-Whitney-U test (U = 20.0, p < .001, r = .756) 
revealed a significant difference between AV and MV.

Based on these results, it was aimed to investigate, wheth-
er the position in the queue of left turning vehicle and/or 
the lane use of the vehicles of the oncoming traffic influence 
the PET distribution. For instance, in the right of Figure 5, 
the box plots of the PET values regarding the position of 
the queue of the left turning vehicle are shown. Here, sig-
nificant differences (α = 0.0125) were found for the first and 
second positions of MV (U = 86.0, p < .001, r = .514) with PET 

Mdn = 1.64s (first position) and Mdn = 2.94s (second posi-
tion), and between the first positions of the AV compared to 
the first position of MV (U = 11.0, p < .001, r = .681) with PET 
Mdn = 6.23s vs. Mdn = 1.64s and between the second position 
of the AV and the second position of MV (U = 1.0, p < .001, 
r = .838) with PET Mdn = 7.36s vs. Mdn = 2.94s). The differ-
ences between the first and the second position of the AV were 
not significant (U = 47.0, p = .019, r = .404). The PET values of 
AV and MV were approximately 1.1–1.3 seconds larger when 
the vehicles queued up at the second position compared to 
the first position. Lane use of the oncoming traffic did not 
affect the PET distribution within the groups.

4.1.2 Accepted/non-accepted time gaps

In Figure 6, the accepted and non-accepted time gaps of the 
left turning vehicle to intersect the oncoming traffic flow are 
plotted (α = 0.0125). On the left, the results considering the 
whole data set are shown. No significant difference was found 
between non-accepted time gaps of AV and MV by applying 
Mann-Whitney-U test (U = 14610.0, p = .274). Moreover, in 
case of the AV, no accepted time gap was found in the data, 
but the time gaps accepted by MV (Mdn = 1.54s) significantly 
differed from their non-accepted time gaps (Mdn = 6.27s) 
(U = 252.0, p < .001, r = .575). On the right, the results for 
non-accepted time gaps are shown for vehicles that had come 
to a full-stop before turning left. Therefore, only the vehicles 
that queued at the first position were considered and no sig-
nificant difference were revealed.

4.1.3 Distance to conflict point (d
cp

) and time  
to conflict point (t

cp
)

d
cp

(-a) and t
cp

(-a):
In Figure 7, the box plots of the d

cp
(-a) (left) and the corre-

sponding t
cp

(-a) (right) values for the first braking manoeuvre 
of the AV and MV are shown (α = 0.05). The values for d

cp
(-a) 

did not reveal any significant difference between AV and MV 
(U = 392.0, p = .112). The values for t

cp
(-a) of the AV differed 

significantly from MV (U = 160.5, p < .001, r = .554) in the mo-
ment of first braking. Also, the values for d

cp
(-a) and t

cp
(-a) for 

MV had a larger variance than the ones for the AV.

d
cp

(+a) and t
cp

(+a):
In Figure 8, the box plots of the values for d

cp
(+a) (left) and 

t
cp

(+a) (right) in the moment of first acceleration of the AV 
and MV are shown (α = 0.05). The values for d

cp
(+a) between 

Figure 4. PET histogram of all interactions between left turning 
vehicles with oncoming traffic during the whole measuring period.

Figure 5. Box plots of the PET values of the 70 baseline MV (Mdn = 1.73s) and 27 AV (Mdn = 6.35s) situations (left); box plots of the PET 
values with regard to the position of the left turning vehicle in the queue; the orange line shows the medians and the green triangles 
the positions of the means.
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AV and MV did not differ significantly (Mdn
AV

 = 9.76m vs. 
Mdn

MV
 = 8.42m; U = 638.0, p = .063, r = .164). Furthermore, 

the values for t
cp

(+a) were significantly different between 
AV and MV with Mdn = 3.86s for AV vs. Mdn = 2.78s for MV 
(U = 393.5, p < .001, r = .402). 

4.2 Kinematic behaviour
In Figure 9, the speed of all 27 AV cases as well as 27 (out of 70) 
randomly chosen MV cases are plotted over the distance travelled 
within the area covered by the loops W and N at the intersection. 
In case of the AV, speed decreased when approaching the inter-

Figure 6. Accepted/non-accepted time gaps for AV and MV: the complete relevant data set with 27 AV and 70 MV cases (left); only the 
cases with the AV and MV at first position of the queue (right); the orange lines represent the medians and the green triangles the means.

Figure 7. Distance to conflict point and time to conflict point in the moment of the first braking over the whole baseline MV and AV 
data set: d

cp
(-a) (left); t

cp
(-a) (right); the orange lines represent the medians and the green triangles the means.

