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Abstract 

The definition of and compliance to requirements is one of the most important steps of the aircraft design 
process. For the aircraft fuel system, many rules and requirements exist in certification specifications and 
guidelines. As the fuel system is highly integrated with multiple other aircraft subsystems, its design is highly 
impacted by the geometric definition of the aircraft and the positioning of other subsystems. Therefore, it is 
important to carefully consider geometric requirements already in early design stages.  

Although being a crucial step in the design process, checking all the requirements can currently be a difficult, 
tedious and time-consuming task for aircraft designers. This is especially the case in early design stages, since 
the designs generally change considerably and often. Therefore, this work aims to define a methodology to 
support aircraft fuel system design while taking geometric, functional, and certification constraints into account.  

This paper presents a rule-based approach for the verification of geometric and certification requirements. We 
use the Codex (COllaborative DEsign and eXploration) platform, a modern framework for the creation of 
knowledge-based engineering tools, to model critical components and requirements for the fuel system and to 
automatically check the compliance with those requirements. Next to having the potential to significantly speed-
up the design process, utilizing such automatic verification procedures reduces the burden of having to perform 
manual and repetitive tasks. By ensuring compliance with the requirements it can also reduce the amount of 
rework in later stages of the design process. 

Keywords: Fuel System, System Installation, Interface Requirement, Knowledge-Based Engineering, 
Certification 

 
 

1. Introduction 
 
Aircraft fuel systems are essential on-board systems. Their task is to store fuel and to safely and 
efficiently deliver it to the engines, allowing the propulsion system to generate the necessary thrust 
for the flight of the aircraft. They have to be designed to store and distribute fuel throughout the 
aircraft, ensuring a constant and reliable supply during flight. Thus, the fuel system design is a top 
priority in aircraft engineering.  
The fuel system must be carefully engineered to account for factors such as fuel weight, balance 
and distribution. Furthermore, stringent safety regulations and protocols must be followed for the 
certification of the aircraft [1] [2].  
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As the fuel storage requires much volume and the fuel system is highly integrated with multiple other 
systems of the aircraft, its complex geometry impacts the overall performance and efficiency of the 
system as well as the safety and reliability of the aircraft. The fuel system design is heavily impacted 
by its geometric definition, which makes it important to carefully consider its geometry already in the 
early stages of development. Accurate geometric knowledge about this system is also crucial for 
effective integration with other subsystems of the aircraft. This work aims to define a methodology 
to support aircraft fuel system design while taking geometric, functional, and certification aspects 
into account.  
 
Knowledge-based engineering (KBE) approaches are used to model knowledge in a structured way 
when working with multidisciplinary designs. They can provide highly specialized environments and 
languages which are fit to their respective domain of application. The use of Semantic Web 
Technologies (SWT) [3] delivers a domain-neutral way of knowledge formalization as well as an easy 
and efficient integration of knowledge between different domains.  
 
The COllaborative DEsign and eXploration (Codex) platform [4] [5], which is developed at the 
German Aerospace center (DLR), aims at combining KBE and SWT technologies to support the 
digitalization of the aircraft design process. The framework targets the creation of domain-specific 
knowledge-bases and enables integrating these into a single model of the overall product. Thereby, 
engineering knowledge as well as design guidelines and requirements can be simultaneously 
incorporated to provide aircraft designers the capability to evaluate their design decisions and to 
deduce additional suggestions for even more efficient designs. Particularly for geometric definitions, 
the application of the Codex platform has the potential to enable designers to concentrate on the 
creative part of their design tasks, while being assisted by automated consistency checking. 
 
The codex-geometry module [6], which is part of the Codex framework, provides an ontology 
describing primitive geometric shapes (like spheres, cylinder, curves etc.), transformations on 
shapes and operations between different shapes (e.g. union, intersection etc.), which in combination 
allow the user to model complex geometries. Furthermore, it allows the user to formulate geometric 
requirements, which can be automatically evaluated by Codex using a declarative rule-based 
approach. Codex-geometry was first introduced in [6], which showed a very preliminary version of 
the fuel system model as an example use case. In contrast, our current model is much more detailed 
and takes additional certification requirements into account.  
 
