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Abstract 

The solar thermal decomposition of methane could be an economically and ecologically 

beneficial process to produce hydrogen and particulate carbon. Aiming at the determination of 

general kinetic laws and parameters the thermal dissociation of methane was examined 

employing an alumina tubular reactor situated in an electric tube furnace. Nominal furnace 

temperatures in the range between 1200 °C and 1600 °C were set. Gas mixtures containing 

argon or helium as dilution gas and methane with a molar fraction between 2 % and 10 % were 

introduced into the reactor at an absolute pressure around 1 bar. The residence times ranged 

from 0.0115 s to 1.47 s. Temperature profiles along the reactor were measured with a 

thermocouple type S. Experimental results concerning the conversion of methane practically 

cover the full range from minor to total progress. Hydrogen was the main product of the 

decomposition. However, significant amounts of ethane, ethene, and especially ethyne formed 

part of the product flow. Seeding with carbon black featuring a specific surface similar to 

generated particles result in a significant increase of both, conversion of methane and yield of 

hydrogen.  

The laminar flow conditions at the inlet of and inside the reactor were assessed by means of 

simulations employing ANSYS and COMSOL Multiphysics. Diverse reactor models based on 

nested tube reactors were employed. The models either disregarded radial diffusion or implied 

ideal radial diffusion. A simplified kinetic model which takes the considered species into account 

and respects forward dehydrogenation reactions was engaged. Kinetic parameters were varied 

in order to minimize the model errors. Best agreement between the calculations and 

experimental findings was achieved for a reactor model featuring five nested tube reactors and 

neglecting radial diffusion. The respective decay of methane is characterized by a reaction 

order regarding methane of 1.283 and an activation energy of 510.1 kJ/mol. Low standard 

uncertainties of estimated parameter values were derived from the covariance matrix. Except 

for quantities associated with the same reaction, parameters showed only marginal correlation. 

Radial diffusion was found to be a key phenomenon difficult to assess properly. The probable 

presence of not considered high molecular intermediates and differing properties of generated 

carbon have been identified as limiting issues concerning a comprehensive kinetic approach 

including heterogeneous effects.  
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1 Introduction 

Energy systems have to be transformed substantially in order to preserve Earth and to allow 

subsequent generations to benefit from our planet equitably. Today processes involved in the 

provision of energy are mainly based on the combustion of fossil energy carriers or on nuclear 

fission and thus not compatible with the idea of sustainability. Fossil and fissionable feedstocks 

are finite and their mining involves a grave interference of landscape and healthiness. The 

products of their use are either relevant for the greenhouse effect (especially carbon dioxide – 

CO2) or radioactive what directly leads to the question how to dispose them reasonably. An 

unrestricted discharge of CO2 to the atmosphere is not acceptable any more. According to the 

IPCC1, respective emissions have to be reduced significantly in the near future in order to avoid 

the risk of an incalculable climate change combined with numerous threats to mankind and 

ecosystems.2 

A possible resort is the establishment of the hydrogen society in which hydrogen (H2) plays the 

key role as energy carrier. Hydrogen represents the ultimate species of the transition from solid 

energy carriers with a high C/H-ratio (such as coal) via liquid energy carriers with moderate C/H-

ratio (such as oil) to gaseous energy carriers with low C/H-ratio (such as methane). The usage 

of hydrogen in highly efficient fuel cells or internal combustion engines features a reaction with 

oxygen to water and does practically not involve any emissions of harmful substances or 

matters with relevance for climate change.3 Since hydrogen is a secondary energy carrier, it has 

to be produced before being applied. Consequently, the application of hydrogen can only be as 

clean as the method of its production. Nowadays the most important processes for the 

production of hydrogen are steam reforming of methane and naphtha (38 %), partial oxidation of 

heavy fuel oil (24 %), reforming of benzine (H2 as byproduct, 18 %), and coal gasification (H2 as 

byproduct, 10 %), whereas minor fractions are allotted to the ethylene production and other 

chemical industries as well as to the chloralkali electrolysis.4 In their current configuration they 

cause massive emissions of CO2 and are thus not suitable for a carbon neutral hydrogen 

system. Either the aforementioned processes have to be modified that way that CO2-drawbacks 

are avoided (e. g. CCS5, renewable energy and feedstocks) or alternative, environmentally 

acceptable methods have to be employed. Amongst others potential processes could be the 

electrolysis of water, water splitting (in thermochemical cycles or photobiological), reforming and 

                                                 
1 Intergovernmental Panel on Climate Change 
2 cp. [IPCC, 2007] 
3 cp. [Ausubel, 2000], [Hefner, 2002], [Dunn, 2002], [Muradov, 2005 a], [Marbán, 2007] 
4 cp. [Geitmann, 2002], p. 27, providing data from DWV 
5 carbon capture and storage 
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gasification of biomass, fermentation of biomass (thermophilic or photo fermentation) and 

cracking of hydrocarbons (thermal or in thermal plasma).6 

Concentrating solar power (CSP) offers the greatest potential for electricity production in the 

EUMENA7 region taking renewable sources into account.8 Consequently, the employment of 

solar power is also particularly interesting for the production of hydrogen and has been 

discussed intensively.9 The solar thermal dissociation of methane, which is the main component 

of natural gas (and biogas) still featuring great resources10, could be an ecologically and 

economically beneficial method of hydrogen generation representing an intermediate step from 

fossil fuel based to entirely regenerative hydrogen production. The heat input needed for the 

cracking reactions is here provided by solar radiation. Since oxygen is not included in the 

decomposition process, the formation of CO2 is avoided. The final products of the thermal 

dissociation of methane are hydrogen and solid carbon. This allows the storage of a part of the 

introduced solar energy in an advantageous energy carrier. Depending on its quality generated 

carbon could be sold as an industrial commodity or landfilled without difficulty. As a result the 

process does not involve drawbacks of CO2-emissions although the fossil (if not from biogas) 

energy carrier methane is engaged.11 The recently completed European project SOLHYCARB 

has been concerned with the solar thermal dissociation of methane.12 

For a proper design and cost-efficient construction of suitable solar operated plants it is 

essential to know about the kinetics of the cracking reactions. Although the kinetics of the 

thermal dissociation of methane has been considered for several decades, comprehensive 

information has not been reported in literature yet. Published kinetic parameters cover a wide 

range of values. They are partly associated with special types of reactors or determined based 

on vague reaction conditions, e. g. concerning reaction temperatures as well as diffusive 

effects, and therefore refuse a universal character. Moreover, the uncertainty of estimated 

values is often unclear. As a consequence the application of such kinetic findings to arbitrary 

systems involves an unknown ambiguity. The aim of this work was the determination of general 

kinetic parameters for the thermal decomposition of methane employing a tubular reactor and a 

practically assessable kinetic model based on net forward reactions. Reaction conditions should 

be investigated in detail in order to allow a reliable approximation of the circumstances of the 

reactions. Special attention should be turned on the uncertainty in measurement and related 

                                                 
6 see e. g. [Steinberg, 1989], [Geitmann, 2002], p. 27 et seqq., [Stolten, 2010], p. 169 et seqq. 
7 Europe, Middle East, North Africa 
8 cp. [DLR, 2005], p. 56 
9 see e. g. [Steinfeld, 2001], [Hirsch, 2001], [Fletcher, 2001], [Kodama, 2003], [Steinfeld, 2004], [Steinfeld, 
2005], [Zedtwitz, 2006], [Muradov, 2008], [Ozalp, 2009], [Pregger, 2009]  
10 resources of non-conventional natural gas equivalent to 103364 EJ estimated for 2008, cp. [Rempel, 
2009], p. 11 
11 cp. [Spath, 2003] 
12 cp. [Flamant, 2007] (description of SOLHYCARB) 
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propagation in the kinetic evaluation. A suitable test facility had to be developed and assembled 

before experiments could be carried out. Appropriate simulation tools had to be identified and 

utilized with the purpose of clarification of flow characteristics and finally of definition of an 

accurate reactor model for the kinetic evaluation.  

After introducing some basic terms related to data preparation, reaction kinetics, and 

uncertainty in measurement as well as of model parameters in Chapter 2, general information 

about the thermal splitting of methane including an overview about the state of kinetic research 

is provided in Chapter 3. The experimental setup, procedures and results are presented in 

Chapter 4, whereas the kinetic evaluation, which features the creation of a realistic reactor 

model and the application of a simplified kinetic model taking the main components of the 

product flow into account, is described in Chapter 5. Findings are summarized and an outlook is 

given in Chapter 6. 
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2 Fundamental terms and issues 

This chapter provides the explanation of fundamental terms important for following 

considerations as well as data preparation. Furthermore, the expressions of uncertainty in 

measurement and of model parameters being part of this work are illustrated. 

2.1 Conversion, yield and further basic figures 

An ideal gas follows the ideal gas law which is usually written as 

TnVp     , Equation 1 

where   is the universal gas constant, p  and T  stand for the absolute pressure and the 

temperature, respectively, while n  represents the amount of substance and V  is the related 

volume. Consequently, conditions in a flow system, comprising a volume flow V  and a flow of 

amount of substance n , change in compliance with 

TnVp      . Equation 2 

The standard volume flow NV  corresponding to a certain flow of amount of substance n  refers 

to standard conditions, defined by the standard temperature NT  and the standard pressure Np , 

and arises from 

N

N
N p

T
nV


     . Equation 3 

The total initial standard volume flow of a gas mixture, containing methane and an inert dilution 

gas (DG), entering a reactor tot,0N,V  can be calculated employing the initial standard volume flow 

of methane ,0CHN, 4
V  and the initial standard volume flow of the dilution gas DG,0N,V  by 
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,0CHN,DG,0N,tot,0N, 4
VVV      . Equation 4 

The initial molar fraction of methane ,0CH4
x  can be determined via  

tot,0N,

,0CHN,
,0CH

4

4 V

V
x




    . Equation 5 

Respecting Equation 3 the molar flow of methane at the inlet of a reactor ,0CH4
n  arises from  

N

N
,0CHN,,0CH 44 T

p
Vn


     . Equation 6 

Given that the dilution gas is an inert gas, it does not serve as a reactant. Then the molar flow of 

the dilution gas DGn  equals the molar flow of the dilution gas at the outlet of the reactor PDG,n  

and the molar flow of the dilution gas at the inlet of the reactor DG,0n : 

N

N
DG,0N,DG,0PDG,DG T

p
Vnnn


     . Equation 7 

Employing the molar fraction of the dilution gas in the product gas PDG,x  the molar flow of the 

product gas gP,tot,n  can be calculated using  

PDG,

DG
gP,tot, x

n
n


      Equation 8 

and moreover the molar flows of other gaseous species i  of the product flow by 
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...,HC,HC,HC,H,CH 22426224gP,tot,P,P,  inxn ii     . Equation 9 

With ,0CH4
n  and P,CH4

n , the molar flow of methane at the outlet of the reactor, the conversion of 

methane 
4CHX   

,0CH

P,CH,0CH
CH

4

44

4 n

nn
X



 
     Equation 10 

can be determined, while the yield of hydrogen 
2HY  arises from  

,0CH

P,H
H

4

2

2 2

1

n

n
Y




     Equation 11 

considering the overall decomposition reaction13 and employing P,H2
n , the molar flow of 

hydrogen at the outlet of the reactor. Introducing the formal reaction equations yielding in C2-

hydrocarbons 

(g)H(g)HC(g)CH2 2624     ,  

(g)H2(g)HC(g)CH2 2424     , and   

(g)H3(g)HC(g)CH2 2224       

the yields of the different C2-hydrocarbons 
62HCY , 

42HCY , and 
22HCY  

                                                 
13 see Chapter 3.1 
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224262
,0CH

P, HC,HC,HC2
4

 i
n

n
Y i

i 


    Equation 12 

can be determined. The factors qiF ,P,  occurring in Equation 11 (0.5) and Equation 12 (2), 

respectively, result from the ratio of the absolute values of the stoichiometric coefficients of 

methane q,CH4
  and the considered product qi ,P,  concerning reaction q : 

qi

q

qiF
,P,

,CH

,P,
4




    . Equation 13 

Finally the yield of C2-hydrocarbons HCC2
Y  arises from 

2242622 HCHCHCHCC YYYY     . Equation 14 

2.2 Reaction kinetics 

Reaction kinetics deals with the analysis of the reaction rate and the dependencies on the 

influencing factors, which are  

 the reaction temperature RT ,  

 the concentration of different reactants i  ic , 

 the total pressure Rp , at which the reaction proceeds, and 

 catalysts as well as the amount of reaction sites on surfaces. 

The concentration of component i  ic  can be calculated by  
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V

n

V

n
c ii

i 


    , Equation 15 

where in  is the amount of substance i  in a certain volume V , while for a flow system the 

consideration of the molar flow of component i  in  in the volume flow V  is more suitable. 

In homogeneous reactions only substances with the same state of aggregation are involved, 

whereas heterogeneous reactions comprise at least two states of aggregation. The equivalent 

reaction rate of a homogeneous reaction homr  is defined as 

i

ii

i

r

t

n

V
r


hom,

homhom d

d1



    , Equation 16 

where i  is the stoichiometric coefficient of component i , in  is the amount of substance of 

component i , t  is the time, and V  is the considered volume. Directly connected to homr  is 

ir ,hom , the reaction rate of the homogeneous reaction regarding component i . Contrariwise, the 

equivalent reaction rate of a heterogeneous reaction hetr  refers to a relevant surface S  

i

ii

i

r

t

n

S
r


surface,het,

hetsurfacehet, d

d1



    , Equation 17 

or a relevant mass m  

i

ii

i

r

t

n

m
r


mass,het,

hetmasshet, d

d1



    , Equation 18 

with the reaction rates of the heterogeneous reaction regarding component i  ir surface,het,  and 

ir mass,het, . For a homogeneous reaction a common approach to analyze the relation between the 

reaction rate and the influencing factors is that the reaction rate equals a product of two terms, 

the first only depending on the temperature and the second only depending on the 

concentrations of the reactants: 
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)()( icfTkr     .14 Equation 19 

While the first term )(Tk  is called rate constant and depends on the temperature T  following 

an Arrhenius law in accordance with 

T

E

ekTk 



a

0)(     Equation 20 

the second term )( icf  is often assumed to be an exponential function appropriate to 


i

m
ii

iccf )(    . Equation 21 

Here three important parameters, the kinetic parameters, can be identified: the pre-exponential 

factor 0k , the activation energy aE , and the reaction order regarding component i  im . Strictly 

speaking, the pre-exponential factor itself is a function of the temperature. It may be 

proportional to the temperature to the power of 0.5 following collision theory or proportional to 

the temperature to the power of another exponent resulting from transition state theory. 