Figure 8. Distance to conflict point and time to conflict point in the moment of the first acceleration over the whole baseline MV and 
AV data set: d

cp
(+a) (left); t

cp
(+a) (right); the orange lines represent the medians and the green triangles the means.
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section and increased when exiting. Speed around 0 m/s marked 
a full-stop and/or queueing up (i.e. lower distances from the start 
of the sequence) before accelerating to leave the intersection. In 
case of MV, speed decreased when approaching the intersection, 
but the distance to the conflict point when acceleration to leave 
the intersection had a larger variance than for the AV.

In Figure 10, the accelerations of the 27 AV and 27 MV 
cases are plotted over the distance travelled. In case of the 
AV, the acceleration followed a certain pattern: decelerating 
when approaching the intersection and accelerating again 
when leaving the intersection. In the MV case, no obvious 
pattern was identified.

Figure 9. Distance-speed diagrams of the AV drives (left) and MV drives (right) between the loops W and N. The vertical black lines 
represent the conflict area.

Figure 10. Distance-acceleration diagrams of AV drives (left) and MV drives (right) vehicles between the loops W and N. The vertical 
black lines represent the conflict area.

Figure 11. Kinematic mean values of the AV and the baseline MV drives and their standard errors in the defined sections 0-9: mean 
speeds and their standard errors (left); mean accelerations and their standard errors (right); the vertical black lines mark the conflict 
area in section 5.
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The kinematic behaviour of the AV and MV was analysed 
in more detail and characterised by their mean speed and 
acceleration in the ten road sections (see Figure 3). The ten 
road sections were categorised into approaching (0-4), conflict 
area (5), and leaving (6-9). In Figure 11, the kinematic values 
(mean speed and acceleration) and standard errors of the 27 
AV and 70 MV drives are shown.

In Figure 11 (left), the mean speed of the AV and MV are 
shown. The mean speed of MV was higher than the mean 
speed of the AV in the approaching sections (0-3), the con-
flict area in section 5, and the leaving sections (6-9). In the 
queueing area before the conflict point, section 4, the mean 
speed of MV was lower than the mean speed of the AV. The 
application of the Kruskal-Wallis-H test (α = 0.005) revealed 
no significant main effect between the speed of AV and MV 
(H = 0.691, DF = 9, p = .406).

In Figure 11 (right), mean acceleration of the AV and MV are 
shown. Mean acceleration of MV and the AV in the approach-
ing sections (0-2) were similar, but in the subsequent sections 
3 and 4, accelerations of the AV were higher than acceleration 
of MV. Beginning with the conflict zone in area 5, the effect 
reversed: acceleration of MV were higher than acceleration of 
the AV. The application of the Kruskal-Wallis-H test (α = 0.005) 
revealed no significant main effect between the acceleration 
of AV and MV (H = 0.823, DF = 9, p = .364).

5. INTERPRETATION AND DISCUSSION

The objective of the study was to investigate the differences 
between AV and MV turning left with oncoming traffic based 
on real interaction data. At the AIM Research Intersection, 
video-based trajectory data was recorded and the perfor-
mance of the AV was compared to MV executing the same 
manoeuvre. The derived trajectories of the AV and MV were 
analysed regarding the influence of situational and kinematic 
factors on traffic safety. For instance, it appeared that the AV 
showed a conservative left turning behaviour leading to safe 
PET distributions. Although the kinematic behaviour of AV 
and MV did not differ significantly, some variables (e.g. time 
gap, time/distance to arrive at the common conflict point) 
showed significant differences under some circumstances. 
Also, the queuing position of the left turning vehicle as well 
as the lane adopted by the oncoming traffic may affect turn-
ing behaviour, and hence traffic safety.

5.1 Interaction behaviour

The results showed that the ADF of the AV had a conservative 
behaviour conducting the conditionally tolerable left turns 
at this specific urban intersection: PET values of the AV and 
MV groups were on opposite ends of the PET distribution. 
PET values of the AV were higher than PET values of MV in-
dicating a safe left turn manoeuvre of the AV. The AV waited 
for a longer period of time before entering the conflict area 
and leaving the intersection. Also, it was found that PET 
values of MV and AV were more than a second apart when 
queuing up at the second position than in case of the first 
position. A reason for this may be the missing line of sight 
of the oncoming traffic by the left turning vehicle placed 
at the second position. Technically, the AV was capable of 
intersecting oncoming traffic, this case did not occur when 
recording the data due to the high safety demands and the 
limited sensor range. The largest non-accepted gap of the 
AV to intersect the oncoming traffic was about 8 seconds. 
In contrast to our study, in which the AV always came to 
a full-stop before turning-left, in Shu et al. (2020)—which was 
a simulation-based study—the AV approached further, closer 
to the conflict point at very low speeds and took a shorter 
path to leave the intersection in case the gap to vehicles of 
oncoming traffic was large enough. 