In this work, we use codex-geometry for creating a detailed geometric model of the fuel system as 
well as geometric requirements derived from certification specifications and guidelines. The Codex 
rule system is used to automatically check the compliance of the geometry with the given 
requirements. The reference aircraft used to test our approach is an A320 like configuration, created 
at the German Aerospace Center and is referred to as D150 [7]. 
As use case, the effect of a main rotor burst and its potential to affect critical systems is studied. In 
this work, we developed a tool to estimate the probability for certain components to be hit in case of 
a rotor burst.  
 
 
1.1 Related Work 
Knowledge-Based Engineering systems provide specialized environments and languages for their 
specific domain of applications. For the aerospace sector, two examples of KBE tools are Pacelab 
APD [8]  and ParaPy [9], both of which use a hierarchical model for modelling the data and an object-
oriented programming language for the creation.  
 
Schäfer et al. [10] discuss the creation of “design grammars” or graph-based design languages for 
the satellite design process. Design Cockpit 43 [11] uses graph-based design languages to store 
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engineering knowledge in order to automate the design process. In [12], an algorithm for the 
automated generation of pipe routes in a given installation space is proposed, with is also based on 
a design language. These design languages are based on the Unified Modeling language (UML) 
and use an object-oriented approach. 
 
In contrast, the Codex framework [4] uses a non-hierarchical approach based on Semantic Web 
Technologies. In contrast to hierarchical approaches, this approach is better suited to easily integrate 
knowledge from different disciplines and to create a highly collaborative KBE application. Based on 
this framework, the Codex platform [5] is being developed as a web-based collaborative engineering 
platform.  
 
In [6] the codex-geometry module has been introduced and demonstrated on a preliminary version of 
our fuel system model. codex-geometry has also been used for modelling a liquid hydrogen tank and 
performing volume computations [13]. [14] describes how to use Codex for the rapid generation of 
novel air vehicle configurations for combat aircraft design. 
 
 
1.2 Structure of this paper 
This paper is structured as follows: Section 2 introduces the Codex platform and discusses how the 
example fuel system is created within the platform. Section 3 describes several key geometric 
requirements for the fuel system and how they can be verified using the codex-geometry module. 
Section 4 introduces a tool for checking the impact of an uncontained rotor burst based on codex-
geometry. Section 5 provides a short outlook on the next steps planned for future work. 
 
 

2. The Codex platform 
 
The COllaborative DEsign and eXploration (Codex) platform [4] is a tool for the development of 
knowledge-based engineering (KBE) applications based on Semantic Web Technologies. The first 
version of Codex is a framework which allows the user to create custom Domain-Specific Languages 
(DSL) for their specific domains. Based on these languages, users can create domain-specific 
knowledge bases and easily integrate these into a single model of the overall product. The framework 
consists of different modules, the most important being: 
 
codex-semantic is the core module of the framework. It is used for the creation and manipulation of 
semantic models, using standards for knowledge representation such as the Resource Description 
Framework (RDF) and the Web Ontology Language (OWL). 
 
codex-rules enables the definition of so-called production rules. The rules can be expressed via a 
custom DSL and allow for the dynamic, rule-based creation of system components. Each rule consists 
of a Left-Hand-Side, which is basically a query on the knowledge-graph similar to SPARQL SELECT, 
and a Right-Hand-Side, which contains code that will be executed for every match in the 
corresponding model. 
 
codex-parametric allows users to define systems of mathematical constraints which can are evaluated 
by a solver. Therefore, it provides a special DSL that closely resembles common mathematical 
notation. 

 
codex-geometry [6] adds capabilities for geometric modelling and provides its own DSL which allows 
users to create the geometric parts of their model efficiently, as well as the formulation of geometric 
requirements. It uses the Open Cascade CAD kernel [15] in the background for generating geometries 
for visualization and for computations like the volume of a complex shape. 
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Using this first version of the Codex framework requires a certain level of programming skills and a 
basic understanding of SWT. To make usage of the framework even easier and more accessible, 
currently a web application is being developed on top of the existing framework [5].   
 
Figure 1 shows an example of an individual representing the Auxiliary Power Unit (APU) feed line in 
the RDF view of the Codex web application. At the top right all the classes for this individual are listed. 
Please note that the individual has different classes from different domains, which would not be 
possible in a conventional object-oriented approach: From the point of view of the geometry domain, 
it is a Cut, which is a certain type of shape. From the point of view of the fuel system, it represents a 
Supply Line. Below, the properties of the individual are listed, which also come from different domains. 
 

