FlowPhotoChem EXPLOITATION WORKSHOP

04 NOVEMBER 2022, KAMPALA, UGANDA

Concentrated solar light for the production of sustainable chemicals – Solar test facilities at the German Aerospace Center

Dr. Michael Wullenkord, Dr. Gerd Dibowski, Dr. Dmitrij Laaber, Felix Göhring

The German Aerospace Center at a glance

- Research Center, Space Management Agency und Project Agency
- Research Fields:
 - Aeronautics
 - Space
 - Energy
 - Transport
 - Security (cross-sectoral)
 - Digitalisation (cross-sectoral)

Credit: Nonwarit/Fotolia

- 10,000 employees in 55 research institutes and facilities at 30 locations
- Offices in Brussels, Paris, Tokyo and Washington D.C.
- Budget for research and operations: 1,155 Mio. € (2019)

Concentrated solar light and applications

DLR's solar test facilities

- Artificial (sun-)light
- Test and qualification of systems
 - -<u>Ö</u>

Solar Towers

Natural sunlight

Synlight

- Solar Furnace

and components

driven processes

Demonstration of solar-

SoCRatus

High Flux Solar Simulator

Industrial scale ~ 2 MW

POWER

Laboratory scale

~ 100 W

Institute of Future Fuels

Institute of Solar Research

LED Light Source – Key facts and example of application: DuaSol

- 11 LED arrays à 7 LEDs (77 LEDs in total)
- LG LEUVA33W70RL00
 - Typical peak wavelength: 365 nm
 - View angle 130°
- Nominal total radiative power: 105.1 W
- Length: 420 mm, width: 120 mm
- Good homogeneity of irradiation

Water-cooled aluminium body

SoCRatus – Principle of operation Solar Concentrator with a Rectangular Flat Focus

SoCRatus – Key facts

■ Aperture area: 8.8 m²

Geometric concentration ratio: 20.2

• Effective concentration ratio: 17.6

■ Solar power input: up to ~ 4 kW

Facets can be covered using a shutter

SoCRatus – Examples of application

Project DuaSol

(2014-2018)

Project PECDEMO (2014-2017)

SPONSORED BY THE

High Flux Solar Simulator: Key facts

Ten xenon arc lamps: ellipsoid, individually adjustable

• Electrical power: up to 60 kW

Power on target: up to 21 kW

■ Flux density: up to 4.1 MW/m²

Maximum temperature: 2100°C

■ Operating temperature: 300-1600°C

High Flux Solar Simulator: Example of application

Will be used in

Solar Furnace – Principle of operation

Solar Furnace – Key facts

159 spherical facets: can be individually adjusted or covered

Power on target: up to 22 kW

■ Flux density: up to 4.5 MW/m²

Maximum temperature: 2500°C

■ Operating temperature: 300-1300°C

Solar Furnace – Example: Solar splitting of sulphuric acid

Synlight – Key facts

- 149 identical modules
- 7 kW_{el} xenon lamps
- 310 kW maximum radiation power
- 12.5 MW/m² peak flux
- 4 m x 4 m maximum aperture size
- 3 movable axes per module
- PLC-based control
- Three test chambers and control rooms

Synlight – Example of application: INDIREF

 Indirectly solar-heated reforming at 20 kW_{th}-scale

CH₄
CO₂
H₂O

Reformer

Receiver

Jülich Solar Tower Demonstration Plant

- >2000 heliostats / 18,000 m²
- 8.2 MW_{th} / 1.5 MW_{el}
- 1 hour thermal storage
- Research platform

Multifocus tower (MFT)

DLR

- Three additional test platforms
- Technical profile
 - Flux up to 1 MW/m²
 - Max. thermal power of test reactors/ receivers 2 MW
 - One platform designed for solar chemical experiments
 - Gas storage for solar chemical applications
 - Parallel operation

MFT – Example of application: Solar Syngas Production

synhelion solar fuels

Partner: Synhelion

- First successful test of a solar thermal process for the production of synthesis gas in a pilot plant.
- Receiver: 250 kW
- Syngas forms feedstock for liquid fuels production, particularly kerosene.
- Promising technological approach to implement climate protection goals in the mobility sector.

Equipment for ensuring proper irradiation – exemplarily

ADLR

- Spectrometers: Spectral irradiance
- Pyrheliometer: DNI
- IR cameras
- Flux measurement system FMAS[®] (camera target)
- Hyperspectral imaging systems:300 nm ... 1000 nm
- Tailored secondary optics to meet irradiation profile requirements

Summary

- DLR operates a wide range of solar test facilities
- Assessment and enhancement of processes, systems and components for the production of solar fuels and sustainable chemicals under practical conditions
- Open for collaboration

High Flux Solar

Simulator

Solar Furnace

Solar Towers

Synlight

Industrial scale ~ 2 MW

SoCRatus

LED light **Laboratory scale** sources

Thank you for your attention.

Contact:

Dr. Michael Wullenkord

+49 2461 93730 320

michael.wullenkord@dlr.de

Solar refinery (photo composition: DLR)