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Abstract

To meet the increasing demands for availability at reasonable cost, operators and maintainers of railway point machines are
constantly looking for innovative techniques for switch condition monitoring and prediction. This includes automated fault
root cause diagnosis based on measurement data (such as motor current curves) and other information. However, large,
comprehensive sets of labeled data suitable for standard machine learning are not yet available. Existing data-driven ap-
proaches focus only on the differentiation of a few major fault categories at the level of the measurement data (i.e., the “fault
symptoms”). There is great potential in hybrid models that use expert knowledge in combination with multiple sources of
information to automatically identify failure causes at a much more detailed level. This paper discusses a Bayesian network
diagnostic model for determining the root causes of faults in point machines, based on expert knowledge and few labeled data
examples from the Netherlands. Human-interpretable current curve features and other information sources (e.g., past
maintenance actions) are used as evidence. The result of the model is a ranking of the most likely failure causes with associated
probabilities in terms of fuzzy multi-label classification, which is directly aimed at providing decision support to maintenance
engineers. The validity and limitations of the model are demonstrated by a scenario-based evaluation and a brief analysis using
information theoretic measures. We present the information sources used, the detailed development process and the analysis
methodology. This article is intended to be a guide to developing similar models for various complex technical assets.

Keywords
Railway switch, fault diagnosis, Bayesian networks, expert knowledge, prognostics and health management

Date received: 18 September 2022; accepted: 5 July 2023

Introduction switch (incl. point machine) fault diagnosis is given in
Hamdache.” Huang et al.® differentiate between five fault
types for single-action ZD6 point machines, using dy-
namic time warping and reference current curves. Narges
et al.” focus on four common fault types for Siemens
S700K point machines with the application of feature
extraction and supervised learning methods. Concerning
unsupervised learning, Guo et al.'® combine machine
learning and engineering expertise to diagnose eight fault
types of Siemens S700K point machines, using both
simulated and field test data.

The data-driven approaches for point machines above are
highly dependent on (partially labeled) data in terms of
availability and quality, and focus on few major fault cate-
gories that are distinguishable based on (almost exclusively)
current curve data. According to Silmon and Roberts,''

Switches and their point machines are crucial assets of the
railway infrastructure, both in terms of network availability
and safety. A significant amount of delay time in railway
networks can be attributed to infrastructure failures, es-
pecially railway switches."? Traditional maintenance
strategies relying on preventive maintenance with fixed
inspection intervals do not match the necessity for a high
availability of the infrastructure at reasonable costs. To
address these challenges, prognostics and health manage-
ment is adopting condition-based or even predictive
maintenance policies,” including diagnostic systems for
automated identification of root causes of occurring faults.

Measuring motor current curves is a common approach for
condition monitoring of point machines, especially in the area
of anomaly detection. For example, Come et al.” first fit a
hidden process regression model to a small number of current
curves corresponding to a healthy switch state, then secondly "Institute of Transportation Systems, German Aerospace Center (DLR),
use the Fisher score test to detect anomalies and applying a Germany
stochastic gradient algorithm to recursively update the model 2Strukton Rail, Utrecht, The Netherlands
parameters. Narezo Guzman and Neumann® developed and .
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diagnostic models should be able to deal with the full variety
of faults (including rare or incipient events), be intuitive to
maintenance operators and allow for automated integration
into the operational workflow. Expert-knowledge based
systems provide an alternative to standard machine learning
approaches, that combines measurement data and other in-
formation sources without classical physical modeling of the
target asset. Bayesian networks are a representative of this
class of models which have been successfully applied in
various fields,'? including dependability, risk analysis and
maintenance' and fault diagnosis.'* They provide a prob-
abilistic graphical modeling approach (cf. Appendix and
Charniak'® for a short introduction and Koller and Fried-
man'® for a deeper dive), which allows for interpretable
representations of complex systems.

Neumann and Narezo'” carried out preliminary work on
the application of Bayesian networks for point machine
fault diagnosis, outlining the conceptual approach and
discussing model architecture. Almost all nodes in the
graphical representation of a Bayesian network model refer
to specific elements (real or abstract) or measurement data
features of the switch, with specific fault states or values
that occur with certain probabilities. The output is a fuzzy
multi-label classification. In this context, Bayesian net-
works are demonstrably more powerful than standard ap-
proaches like fault trees or FMECA (Failure Modes,
Effects, and Criticality Analysis).'® The different forms of
causal, anti-causal (i.e., diagnostic) and inter-causal rea-
soning are a major strength with regard to the purpose of
railway switch diagnostics.