However, this dependency of the pre-exponential factor on the temperature is usually weak 

compared to the dependency of the exponential term of Equation 20.15 Thus, the pre-

exponential factor is considered as a constant. Usually for a heterogeneous reaction the relation 

between the reaction rate and the influencing factors is more complex, especially when the 

second phase does not have constant properties. 

2.3 Uncertainty in measurement 

In this work special attention was turned to the assessment of uncertainty of determined figures, 

such as conversions, yields, and temperatures. Two different expressions of uncertainty can be 

found. The first one is the maximum (positive and negative) uncertainty, whereas the second 

one results from an attempt to state the standard uncertainty according to GUM16. Diverse types 

of evaluation of standard uncertainty have to be distinguished: the Type A evaluation of 

uncertainty, a “method of evaluation of uncertainty by statistical analysis of series of 

                                                 
14 cp. [Hagen, 2004], p. 31 et seqq. 
15 cp. [Chorkendorff, 2003], p. 36, p. 100 et seqq., p. 108 et seqq., [Ebbing, 2005], p. 581 et seqq. 
16 Guide to the expression of uncertainty in measurement, see [ISO, 2008] 



2 Fundamental terms and issues  
   

 

 10 

observations”, and the Type B evaluation of uncertainty, a “method of evaluation of uncertainty 

by means other than the statistical analysis of series of observations”.17 

In this work mainly the Type B evaluation of uncertainty was employed. Usually manufacturers 

of used measuring devices state uncertainty of a measured value x  by upper and lower limits 

a  and a , respectively. Consequently, the maximum positive uncertainty of x  )(max xu  arises 

from  

xaxu   )(max     Equation 22 

and the maximum negative uncertainty of x  )(max xu  from 

xaxu   )(max    . Equation 23 

In absence of further information, the assumption of a rectangular probability distribution is 

admissible. If not otherwise stated, a symmetric situation corresponding to  

   aax 5.0     Equation 24 

was postulated in agreement to the specification of used instruments. Employing a , the half 

width of the interval defined by a  and a , calculated from  

   aaa 5.0     Equation 25 

the standard uncertainty of x  )(xu  can be calculated by 

                                                 
17 cp. [ISO, 2008], p. 3 
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3
)(

a
xu     .18 Equation 26 

The maximum positive and negative uncertainty of a quantity y  being a function of N  other 

quantities ix  congruent to 

)...,,,( 21 Nxxxfy      Equation 27 

arises from severest combinations of values of influencing quantities in the range of their limits 

given by maximum uncertainties. Contrariwise, the combined standard uncertainty of y  )(c yu  

can be estimated from 
















N

i
i

i

xu
x

f
yu

1

2

2

c )()(    .19 Equation 28 

To simplify matters, the index c  is eliminated in the following and )()( c yuyu   is called the 

standard uncertainty of y . 

2.4 Uncertainty and correlation of model parameters 

Given a situation of multidimensional Chi-Square fitting involving a nonlinear model following 

),( ψxiyy     , Equation 29 

where ix  is a vector of variables defining condition i  influencing the function y , the merit 

function to be minimized is 

                                                 
18 cp. [ISO, 2008], p. 11 et seqq. 
19 cp. [ISO, 2008], p. 18 et seq. Assumptions: input quantities are uncorrelated and nonlinearity of the 
considered function is not significant (higher-order terms neglected).  
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









 


pointsdata

1

2

2 ),(N

i i

ii yy


 ψx

   , Equation 30 

with ψ  accounting for the set of model parameters to be varied and i  characterizing the 

standard deviation of iy . The covariance matrix of ψ  )(ψCov  provides information about the 

standard uncertainty of estimated parameters (square root of diagonal elements) and 

covariance between components of ψ . )(ψCov  can be assessed via 

1)(  αψCov    , Equation 31 

where the components of matrix α  are defined by 

















 
 l

i

k

i
N

i i
kl

yy
α


),(),(1points data

1
2

ψxψx
   .20 Equation 32 

If  

i

ii
i

yy
y


),(~ ψx

    , Equation 33 

it is obvious that 

k

i

ik

i yy

 




 ),(1~ ψx

    Equation 34 

and consequently 

                                                 
20 cp. [Press, 2007], p. 788 et seqq. (in particular p. 790, p. 798, p. 800 et seq.) 
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
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Introducing the matrix A  with 
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
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
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
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
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
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