It appears that the values for the time to arrive at the con-
flict point at the moment of first braking were approximately 
9.7 seconds larger for the AV than MV, while the distance to 
reach the conflict point was non-significantly a meter shorter 
indicating later braking of the AV. The AV approached the 
intersection at lower speeds than MV. This may be due to 
the ability to better anticipate the behaviour of the vehicle 
in front or lacking relevant information. The variance of the 
values of the distance to the conflict point was larger for MV 
compared to AV indicating that (i) MV braked despite the 
conflict point and thus, the moment of first braking appeared 
to be arbitrary, and (ii) human drivers adapt different driving 
behaviours in different conditions (e.g. traffic light phases, 
anticipated gap). MV approached the intersection faster than 
the AV. This may indicate that in a first queue position hu-
man drivers brake more often. It may be seen as a strategy 
to not lose the momentum just in case stopping is not neces-
sary. This behaviour may allow utilizing smaller gaps. The AV 
braked just once and usually to a full stop. Also, the ADF of 
the AV in question did not distinguish between the occupa-
tion of the lane of the oncoming traffic. In case vehicles were 
present, all lanes were set to be occupied. This also indicates 
that the AV appears to stop in the same area independently 
of the adopted lane of the oncoming traffic while MV drivers 
adapt to the oncoming traffic allowing shorter gaps to inter-
sect the traffic flow. In consequence, the AV appears to reject 
smaller gaps and to wait longer before entering the conflict 
area. In turn, this may lead to a lower efficiency. In Shu et 
al. (2020), it is stated that the waiting time before getting in 
the conflict area is longer when oncoming vehicles drive at 
a lower speed and shorter when oncoming vehicles are faster 
(which can be interpreted as a larger time to arrive at the 
conflict point). The typical qualitative behaviour regarding 
the speed leaving the intersection were comparable to our 
results and showed human-like behaviour. Although the ADF 
of TEASY 3 considered the changes in speed and acceleration 
of the oncoming traffic, it did not distinguish between the 
adopted lanes of the oncoming traffic. Its ADF used map re-
lated stopping positions and it showed potential for dynamic 
optimisation of the path to cross the conflict area. This is the 
main cause that TEASY 3 was less efficient than MV.

In case of the distance to the conflict point in the moment 
of the first acceleration, no significant differences between AV 
and MV were found. The time of the AV to reach the conflict 
point was a second longer than MV. This trend may indi-
cate that the AV accelerated earlier than MV, but with lower 
acceleration and lower speed. Human drivers are better in 
recognizing road users in the intersection than the limited 
sensor range of the AV allows for. Therefore, it is expected that 
human drivers anticipate the left turn situation better than 
the AV. Also, the acceleration function of the AV in question 
was limited to allow the safety driver to react adequately in 
case a faulty acceleration occurred. In general, the AV ap-
proached and left the conflict point at a lower speed than 
MV. The means of the time to arrive at the conflict point at 
first acceleration are larger than the medians. This indicates 
a strong asymmetry of the underlying distributions.

In general, it can be stated that the driving behaviour of the 
AV did not differ completely from MV (i.e. the AV behaviour 
can be seen as a subset of the driving behaviour of human 
drivers). The human anticipation performance appeared to 
be—particularly in terms of the specific interaction with on-
coming traffic—better than the ADF in question. The differ-
ences are not surprising as liability is an issue as well as the 
fact that the vehicle in question represented a prototypical 
state of implementation in an experimental vehicle. However, 
it appears that the ADF of the examined AV showed poten-
tial to increase its driving efficiency in terms of lowering 
the implemented subroutines with regard to safety-related 
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parameters such as PET and gap acceptance. The currently 
implemented safety margin may be decreased significantly 
while maintaining a comparable safety level, for instance, 
by applying and safeguarding powerful AI methods (e.g. 
deep learning as proposed by Liu et al., 2020) and stochastic 
Markov decision process methods (e.g. Shu et al., 2020) in 
the decision-making process of the ADF.