This paper discusses the development of Bayesian network
diagnostic models for point machines and mechanical track
components relevant to the operability of the switch drive. The
presented model is tailored specifically to NSE (Nederlandse
Spoorwegen Elektrisch) point machines, but the approach can
easily applied to other types of point machines as well. The
goal of the model is to determine fault root causes, using
human-interpretable current curve features and other influ-
encing factors (past maintenance actions, historic switch be-
havior, environmental factors, railway metadata, power
supply) as evidences. The output of the model, a ranking of the
most likely faults with associated probabilities (fuzzy multi-
label classification), is directly aimed at maintenance engi-
neers. In contrast to previous conceptual work, the model
includes all (in our view) relevant asset component and fault
states, handles multiple sources of information and, most
importantly, has passed a comprehensive scenario-based
performance evaluation by maintenance experts.

Automated calculation of the required human-interpretable
current curve features, evidence calculation and maintenance
decisions based on the model output are not within the scope
of this paper. First steps towards human-interpretable current
curve features (e.g., humps) and the integration of the pre-
sented diagnostic model into an operational environment are
described in Narezo Guzman et al."”

The remainder of this paper is structured as follows.
The next section gives an overview of the data and other
sources that serve as a basis for the model development
process. The third section describes the development
process itself, while section four presents the resulting
diagnostic model and the output of the last iteration of the
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Figure |. Number of considered reports per fault category.

evaluation. In section five, a deeper analysis of the model’s
behavior in terms of information theoretic measures is
carried out. The last section contains conclusions on the
presented work and gives an outlook onto options for
further development.

Information sources

Historical data

The vast majority of historical current curve data is gen-
erally unlabeled. For this research work, there were a
number of selected reports of maintenance actions avail-
able, comprising information about 17 switches over the
course of 2012 until 2021. Figure 1 displays the number of
reports addressing point machine health, grouped into
aggregated fault categories. The high number of reports in
the category “Adjustment” are partially due to the fact that a
number of different maintenance actions can fall under that
label. In addition, the label was sometimes found to be used
by mechanics as a default if the performed maintenance
actions are difficult to categorize or would require a lengthy
documentation otherwise.

Experimental data

To challenge the lack of a precisely labeled database, series
of experiments were conducted at Strukton Rail’s switch
maintenance training facility in Amersfoort. Ten different
fault types in various forms were subsequently purposefully
introduced onto a test switch while measuring the motor
current curves for both directions of the switch blade
movement, as well as a reference curve just before the
introduction of each fault (and after removal of the previous
fault).

Figure 2, for example, shows the experimental simulation
of a bad contact in the power supply, resulting in the current
curve depicted in Figure 3. In Figure 4, the movement rods
are maladjusted such that the closing switch blade closes too
tight toward the stock rail, resulting in a heavy closing and
thus increased current level during the locking phase of the
current curve. At approximately 2.2 s, the second set of
contact fingers switches over and the point machines shuts
down. In this moment, the increased current level causes
electrical sparking. This phenomenon burns the surface of the
contact fingers in the long term and thus shortens their
lifetime. In general, there are several examples of such long-
term fault propagation in railway switches.
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Figure 2. Experimental simulation of a bad contact in the power
supply.
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Figure 3. Current curve of the experimentally simulated bad
contact in Figure 2. The disruption of the power supply causes
the current to drop and momentarily slows the movement of the
motor.
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Figure 4. Current curve with a too tight adjustment of the
movement rods. This causes a heavy locking of switch blades,
which is visible in the data as a hump between 1.5 s and 2.2 s.

Expert knowledge and other sources

Reference values for fault occurrences in railway
switches can be found in Bemment et al.,20 Rama and
Andrews,”! Hassankiadeh?? or Kassa,>> for instance.
However, these numbers are not necessarily transferable
to NSE point machines and there is often a high level of
aggregation, or only the most common fault types are
considered.

The manufacturer Voestalpine WBN provides recom-
mended maintenance actions and intervals in their manual®*

for NSE point machines. These give an indication on the
expected occurrence and criticality of certain faults, as well
as the level of detailedness a diagnostic model would need
to provide.

A common approach to systematically catalog dif-
ferent components of a complex system and their pos-
sible faults is to conduct a FMECA. Kassa™ gives an
comprehensive introduction to the method and applies
this technique on switches (incl. track superstructure and
drive) to determine critical faults and support mainte-
nance planning on a high level. For the development of
the model presented in this paper, Strukton Rail provided
a detailed FMECA conducted specifically for NSE point
machines.