parameters

points datapoints datapoints data

parameters

parameters

~~~
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21

2

2

2

1

2

1

2

1

1

1

N

NNN

N

N

yyy

yyy

yyy















A     Equation 36 

it becomes clear that 

  1T1)(
  AAαψCov    . Equation 37 

The matrix of correlation coefficients )(ψCorr  arises from 

)()(

),(
),(

lk

lk
lk

Cov
Corr





    , Equation 38 

where )( k  and )( l  represent square roots of respective components of )(ψCov .21 

 

                                                 
21 cp. e. g. [ISO, 2008], p. 47 
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3 Thermal splitting of methane 

In Chapter 3.1 basics about the thermal splitting of methane that are important for general 

understanding are given, before the current extent of CO2-free applications is presented in 

Chapter 3.2. Thermodynamic considerations and calculations can be found in Chapter 3.3, 

whereas Chapter 3.4 provides information about the state of research concerning the kinetics of 

the thermal decomposition of methane.  

3.1 Basics 

The overall reaction of the thermal decomposition of methane, which needs an energy input to 

proceed respecting the positive standard reaction enthalpy, can be written as 

(g)H2(s)C""(g)CH 24      
mol

kJ
8.740

R H  

and summarizes numerous elementary reactions included in a complex reaction mechanism. 

An accepted sequence of cracking reactions finally forming molecular hydrogen and particulate 

carbon (“C”) is the stepwise dehydrogenation considering the intermediates ethane (C2H6), 

ethene (C2H4), and ethyne (C2H2): 

C""2......HCHCHCCH2 2222 H
22

H
42

H
62

H
4   22  

The formation of methyl radicals (CH3) according to 

HCHCH 34       

was proven to be the initial and rate determining step of the dissociation of methane, whereas 

the formation of methylene radicals (CH2) was rejected.23 Reactions of ethene may beside the 

formation of ethyne also lead to the formation of propene and subsequently of propadiene and 

1-butene, whereas methylation of ethyne could explain the occurrence of propyne.24 Models for 

the reaction mechanism of the thermal dissociation of methane with different levels of 

sophistication – partly respecting high molecular hydrocarbons such as benzene and polycyclic 

aromatic hydrocarbons (PAHs) – have been suggested and applied.25 

                                                 
22 cp. [Khan, 1970] and [Back, 1983], p. 2  
23 cp. [Back, 1983], p. 5, p. 12 et seq. 
24 cp. [Billaud, 1989] 
25 see. e. g. [Sundaram, 1977 a], [Sundaram, 1977 b], [Sundaram, 1978], [Roscoe, 1985], [Stewart, 
1989], [Grenda, 2003], [Matheu, 2003]; including benzene: see e. g. [Billaud, 1992], [Guerét, 1994], 



3 Thermal splitting of methane 
   

 15

The general situation of a reactor with entering gases and additional leaving reaction products is 

shown in Figure 3-1. Cracking reactions inside the reactor consume the provided heat and lead 

to the formation of the final products as well as of C2-hydrocarbons and of not further specified 

hydrocarbons (CmHn). 

 

Figure 3-1: General situation of a reactor for the thermal splitting of methane with methane 
(CH4) as well as the dilution gas (DG) at the inlet of the reactor and additional reaction products 
at the outlet of the reactor, which are particulate carbon (“C”), hydrogen (H2), ethane (C2H6), 
ethene (C2H4), and ethyne (C2H2) as well as further hydrocarbons (CmHn). 

 

3.2 Applications with CO2-free heat supply 

The thermal dissociation of methane offers the possibility of simultaneous CO2-emission free 

production of hydrogen and carbon when the heat necessary to run the cracking reactions is 

provided without the release of CO2. A possibility of CO2-free heat supply – however, up to now 

without practical demonstration – is the combustion of a part of the produced hydrogen 

introduced by Kreysa as “The Carbon Moratorium”.26 Another option is the use of concentrated 

solar radiation. Several solar operated reactors in laboratory and prototype scales have already 

been constructed and tested. Concepts of indirect heating have to be distinguished from those 

of direct solar irradiation of the reactants. Steinfeld produced filamentous carbon and hydrogen 

in a small scale solar irradiated reactor implying a fluidized bed of Ni catalyst and Al2O3 grains.27 

Weimer and Dahl reported the construction and operation of a fluid-wall aerosol flow reactor 

irradiated with concentrated solar power at maximum levels of 10 kW.28 Tornado flow conditions 

were simulated and applied to a reactor, which was operated with a solar radiation input in the 

range of 2 kW and allowed a volumetric absorption of solar radiation as soon as the first carbon 

particles were formed. Additionally, Kogan introduced an apparatus for seeding targeting an 

increase of radiative heat transfer into the gas/particle-mixture.29 A reactor configuration in the 

                                                                                                                                                          
[Olsvik, 1994], [Olsvik, 1995], [Holmen, 1995], [Tynnukov, 2002]; including PAHs: see e. g. [Lucas, 1990], 
[Dean, 1990], [Richter, 2000], [Younessi-Sinaki, 2009] 
 

26 see [Kreysa, 2009] (extended and translated version of [Kreysa, 2008]) 
27 see [Steinfeld, 1997] 
28 see [Weimer, 2001], [Dahl, 2001], [Dahl, 2002], [Dahl, 2004] 
29 see [Kogan, 2003], [Kogan, 2004], [Kogan, 2005], [Kogan, 2007] 
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5 kW class based on a particle laden vortex flow acting as a volumetric absorber was presented 

and examined with respect to the radiative heat transfer by Hirsch. Trommer investigated 

respective kinetics, whereas Maag carried out further experiments after modifying the reactor.30 

Abanades conducted experiments with a 1 kW reactor that featured different graphite nozzles 

which absorbed solar radiation and lead heat energy into the passing flow of reactants.31 A 

reactor in the 10 kW scale consisting of four units of concentric graphite tubes situated in a 

graphite cavity was presented and examined by Abanades and Rodat.32 Seven straight and 

horizontally oriented graphite tubes placed in a graphite cavity form the key parts of a reactor 

working at an extended nominal power level of 50 kW.33 The latter configuration represents the 

most advanced solar operated reactor for the thermal decomposition of methane demonstrated 

up to now. Its construction and operation was one of the final objectives of the European project 

SOLHYCARB. 

3.3 Thermodynamics 

Materials conversion can be interpreted as a balancing process which dissipates the differences 

of driving potentials and finally leads to the mechanical, thermal, material, and chemical 

equilibrium. Temperature and pressure represent the reference for the thermal and mechanical 

potential, respectively. The material equilibrium and chemical equilibrium are related to the 

chemical potential. The material equilibrium is reached as soon as the chemical potential of 

component i  i  is equal in all involved phases. i  is defined as the partial derivative of the 

Gibbs energy with respect to the amount of substance of component i  at constant temperature, 

pressure, and amounts of substance of components other that i : 

ijnpTi
i n

G















,,

    .34 Equation 39 

The free enthalpy of reaction RG  arises from  

                                                 
30 see [Hirsch, 2004 a], [Hirsch, 2004 b], [Trommer, 2004], [Maag, 2009] 
31 see [Abanades, 2005], [Abanades, 2006], [Abanades, 2007] 
32 see [Abanades, 2009], [Rodat, 2009], [Rodat, 2010 b] 
33 see [Rodat, 2010 a] 
34 cp. [Lucas, 2008], p. 431 et seqq. 
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 
i

iiG R    , Equation 40 

where i  is the stoichiometric coefficient of component i . Introducing the standard free 

enthalpy of reaction 0
RG  with 

 
i

iiG 00
R      Equation 41 

and the activity of component i  ia , it can be shown that 


i

i
iaTGG ln0

RR    . Equation 42 

Regarding a heterogeneous equilibrium involving a gaseous phase treated as an ideal gas 

mixture as well as a solid phase containing pure substances, the activity of a component i  in 

the ideal gas phase ig
ia  can be calculated employing the partial pressure ip  and the standard 

reference pressure 0p  following  

0
ig

p

p
a i

i     , Equation 43 

whereas s
ia , the activity of a pure solid component i , can be treated as a constant according to  

1s ia    . Equation 44 

The chemical equilibrium is characterized by 0R G .35 

Equilibrium compositions were calculated for different temperatures and pressures employing 

HSC 536. The program routines determine stable compositions of chosen species using the 

                                                 
35 cp. [Atkins, 2010], p. 190, p. 214 et seqq. and [Weingärtner, 2003], p. 155 et seqq. 
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“Gibbs energy minimization method”. Gaseous species comprising methane, hydrogen, all 

hydrocarbons with up to 8 carbon atoms available in the HSC 5 database, and selected higher 

hydrocarbons, especially polycyclic aromatic hydrocarbons (PAHs)37, as well as solid carbon 

were considered. A complete table of respected species can be found in Appendix A. Figure 3-2 

represents the amounts of substances in the equilibrium at 1 bar higher than 1 * 10-8 kmol 

based on an initial amount of methane of 1 kmol. Small amounts of the C2-hydrocarbons 

ethane, ethene, and ethyne as well as of propadiene, 1-propyne, butadiyne, and 1-heptene can 

be found in the equilibrium composition, but practically only hydrogen, carbon, and methane are 

the relevant species at temperatures up to 1700 °C. At 783 °C still 10 % of the initial amount of 

methane remains unconverted, whereas at 1114 °C the equilibrium is almost completely shifted 

to the side of products.  
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Figure 3-2: Equilibrium compositions at 1 bar as a function of the temperature (based on an 
initial amount of 1 kmol methane) 

Ideally, two moles of hydrogen are formed per mole of methane. Consequently, according to the 

principle of Le Chatelier and Braun an increase of pressure results in a shift of the equilibrium to 

the side of methane as can be seen in Figure 3-3. Complete figures for 0.5 bar and 2 bar 

corresponding to Figure 3-2 can be found in Appendix A. 

                                                                                                                                                          
36 HSC Chemistry 5: Calculation of Equilibrium Composition v. 5.0 (Outokumpu Research Oy, 2002).  
37 The thermal decomposition of methane involves the presence of PAHs, e. g. naphthalene and 
benzo[a]pyrene, cp. e. g. [Hu, 2003]. Albermann presented a comprehensive review of literature as well 
as own experimental results in [Albermann, 2007]. Most of identified PAHs are part of the HSC 5 
database and were respected for equilibrium calculations. 
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Figure 3-3: Amount of substance of the main components of the equilibrium composition as a 
function of the temperature and the pressure (based on an initial amount of 1 kmol methane) 

 

3.4 Kinetics 

The thermal splitting of hydrocarbons has been a frequently addressed topic in research for 

more than a hundred years. For instance, the French chemist M. Berthelot presented some 

basic findings in the second half of the 19th century.38 The thermal decomposition of methane 

has been investigated employing different ways to heat up the reactants. Very common is the 

heat supply via hot reactor walls influencing the temperature of the reactants by convection and 

in presence of absorbers also by radiation. As presented in Chapter 3.2 the direct solar 

irradiation of particles in contact to the reactants is possible too. Moreover, high temperature of 

reactants can be achieved by compression in shock tubes. In addition, applications employing 

thermal plasma, microwaves, and molten metal baths can be found.39 However, the latter 

applications form part of special fields and are excluded from subsequent considerations.  

Kinetic experiments have been carried out under various conditions differing for instance in 

temperature and pressure. Furthermore, experiments conducted in presence of catalysts other 

than those formed by the reaction itself have to be distinguished from experiments carried out 

without the employment of additional substances. Influences of carbon based catalysts as well 

as of metal based catalysts were examined. Abbas has recently presented a respective review 
                                                 

38 see e. g. [Berthelot, 1866] 
39 see e. g. [Fincke, 2002], [Fulcheri, 2002] (thermal plasma); [Tanashev, 1998] (microwaves); [Serban, 
2003] (molten metal) 



3 Thermal splitting of methane  
   

 

 20 

article.40 Although the present work principally deals with the simplest reaction system, which 

corresponds to the situation without any added catalyst, the consideration of literature providing 

information about reaction rates found for the presence of carbon material is useful, since 

findings could help to understand the influence of formed carbon particles on the reaction rates. 

Contrariwise, metal based catalysts may involve additional effects and are consequently 

excluded in the following. 

According to the general information provided in Chapter 3.1, many species are involved in the 

thermal dissociation of methane. However, on the path from the reactant methane to the final 

products hydrogen and carbon, C2-hydrocarbons feature particular importance as intermediates 

and byproducts with significant fractions in the product flow. The reliability of kinetic data 

derived from experiments respecting the individual species as reactants is not guaranteed when 

transferred to reactions as intermediates, since alternative reaction mechanism could become 

relevant. Nevertheless, some examples are presented in Chapter 3.4.3. 

3.4.1 Kinetic experiments without seeding 

Kinetic experiments concerning the thermal decomposition of methane were carried out in 

shock tubes, in tube reactors and in static systems. In spite of the long-lasting consideration 

there exists a remarkable lack of clarity regarding involved reactions, kinetics and mechanisms. 

Scientists reported numerous – and partly inconsistent – observations in these fields along with 

approaches to explain them. Most researchers agree that ethane is the primary product of the 

decomposition followed by ethene and ethyne. Controversial results concerning the pressure 

dependence of the dissociation41, the relevance of surface effects42, and the influence of 

decomposition products such as hydrogen43, ethane, and ethyne44 were reported. Palmer 

observed induction, acceleration, and deceleration periods and suggested that shock tube 

experiments refer to conditions before acceleration.45 Comprehensive overviews about 

respective up-to-date information were compiled in 1970 by Khan and Crynes46, in 1983 by 

Back and Back47, and in 1989 by Billaud, Baronnet et al.48 Table 3-1 provides information about 

                                                 
40 see [Abbas, 2010 a] 
41 cp. [Hartig, 1971] (“pressure dependence of k“) and [Napier, 1972] (“results were not sensitive to 
pressure“) 
42 cp. [Shantarovich, 1962] (“The relationship R ~ s/v […] and […] indicate that cracking is a 
heterogeneous reaction.“) and [Palmer, 1968] (“the rate is not appreciably affected by the S/V ratio“) 
43 cp. [Kevorkian, 1960] (“homogeneous reaction is not hydrogen inhibited“) and [Kassel, 1932] (“rate […] 
very greatly retarded by hydrogen“) 