 
Figure 1 – An example individual (APU feed line) in the Codex web application 

 
 
Besides the geometry DSL and rule set, codex-geometry also provides a web service which receives 
an RDF model containing geometric shapes and can return the generated geometry for displaying 
purposes or can answer requests like “What is the volume of shape x?” 
 
The geometry view of the Codex web application (shown in Figure 2) uses the geometry service to 
generate the geometric shapes for all the components contained in the model and allows the user to 
select which components to display. Clicking on a component opens a window in which all stored 
information about the component can be browsed and changed if necessary, like shown in Figure 1. 
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Figure 2 - Geometry View 

 
The basic methodology to build a domain-specific application with codex-geometry was described in 
[6] and consists of three steps: 

1. Create a domain-specific ontology providing the vocabulary for the specific domain (Here: Fuel 
System) as well as domain-specific rules 

2. Create the actual instances (supply lines, pumps etc.) for the example fuel system and their 
geometric representation 

3. Define geometric requirements for the example system, which are automatically evaluated by 
codex-geometry. The requirements are implemented using the production rule system offered 
by codex-rules. 
 

In our current work, we also follow this methodology and focus on the creation of geometric 
requirements for the domain of the fuel system. In the following section, these requirements will be 
described in detail. 
 

 

3. Key geometric requirements for the fuel system 
 
For the design of modern aircraft, many airworthiness requirements are defined as certification 
specifications in EASA’s CS-25 rules [1]. Others are specified in SAE design guidelines like [2], [16], 
or [17]. Checking aircraft designs for adherence to these requirements is a crucial step, thus 
automating it can highly support the design process. In other cases, requirements can be vague or 
not very precise, they might be derived from experience for a specific system and application case. 
The methodology shown here is completely open to new requirements, as users can easily add 
additional rules and checks. 
 
As a reference aircraft to test our approach, we use the A320-like D150 [7] configuration created at 
the German Aerospace Center. The configuration is given as a CPACS (Common Parametric Aircraft 
Configuration Schema) [18] file and can be displayed in the TiGL viewer [19]. 
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Using the codex-geometry module, 25 geometric requirements were modeled as rules that can be set 
by the user and automatically checked by the Codex system, including the following: 
 
 
Center of gravity shift 
Due to the large amount of fuel stored in the tanks and the complex geometry of the fuel system, it 
has a significant impact on the center of gravity of the aircraft. Thus, this verification function uses 
codex-geometry to generate the overall geometry of the fuel system, compute its center of gravity and 
check if it is within user-specified bounds. 
 
 
Intersections between components 
The “intersections between components” requirement is a check for errors in the design that cause 
components to intersect. It can be set for any pair of components and it verified by generating both 
shapes and computing the intersection between them using OpenCascade [15] methods. 
The following figures show two examples of design problems that can be detected by this check.  
Figure 3 illustrates the intersection between a fuel pump and one of the wing’s ribs. The intersecting 
rib is displayed in red. A second example of intersecting components is illustrated in Figure 4, where 
the intersection of sections of fuel lines and fuel valves with the fuel tank’s physical boundaries is 
detected by the rules modeled in the Codex framework. In such cases, additional information is 
provided by the tool to allow corrective measures to correct the design. The non-compliant 
components are marked in red.  
 

 
Minimum distance between lines and fuel tanks 
Following design guidelines, certain minimum distances should be maintained between fuel lines and 
other components like fuel tank walls [2]. Thus, this verification function computes the distance 
between the two components and checks if the given minimum distance requirement is met. This 
evaluation provides crucial information on non-compliant fuel lines and with which fuel tank the 
requirement is not met. The “minimum distance” requirement can of course also be applied to other 
types of components. 
 
 
Components inside tanks 
This rule can be used when it is necessary that a component is fully contained inside a fuel tank. A 
special case of this is a boost pump, that usually must not only be contained, but attached to the 
bottom surface of the tank. In order to check this requirement, this verification function computes the 
distance between the pump as the bottom surface as well as the misalignment of the pump’s 
longitudinal axis to the surface’s normal vector. 

  

Figure 3 - Identified overlap between a rib and a 
fuel pump 

Figure 4 -- Example of a geometric design flaw due to an 
overlap between fuel system components and the system's 

physical boundaries 
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Figure 5 and Figure 6 illustrate how Codex can leverage the available geometric knowledge to perform 
requirements verification. While in both cases the fuel pumps are contained inside the fuel tank, only 
the fuel pump in Figure 5 meets the alignment requirements with the bottom surface of the fuel tank. 
 