Even if the above sources all provide important
insights towards components, fault states and their
likelihoods, there is no information on the detailed in-
teraction of influencing factors, measurement data
(features) and fault occurrences, giving rise to the need
for additional inputs for the modeling process. In this
regard, although not tangible, the most valuable and
important information source for building a detailed
diagnostic model as presented below finally turned out to
be expert knowledge from data and maintenance analysts
at Strukton Rail. These have many years of working
experience in the operational maintenance of switch
drives and their expertise includes, among other things,
switch measurement data analysis, assignment and ex-
ecution of maintenance actions and training of field
mechanics.

Development process

Cai et al.'"* reviews a number of Bayesian network ap-
plications for fault diagnosis and presents a general
workflow for developing such models, data-driven or
manually. Due to the information sources available for
modeling purposes as presented in the previous section
and in regard of the lack of a larger amount of labeled data,
a data-driven approach is not feasible here. Lack of labeled
data is a common problem in prognostics and health
management in the railway infrastructure sector, requiring
methods that can work with limited data. The following
section discusses the stages of manual model development
for complex technical assets and outlines the design de-
cisions specifically made for the diagnostic model in this
paper.

The development process (violet) summarized in
Figure 5 is based on the available information sources
(yellow) discussed in the previous section. The first step is
to determine the structural design and temporal scope,
followed by parameterization and scenario-based evalua-
tion. These steps are iterated in close interaction with the
experts until an appropriate model structure for the appli-
cation is found and the evaluation shows the desired ac-
curacy of results. The output of the development process is
the model itself and the results of the last iteration of the
evaluation (blue). Subsequent to development, an entropy
analysis (green) can be conducted to gain further insights
into the model’s working.
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Figure 5. Development process with information sources,
resulting model and subsequent analysis.

Structural design

Bayesian networks are probabilistic graphical models
whose structure is that of a directed acyclic graph. In di-
agnostics, the asset and its associated variables are repre-
sented by nodes (e.g., components or functional aspects of
the switch) with states or values (e.g., healthy and fault
states) that occur with certain probabilities. Cause-effect
relations are modeled by the directed links between nodes
(for more details, see Appendix). The nodes can be cate-
gorized into three layers, influencing factors (e.g., envi-
ronmental conditions) which are typically root nodes, then
the target nodes which represent the switch with its fault
types and finally a layer of observable symptoms (e.g.,
measurement data features). Each layer can have a depth of
more than one, e.g., primary target nodes are summarized
into aggregated nodes with their own fault types. This
strategy can be used to model larger overall components,
functionalities or behaviors of the switch. It also simplifies
parameterization by reducing the total number of param-
eters and the complexity of parameterization for each in-
dividual node (by reducing the number of parent nodes).
In a component-based view of assets, the asset is
modeled as a collection of all its physical components as
nodes and faults as states similar to FMECA. This provides
a detailed, complete representation of the asset regardless of
data availability, but faults can be difficult to assign to
individual components and the linkage to symptoms is not

straightforward. Further, because of its completeness, the
representation of the asset may include faults that have no
symptoms at all in the available data. From a functional
view, the asset is modeled by its (sub-)functionalities as
nodes and its behavior as states. This is closer to data-driven
approaches such as neural networks, where the diagnosis
focuses on very few broad fault categories that describe
typical behavior patterns. The representation of the asset is
then less detailed and prone to incompleteness, but also
closer to the symptoms in the measurement data. Influ-
encing factors, on the other hand, can be more difficult to
handle if they affect specific components only. In practice, a
good trade-off between a component-based view and a
functional view has to be found, which often goes hand in
hand with the choice of granularity of the model. On the one
hand, the information provided about target nodes must be
sufficient for maintenance engineers to distinguish between
phenomena that have different influencing factors or
symptoms. On the other hand, too much detail unneces-
sarily complicates the modeling process, increases the size
of the model, and does not add to the diagnostic power as
long as the evidence that can be obtained in practice does
not contain information that differentiates at the same level.

For the model presented in this paper, the primary target
nodes are components of larger granularity (e.g., clutch as a
whole instead of all its individual components) and the fault
types can have a more functional interpretation (e.g., clutch
slipping too late). Some functionalities or switch behavior
are captured through aggregated target nodes to help
bridging the gap towards the symptom nodes. The gran-
ularity follows the approach “As fine as necessary, as broad
as possible”.

Further, this stage of the development process also in-
cludes a verification of the structural completeness of the
model by the experts, potentially in parallel with a pre-
liminary parameterization for demonstration purposes.