44 cp. [Eisenberg, 1967] (”rate is accelerated by ethane”), [Gordon, 1948] (“acetylene was a catalyst for 
the decomposition of methane”), and [Skinner, 1959] (“methane decomposition is not much affected by 
the presence of the decomposition products”) 
45 cp. [Palmer, 1968] 
46 see [Khan, 1970] 
47 see [Back, 1983] 
48 see [Billaud, 1989] 
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the scope of applied reaction conditions and determined kinetic parameters along with utilized 

temperature measurement techniques.  

Table 3-1: Kinetic experiments concerning the thermal decomposition of methane and determined kinetic 
parameters 

Reference / reactor / dilution gas 
Temperature in °C / measurement technique 

Pressure in bar / residence time in ms 
Initial molar fraction of methane in % / conversion in % 

Reaction 

mol

kJ
inaE

 




















 )1(

30 m

mol

s

1
login)log(

m

k  

inm  

[Kassel, 1932] / quartz vessel / - 
700 °C – 850 °C / Pt-Pt/Rh TC (outer contact) 

0.017 – 0.51 / up to 40 min 
100 / a few 

CH4 → products 
332.4 

12 
1 

[Skinner, 1959] / shock tube / Ar 
1157 – 1512 / calculation 

5.1 / < 15 
12 (and 1) / < 10 

CH4 → products 
422.9 
14.71 

1 

[Glick, 1959] / shock tube / He and Ar 
1227 – 2627 / calculation 

not specified (n. s.) / several ms 
10 / 0 – 100 

CH4 → products 
355.9 
12.96 

1 

[Kevorkian, 1960] / shock tube / Ar 
1383 – 1692 / calculation 

3.4 – 12.0 / 1.4 – 2.4 
2 and 10 / 7.6 – 86.2 

CH4 → products 
389.4 
14.12 

1 

[Shantarovich, 1962] / porcelain tube / He 
1293 – 1373 / n. s. 

0.023 – 0.027 / 5 – 42 
1.2 – 20 / 0.12 – 1.02 

CH4 → products 
376.8 
11.60 

1 

[Kozlov, 1962] / shock tube / Ar 
1397 – 1777 / calculation 

2.0 – 8.1 / n. s. 
2 and 5 / n. s. 

CH4 → products 
381.0 
13.65 

1 
(based on own data and other works) 

[Palmer, 1963] / annular reactor / He 
890 – 1078 / n. s. 

n. s. / n. s. 
n. s. (variation by factor 20) / n. s. 

CH4 → products 
422.9 
14.1 

1 

[Palmer, 1968] / porcelain tube / He 
1050 – 1250 / Pt-Pt/10Rh TC moved through reactor 

0.99 / 100 – 900 
1 – 20 / up to 85 

CH4 → products 
431.2 
14.6 

1 
(based on own data and other works) 

CH4 (+ Ar) → CH3 + H (+ Ar) 
[Hartig, 1971] / shock tube / Ar 

1577 – 2227 / calculation 
5.1 – 222.9 / less than Kozlov, Kevorkian, and Skinner 

0.2 – 1 / n. s. 

368.4 
11.30 

2 
(low pressure limit) 

435.4 
15.10 

1 
(high pressure limit)
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Reference / reactor / dilution gas 
Temperature in °C / measurement technique 

Pressure in bar / residence time in ms 
Initial molar fraction of methane in % / conversion in % 

Reaction 

mol

kJ
inaE

 




















 )1(

30 m

mol

s

1
login)log(

m

k  

inm  

[Napier, 1972] / shock tube / Ar 
1477 – 2427 / sodium-line reversal and C2 reversal methods 

5.2 – 20.7 / 0.1 – 2.5 
10 / 34.7 – 97 

CH4 → products 
391.9 
13.58 

1 

[Gardiner, 1975] / shock tube / Ar + Kr + Ne 
1727 – 2427 / calculation 

0.2 – 1.6 / n. s. 
0.4 / n. s. 

CH4 → products 
312.0 
9.927 

1 

[Chen, 1975] / quartz vessel / - 
722 – 830 / TC in center 
0.033 – 0.99 / up to 2.5 

100 / n. s. 

CH4 → CH3 + H 
450.5 
16.45 

1 

[Holmen, 1976] / graphite tube reactor / H2 
1500 – 2005 / pyrometer (outer reactor wall) 

0.13 / 2 – 22 
50 / 10 – 100 

CH4 → products 
371.4 
29.29 

1 

[Tabayashi, 1979] / shock tube / Ar 
1677 – 2497 / calculation 

20.7 – 34.5 / 0.5 µs – 50 µs 
10 and 20 / n. s. 

CH4 + M → CH3 + H + M 
M = all collision partners (Ar, CH4, …) 

359.2 
11.00 

2 

[Kiefer, 1993] / shock tube / Kr and Ar 
2527 – 4127 / calculation 

0.31 – 0.88 / n. s. 
0.5 – 2 / n. s. 

CH4 + M → CH3 + H + M 
406.2 

28.376 - 4.830 * log( T / K ) 
2 

[Steinberg, 1998] / Inconel 617 tubular reactor / - 
700 – 900 / n. s. 

28.6 – 56.8 / up to 103 s 
100 / up to 35 

CH4 → C + 2 H2 
131.0 
3.732 

1 

[Koike, 2000] / shock tube / Ar 
1127 – 2227 / calculation 

0.41 – 0.83 / n. s. 
1.32 / n. s. 

CH4 + M → CH3 + H + M 
339.1 
10.48 

2 

[Sutherland, 2001] / shock tube / Kr 
1465 – 1796 / calculation 

0.0212 / n. s. 
n. s. / very low 

CH4 + Kr → CH3 + H + Kr 
182.6 
-12.97 

2 

Most researchers agree that the thermal dissociation of methane follows a first order reaction. 

Activation energies in the range from 312 kJ/mol to 450.5 kJ/mol were reported, whereas pre-

exponential factors between 8.46 * 109 1/s and 2.8 * 1016 1/s can be found. An exceptionally 

high pre-exponential factor could be extracted from figures presented in [Holmen, 1976], while 

remarkably low values for both activation energy and pre-exponential factor were reported in 

[Steinberg, 1998]. The first elementary dissociation reaction could be a second order reaction 
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involving present collision partners. Respective results differ in part significantly as can be 

obtained from the table. Simplified kinetic models taking C2-hydrocarbons into account were 

applied by Happel and Kramer as well as by Schulz, Klotz et al. Results of data fitting are 

provided in Table 3-2. Happel and Kramer suggested the consideration of three reactions and 

chose first and second order approaches in order to assess their rates, whereas Schulz, Klotz 

et al. considered five second order reactions – amongst them four forward reactions as well as 

one backward reaction which takes possible methane formation from the products into account. 

Table 3-2: Kinetic experiments concerning the thermal decomposition of methane and determined kinetic 
parameters employing simplified kinetic models 

Reference / reactor / dilution gas 
Temperature in °C / measurement technique 

Pressure in bar / residence time in ms 
Initial molar fraction of methane in % / conversion in % 

Reaction 

mol

kJ
inaE

 
unitsvariousin)log( 0k  

inm  

CH4 → C + 2 H2   {1} 
67.83 

4.392 log[mol/(s m3 bar)] 
1 

CH4 → 1/2 C2H2 + 3/2 H2   {2} 
361.9 

13.50 log[mol/(s m3 bar)] 
1 

[Happel, 1967] / annular alumina reactor / H2 
1074 – 1783 / Pt-Pt/10Rh TC (center) + pyrometer (outer wall)

0.092 – 0.94 / less than 1 
21.5 – 100 / 38.4 – 100 

 
(parameters fitted to data) 

4

1,a

4 CH1,01,CH pekr T

E

 


 

4

2,a

4 CH2,02,CH pekr T

E

 


 

2

22

3,a

22

H3

2
HC

3,03,HC ~
1 pk

p
ekr T

E


 


 

C2H2 → 2 C + H2   {3} 
74.11 

6.329 log[mol/(s m3 bar2)] 
2 

( 3

~
k  = 1.515 / bar) 

CH4 + M → 1/2 C2H6 + H2 + M 
130 

5.500 log[m3/(s mol)] 
2 

C2H6 + M → C2H4 + H2 + M 
283 

11.36 log[m3/(s mol)] 
2 

C2H4 + M → C2H2 + H2 + M 
172.3 

7.450 log[m3/(s mol)] 
2 

C2H2 + M → 2 C + H2 + M 
17.2 

1.660 log[m3/(s mol)] 
2 

[Schulz, 1985] / shock tube / Ar 
1507 – 2257 / calculation 

2.6 / 0.5 – 4 
2 / 30 – 100 

 
(parameters fitted to data) 

P + M → CH4 + M 

(
44 CH0,CHP ccc  ) 

38.3 
1.800 log[m3/(s mol)] 

2 
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3.4.2 Kinetic experiments in presence of carbon based catalysts 

The influence of different types of carbonaceous material, such as carbon black and activated 

carbon, was studied mainly in fixed bed reactors and in fluidized bed reactors. Muradov for 

example examined the influence of numerous carbon based catalysts with a mass of about 

0.03 g in a fixed bed reactor at 850 °C and a residence time of about 1 s. Under these 

conditions only hydrogen and carbon as well as very small fractions of C2-hydrocarbons were 

produced. It was found that disordered kinds – like activated carbon (AC) and the amorphous 

forms carbon black (CB) and acetylene black (AB) – show a higher catalytic activity than 

ordered ones – like graphite and diamond. The catalytic activity of examined CBs and ABs was 

linearly related to the surface area, whereas the activity of ACs was apparently independent 

from surface area and method of activation. Usually a deactivation was observed as a function 

of time. CBs and ABs were initially less active than ACs; however, the decomposition process 

employing the amorphous forms showed better sustainability.49 The dependency of the reaction 

rate on the specific surface of CBs is controversial. Lee et al. reported that no respective trends 

could be identified.50 

Table 3-3 gives an overview about kinetic parameters derived in cracking experiments in 

presence of activated carbon, carbon black or coal char (CC). According to Equation 18, the 

initial rate of methane decomposition was mostly defined as 

t

n

m
pekr mT

E

d

d1
4

4

4

a
CH

catCH
CH0initial 


 




    Equation 45 

based on the overall reaction of the decomposition. Most researchers agree that the reaction 

order is about 0.5, but also higher values were reported. Activation energies in the range from 

117 kJ/mol to 201 kJ/mol, from 143 kJ/mol to 236 kJ/mol, and from 89 kJ/mol to 105 kJ/mol 

were estimated for ACs, CBs and CCs, respectively. Results shown here exemplarily are in 

good agreement with findings of other workers.51 

                                                 
49 cp. [Muradov, 2001 a]; similar results were presented in [Muradov, 2001 b] 
50 cp. [Lee, 2004 b] 
51 cp. [Pinilla, 2008], [Ashok, 2008], [Lee, 2008], [Abbas, 2009] extracted from [Abbas, 2010 a] 
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Table 3-3: Kinetic experiments concerning the thermal decomposition of methane in the presence of carbon 
based catalysts and determined kinetic parameters 

Reference / reactor / dilution gas 
Temperature in °C / measurement technique 

Pressure in bar / residence time in s / catalyst mass in g
Initial molar fraction of methane in % / conversion in % 

Catalysts / specific surface in m2/g 

mol

kJ
inaE

 









 m

k
bargmin

mmol
login)log(

cat
0  

inm  

[Kim, 2004] / fixed bed quartz tube reactor / Ar 
750 – 900 / TC 

n. s. / 0.6 / 0.2 – 0.8 
up to 100 / up to 15 

AC / 725, 912, 966 (725, 912) 
194, 186, 198 

n. s. 
~ 0.5 (0.51, 0.49) 

[Lee, 2004 a] / fluidized bed quartz tube reactor / - 
700 – 900 / TC in middle of bed 

n. s. / n. s. / 20 
100 / up to 45 

AC / 966 
138.9 (MFR) – 147.4 (PFR) 
13.54 (MFR) – 14.28 (PFR) 

~ 0.5 

[Lee, 2004 b] / fixed bed quartz tube reactor / Ar 
750 – 1050 / TC 
1.01 / n. s. / 0.1 

up to 100 / up to 70 

CB / 79, 1475 
183, 143 

7.920, 6.401 
~ 1 (0.919, 0.984) 

[Trommer, 2004] / vortex flow reactor / Ar 
627 – 800 / TC type K 
up to 1.1 / 9 / 1.9 g/min 

15 / up to 46 

AC / 900 
147 (PFR) – 162 (MFR) 

6.029 (PFR) log(1/s) – 6.877 (MFR) log(1/s)
1 

AC / 650 – 3370 (650) 
160 – 201 

n. s. 
~ 0.5 (0.6) 

[Muradov, 2005 b] / quartz microreactor with fixed bed / - 
850 / TC type K 

1.01 / 0.1 / 0.03 – 0.1 
100 / n. s. (20 – 70) 

CB / 25 – 1500 (1500) 
205 – 236 

n. s. 
~ 0.5 (0.5) 

[Bai, 2005] / fixed bed quartz tube reactor / N2 
750 – 900 / n. s. 

1.01 / n. s. / 1 
up to 100 / up to 35 

AC / n. s., 783, 735, 738 
116.9, 133.6, 140.0, 184.9 

n. s. 
0.5 

[Bai, 2006] / fixed bed quartz tube reactor / N2 
750 – 900 / n. s. 

1.01 / n. s. / 1 
up to 100 / up to 35 

CC / 22, 41, 127 (22, 127) 
105, 98, 89 

n. s. 
~ 0.5 (0.54, 0.52) 

[Jung, 2007] / fluidized bed quartz tube reactor / - 
800 – 925 / TC in middle of bed 

1.01 / n. s. / 20 
100 / up to 50 

AC / n. s. 
140 
n. s. 
n. s. 

[Abbas, 2010 b] / fixed bed stainless steel tube reactor / - 
775 – 850 / TC type K 

1.01 / 2 – 12.2 / 20 – 120 
100 / 24.2 – 68.6 

AC / n. s. 
163 

7.409 log[dm6/(gcat mol min)] 
2 
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3.4.3 Kinetic experiments concerning the pyrolysis of C2-
hydrocarbons 

Table 3-4 shows some examples for works dealing with the thermal dissociation of C2-

hydrocarbons. Orders of initial stage or overall reactions were found to equal one or two. By 

trend, the activation energy increases with the number of H-atoms in the reactant. 

Table 3-4: Kinetic experiments concerning the thermal decomposition of C2-hydrocarbons and determined 
kinetic parameters 

Reference / reactor / dilution gas 
Temperature in °C / measurement technique 

Pressure in bar / residence time in ms 
Initial molar fraction of reactant in % / conversion in % 

Reaction 

mol

kJ
inaE

 




















 )1(

30 m

mol

s

1
login)log(

m

k  

inm  

C2H6 → C2H4 + H2 
334.9 
16.65 

1 
(based on own data and other works) 

[Kozlov, 1962] / shock tube / Ar 
887 – 1307 / calculation 

2.03 – 6.08 / 0.8 
1 and 5 / 2 – 90 

C2H6 → C2H4 + H2 
288.9 

14 
1 

(based on own data and other works) 

[Hidaka, 1985] / shock tube / Ar 
927 – 1427 / calculation 

1.72 – 2.53 / n. s. 
1 – 5 / n. s. 

C2H6 → 2 CH3 
334.9 
14.85 

1 

[Kozlov, 1962] / shock tube / Ar 
977 – 1577 / calculation 

2.03 – 6.08 / n. s. 
1 and 5 / whole range 

C2H4 → C2H2 + H2 
167.5 
8.410 

1 

[Pilla, 2010] / shock tube / Ar 
1117 – 1597 / calculation 

2.23 – 3.14 / 1 
1 / n. s. 

C2H4 → C2H2 + H2 
227.0 
8.740 

2 

C2H2 → 2 C + H2 
125.6 
6.230 

1 
(suggested for high temperatures) 

[Kozlov, 1962] / shock tube / Ar 
1327 – 2227 / calculation 

4.05 / 0.8 
1 and 5 / up to 98 

C2H2 → 2 C + H2 
167.5 
7.330 

2 
(suggested for low temperatures) 

[Wu, 1987] / shock tube / Ne + Ar 
1627 – 2227 / calculation 

0.3 – 0.56 / up to 0.75 
1 – 6.2 / n. s. 

2 C2H2 → C4H3 + H 
186.3 
7.301 

2 
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4 Experimental 

In order to investigate the kinetics of the thermal dissociation of methane, numerous 

experiments were accomplished based on a wide range of reaction conditions. The feed flow 

contained methane as well as an inert dilution gas, which allowed studying the influence of 

methane concentration at a constant pressure level and damped the temperature change due to 

reaction. Furthermore, the risk of clogging was decreased. After presenting the experimental 

setup, the covered reaction conditions are introduced before the adopted procedure of the 

experiments is explained. General results based on the conversion of methane and the yields of 

considered products are shown subsequently.52 The next chapter deals with the measurement 

of the temperature, one of the main influencing factors of reaction rates. At last additional 

experiments, which were carried out in order to gain further knowledge about the repeatability of 

results, location and character of formed carbon, balances of H- and C-atoms, as well as the 

influences of added carbon particles, are respected.53  

4.1 Experimental setup 

The kinetic experiments were carried out employing an aluminum oxide tube reactor54 with an 

inner/outer diameter of 8/12 mm situated in a tube furnace55 as can be seen in Figure 4-1. This 

tube furnace contains molybdenum disilicide (MoSi2) heating elements which allow the provision 

of heat at temperatures up to 1800 °C. The inlet gas composed of methane and a dilution gas, 

either argon (Ar) or helium (He), was prepared by mass flow controllers56. Depending on the 

conditions inside the reactor cracking reactions proceeded generating the desired products 

hydrogen (H2) and carbon (C) as well as intermediates. The composition of the product gas was 

analyzed by a gas chromatograph (GC)57 respecting argon, methane, hydrogen, and C2-

hydrocarbons. There were two particle filters which guaranteed a high efficiency of filtration: the 

main filter and the GC filter with a nominal pore diameter of 1 µm and 0.5 µm, respectively.58 

The main filter removed particles from the product flow before it left the systems toward the flue, 

whereas the GC filter removed particles from the sample flow toward the GC. A two filter 

configuration permits the usage of large filter elements in the main filter going hand in hand with 

an increase of operating time due to a lower risk of clogging without drawbacks for the GC 

                                                 
52 Brief descriptions of the experimental setup as well as preliminary experimental results can be found in 
[Wullenkord, 2008], [Wullenkord, 2009 a], [Wullenkord, 2009 b], and [Wullenkord, 2010 a]. 
 