 

 
Connections between components and supply lines 
This rule allows to check if supply lines are properly connected to other components or to each other, 
e.g. “Front inner pump has to be connected to feed line”. In order to verify this requirement, three 
separate functions are evaluated: 

1. The line has to be connected to the proper connection port on the other component, without 
gaps or intersections. 

2. The line has to be correctly aligned with the connections port’s normal direction. 
3. The size of the connection port has to match that of the supply line. 

 
Figure 7 illustrates an erroneous connection between the supply line (yellow) and the fuel valve. 
Although the supply line is in fact connected to the supply line, the developed rule is capable of 
identifying problems with the connection, where the connection point is wrongly placed. Figure 8  
shows additional requirements verification for the connection between fuel lines and boost pumps. By 
exploiting the enhanced geometric information on the components, the verification rule is capable of 
identifying gaps (or overlaps) and misalignment between the connecting elements.  
 
 

 
 

Figure 5 - Boost pump correctly placed in a fuel tank 
Figure 6 - Boost pump contained in a fuel tank without 

respecting the (bottom) mounting requirement 

Figure 7 - Connection error between a supply line and a fuel 
valve Figure 8  - Geometry mismatch due to misalignment 
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  Relative position between valves and lines 
This rule is used to check if a shut-off valve is in an icing-prone condition. Led by Extended range twin 
operations approval (ETOPS) requirements for cross-feeding purposes, this rule exploits the available 
geometric knowledge on individual elements and their connections, and provides a preliminary 
indication of design mistakes that might significantly affect the system’s performance. Using 
information on the relative height between a supply line and a fuel valve, conditions where water 
accumulation close to the valve could occur are identified. This rule is capable of analyzing fuel lines 
made by multiple segments at different heights and leverages information on a segment’s extreme 
points and its adjacent segments to identify icing-prone zones for leveled flight. 
Figure 9 illustrates the concepts of low and high valve positions in relation to icing-prone conditions. 
The supply line on the left, shown in red, is configured in a manner that can result in water 
accumulating near the valve. In contrast, the supply line on the right, depicted in green, is designed 
to direct water to a lower position away from the valve, thereby preventing accumulation. 
 

 
  Tank volumes 
This verification rule is used to check if a required tank volume is available. It is capable of extracting 
the volume information both for individual fuel tanks and for group of tanks (e.g. left and right feed 
tanks, all fuel tanks together) and compare it to the specified volume requirements. Figure 10 displays 
the design space generated for each of the fuel tanks for the example aircraft, based on defined 
volume requirements. From most outer to most inner, the fuel tank design spaces are as follows: 
surge tanks (yellow), outer wing tanks (purple), inner wing tanks (red), and center tank (green). The 
design space is generated, and afterwards validated, using the structural information previously 
defined and available (i.e., spars and wing ribs positioning).  
 
 
Available fuel mass  
Two verification rules were implemented to determine if a minimum required fuel mass is available. 
One rule one focuses on the entire fuel system (all fuel storage components) and the 
other on individual tanks. EASA CS-25 specifications and guidelines are translated into quantifiable 
code and allow adequate fuel mass estimations based on the available tank volume and considering 
standard fuel expansion parameters for Jet A and Jet A-1 fuels, and the recommended sump volume.  
 
 
Overall, 430 checks were carried out on the example configuration, which completed in approximately 
5 minutes on a standard personal computer. A full report on those can be found in [20]. 
 

  

Figure 9 - Fuel valve connected to two supply lines 
Figure 10 - Wing fuel tanks 
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4. Checking the impact of an uncontained rotor burst 
 
The previous section introduced several design requirements concerning the relative positioning of 
different fuel system components to each other. As the fuel system is highly integrated with other 
aircraft subsystems, it is equally important to consider interactions with those other subsystems.  An 
important application case for the automatic evaluation of geometric requirements is the case of an 
uncontained rotor burst. Following the recommendations of [21], to minimize the risk of engine burst 
hazards, critical components should be either located outside the debris impact zones or duplicated 
such that not both of the redundant components are inside the same impact zone.  
 