Temporal scope

Comprehensive modeling of a technical asset can require
consideration of the evolution of measurement data, asset
behavior and influencing factors over time. Dynamic
Bayesian networks essentially duplicate a static network
for a fixed number of time slices (e.g., over a fixed number
of equidistant past measurements) and define connections
between them. While this is a very elegant way of
modeling short-term dependencies, it is not a feasible
approach for larger networks over a larger number of time
steps.

The diagnostic model in this paper is applied to single
current curve measurements, which typically occur at ir-
regular intervals in the double digits per day. Temporal
effects can span from a few days (features) to a few months
(fault propagation), making the use of dynamic Bayesian
networks inappropriate. Instead, current curve features are
computed and tracked (outside the model) over a longer
period of time, i.e. over several current curves. Past faults
can then be incorporated via specific nodes in the network
representing the historical switch behavior in an aggregated
way, as it is relevant for diagnostic reasoning in the present
situation.
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Parameterization

In a Bayesian network, prior probabilities must be specified
for all nodes and conditional probability tables for all other
nodes (see Appendix). An inference algorithm then cal-
culates the probability distributions for all nodes and up-
dates them as evidence is obtained. An approach to
significantly reduce the parameterization effort by reducing
the number of free parameters is to use NOISY'® nodes,
where essentially each parent node’s influence on the given
child node is considered independently. In the case of
knowledge engineering applications, Zagorecki and
Druzdzel®® argued that in about 50% of all node distri-
butions, NOISY distributions can replace full conditional
probability tables very well. Furthermore, in manual pa-
rameterization, the individual effects of parent nodes on
child nodes may be well known (to application experts or
via data), but their joint influence can be much harder to
estimate. Therefore, the advantages of this simplification
often outweigh the disadvantages, especially when applied
in consideration of the underlying causalities.

Therefore, for the presented model, NOISY distribu-
tions are preferred, unless there are direct logical inter-
actions between the parent nodes that require explicit
modeling. Further, relevance tree inference®® is used to
update the probability distributions in the model, which is
a commonly implemented exact probabilistic inference
algorithm.

Scenario-based evaluation

After iterations between model structure development and
parameterization, the performance of the model needs to
be systematically evaluated to provide a reasonable level
of confidence before implementation into running
operations.

From a data-driven point of view, the standard approach
to model validation is to test the model on a large, labeled
(i.e., all states of all nodes are known) data set that was
previously unknown to the model, and to statistically
analyze the model’s performance. However, manual
model development and the use of expert knowledge is
motivated by the lack of such data sets in the first place. An
alternative is scenario-based model evaluation, where
experts access the model output for a limited number of
real or hypothetical use cases. A scenario is considered
accepted, if the model output matches the possible fault
cause(s) for the given evidence set and their approximate
probability (or ranking) based on the expert’s judgment (in
terms of fuzzy multi-label classification). For real-world
examples, the model may indicate a larger number of
possible faults than the actual outcome, as the given ev-
idence may not be sufficient to rule out all non-relevant
causes. In this case, the developer can investigate adding
more evidence nodes to the model structure (e.g., addi-
tional sensor data if available) to improve the diagnostic
power of the model. Scenario-based evaluation is not
comprehensive (not covering all possible combinations of
evidences due to exponential growth of numbers) and only
qualitative (no probability threshold for fault identification

and confusion matrix), but can demonstrate the model’s
credibility in the absence of sufficiently (labeled) vali-
dation data.

In the case of our model, the validation included 39 main
scenarios (mostly based on real-world examples), with sub-
scenarios to test slight variations of the evidence sets, e.g.,
to analyse different influencing factors or information
availability. In total, 55 different evidence sets and their
respective model outputs were evaluated.

Cai et al.'* also mention a number of other more general
approaches to Bayesian network verification and validation
that are not use case specific. These are discussed in the
analysis section of this paper.

Model and exemplary scenarios

The outputs of the development process in Figure 5 are the
(finalised) diagnostic model and its performance on the
evaluation scenarios in the last development iteration (both
presented below). The experts’ expectations on perfor-
mance for an iteratively, manually developed model are
fully met, such that the next step towards an operational
system, the test-wise implementation in a real-world en-
vironment, can be approached in the future.

Model

Figure 6 shows an overview of the node groups of the
diagnostic model and their connections. The full model
comprises 66 nodes, 178 states, 105 links and 661 free
parameters. Describing the model layer by layer, the node
groups of influencing factors (right hand side in Figure 6)
are the following:

® Railway metadata (RM): Information such as load,
age of different components, or reports on drive-up
incidents.

® Environmental factors (EF): Weather and climate
information.

® Maintenance (M): Time since last maintenance of the
point machine, track components or tamping.