53 Respective results were partly presented in [Wullenkord, 2010 a] and [Wullenkord, 2010 b]. 
54 Manufacturer: FRIATEC AG, Mannheim, Germany. 
55 Manufacturer: Gero Hochtemperaturöfen GmbH & Co. KG, Neuhausen, Germany.  
Type HTRV 40-250-18 SO. 
56 Manufacturer: MKS Instruments Deutschland GmbH, München, Germany. 
57 Manufacturer / provider: SRI Instruments Inc., Las Vegas, NV, USA. Schambeck SFD GmbH, Bad 
Honnef, Germany. Type SRI Multiple Gas Analyzer #2 8610C. 
58 Manufacturer / provider: CONTEC GmbH, Bad Honnef, Germany (filter body AVPP20 with filter 
element AX1-20) and B.E.S.T. Fluidsysteme GmbH, Kaarst, Germany (Swagelok). 
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measurement resulting from a larger dead volume of the filter. The water coolers at the inlet and 

outlet of the reactor ensured almost constant as well as low temperatures of the gas or gas 

mixture at the respective positions.  

 

Figure 4-1: Sketch of the experimental setup for the kinetic analysis of the thermal 
decomposition of methane 
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The measurement of axial temperature profiles inside the tube reactor took place using a self-

made thermocouple type S59 described in detail later (see Chapter 4.5). Finally, the pressure 

was measured at both sides of the reactor tube.60 All metal parts were grounded. Figure 4-2 

shows a picture of the experimental setup including stop cock and three way cocks61 as well as 

fittings and connections62. 

 

Figure 4-2: Picture of the experimental setup with some main components as well as additional 
parts like two and three way cocks (numbers in red) and connections 

The diameters of the reactor tube and the protection tube of the thermocouple have a maximum 

uncertainty of +/- 5 %, which means that the tolerance for the inner diameter of the reactor 

equals 0.4 mm, whereas the outer diameter of the protection tube may vary by 0.2 mm.63 

Different dimensions as well as axial positions of the experimental setup relevant for illustration 

and later calculations are shown in Figure 4-3. In the following the position - 213 mm, which 
                                                 

59 Provider of thermo wires: E&S METRONIC Meß- und Regeltechnik GmbH, Werne, Germany.  
60 Manufacturer of pressure transmitters: WIKA Alexander Wiegand GmbH & Co. KG, Klingenberg, 
Germany. 
61 Manufacturer / provider: EM-TECHNIK GmbH, Maxdorf, Germany. B.E.S.T. Fluidsysteme GmbH, 
Kaarst, Germany (Swagelok). 
62 Manufacturer / provider: B.E.S.T. Fluidsysteme GmbH, Kaarst, Germany (Swagelok). PTS 
MARQUARDT GmbH Automatisierungstechnik, Pulheim, Germany (Legris). 
63 cp. [FRIATEC, 2003], p. 14 
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corresponds to the upper edge of the inlet water cooler, accounts for the inlet of the reactor. The 

heated length of the tube furnace equals 250 mm. The manufacturer states that the temperature 

homogeneity inside the work tube reaches +/- 10 K in 50 % of the heated length.64  

 

Figure 4-3: Basic dimensions and axial positions of the experimental setup for the kinetic 
analysis of the thermal decomposition of methane in mm 

Some components of the experimental setup will be described in detail in the following 

chapters. 

4.1.1 Mass flow controllers 

For the preparation of gas mixtures, either as inlet gas or calibration gas for the gas 

chromatograph, mass flow controllers (MFCs) manufactured by MKS were employed. Table 4-1 

provides information about the MFCs implemented in the experimental setup and used gases. 

                                                 
64 [Gero, 2006] 
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Table 4-1: Information about used mass flow controllers and gases (GCF = Gas Correction Factor) 

Gas65 
Quality 
Purity 

Type of MFC (produced) 
Nominal range and gas 
Range for selected gas (GCF) 

Accuracy 
Repeatability 

1179 (2003) 
500 sccm N2 
685.0 sccm Ar (1.37) 

1.0 % of FS (full scale) 
+/- 0.2 % of FS → +/- 1.37 sccm 

1259 (1999) 
2000 sccm N2 
2740 sccm Ar (1.37) 

0.8 % of FS 
n. s. (not specified) 

1179 (2007) 
15 SLM CO2 approximated by  
20 SLM N2 (due to control unit) 
27.40 SLM Ar (1.37, originally 1.986) 

0.5 % of reading + 0.2 % of FS 
+/- 0.2 % of FS → +/- 0.0548 SLM 

Ar 
4.8 
99.998 % 

1179 (2007) 
20 SLM N2 
27.40 SLM Ar (1.37) 

0.5 % of reading + 0.2 % of FS 
+/- 0.2 % of FS → +/- 0.0548 SLM 

1179 (2007) 
10 sccm CH4 
10.00 sccm (1.00) 

0.5 % of reading + 0.2 % of FS 
+/- 0.2 % of FS → +/- 0.02 sccm 

1259 (1996) 
100 sccm N2 
72.00 sccm (0.72) 

0.8 % of FS 
n. s. 

CH4 
4.5 
99.995 % 

1259 (1996) 
500 sccm N2 
360.0 sccm (0.72) 

0.8 % of FS 
n. s. 

1179 (2003) 
500 sccm N2 
725.0 sccm (1.45) 

1.0 % of FS 
+/- 0.2 % of FS → +/- 1.45 sccm 

1259 (1999) 
2000 sccm N2 
2900 sccm (1.45) 

0.8 % of FS 
n. s. 

He 
5.0 
99.999 % 

1179 (2007) 
20 SLM N2 
29.00 SLM (1.45) 

0.5 % of reading + 0.2 % of FS 
+/- 0.2 % of FS → +/- 0.058 SLM 

O2 
2.5 
99.5 % 

1259 (1998) 
50 sccm N2 
50.00 sccm (1.00) 

0.8 % of FS 
n. s. 

H2 
5.0 
99.999 % 

1179 (2007) 
10 sccm H2 
10.00 sccm (1.00) 

0.5 % of reading + 0.2 % of FS 
+/- 0.2 % of FS → +/- 0.02 sccm 

N2 
2.8 
99.8 % 

1179 (2007) 
10 sccm H2 
10.00 sccm (1.00) 

0.5 % of reading + 0.2 % of FS 
+/- 0.2 % of FS → +/- 0.02 sccm 

all Multigas Controller 
647BE (1996) 

+/- 1 digit 

The measurement technique of the MFCs is based on the temperature rise of part of the 

controlled gas flow with known heat capacity resulting from the import of a certain amount of 

                                                 
65 Provider: Praxair Deutschland GmbH, Hürth, Germany. 
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heat energy.66 Since a high purity of used gases was requested, any uncertainties related to 

respective impurities were neglected. 

4.1.2 Gas chromatograph 

A gas chromatograph equipped with a thermal conductivity detector (TCD) and a helium 

ionization detector (HID) was used for the analysis of the composition of the product gas. The 

TCD shows good performance for high molar fractions up to 100 %. It was used for the 

evaluation of molar fractions of argon and methane (with molar fractions above 0.8 %). 

Contrariwise, the HID provides high functionality for low concentrations and for hydrogen. 

Hydrogen could hardly be detected with the TCD because hydrogen has quite similar thermal 

conductivity characteristics compared to the carrier gas helium. Two packed columns were 

utilized for the separation of the sample components: a molecular sieve column (MS) for 

hydrogen, argon, and methane as well as a HayeSep A column for the C2-hydrocarbons and 

higher hydrocarbons. Figure 4-4 shows the setup of the GC. 

 

Figure 4-4: Configuration of gas chromatograph 

Basic information about the GC and its periphery can be found in Table 4-2. Additional 

information about the adjusted parameters of the GC as well as examples for chromatograms of 

the product gas are provided in Appendix B. 

 

                                                 
66 Further information may be found on http://www.mksinst.com. 
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Table 4-2: Basic information about the gas chromatograph 

Detectors Helium ionization detector (HID) 
Thermal conductivity detector (TCD) 

Sample loops 2 x 1 ml 

Packed columns Molecular sieve MS 13X, length: 6’ 
HayeSep A, length: 3 m 

Load and inject device Automated gas sample valve with 10 ports  

Sample carrier gas 

Operating gas of HID and TCD 

Helium 5.0 (purity: 99.999 %, further purification by 
moisture trap67 → hydrocarbon trap68 → oxygen trap69, 
overpressure at GC inlet: 4 bar) 

Length of HID electric arc 0.8 mm … 0.9 mm 

Special features of HID  enhanced collector electrode 
 inert glass tube inserted in metal tube between 

electric arc and collector electrode 

Power supply Variable transformer: 230 V (+/- 5 %)70 

Gas samples were fed into the loops either by underpressure at the sample outlet (vacuum 

pump) or by overpressure at the sample inlet (pressurized test gases). According to the ideal 

gas law, the amount of injected substance loopn  depends on the conditions inside the loop 

before injection following  

loop

looploop
loop T

Vp
n




    . Equation 46 

Since the loop’s volume loopV  and loopT  keep constant (the loops are situated in the tempered 

valve oven), loopn  is only a function of the pressure inside the loop before injection loopp , which 

depends on the ambient pressure and the pressure inside the reactor. It was measured by a 

pressure transmitter at the sample outlet of the GC. 

Actually, the area of a peak peak,iA  is a function of the amount of substance of the particular 

component i  approaching the detector detector,in , which equals the amount of substance of the 

particular component i  inside the loop loop,in  arising from  

                                                 
67 Manufacturer: Restek GmbH, Bad Homburg, Germany. 
68 Manufacturer: SGE Europe Ltd., Kiln Farm Milton Keynes, United Kingdom. 
69 Manufacturer: see above 
70 Manufacturer: BLOCK Transformatoren-Elektronik GmbH, Verden, Germany. Type: BR2200. 
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looploop,loop, nxn ii     , Equation 47 

with the molar fraction of component i  in the loop loop,ix , because there is no reduction of the 

amount of substance between the loops and the detectors concerning the considered species.  

The aim of GC measurement is the analysis of the composition of the sample in terms of molar 

fractions loop,ix . Considering a sample with a molar fraction of component i  loop,ix  different 

pressures inside the loop result in different peak areas peak,iA , since loopn  depends on loopp . In 

order to compensate this effect and allow comparability of different measurements, a normal 

peak area Npeak,,iA  was calculated by  

loop

N
peak,Npeak,, p

p
AA ii     , Equation 48 

assuming that peak,iA  is proportional to loop,in . Npeak,,iA  corresponds to the theoretic peak area 

resulting from loop,ix  at standard pressure Np . Although linear relationships could not be verified 

generally, loop,ix  can be well approximated as a function of Npeak,,iA . An overview about 

components, the measurement of their molar fractions, and determined calibration curves is 

given in Table 4-3.  

Table 4-3: Employed detectors and calibration curves for the measurement of molar fractions of the main 
sample components 

Component HID TCD Calibration curve 

H2   2nd order polynomial 

CH4  %)8.0(
4CH x    %)8.0(

4CH x 2nd order polynomial (HID), line (TCD)

Ar   line 

C2H6   2nd order polynomial 

C2H4   2nd order polynomial 

C2H2   2nd order polynomial 
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As can be seen in Table 4-3, calibration curves do not have a uniform shape. Linear fit functions 

as well as 2nd order polynomials can be found. Figure 4-5 (a) and (b) show examples of 

calibration curves for hydrogen and methane. Approaches for the curves are valid for a wide 

range of molar fractions covering more than one order of magnitude. Further examples for 

calibration curves can be found in Appendix B. 
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Figure 4-5: Examples for GC calibration curves: the molar fraction of hydrogen detected by the 
HID (a) and the molar fraction of methane detected by the TCD (b) as a function of the normal 
peak area 

The needle valve downstream the vacuum pump of the GC was installed in order to allow the 

adjustment of the sample volume flow. Preliminary tests showed that practically complete 

purging of the GC inlet pipes could be achieved with about 60 s operating time of the vacuum 

pump at about 50 ml/min. For this volume flow the difference of the pressure at the GC sample 

outlet at the end of and during the operation of the vacuum pump lies in the range of 35 mbar. 

An increase of the vacuum pump volume flow due to a decrease of the flow resistance in the 

needle valve downstream the vacuum pump causes a higher pressure difference (about 

75 mbar at 100 ml/min and about 180 mbar at 200 ml/min). Tests were carried out in order to 

check whether measurement results are affected by the sample volume flow e. g. due to a 

possibly favored transport of hydrogen. An influence of the pressure difference on the 

measurement result exceeding the uncertainty of GC measurement and of composition of the 

test gas mixture could not be observed.  

In order to quantify the uncertainty of GC measurements, test gases were injected in the GC 

repeatedly. Different numbers of runs iN  were performed respecting component i  in the 

considered test gas. For every session )( Npeak,,rel iAs , the experimental standard deviation of j  

normal peak areas Npeak,,iA  relative to the mean Npeak,,iA , calculated by  

H2: 2nd order polynomial CH4: line

  (a) (b) 
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



iN

j
ji

i
i A

N
A

1
N,peak,,Npeak,,

1
   , Equation 49 

was determined according to 

 
1

1
)( 1

2

Npeak,,N,peak,,

Npeak,,
Npeak,,rel 






i

N

j
iji

i
i N

AA

A
As

i

   . 
Equation 50 

Additionally, maximum positive deviations relative to the mean 
maxrel,s  were calculated 

employing 

 
Npeak,,

Npeak,,N,peak,,

Npeak,,maxrel,

max
)(

i

iji
j

i A

AA
As


     Equation 51 

and similarly maximum negative deviations relative to the mean 
maxrel,s  following  

 
Npeak,,

Npeak,,N,peak,,

Npeak,,maxrel,

min
)(

i

iji
j

i A

AA
As


    . Equation 52 

Depending on the test day determined values for the standard deviation, maximum positive 

deviation, and maximum negative deviation relative to the mean differ in part significantly. 

Extreme deviations observed in practice are summarized in Table 4-4 for considered gases and 

molar fractions. Maximum positive and negative deviations do not always show symmetric 

behavior. Compared to hydrogen and methane somewhat higher deviations have to be reported 

for the C2-hydrocarbons. Greatest deviations could be found for ethyne, mainly resulting from 

drifting during the particular test day. Complete information respecting results of particular test 

days is provided in Appendix B. 
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Table 4-4: Extreme values for standard deviations, maximum positive deviations, and maximum negative 
deviations relative to mean normal peak areas determined in GC measurements for different gases and molar 
fractions  

Gas Molar fraction %inrels %inmaxrel,
s %inmaxrel,

s  

100 ppm 7.29 7.09 -7.41 

1 % 1.38 2.14 -2.48 H2 

10 % 0.39 0.62 -0.70 

100 ppm 3.06 2.35 -4.13 
CH4 (HID) 

1 % 1.07 1.58 -2.11 

CH4 (TCD) 1 % 0.77 1.68 -1.21 

Ar 98.8 % 0.64 1.05 -0.68 

100 ppm 3.76 3.71 -3.75 

490 ppm 1.20 1.28 -1.48 C2H6 

1 % 2.49 1.67 -4.31 

100 ppm 3.06 3.34 -3.00 

1040 ppm 1.74 1.05 -3.10 C2H4 

1 % 2.44 1.57 -4.28 

100 ppm 14.49 16.38 -13.59 

0.5 % 4.89 3.19 -8.57 C2H2 

1.01 % 5.78 8.33 -9.45 

In the following the procedure of determining the estimated maximum relative deviation for 

different molar fractions based on extreme values – presented in Table 4-4 – is exemplarily 

explained for ethyne. According to Figure 4-6, molar fractions considered in the experiments 

(here 100 ppm, 0.5 %, and 1.01 %) were embedded in a basic scheme of order of magnitudes 

(0.001 %, 0.01 %, etc.), substituting a particular order of magnitude when appropriate (here in 

case of 1.01 %). Measured maximum relative deviations are multiplied by the safety factor 1.1 

leading to an extended maximum relative deviation. Maximum relative deviations for orders of 

magnitude of molar fractions not covered experimentally were estimated either by interpolation 

on a logarithmic scale or by multiplication of the nearest extended value with a worst case factor 

based on experimental experience. It is postulated that the determined maximum relative 