Based on codex-geometry and on the fuel system model described in the previous chapters, an 
application for assessing the risk of a rotor burst for critical components was created. The application 
takes as input a set of critical components and a set of rotors and estimates the probability of each 
critical component to be hit by a burst of each rotor, considering different spread angles and 
trajectories.  
 
Figure 11 shows the tool-specific input and output for the tool in the CPACS file. In the input file, first 
the length and relative position of the engine are specified. The spread angle specifies which angle 
of spread (fore and aft) to consider. Depending on the type of debris different spread angles are 
chosen. For intermediate fragment sizes a 5° spread angle is chosen [21]. The two “angleResolution” 

parameters control the granularity of the collision check. So, in this example, the rotational angle φ 
will be iterated from 0° to 360° in 10° steps and the spread angle ψ from -5° to +5° in steps of 1°. For 
each rotation object and each combination of φ and ψ, the trajectory will be computed and the tool 

will check if the trajectory overlaps with one of the given critical components.  
For simplicity, this example shows only one rotation object (typically several stages of a turbine would 
be considered) and one target object representing a critical component, which can be imported from 
a BREP file or specified directly in the CPACS file. 
 
 

 
In Figure 12 the trajectories hitting the given critical component are depicted. The output file (see 
Figure 11) lists all the combinations of φ and ψ that lead to a hit. The probability of a direct hit is 
estimated by dividing the detected hits by the overall number of sample trajectories that were checked. 
 
The presented tool can easily be expanded to other use cases involving impact trajectories, like a tire   
burst case. 

 

Figure 11 - Tool-Specific input and output for the rotor burst tool in the CPACS format 
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5. Conclusion and Outlook 
 
This paper presented a rule-based approach for the verification of geometric and certification 
requirements using the semantic web-based KBE platform Codex. Using its geometric capabilities, 
we created a detailed geometric model of the fuel system and specified geometric requirements 
derived from certification specifications and guidelines. Using the Codex rule system, the compliance 
of the geometry with the given requirements was automatically checked.  
 
In conclusion, due to is large volume and high integration with other systems, the geometric design 
of the fuel system highly impacts the overall performance of the aircraft. By incorporating engineering 
knowledge as well as design guidelines and requirements into geometric rules and performing 
automatic consistency checking, the proposed system contributes to avoiding errors in the geometric 
design already in early design stages. Thus, the application of the Codex platform can help designers 
save time and effort for these tasks, allowing them to concentrate on the creative part of their design 
tasks. 
 
Applying these checks is a first step towards an automated design of fuel systems. In our future work 
we plan to approach the automatic placement of components based on user-defined requirements 
and target functions. A next step towards this goal could be to start with a single component for which 
a requirement is violated and suggest an improved position for that component. A further step would 
be to automatically suggest a placement for a set of components that comply with all given 
requirements.  
 

Figure 12 - Result of the rotor burst tool highlighting critical angles for an example component 
and one turbine 
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Additionally, for the design of fuel systems the routing of the supply lines is a very important and 
complex problem. Suggesting or improving such routes automatically will also be a topic for future 
work. 

 
 

6. Contact Author Email Address 
 
brigitte.boden@dlr.de 

 

7. Copyright Statement 
 

The authors confirm that they, and/or their company or organization, hold copyright on all of the original material 
included in this paper. The authors also confirm that they have obtained permission, from the copyright holder 
of any third party material included in this paper, to publish it as part of their paper. The authors confirm that 
they give permission, or have obtained permission from the copyright holder of this paper, for the publication 
and distribution of this paper as part of the ICAS proceedings or as individual off-prints from the proceedings. 

 

References 
[1] European Union Aviation Safety Agency, 2021. Certification Specifications and Acceptable Means of Compliance for 

Large Aeroplanes (CS-25) Amendment 27: CS-25. 

[2] SAE International, 2019,“Aircraft Fuel System Design Guidelines AIR7975,” 

[3] Allemang D., and Hendler J. A., 2012. Semantic web for the working ontologist: Effective modeling in RDFS and 
OWL, 2nd ed., Elsevier, Morgan Kaufmann, Amsterdam, Boston, Mass., Heidelberg, London, New York, NY, 
Oxford, Paris, San Diego, Calif., San Francisco, Calif., Singapore, Sydney, Tokyo. 

[4] Zamboni J., Zamfir A., and Moerland E., 2020 - 2020,“Semantic Knowledge-Based-Engineering: The Codex 
Framework,” Proceedings of the 12th International Joint Conference on Knowledge Discovery, Knowledge 
Engineering and Knowledge Management, SCITEPRESS - Science and Technology Publications, pp. 242–249. 