® Historic switch behavior (HSB): Past behavior of the
switch, as calculated by the diagnostic model itself in
the past over a longer period of time, affecting the
probability of current primary faults because of
accelerated degradation effects. For instance, this
could be a long-term too high closing current re-
sulting in faster abrasion of electrical contacts or
impaired blade lifting resulting in increased stress on
the slide chairs.

* Power supply (PS): As the power supply is not mea-
sured in our application right now, meta data on the
power supply such as competing switches that cause
dips in the supply is used. The power supply nodes,
essentially functioning as target nodes in that moment,
are partially also directly influencing the symptom
nodes and thus can explain away suspicious evidence in
the symptom nodes. However, strictly speaking, vari-
ations in the power supply are not considered as faults
from a maintenance operator’s point of view.
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Figure 6. Overview of the node groups of the diagnostic model and their connections. The arrow directions are determined by the causal
relations between the node groups, just like the parent-child node connections in the full model.

The target nodes (middle of Figure 6) are divided into the
groups below. The first three groups contain the primary
target nodes that are of most interest to maintenance op-
erators, in total 20 nodes with 38 fault states (excluding the
states related to healthy condition of nodes).

® Point machine components (PMC): Components that
belong to the NSE point machine itself.

® Mechanical track components (MTC): Components of
the track superstructure (rods, switch blade rollers, ...)
that are involved into the switching process.

e External fault causes (EFC): For example pollution.
Track geometry is sorted into this category as well, as
in practice, maintenance for point machines and track
health are typically separate operations.

e Switch functionality (SF): Aggregation of nodes
from the above mentioned groups, describing re-
sulting (sub-)functionalities of the switch in terms of
its proper working.

All symptom nodes belong to the current curve (CC)
group (left hand side in Figure 6), where each node de-
scribes a current curve feature with its specification as
(discrete) states. NSE current curves are typically seg-
mented into inrush, unlocking, movement and locking
phase. Consequently, the features used in the diagnostic
model are divided into the following subgroups:

® Overall features: Features that describe the current
curve as a whole, or spread out over the whole
length of the curve like small oscillations, for
example.

* FEvent features: Sudden events such as an early
breakdown of the current curve, where it can be
relevant to know in which phase these events occur.
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Figure 7. Reference current curve and evaluation results for
different evidence sets in the first scenario.

® Phase-specific features: Features that are calculated
for specific phases only, like different types of humps,
for instance.

All features describe characteristics of the current
curve that are visible and interpretable to the human
eye. The model thus does not overlap with research work
in the area of feature engineering, clustering and other
methods to extract interpretable measurement data char-
acteristics, but uses their results (and other sources) for
diagnosis of root causes directly addressed to maintenance
operators.
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Figure 8. Reference current curve and evaluation results for
different evidence sets in the second scenario.

Exemplary scenarios

To illustrate the behavior of the model and its reasoning
approach, including a discussion of its capabilities and
limitations, two prime examples from the last round of
iteration during the scenario-based evaluation are pre-
sented below. For reasons of space, only the fault states
relevant to the scenarios are shown here. In application,
the most likely failures would be presented to the main-
tenance operator in descending order of probability as a
decision support tool.

The first exemplary evaluation scenario includes the
following evidence sets, with a reference current curve and
the relevant resulting faults and their probabilities sum-
marized in Figure 7.

® Base scenario: Information only on the features of the
given current curve, including an overall hump in the
movement phase, while all other features are within
the normal range.

® Variant (a): Base scenario plus information on recent
maintenance on the mechanical parts of the track.

® Variant (b): Base scenario plus no recent tamping,
high load, and both bad substructure and bad ballast
quality.

Without any evidence, all fault states of the target nodes
naturally have relatively low probabilities. Given the cur-
rent curve evidence in the base scenario, the model diag-
noses either an issue in track geometry or a maladjustment
of the rollers, while other faults do not significantly gain in
probability. This is quite plausible, as the hump in the
current curve is most likely caused by an increased me-
chanical resistance during the movement phase without
further differentiating between the actual reasons for this

Table I. Target nodes from the two exemplary scenarios and

their relative entropy reduction per evidence node in descending
order, if greater than 0.01% (otherwise omitted for reasons of

space). The nodes in the table are preceded by their node group
abbreviation according to Figure 6.