deviations can be applied to a certain interval around respected molar fractions. These intervals 

are defined according to the equation given in Figure 4-6. As a result, the multiplication of a 

considered molar fraction with a certain constant leads to the upper bound of the interval. 

Multiplying the upper bound, which is also the lower bound of the next interval, with the same 

constant leads to the next considered molar fraction.  

Corresponding information about extended and estimated maximum relative deviations for other 

components can be found in Appendix B. 
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Figure 4-6: Maximum relative positive deviation of GC measurements for ethyne: measured, 
extended and estimated levels (OM = order of magnitude)  

Be it that a certain normal peak area Npeak,,iA  was determined for the component i  of a gas 

mixture. If no further data is available, Npeak,,iA  is the best estimate for subsequent calculations. 

However, the measured value could just lie on the upper or lower bound of the interval of 

possible values around the theoretical average of a collectivity of not executed measurements. 

It is consequently admissible to calculate the extreme values maxN,peak,,iA  and minN,peak,,iA , the 

limits of an interval, in which the theoretical average should be found with a probability of 

practically 100 %, according to  

1maxrel,

Npeak,,
maxN,peak,, 

 s

A
A i

i     Equation 53 

and  
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1maxrel,

Npeak,,
minN,peak,, 

 s

A
A i

i    . Equation 54 

4.1.3 Pressure transmitters 

Pressures at the inlet and the outlet of the reactor as well as at the sample outlet of the GC 

were determined by pressure transmitters manufactured by WIKA. The measurement chain is 

shown in Figure 4-7.  

 

Figure 4-7: Measurement chain of the measurement of pressures 

Depending on the pressure affecting the membrane of the pressure transmitter, an electric 

current is available at the signal output. Via a resistor the electric current was converted into a 

voltage signal which was interpreted by further components of the data acquisition system71. 

Information about the employed pressure transmitters, the subsequent measurement chain, and 

estimated maximum as well as standard uncertainties is provided in Table 4-5. 

 

 

 

 

 

 

                                                 
71 Manufacturer / provider: Advantech Co., Ltd., Milpitas, USA and National Instruments Germany GmbH, 
München, Germany. 
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Table 4-5: Information about pressure transmitters and the subsequent measurement chain 

Position of pressure transmitter   Inlet of reactor Outlet of reactor Sample outlet of GC

Pressure transmitter model UT-11 UT-11 S-10 

Pressure range (absolute pressure) 
0 bar … 1.5 bar 

(turn down, originally 0 bar … 6 bar)
0 bar … 1.6 bar 

Output signal 4 mA … 20 mA 

Accuracy72 

+/- 0.15 % of span:  
+/- 0.024 mA 

(increased due to gold  
coating on membrane) 

+/- 0.25 % of span:  
+/- 0.04 mA 

Assumed probability distribution rectangular 

Resistor 120.01 Ω 120.00 Ω 120.50 Ω 

Accuracy73 +/- 0.16 Ω 

Assumed probability distribution rectangular 

ADAM 5000 module AI 5017 

Input range - 5 V … + 5 V 

Accuracy74 +/- 0.1 % of range: +/- 0.01 V 

Assumed probability distribution rectangular 

Estimated maximum uncertainty +/- 12 mbar +/- 12 mbar +/- 15 mbar 

Estimated standard uncertainty (type B) +/- 5 mbar +/- 5 mbar +/- 6 mbar 

 

4.2 Reaction conditions 

All experiments were carried out at a pressure around 1 bar. Three parameters were varied in 

order to study a wide range of reaction conditions:  

 nominal temperature of the tube furnace furnaceT  (somehow corresponding to the reaction 

temperature RT  inside the reactor) 

 initial total standard volume flow tot,0N,V  (and consequently the residence time   ) 

 initial molar fraction of methane ,0CH4
x   

                                                 
72 cp. [WIKA, 2005], p. 9 et seqq. and [WIKA, 2006], p. 2 
73 resulting from accuracy of Fluke 189 True RMS Multimeter concerning measurement of electric 
resistance up to 500 Ω: +/- (0.05 % of measured value + 0.1 Ω), cp. [Fluke, 2002], p. 7-8 
74 cp. [Advantech, 2007], p. 10 
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Experiments with argon as the diluent have been carried out at five levels of nominal 

temperature of the tube furnace: 1200 °C, 1300 °C, 1400 °C, 1500 °C, and 1600 °C. For every 

nominal furnace temperature five (in case of 1600 °C four) residence times were applied. Each 

set of nominal furnace temperature and residence time comprises three (in one case four) initial 

molar fractions of methane, regularly in the range between 2 % and 10 %. An overview of the 

reaction conditions finally covered in the experiments using argon as the dilution gas is given in 

Table 4-6. 

Table 4-6: Reaction conditions covered in experiments with argon as dilution gas 

Ar Level of 

/furnaceT -set Cinfurnace T  sccmintot,0N,V  sin  %in,0CH4
x  

1 95 1.46 2, 5, 10 

2 200 0.696 2, 5, 10 

3 350 0.396 2, 5, 10 

4 685 0.203 2, 5, 10 

5 

1200 

2000 0.0697 2, 5, 10, 20 

6 340 0.378 2, 5, 10 

7 650 0.200 2, 5, 10 

8 1300 0.100 2, 5, 10 

9 2600 0.0501 2, 5, 10 

10 

1300 

4800 0.0275 2, 5, 10 

11 700 0.174 2, 5, 10 

12 1400 0.0885 2, 5, 10 

13 2600 0.0487 2, 5, 10 

14 3800 0.0324 2, 5, 10 

15 

1400 

6500 0.0198 2, 5, 7.1 

16 1600 0.0707 2, 5, 10 

17 2800 0.0415 2, 5, 10 

18 4600 0.0256 2, 5, 10 

19 7200 0.0162 2, 5, 6.3 

20 

1500 

9800 0.0119 2, 3.1, 5 

21 2000 0.0547 2, 5, 10 

22 3350 0.0335 2, 5, 10 

23 6500 0.0176 2, 5, 7.1 

24 

1600 

9800 0.0115 2, 3, 5 

Moreover, a reduced number of experiments with helium as diluent were executed. Here only 

three nominal furnace temperatures were considered, namely 1300 °C, 1400 °C, and 1500 °C, 

applying one or three residence times, respectively. As also done in experiments with argon as 
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dilution gas, the initial molar fraction of methane was varied between 2 % and 10 %. A 

corresponding summary can be found in Table 4-7. 

Table 4-7: Reaction conditions covered in experiments with helium as dilution gas 

He Level of 

/furnaceT -set Cinfurnace T  sccmintot,0N,V  sin  %in,0CH4
x  

25 1300 3800 0.0344 2, 5, 10 

26 2800 0.0443 2, 5, 10 

27 3800 0.0328 2, 5, 10 

28 

1400 

6500 0.0190 2, 5, 7.1 

29 1500 3800 0.0303 2, 5, 10 

The residence time in the reactor   – introduced before – is defined as  

inletR,

N

N

furnace
tot,0N,

heated
2

iR,

reference

heated 4

p

p

T

T
V

ld

V

V









    . Equation 55 

heatedV  is the volume in the reactor that is actively heated by the tube furnace and which can be 

calculated employing the inner diameter of the tube reactor iR,d  and the heated length of the 

tube furnace heatedl . referenceV  is a reference volume flow depending on the initial total standard 

volume flow tot,0N,V , the nominal furnace temperature furnaceT , and the average pressure at the 

inlet of the reactor inletR,p , calculated as the mean of the pressures at the inlet of the reactor at 

the start and the end of the GC-procedure. NT  represents the standard temperature, whereas 

Np  stands for the standard pressure. 

4.3 Procedure 

At the beginning of each test day the mass flow controllers were calibrated with respect to 

standard volume flows needed later on during the calibration of the GC and the cracking 

experiments employing a primary flow calibrator75. By now, the tube furnace should have 

reached the nominal furnace temperature, because a timer was set which allowed a controlled 

start of the heating process taking into account that the heating rate must not exceed 300 K/h 

                                                 
75 Manufacturer: Bios International Corporation, Butler, USA. DCL-L and DCL-H in combination with 
DCNS. 
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due to material restrictions. Subsequently, the GC was calibrated with gas mixtures 

characterized by different molar fractions of hydrogen and / or methane in argon or helium 

(cock 4 and cock 5 opened toward bypass). Usually a 3-point-calibration was achieved for 

hydrogen and methane, whereas the number of molar fractions of argon varied depending on 

the number of gas mixtures used for the GC calibration concerning hydrogen and methane. The 

GC could not be calibrated with respect to helium as explained before.  

As soon as the calibration of the GC, employing gas mixtures produced by mass flow 

controllers, was finished, the pressure transmitters at the inlet and outlet of the reactor were 

purged for several minutes with a pure flow of dilution gas (cock 1 and 4 closed, cock 5 

connecting reactor outlet and flue, cock 6 opened leading dilution gas in respective direction). 

Then the standard volume flow of dilution gas through the reactor was increased successively 

ensuring that maximum temperature changes inside the reactor did not reach a critical extend 

taking the mechanical and thermal properties of the reactor material into account. Finally the 

total standard volume flow of the particular experiment was attained. In order to avoid a 

contamination of the dilution gas with methane before a thermal equilibrium inside the reactor 

was accomplished, cock 2 remained closed and cock 3 only connected the pipes coming from 

cock 1 with the reactor. However, for standard volume flows above 2000 sccm cock 3 was 

brought in central position connecting all ways after the final total standard volume flow was 

reached in order to prevent a shock pressure afterwards, when cock 3 would have to be turned 

to allow methane feed. The volume between cock 2 and 3 filled with methane is negligibly low 

compared to the volume flow of dilution gas passing cock 3. While a thermal equilibrium inside 

the reactor was approached – this usually took about an hour – the GC was calibrated with at 

least one ready-to-use test gas containing the C2-hydrocarbons ethane, ethene, and ethyne. It 

was assumed that the temperatures inside the reactor could be considered to be constant, 

when the temperature at position 320 mm measured by the thermocouple reached constant 

levels. Some minutes after a steady temperature at position 320 mm was observed, cock 2 was 

opened toward methane and the respective mass flow controller was actuated to introduce the 

required standard volume flow of methane. Simultaneously, the standard volume flow of the 

dilution gas was reduced guaranteeing a stable residence time and finally resulting in the 

projected molar fraction of methane at the inlet of the reactor. After introducing methane, a 

temperature variation could be noted. The temperature change never exceeded 31.3 K and 

averaged 10.5 K, comprising absolute values of temperature drops up to 4.9 K which occurred 

in few cases. The establishment of a constant temperature at position 320 mm after the addition 

of methane took a different amount of time depending on the reaction conditions. In most cases 

three to five minutes were needed, whereas this period of time exceptionally lasted up to 

29 minutes. The GCs measurement was started as soon as the criterion of a constant 

temperature at position 320 mm was satisfied. Reference experiments were executed providing 
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different periods of time between the initialization of the methane flow and the activation of the 

GC vacuum pump. It was found that the dependencies of the measurement results on the 

duration of methane flow until starting the GC-procedure were negligible within a certain interval 

of time around the moment the temperature at position 320 mm reached a constant level. As a 

consequence this moment provides a representative experimental situation. It guarantees that 

transient conditions directly after applying methane were not considered as well as conditions 

later on, when the deposition of carbon could have affected the reaction conditions. 

The temperature at position at 320 mm could change during the operation of the vacuum pump 

responsible for the sample transport into the loops of the GC due to the progress of the 

reactions and the formation as well as deposition of carbon. However, temperatures and 

pressures did not change significantly as can be seen in Table 4-8. Thus, the reaction 

conditions were constant during the sample collection.  

Table 4-8: Changes of pressures at reactor inlet and reactor outlet as well as change of temperature at 
position 320 mm during operation of the vacuum pump of the GC 

Change inletR,p  outletR,p  mmR,320T  

average absolute  0.48 mbar 0.16 mbar 0.32 K 

maximum positive 7 mbar 1 mbar 5.0 K 

maximum negative 1 mbar 1 mbar 0.9 K 

As soon as the sample collection procedure of the GC was finished, the methane flow was 

stopped, while the flow of the dilution gas was increased again in order to apply a practically 

constant standard volume flow at the inlet of the reactor. The dilution gas purged the reactor 

assuring that only traces of methane and reaction products remained in the system. After a few 

minutes between 5 sccm and 40 sccm oxygen (O2) were added to the dilution gas by adjusting 

cock 2, while the standard volume flow of dilution gas was reduced slightly keeping the total 

standard volume flow constant. The oxygen reacted with carbon depositions inside the reactor 

when temperatures were high enough. A temperature increase at position 320 mm could 

usually be observed after a certain period of time depending on the amount of carbon deposit 

and the standard volume flow of oxygen indicating that the flame front caused by the 

endothermic reaction approached the tip of the thermocouple. Some minutes later, when also 

the region below the tip of the thermocouple was sufficiently treated with oxygen, the oxygen 

flow was stopped and the flow of dilution gas adapted to the required residence time. By doing 

so, the setup was prepared for the next run. Usually all three initial molar fractions of methane, 

which had to be applied for one set of nominal furnace temperature and residence time 

according to the schemes given in Table 4-6 and Table 4-7, were considered during one test 

day – partly more than one time.  
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After the last run was performed ending with the final burning off, the temperature of the furnace 

was reduced with a cooling rate of 450 K/h. While the standard volume flow through the reactor 

was reduced gradually, the GC was calibrated a second time with respect to C2-hydrocarbons 

using ready-to-use test gases. Afterwards, a second calibration of the GC with respect to 

methane and hydrogen took place employing gas mixtures prepared with the mass flow 

controllers, as done previous to the cracking experiments. A test day closed with the 

programming of the controller of the tube furnace ensuring a proper progress of heating at the 

beginning of the next day and the initialization of the GC column bake-out procedure. 

In the following chapters the calibration of mass flow controller, the calibration of the GC, and 

the determination of molar fractions in the product gas are explained in detail. 

4.3.1 Calibration of mass flow controllers  

Mass flow controllers were employed in order to produce GC calibration gas mixtures as well as 

inlet gas mixtures for the cracking experiments. The calibration of the MFCs took place with a 

volume flow calibration unit comprising a device, which measured the actual volume flow (DCL-

L and DCL-H), as well as a device, which measured the temperature and the absolute pressure 

of the flow and finally calculated the standard volume flow passing the calibration unit. 