[5] Jepsen J., Zamfir A., Boden B., Zamboni J., and Moerland E., 2023,“On the Development of a Collaborative 

Knowledge Platform for Engineering Sciences,” 15th International Joint Conference on Knowledge Discovery, 
Knowledge Engineering and Knowledge Management, pp. 208–215. 

[6] Boden B., Cabac Y., Burschyk T., and Nagel B., 2022,“Rule-based Verification of a Geometric Design using the 
Codex Framework,” 33rd Congress of the International Council of the Aeronautical Sciences, ICAS 2022. 

[7] Krüger W. R., Gerlinger B., Brodersen O., Klimmek T., and Günther Y., 2020,“Das DLR-Projekt KonTeKst: 
Konzepte und Technologien für emissionsarme Kurzstreckenflugzeuge,” DLRK 2020 - Deutscher Luft- und 
Raumfahrtkongress. 

[8] TXT Group,“Pacelab APD & SysArc,” https://pace.txtgroup.com/products/preliminary-design/pacelab-apd-for-
engineers-by-engineers. 

[9] ParaPy B.V.,“The ParaPy Platform,” https://www.parapy.nl/features/. 

[10] Schaefer J., and Rudolph S., 2005,“Satellite design by design grammars,” Aerospace Science and Technology, 9(1), 
pp. 81–91. 

[11] Jens Schmidt, 2017,“Total Engineering Automation: Vision and Realization with Graph-based Design Languages and 
the Design Cockpit 43 R© software suite,” 

[12] Vogel S., and Stephan Rudolph, 2016,“Automated piping with standardized bends in complex systems design,” 

International Conference on Complex Systems Design & Management, pp. 113–124. 

[13] Burschyk T., Cabac Y., Silberhorn D., Boden B., and Nagel B., 2023,“Liquid hydrogen storage design trades for a 

short-range aircraft concept,” CEAS Aeronaut J, 14(4), pp. 879–893. 

[14] Zamboni J., Zamfir A., Moerland E., and Nagel B., 2022,“A semantic knowledge based engineering framework for the 

rapid generation of novel air vehicle configurations,” 33rd Congress of the International Council of the Aeronautical 
Sciences, ICAS 2022. 

[15] “Open CASCADE,” https://old.opencascade.com/content/overview. 

mailto:brigitte.boden@dlr.de


AUTOMATING VERIFICATION OF GEOMETRIC REQUIREMENTS FOR AIRCRAFT FUEL SYSTEMS USING KBE 

12 

 

 

[16] S-18 Aircraft and Sys Dev and Safety Assessment Committee,“Certification Considerations for Highly-Integrated Or 
Complex Aircraft Systems,” 

[17] S-18 Aircraft and Sys Dev and Safety Assessment Committee,“Guidelines and Methods for Conducting the Safety 

Assessment Process on Civil Airborne Systems and Equipment,” 

[18] Alder M., Moerland E., Jepsen J., and Nagel B., 2020,“Recent Advances in Establishing a Common Language for 
Aircraft Design with CPACS,” Aerospace Europe Conference 2020. 

[19] Siggel M., Kleinert J., Stollenwerk T., and Maierl R., 2019,“TiGL: An Open Source Computational Geometry Library 

for Parametric Aircraft Design,” Math.Comput.Sci., 13(3), pp. 367–389. 

[20] Padilha M. H., 2023,“Enabling fuel system component placement on the basis of geometric and certification 

requirements within a semantic knowledge-based engineering framework,” Politecnico di Torino. 

[21] Federal Aviation Administration, 1997. Design Considerations for Minimizing Hazards caused by Uncontained 
Turbine Engine and Auxiliary Power Unit Rotor: AC 20-128A. 

 


	1. Introduction
	1.1 Related Work
	1.2 Structure of this paper

	2. The Codex platform
	3. Key geometric requirements for the fuel system
	Center of gravity shift
	Intersections between components
	Minimum distance between lines and fuel tanks
	Components inside tanks
	Connections between components and supply lines
	Tank volumes
	Available fuel mass

	4. Checking the impact of an uncontained rotor burst
	5. Conclusion and Outlook
	6. Contact Author Email Address
	7. Copyright Statement
	References