Relative entropy

Target node Evidence node reduction
EFC - Track M - Tamping 10.95%
geometry CC - Movement shape 10.93%
CC - Locking shape 1.12%
RM - Load 0.37%
RM - Substructure quality 0.11%
RM - Ballast quality 0.11%
EF - Ground temperature 0.05%
MTC - Rollers  CC - Movement shape 63.87%
M - Maintenance (track-side) 4.58%
M - Tamping 3.88%
CC - Locking shape 0.07%
MTC - CC - Locking shape 88.58%
Movement M - Tamping 7.15%
rods M - Maintenance (track-side) 0.46%
RM - Switch burst open 0.06%
CC - Movement shape 0.03%
RM - Load 0.01%
CC - Flat spot & increased  0.01%

duration (worsening)
PMC - Latch CC - Inrush shape 76.52%
HSB - Blade locking 24.73%
(historical)

RM - Age (PM) 3.20%
CC - Stable high current 0.37%
PMC - Locking CC - Inrush shape 80.86%
discs PM - Age (PM) 5.47%
EF - Precipitation build-up 0.02%

inside PM

resistance. Assuming recent maintenance on the mechanical
parts of the track (variant (a)), the rollers are the more likely
fault. This is due to the fact that, in practice, maintenance on
track components often means that the rollers need to be
readjusted, but challenging environmental conditions dur-
ing the maintenance time window often negatively affects
the quality of maintenance, potentially resulting in an
imperfect roller adjustment. On the other hand, all influ-
encing factors in variant (b) together would strongly in-
dicate an impaired track geometry, thus explaining away a
potential roller maladjustment.

The second scenario includes the following evidence sets,
with a reference current curve and the relevant resulting
faults and their probabilities summarized in Figure 8.

® Base scenario: Information only on the features of the
current curve, with a humped inrush and locking phase.
Otherwise, all current curve features are inconspicuous.

® Variant (a): Base scenario plus additional information
on build-up precipitation inside the point machine.

® Variant (b): Variant (a) plus historical heavy locking
of the switch.

In the base scenario, the model interprets the humped
locking as a maladjustment of the movement rods, while
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the hump in the inrush could be caused by a worn latch or
by sticky locking discs. If there are information on
precipitation build-up inside the point machine (variant
(a)), the locking discs are diagnosed as the more likely
root cause, as penetrating water can cause these to stick
together. In case of a long-term problem with heavy
locking of the switch in the past (variant (b), e.g., the
movement rod maladjustment persisted over some time),
the evidence for a worn latch overrules the previous
information.

Both a worn latch and sticky locking discs show the
same symptom (humped inrush) in the current curve
measurement data, such that each of them can explain away
the other and the model tries to decide between both root
causes. In case of indecision, the probabilities of both faults
are around 50%. Meanwhile, the maladjustment of the
movement rods is connected to a different symptom
(humped locking), such that this fault is accurately diag-
nosed at the same time. The model does not weigh the
maladjustment against the other faults and the probability of
maladjustment is not affected by additional evidences
purely related to the other faults.

Multiple simultaneously occurring (more or less se-
vere) faults are a not uncommon in point machines and in
the case of different symptoms, these can be diagnosed at
the same time. In the case of multiple possible root causes
for the same symptom, explaining away is a great
strength of Bayesian networks, helping to rule out less
likely root causes. At the same time, however, it can be a
disadvantage if two or more faults with the same
symptoms actually occur simultaneously. In this case, it
is very helpful to add further evidences to the model, as in
the variants above. Generally speaking, the more infor-
mation sources are available as evidences, the more re-
liable and less sensitive to inaccurate parameterization
the model’s results are, as it is less likely that different
faults have exactly the same set of influencing factors and
symptoms.

Entropy analysis

Not at least because of the sheer amount of (even realis-
tically) possible evidence sets, scenario-based evaluation as
discussed in the previous section is a highly selective
process. The approach directly shows how the model
works, is easily understood by maintenance operators (i.e.,
experts), and is undoubtedly an important part of the
manual development process. Nevertheless, there can be no
claim to completeness.

Another way to investigate the behavior of a Bayesian
network model is to apply more general tools and measures
from the area of information theory, such as link strength,
log-likelihood or entropy. To complement the previously
discussed scenarios with their various evidence sets, this
section takes a closer look at the pairwise connections
between evidence nodes and target nodes (regardless of
whether they are directly connected by a link in the network
or not).

The entropy?’ H(X) for a given random variable X with
probability distribution p is a measure for uncertainty
with

H(X) = =3 plx)log(p(x)) 20.

The conditional entropy of X given another random
variable Y is

H(X|Y) ==Y p(x.y)log( p(x|y)) <H(X).

Hence, the addition of information Y never increases the
uncertainty in X. Considering the proposed diagnostic model,
we are interested in the relative reduction of the entropy of X
(e.g., a switch component with its fault states) through Y (e.g.,
a measurement feature), which can be calculated as

H(X) - H(X|Y)
H(X) '

Table 1 exemplary shows the relative entropy reduction
per evidence node for the target nodes of the evaluation
scenarios presented in the previous section, if this value is
greater than 0.01% (otherwise omitted for reasons of space).
Note that the values refer to nodes with all their states
together, while the scenarios only investigated specific fault
states.