Respective nominal values at the MKS control unit were adjusted that way that DC,N,iV , the 

output value for the standard volume flow of gas i  of the flow calibration unit, equaled the 

required value. The measurement of the standard volume flow employing the calibration unit 

involves a certain uncertainty depending on the level of measured volume flow. Respective 

information can be extracted from Table 4-9.  

Table 4-9: Stated, projected, and estimated accuracy of the volume flow calibration unit  

Volume flow as percentage of lower limit of optimal flow range 

< 10 % < 20 % < 30 % < 40 % < 50 % < 60 % < 80 % < 100 %

Volume flow within  
optimal flow range 

5.8 % 3.0 % 2.1 % 1.7 % 1.4 % 1.3 % 1.1 % 1 % 1.0 % 

8.12 % 4.20 % 2.94 % 2.38 % 1.96 % 1.82 % 1.54 % 1.40 % 1.4 % 

Projected accuracy of DCL-L and DCL-H given in [Bios, 2006] 
Accuracy of DCL-L and DCL-H stated in [ANALYT, 2006], p. 4, leakage neglected 
Accuracy of DCL-L and DCL-H in combination with DCNS stated in [ANALYT, 2006], p. 13 and  
[Bios, 2009] 
Estimated accuracy of DCL-L and DCL-H in combination with DCNS  
employing rule of proportion regarding stated and projected accuracies 
Optimum flow range: DCL-L → 10 ml/min – 500 ml/min, DCL-H → 500 ml/min – 30 l/min 
Operation temperature between 20 °C and 30 °C 



4 Experimental  
   

 

 46 

,0N,iV , the standard volume flow of gas i  leaving the respective mass flow controller, might have 

changed during the calibration and experiment because of imprecise repeatability. Therefore 

,0N,iV  arises from  

ityrepeatabilMKS,,N,DC,N,,0N, iii VVV       Equation 56 

featuring ityrepeatabilMKS,,N,iV , a repeatability term nominally set to 0 but contributing to the 

uncertainty of ,0N,iV  according to Table 4-1. For mass flow controllers, whose repeatability is not 

provided, the repeatability was approximated by the accuracy, which is definitely a worst case 

examination.  

The nominal molar fraction of component i  in a gas mixture used for calibration of the GC 

produced by mass flow controllers MFC,ix  arises from  




i
i

i
i V

V
x

,0N,

,0N,
MFC, 


   . Equation 57 

Due to incomplete mixing of the gaseous components and purging of the bypass pipes, the 

effective molar fraction of component i  GC,ix  could differ slightly from MFC,ix . Experimental 

experience led to an approach following 

bypass,MFC,GC, iii xxx     , Equation 58 

where bypass,ix  nominally equaled 0 but contributed to the uncertainty of GC,ix  with the extremes 

following 

MFC,bypass,maxbypass,, iii xbx      Equation 59 

and  
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MFC,bypass,minbypass,, iii xbx     , Equation 60 

with a component specific uncertainty factor bypass,ib . It was found that %5.0bypass,CH4
b  and 

%15.0bypassAr, b  reasonably cover the maximum range of uncertainty and assumed that 

bypass,CHbypass,H 42
bb  . It was postulated that the standard uncertainty of DC,N,iV , ityrepeatabilMKS,,N,iV , 

and bypass,ix  can be estimated based on a rectangular probability function. 

4.3.2 Calibration of the gas chromatograph 

Usually three different molar fractions of methane and hydrogen were applied for the 

determination of respective calibration curves of the GC. In few cases the pre- or post-

experimental GC calibration only comprehended two normal peak areas. Then, based on the 

complete set of normal peak areas N,1peak,,iA , N,2peak,,iA , and N,3peak,,iA  as well as the incomplete 

set N,1peak,,
ˆ

iA  and N,2peak,,
ˆ

iA , the missing normal peak area N,3peak,,
ˆ

iA  was estimated by  











 3N,peak,,

2N,peak,,

2N,peak,,
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1N,peak,,
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ˆˆ
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i
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i
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i
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A

A
A

A

A
A     Equation 61 

with the extremes 











 max,3N,peak,,
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and  











 min,3N,peak,,
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A    . Equation 63 

Concerning the C2-hydrocarbons four ready-to-use test gases with three different levels of molar 

fractions had been used for the calibration of the GC as can be seen in Table 4-10. Test gas 1 
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was not only used for the GC calibration with respect to C2-hydrocarbons but also with respect 

to argon. Taking into account that C2H6, C2H4, C2H2, and Ar with stated qualities of 2.0, 2.5, 2.6, 

and 4.8, respectively, were used for the production of the test gas, it can be shown that the 

molar fraction of argon in test gas 1 1 gastest Ar,x  equals approximately 98.834 %76 with conceivable 

extreme values %98.860max1, gastest Ar, x  and %98.809min1, gastest Ar, x . 

Table 4-10: Information about ready-to-use test gases employed for GC calibration 

Test gas 
4CHx  

62HCx  
42HCx  

22HCx
2Hx Accuracy

Balance / 
further components 

Notes 

1 - 
490 
ppm 

1040 
ppm 

1.01 
% 

- 
+/- 2 

% 
Ar / 

- 
77 

2 
1 
% 

1 
% 

1 
% 

0.5 
% 

- 
+/- 5 

% 
N2 / 

CO, CO2 
78 

3 
100 
ppm 

100 
ppm 

- - - 
+/- 2 

% 
He / 

C3H8, n-C4H10, i-C4H10 
79 

4 
100 
ppm 

100 
ppm 

100 
ppm 

100 
ppm 

100
ppm

+/- 10 
% 

N2 / 
O2, CO, CO2 

see test
gas 1 

In order to reduce the duration of the calibration of the GC, in most cases only one or two test 

gases, mainly including test gas 1, were applied. However, in any case the determination of an 

appropriate calibration curve based on three nodes was possible, since the ratios of normal 

peak areas showed quite constant behavior allowing the calculation of the missing normal peak 

areas. An overview about respective ratios is provided in Table 4-11 along with determined 

average values, observed standard deviation, and extreme values. 

For example the missing normal peak areas ppmN,100peak,,HC 22
A  and % N,0.5peak,,HC 22

A  could be 

determined employing the measured normal peak area for 1.01 % C2H2 %N,1.01peak,,HC 22
A  following 

average%N,1.01peak,,HC

ppmN,100peak,,HC
%N,1.01peak,,HCppmN,100peak,,HC

22

22

2222 











A

A
AA     Equation 64 

and  

                                                 
76 Assumption: present value of molar fraction of the respective C2-hydrocarbon in the raw gas lies in the 
center of the interval of possible molar fraction according to the quality of the raw gas. Impurities of Ar 4.8 
were neglected. 
77 Manufacturer: Westfalen AG, Münster, Germany. Customer-specific test gas. 
78 Manufacturer: SIGMA-ALDRICH Chemie GmbH, Taufkirchen, Germany. Fluka 68811. 
79 Manufacturer: Linde AG, Pullach, Germany. Test gas in Minican. 



4 Experimental 
   

 49

average%N,1.01peak,,HC

% N,0.5peak,,HC
%N,1.01peak,,HC% N,0.5peak,,HC

22

22

2222 











A

A
AA    , Equation 65 

respectively. The maximum and minimum values of missing normal peak areas were 

determined employing extended maximum and minimum ratios. 

Table 4-11: Determined ratios of normal peak areas corresponding to different molar fractions of C2-
hydrocarbons. Extended values are based on experimental results, but comprise a safety factor of 1.1 
(maximum) and 0.9 (minimum). 

Ratio Average 
# Particular

ratios 
Standard deviation 

related to average in %
Extended 
maximum 

Extended
minimum

ppmN,490peak,,HC

ppmN,100peak,,HC

62

62

A

A
 0.2233 13 5.65 0.2705 0.1834 

%N,1peak,,HC

ppmN,100peak,,HC

62

62

A

A
 0.01787 9 6.76 0.02294 0.01526 

ppmN,490peak,,HC

%,1Npeak,,HC

62

662

A

A
 12.45 27 5.05 14.60 9.018 

ppmN,1040peak,,HC

ppmN,100peak,,HC

42

42

A

A
0.1200 8 6.96 0.1470 0.09990 

%N,1peak,,HC

ppmN,100peak,,HC

42

42

A

A
0.01845 5 4.57 0.02186 0.01589 

ppmN,1040peak,,HC

%N,1peak,,HC

42

42

A

A
6.437 27 3.40 7.413 5.109 

%N,1.01peak,,HC

ppmN,100peak,,HC

22

22

A

A
0.01044 8 18.96 0.01565 0.007423

%N,0.5peak,,HC

ppmN,100peak,,HC

22

22

A

A
0.02013 5 26.79 0.03083 0.01380 

%N,1.01peak,,HC

% N,0.5peak,,HC

22

22

A

A
 0.5185 27 3.06 0.5958 0.4219 

When two test gases were applied and consequently two normal peak areas were available for 

every C2-hydrocarbon, the missing normal peak areas were calculated as the arithmetic mean 

of values resulting from the measured peak areas and ratios given in Table 4-11. Moreover, the 

respective greatest and lowest values based on extended maximum and minimum ratios were 

considered. Figure 4-8 illustrates the determination of a nominal calibration curve resulting from 
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a number (usually three) of pairs of known molar fractions GC,ix  and normal peak areas Npeak,,iA . 

Additionally, an upper and a lower calibration curve were determined employing extreme values 

according to the diagram. 

 

Figure 4-8: Illustration of the definition of calibration curves of the GC 

 

4.3.3 Molar fractions in the product gas 

The GC was calibrated at the beginning and the end of every test day in order to minimize the 

influence of possible changes of the GC characteristics during the experimental period on the 

results of the measurement. The timing of each test day started with the injection of the first 

calibration sample. All other injections related to this reference point of time. The time beforeGC,,it , 

corresponding to the calibration of the GC before the cracking experiments with respect to 

component i , was defined as the average of times for all particular injections contributing to the 

respective calibration curve. Compatibly, afterGC,,it  refers to the average of times for all GC 

calibration injections associated with component i , that started after the termination of the last 

cracking experiment of the considered test day. The molar fraction of component i  in the 

product gas at the outlet of the reactor P,ix  injected at the time GC,it  was calculated by linear 

interpolation respecting the molar fractions beforeP,,ix  and afterP,,ix  determined based on calibration 

curves referring to the situation before and after the cracking experiments following 
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 beforeGC,,GC,
beforeGC,,afterGC,,

beforeP,,afterP,,
beforeP,,P, ii

ii

ii
ii tt

tt

xx
xx 




    . Equation 66 

Figure 4-9 illustrates the evaluation of a measured normal peak area of species i  regarding 

experiment k  using calibration curves defined for the situation before the experiments. 

 

Figure 4-9: Illustration of the utilization of calibration curves of the GC which exemplarily refer 
to the situation before the experiments. 

The maximum uncertainty of the measurement of time only accounts for approximately 6 s and 

was therefore neglected. Consequently, the extreme values for P,ix  were determined according 

to  

 beforeGC,,GC,
beforeGC,,afterGC,,

maxbefore,P,,maxafter,P,,
maxbefore,P,,maxP,, ii

ii

ii
ii tt

tt

xx
xx 




     Equation 67 

and  
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 beforeGC,,GC,
beforeGC,,afterGC,,

minbefore,P,,minafter,P,,
minbefore,P,,minP,, ii

ii

ii
ii tt

tt

xx
xx 




    ,  Equation 68 

calculating max,P,, kix  – the maximum possible molar fraction of component i  in the product gas 

regarding experiment k  – by evaluating the maximum normal peak area max,N,peak,, kiA  employing 

the upper calibration curve and min,P,, kix  – the minimum possible molar fraction of component i  

in the product gas regarding experiment k  – by evaluating the minimum normal peak area 

min,N,peak,, kiA  employing the lower calibration curve. 

When a reaction condition was applied more than one time, meaning that several experiments 

could be carried out at a particular test day with marginally different conditions regarding total 

standard volume flow and composition at the inlet of the reactor as well as measured pressures 

at the inlet and the outlet of the reactor, average values of determined molar fractions and 

pressures were used for further calculations. In these cases the minimum of calculated 

maximum molar fractions of component i  was considered as the maximum possible molar 

fraction respecting the average and the maximum of calculated minimum molar fractions of 

component i  was considered as the minimum possible molar fraction respecting the average.  

The maximum positive uncertainty of the molar fraction of component i  in the product gas 

arises from the difference of the determined maximum value and the nominal value following 

P,maxP,,P,max )( iii xxxu     , Equation 69 

whereas the respective maximum negative uncertainty arises from  

P,minP,,P,max )( iii xxxu     . Equation 70 

In addition to the declaration of the maximum uncertainties of molar fractions in the product gas, 

the determination of a standard uncertainty was attempted. Therefore firstly an average 

maximum uncertainty )( P,max ixu  was calculated employing  
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 )()(5.0)( P,maxP,maxP,max iii xuxuxu      , Equation 71 

which is a reasonable measure of the maximum uncertainty because usually 

)()( P,maxP,max ii xuxu      . Equation 72 

On average )( P,max ixu   and )( P,max ixu  differ from )( P,max ixu  about 4.2 % for hydrogen, 4.3 % 

for methane, 30.5 % for ethane, 15.1 % for ethene, 18.2 % for ethyne, and 6.1 % for argon. 

The interval defined by the bounds )( P,maxP, ii xux   and )( P,maxP, ii xux   practically covers the 

region of 100 % probability. Assuming that the probability function regarding P,ix  resemble a 

normal distribution and that the interval [ )(),( P,maxP,P,maxP, iiii xuxxux  ] corresponds to the 

confidence interval of 99 %, the standard uncertainty of P,ix  can be calculated from 

p

i
i k

xu
xu

)(
)( P,max

P,     , Equation 73 

with the coverage factor 576.2pk .80 The assumption of a normal distribution of probability, in 

particular in contrast to a rectangular distribution, is admissible, since 

 maximum and minimum normal peak areas used for calibration and for the 

determination of a corresponding molar fraction using the calibration curves were 

calculated presuming extreme deviations, which is a worst case estimation. Usually 

considerably smaller deviations could be reported. 

 maximum uncertainties of molar fractions employed for the definition of calibration 

curves were calculated based on severest combinations of contributing uncertainties. 

Standard uncertainties calculated postulating rectangular probability distributions of 

contributing uncertainties are remarkably lower than the maximum uncertainties. 

Although rectangular probability distributions were considered for all input parameters, 

                                                 
80 cp. [ISO, 2008], p. 70 
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the probability distribution of the molar fraction as the output parameter likely 

approaches a normal distribution following the Central Limit Theorem.81 

 though theoretically possible, the combination of extreme normal peak areas and 

extreme molar fractions postulated for the determination of upper and lower calibration 

curves is improbable.  

The confidence interval of practically 100 % was substituted by a confidence interval of 99 %, 

because levels of confidence higher than 99 % are practically unlikely to attain.82 

The calibration curves did not cover the experimental findings in few cases, meaning that the 

respective calculated molar fraction of component i  of the product gas P,ix  determined 

employing the calibration curves lies above the greatest ( GC,3,ix ) or below the smallest ( GC,1,ix ) 

molar fraction used for GC calibration. If GC,3,P, 15.1 ii xx   and GC,1,P, 85.0 ii xx   the regular 

procedure explained above was applied, whereas for other cases nominal, maximum, and 