5.2 Kinematic behaviour

It can be stated that MV—with different car and driver types—
show a more or less arbitrary behaviour while the AV behav-
iour appears to be predictable. On the other hand, it appears, 
the AV always behaved in the same way, while MV showed 
a variety of behaviour depending on the current traffic situ-
ation. For instance, MV intersected the oncoming traffic up 
to approximately 8 meters before the conflict area when gaps 
were suitable, whereas the AV always stopped. Also, unlike 
MV, the acceleration of the AV was limited in order to give the 
safety driver a chance to react adequately in case of a faulty 
behaviour of the vehicle.

When looking at the different phases of conducting a left 
turn, the AV decreased its speed when approaching the in-
tersection, maintained a low speed until coming to a full-
stop and accelerated again to leave the intersection. These 
real-data findings are qualitatively similar to the results of 
a simulation-based study presented by Shu et al. (2020). They 
found that in all left turn scenarios, the AV approached the 
intersection at a relatively high speed, decelerated, and main-
tained a low speed creeping forward until the intention of 
the oncoming vehicles became certain (either stopping or 
accelerating in dependence on the gap size of the vehicles of 
the oncoming traffic).

5.3 Research question and hypotheses

The acceleration and speed of the AV in comparison to hu-
man drivers did not differ compared to MV. The ADF of this 
specific AV in question did not behave completely different 
from human drivers. However, the AV showed a tendency 
to approach the intersection and the conflict point slower 
than human drivers. On the other hand, the AV accelerated 
earlier, but more steadily than MV to leave the conflict area 
and the intersection. The hypotheses H1 and H2 meaning the 
AV approached, passed, and left the intersection slower and 
with less acceleration than MV were rejected. However, the 
AV showed a tendency to fulfil these expectations. Also, in 
most cases—as the distance-speed and distance-acceleration 
figures showed—the acceleration and speed behaviour of the 
AV occurred widely predictable. This, on the one hand, gives 
road users the chance to anticipate the outcomes of future 
traffic situations better than in case of human drivers. On 
the other hand, a higher rate of deployed AV in traffic will 
allow for more precise coordinated and cooperative driving, 
resulting in increased traffic efficiency. In case of several dif-
ferent AV with different ADFs, the results are expected to be 
different. Concerning both, the moment of braking before the 
conflict point was realised in almost all cases later compared 
to MV. The AV accelerated at an earlier point than MV to leave 
the conflict and intersection area. An explanation may be 
that the AV drove more slowly and with less acceleration in 
order to minimise uncertainties of the sensor-based road user 
detection and prediction. Hypothesis H3 was confirmed with 
regard to the time needed to arrive at the conflict point. The 
AV needed significant more time than MV at the moment of 
first braking/acceleration due to its lower speed and accel-
eration. In general, the AV showed a tendency to brake later 
(i.e. at a larger distance to the conflict point) than MV. On the 
other hand, the AV showed a tendency to accelerate earlier 
(i.e. at a greater distance before the conflict point) than MV. 
Hypothesis H3 with regard to the distance to the conflict point 

was rejected. Hypothesis H4 was confirmed, since the AV 
showed a less critical interaction behaviour than MV regard-
ing the PET. But it was not expected that the differences were 
so prominent between the AV and MV interacting with on-
coming traffic. Lastly, hypothesis H5 could not be addressed, 
since no cases were recorded in which the AV accepted single 
gaps in oncoming traffic.

6. CONCLUSIONS AND FUTURE PROSPECTS

Conditionally left turning in oncoming traffic at an urban 
signalised intersection is a challenging task for human driv-
ers and ADF of AV. The results of this paper show that the 
AV in question was capable of turning left without violating 
traffic regulation rules. Its driving behaviour did not show 
significant differences to human drivers, except for the gap 
acceptance. Additionally, the driving behaviour of the AV may 
be characterised as predictable. This may change when the 
penetration rate increases and several AV of different OEMs 
enter the market. At the same time, a higher deployment rate 
may also result in an increase of traffic efficiency. Significant 
differences were identified in terms of safe driving: Unlike 
MV, the AV turned left in a conservative and safe way. Also, 
the AV did not enter the conflict area in dependence of the 
lane adopted by the vehicles of the oncoming traffic, which 
led to the low traffic efficiency in comparison to MV. Even-
tually, these results may help to improve and mature the 
ADF in order to increase traffic efficiency while maintaining 
a high level of safety. The identified safety margin could be 
significantly decreased. However, the results presented here 
should be handled carefully, since the amount of cases con-
sidered was very low. Also, more situational factors need to 
be considered, which requires more data, particularly with 
AV to come to more sound conclusions. Our future work will 
deal with improving the current set of ADF by including the 
results of this investigation, and testing them maintaining 
safety, but increasing traffic efficiency.
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