Considering such rankings for all target nodes, we found
that the evidence nodes that play a role in the evaluation
scenarios also consistently appear at the top of the re-
spective rankings. Overall, the most important evidence
group is dominantly the current curve features. Next are
past maintenance actions and historical switch behavior,
while railway meta data and environmental factors score
lower. The power supply plays an important part in some
scenarios, ruling out faults in the switch itself, but does not
show significant importance in terms of relative entropy
reduction. All in all, this assessment is in line with the
expectations of the maintenance experts and indicates
where maintenance operators should focus their informa-
tion gathering and storage efforts.

On the downside, relative entropy reduction is difficult to
grasp number wise. Furthermore, the different variants of the
scenarios showed how powerful the combination of different
evidence nodes can be for application in fault diagnosis. For
instance, considering the target node track geometry in variant
(b) of the first scenario, tamping together with other influ-
encing factors shifted the model’s diagnosis from 41% roller
maladjustment and 53% impaired track geometry to 4% roller
maladjustment and 93% impaired track geometry. The entropy
analysis highlights tamping, but the relative entropy reduction
of all other influencing factors is between 0.3 and 0.1%.
However, if we exclude tamping from the evidence set in
variant (b), the model diagnosis is still 32% roller malad-
justment and 64% impaired track geometry, i.e. a approxi-
mately 10% shift from the base scenario for both potential fault
root causes in opposite directions, marking these influencing
factors as valuable information in practice. Similarly, the
evidence node precipitation build-up inside the point machine
is at 0.02% for the target node locking discs, even though it is a
relevant evidence in variant (a) of the second scenario. Thus,
pairwise entropy analysis has limitations in assessing the
effective (hidden) influences of some evidence nodes on the
target nodes.
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Analogously to the formulae above, the relative entropy
reduction can also be calculated for sets of evidence nodes
(and target nodes). As with the evaluation scenarios, a
complete analysis of all (realistically possible) sets is not
possible due to the exponential growth in the number of
combinations that would have to be taken into account.
Ultimately, analysis of entropy or other information theo-
retic measures can serve to provide comprehensive over-
views of the connections between nodes in the model, and
complementing the more application-driven scenario-based
evaluation of the model.

Conclusions and outlook

This paper presents the development and evaluation of a
Bayesian network diagnostic model that identifies fault root
causes for railway switch point machines based on current
curve features and various other sources of information. It
covers the full range of faults (including rare events), is in-
tuitive to maintenance operators and allows for automated
integration into an operational workflow. The use of such a
model during running operations frees up resources and
would guarantee a certain standard in diagnosis, based on the
combined knowledge of the experts involved in the modeling,
regardless of their availability in day-to-day operations.

The development of Bayesian networks does not require an
extensive database, and their reasoning process is traceable with
directly human-interpretable outputs. Extensions to include
more measurement data features or other information either
based on expert knowledge or labeled data and continuous
improvement are relatively easy to realize, compared to e.g.,
neural networks. On the downside, the model’s output given
evidence, i.e., a ranking of the most likely causes of failure with
associated probabilities, must be interpreted as strictly quali-
tative unless full data-based validation is performed. The de-
velopment of a quantitatively reliable model would require a
large amount of labeled data, even if only the parameters of the
model are to be learned from data, while its structure is pre-
determined by expert knowledge. An early implementation of
the presented (qualitative) model and a corresponding feedback
loop from maintenance operators would significantly help to
generate such a dataset in the long-term.

In the entropy analysis, the features derived from the current
curve data proved to be the strongest evidence nodes. However,
in the scenario-based evaluation, other sources of information
can in some cases have a strong influence on the fault ranking
provided by the model. By themselves, most of this information
does not have a significant impact on the failure probabilities of
the target nodes. Instead, they are often most effective when
added to the current curve evidence, e.g., to narrow the diag-
nosis in case of several equally likely faults. Entropy analysis,
which only considers pairwise influences, does not reveal these
effects. For this reason, and because scenarios are closest to the
practical application of such a model, scenario-based evaluation
should be used primarily during the development process and
approval of the model by experts.

Recalling the two example scenarios, the model’s trace-
ability makes fault propagation tangible. In case of point ma-
chines, this is especially important for impaired track geometry
(caused, for instance, by insufficient tamping or low quality
track substructure) and persistent non-fatal faults, which both

cause increasing maintenance efforts in the long-term. The
incorporation of track health information and other data sources
(e.g., point machine motor power or control current measure-
ments) would further improve the diagnostic power of the
model, allowing better differentiation between actual causes and
symptoms, and improving the information base for optimal
maintenance decisions and RAMS requirements.

The next major step is to integrate the model into
an operational environment, i.e., automated, reliable en-
gineering of human-interpretable features and automatic
evidence setting (including the definition of thresholds). It
would also be necessary to implement a consistent feedback
loop on the performance of the model in practice to facilitate
continuous improvement.
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Appendix

Bayesian networks are probabilistic graphical models
that are able to mathematically represent complex statistical
and/or causal relations between a number of random var-
iables describing a system, for which knowledge may be
incomplete. These models can be used to determine the
most likely state of the system, model influences and infer
causes from observed information. Common applications
of Bayesian networks include medical diagnosis and de-
cision support.

In a Bayesian network, random variables are represented
as nodes with (discrete or continuous) states and relations
between random variables as directed edges in an acyclic
graph. Commonly, the directions of the edges follow
causality. Nodes without edges between them are assumed
to be independent in the sense that there is no direct in-
fluence (only potentially through other nodes). The ex-
emplary Bayesian network in the upper left of Figure 9 has
five nodes 4 — E (each with two discrete states) with causal
relations between them.

The parameterization of a Bayesian network comprises
conditional probability tables (CPTs) for all nodes with at
least one parent node (i.e., child nodes) and a-priori dis-
tributions for all nodes without parent nodes (i.e., root
nodes). A CPT for a child node X consists of probabilities

.y Yn :yn)

for all states x of X and for all states y, ..., y, of the parent
nodes Y7, ..., ¥,,. The a-priori distribution of a root node Z is
given by p(Z = z) for all states z of Z. These probabilities are
sufficient to efficiently calculate the probabilities for all
states of all nodes. From a mathematical point of view, the
graph structure of a Bayesian network with its indepen-
dence assumptions drastically reduces the (otherwise ex-
ponential) number of feasible joint probability distributions
between all random variables. The CPTs and root proba-
bilities uniquely determine which joint probability distri-
bution the network has. Both structure and parameterization
of a Bayesian network can be learned from data, whereas
learning both requires a much larger amount of data than
pre-specifying the structure and learning the parameteri-
zation only.

The strength of Bayesian networks is that once addi-
tional information on the modeled situation is available, it
can be used to adapt the prediction of the model. If the

pX =x|Y =y,..
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Figure 9. Examples for reasoning processes in Bayesian network: No evidence case (upper left), causal reasoning (upper right), diagnostic

reasoning (lower left) and intercausal reasoning (lower right).

current state of a node is known, this information is entered
into the model as evidence to update the state probabilities
in the remaining network accordingly. Technically, this is
achieved by re-running the inference algorithm. If the
model structure is based on causal relations, the model
essentially mimics human logic to reason about the effects
of new information. Consider the example network in
Figure 9. Say the target nodes B and C are components of a
technical asset whose health condition we aim to evaluate.
The states by and ¢, each represent faults, while b; and ¢,
denote the healthy state of the respective component. The
asset component B is dependent on the influencing factor
node A. The asset state influences sensor data features,
described by the symptom nodes D and E. The output of the
model is a ranking of all fault states of all target nodes by
descending probability given the current evidence, in this
case bg and cy. Multiple faults can occur simultaneously, so
the probabilities of all fault states of all target nodes do not
have to sum to one (i.e., fuzzy multi-label classification).
The initial distribution without any evidence is shown on
the upper left of the figure. In the upper right graphic, the

model uses causal reasoning to determine the influence of
the evidence that 4 is in state a, on its successive nodes B, D
and E downstream in the network. Diagnostic reasoning in
turn propagates information upstream. In the lower left
graphic, information on the state of £ changes the state
probabilities of its predecessors C, B, and A. The changed
probability distribution in B then again influences D.
Combining causal and diagnostic reasoning into intercausal
reasoning can lead to an effect called “explaining away”. In
the example network, evidence of aq increases the proba-
bility of by but does not change C, whereas evidence of ¢,
increases the probabilities for by and ¢y both. Given both
evidences (i.e., ag and ey) as in the lower right graphic, b,
has an even higher probability, while the probability for ¢
drops. Thus, knowing a, to some extent eliminates ¢ as a
potential cause for e.

All in all, the graphical, interpretable structure and
traceable argumentation processes make Bayesian networks
highly transparent models, in contrast to many other
popular approaches in the field of expert systems and ar-
tificial intelligence.
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