minimum values were recalculated taking appropriate experimental observations into account.  

A deviant recalculation was carried out for calculated molar fractions of C2-hydrocarbons below 

100 ppm ( 224262GC,1, HC,HC,HCppm100  ixi ). Here a linear approach for the calibration 

curves was employed as can be seen in Figure 4-10. 

                                                 
81 cp. [ISO, 2008], p. 71 et seq. 
82 cp. [ISO, 2008], p. 70 
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Figure 4-10: Illustration of the definition and the utilization of GC calibration curves for C2-
hydrocarbons which exemplarily refer to the situation before the experiments (molar fractions 
smaller than the lowest molar fractions employed for the determination of calibration curves). 

 

4.4 General results 

The following chapters provide general results of the executed experiments with argon and 

helium as dilution gas, respectively. Experimental findings are mostly provided in terms of 

conversion of methane and yield of hydrogen as well as of the C2-hydrocarbons. Usually 

numerous graphs are shown in a particular diagram along with estimated standard uncertainties 

in order to allow a rough overview of results and trends. More detailed information can be found 

in Appendix C. 

4.4.1 General results of experiments with argon as dilution gas 

Experimental results concerning the conversion of methane practically cover the whole range 

between marginal and full advance. As can be seen in Figure 4-11 the conversion of methane 

clearly increases with residence time and nominal furnace temperature, which somehow 

corresponds to temperatures inside the reactor. A maximum conversion of 99.8 % was 

achieved at 1600 °C nominal furnace temperature and a residence time of 0.0547 s, whereas a 

minimum value of 1.20 % was obtained at 1300 °C and 0.0275 s, in both cases based on 2 % 

initial molar fraction of methane. The initial molar fraction of methane moderately influences the 

conversion of methane determined for 1200 °C nominal furnace temperature and medium 
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residence times; however, for all other considered conditions minor dependencies have to be 

reported respecting the applied range. 
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Figure 4-11: Conversion of methane as a function of the residence time, the nominal furnace 
temperature, and the initial molar fraction of methane. Dilution gas: argon. Indicators of 
uncertainty refer to maximum uncertainty for the residence time and to standard uncertainty for 
the conversion. 

The yield of hydrogen is depicted in Figure 4-12 as a function of the residence time, the nominal 

furnace temperature, and the initial molar fraction of methane. Similar to the conversion of 

methane, the yield of hydrogen rises when the nominal furnace temperature or the residence 

time increases. The initial molar fraction of methane affects the yield of hydrogen more strongly 

than the conversion of methane but still at little extend. Obtained values lie between 0.546 % 

and 95.4 % characterized by lower levels compared to the conversion of methane due to the 

presence of byproducts at the outlet of the reactor.  

Ethane, ethene, and ethyne are byproducts, whose portions of the product gas were analyzed 

by gas chromatography. Small fractions of ethane could be found in the outlet gas mixture. 

However, the yield of ethane never exceeds 0.927 % and considerably decreases with rising 

residence time and nominal furnace temperature, as can be extracted from Figure 4-13. By 

trend, higher initial molar fractions of methane lead to lower yields of ethane at otherwise 

identical reaction conditions. 
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Figure 4-12: Yield of hydrogen as a function of the residence time, the nominal furnace 
temperature, and the initial molar fraction of methane. Dilution gas: argon. Indicators of 
uncertainty refer to maximum uncertainty for the residence time and to standard uncertainty for 
the yield. 
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Figure 4-13: Yield of ethane as a function of the residence time, the nominal furnace 
temperature, and the initial molar fraction of methane. Dilution gas: argon. Indicators of 
uncertainty refer to maximum uncertainty for the residence time and to standard uncertainty for 
the yield. 
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A maximum yield of 4.71 % ethene was achieved at 1300 °C nominal furnace temperature and 

2 % initial molar fraction of methane. Explicit dependencies of the yield of ethene on the 

residence time, the initial molar fraction of methane, and the nominal furnace temperature can 

not be identified as becomes clear in Figure 4-14. The graphs for 1200 °C, 1300 °C, and partly 

1400 °C indicate that a local maximum may exist at moderate residence times and that values 

may stabilize at increased residence times, reaching higher levels when higher initial molar 

fractions of methane were applied. A local maximum is probably not shown by graphs for higher 

nominal furnace temperatures, because the applied residence times might not be low enough to 

reach that region.  
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Figure 4-14: Yield of ethene as a function of the residence time, the nominal furnace 
temperature, and the initial molar fraction of methane. Dilution gas: argon. Indicators of 
uncertainty refer to maximum uncertainty for the residence time and to standard uncertainty for 
the yield. 

Figure 4-15 depicts the yield of ethyne, which is by far the most important byproduct. After 

passing the initial stage of the splitting reactions at low residence times the yield of ethyne 

approaches remarkable high levels up to 59.5 %. Mostly also here a maximum is reached at 

moderate residence times. However, due to the slight slope of the graphs in the region right-

hand the maximum, large amounts of ethyne form part of the product gas even at high 

residence times. Usually the yield of ethyne decreases with rising initial molar fraction of 

methane, presumably due to a better promotion of the final steps of the splitting reactions 

resulting from an increased probability of collision and somewhat higher concentrations of 

generated carbon providing reactive sites.  
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Figure 4-15: Yield of ethyne as a function of the residence time, the nominal furnace 
temperature, and the initial molar fraction of methane. Dilution gas: argon. Indicators of 
uncertainty refer to maximum uncertainty for the residence time and to standard uncertainty for 
the yield. 

The conversion of methane and the yields of considered species are shown together in Figure 

4-16 exemplarily for 1300 °C nominal furnace temperature and 10 % initial molar fraction of 

methane. Similar to results based on other reaction conditions, methane starts to decompose as 

soon as the residence time is high enough while hydrogen and C2-hydrocarbons are generated. 

For lowest residence times the yield of ethane is higher than the yield of ethyne. The shapes of 

the graphs propose that the yield of ethane also exceeds the yield of ethene for residence times 

lower than the residence times considered here, suggesting that ethane is one of the first 

intermediates of a complex decomposition mechanism. While ethane disappears very fast, the 

yields of ethene and ethyne first reach a maximum and then fall slightly with residence time. 

Quite low levels of yield of ethene can be reported. Contrariwise, residence times considered in 

this work are not high enough for even nearly total conversion of ethyne. Accordingly, 

considerable fractions of hydrogen and carbon atoms form part of an intermediate, not of the 

final and desired products. In order to increase the amount of hydrogen and particulate carbon 

in the product flow, clearly longer residence times should be taken into consideration. 
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Figure 4-16: Conversion of methane as well as yields of hydrogen, ethane, ethene, and ethyne 
as a function of the residence time for 1300 °C nominal furnace temperature of and 10 % initial 
molar fraction of methane. Dilution gas: argon. 
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     Equation 74 

is a measure of the balance of H-atoms. Ideal agreement between ingoing and outgoing molar 

flows of H-atoms would lead to 0relH, n . In opposition to the ideal case, determined values 

are distributed within an interval defined by the limits - 5.7 % and + 6.9 % as can be seen in 

Figure 4-17. Since a source of hydrogen atoms inside the reactor is rejected, positive values are 

a result of the uncertainty of initial molar flows of argon and methane. Moreover, perfect 

agreement lies in range of every determined value, when uncertainties are taken into account. 

Consequently, it becomes clear that the respected species are the most important carriers of H-

atoms in the product flow and that the H-balance is practically satisfied. 
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Figure 4-17: Balance of hydrogen atoms as a function of the residence time, the nominal 
furnace temperature, and the initial molar fraction of methane. Dilution gas: argon. 

The approximated molar fraction of argon in the product gas edapproximatP,Ar,x  was calculated 

according to 

22426224P,edapproximatP,Ar, HC ,HC ,HC ,H ,CH 1  
i

i ixx     Equation 75 

assuming that argon, hydrogen, methane, and the C2-hydrocarbons are the only components of 

the product gas. The relative discrepancy between the approximated and measured molar 

fraction of argon in the product gas relP,Ar,x  was determined by  

PAr,

PAr,edapproximatP,Ar,
relP,Ar, x

xx
x


     Equation 76 

and gives information about the molar fraction of species not considered in this work at the 

reactor outlet. Although values range from - 1.0 % to + 1.3 % (see Figure 4-18), a good 

estimation of the relative difference is 0 % confirming that the considered species constitute 

major part of the gaseous product flow and that only low fractions of other compounds may be 

present at the outlet of the reactor. Considering maximum uncertainty, perfect agreement of 
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approximated and measured molar fraction of argon in the product gas is possible for every 

reaction condition. 
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Figure 4-18: Relative difference between approximated (as 1 minus the sum of molar fractions 
of considered species except for argon) and measured molar fractions of argon in the product 
gas as a function of the residence time, the nominal furnace temperature and the initial molar 
fraction of methane. 

A measure of cleanliness of the product flow is given by rel,HHC,-C 22
Y , the yield of C2-

hydrocarbons HC-C2
Y  related to the yield of hydrogen

2HY , following  

2

2

22

H

HC-C
rel,HHC,-C Y

Y
Y     . Equation 77 

The related yield decreases with residence time, nominal furnace temperature, and initial molar 

fraction of methane as can be extracted from Figure 4-19. As a result high temperatures, a high 

initial fraction of methane, and a sufficiently high residence time should be ensured in order to 

generate a product flow dominated by the desired products, hydrogen as well as carbon, and 

only marginally contaminated by intermediates. 
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Figure 4-19: Yield of C2-hydrocarbons related to the yield of hydrogen as a function of the 
residence time, the initial molar fraction of methane, and the nominal furnace temperature. 
Dilution gas: argon. 

 

4.4.2 General results of experiments with helium as dilution gas 

The measurement of the molar fraction of helium in the product gas was not possible, since 

helium was used as the GC’s carrier gas. Presuming that neither argon nor helium undergo a 

reaction, but only influence the reaction conditions, the good agreement between PAr,x  and 

edapproximatP,Ar,x  stated in Chapter 4.4.1 allows the conclusion that the molar fraction of helium in 

the product gas PHe,x  can be estimated well according to  

edapproximatP,He,PHe, xx     , Equation 78 

with 
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22426224P,edapproximatP,He, HC ,HC ,HC ,H ,CH 1  
i

i ixx    , Equation 79 

and that the limits of PHe,x  arise consistent with the maximum and minimum value of relP,Ar,x  

provided before. Onward calculations were carried out appropriate to argon experiments. 

The conversion of methane and the yield of hydrogen calculated for experiments with helium as 

the dilution gas are shown in Figure 4-20 and Figure 4-21, respectively, as a function of the 

nominal furnace temperature, the initial molar fraction of methane, and the residence time. 

Similar to the results gained in experiments with argon, conversion and yield increase with rising 

residence time as well as with rising nominal furnace temperature and vary slightly depending 

on the initial fraction of methane. As a result of the better heat transfer characteristics of helium, 

the conversion of methane and the yield of hydrogen reach higher values for experiments with 

helium compared to experiments with argon regarding similar reaction conditions.  

Analogous to experiments with argon, only low yields of ethane and ethene were achieved as 

can be extracted from Figure 4-22 and Figure 4-23, respectively. Generally the yields decrease 

with increasing nominal furnace temperature and residence time. The estimated yields of 

ethyne covering the range from 11.7 % to 62.5 % are presented in Figure 4-24. Clear 

dependencies on the temperature and the residence time can not be reported due to the low 

amount of available data. However, a maximum yield at moderate residence times comparable 

to the graphs determined for experiments with argon is possible. By trend, higher molar 

fractions of methane cause lower yields of all C2-hydrocarbons. 

The balance of hydrogen atoms was examined according to Equation 74. As can be seen in 

Figure 4-25 the balance of hydrogen atoms is reasonably satisfied also for experiments with 

helium as dilution gas. 

 



4 Experimental 
   

 65

0.01
0

20

40

60

80

100

C
on

ve
rs

io
n 

of
 m

e
th

an
e

 in
 %

Residence time in s

   2 %
   5 %
 10 %
   7.110 %

1300 °C
1400 °C
1500 °C

0.1

 

Figure 4-20: Conversion of methane as a function of the residence time, the nominal furnace 
temperature, and the initial molar fraction of methane. Dilution gas: helium. Indicators of 
uncertainty refer to maximum uncertainty for the residence time and to standard uncertainty for 
the conversion. 
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Figure 4-21: Yield of hydrogen as a function of the residence time, the nominal furnace 
temperature, and the initial molar fraction of methane. Dilution gas: helium. Indicators of 
uncertainty refer to maximum uncertainty for the residence time and to standard uncertainty for 
the yield. 
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Figure 4-22: Yield of ethane as a function of the residence time, the nominal furnace 
temperature, and the initial molar fraction of methane. Dilution gas: helium. Indicators of 
uncertainty refer to maximum uncertainty for the residence time and to standard uncertainty for 
the yield. 
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Figure 4-23: Yield of ethene as a function of the residence time, the nominal furnace 
temperature, and the initial molar fraction of methane. Dilution gas: helium. Indicators of 
uncertainty refer to maximum uncertainty for the residence time and to standard uncertainty for 
the yield. 
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Figure 4-24: Yield of ethyne as a function of the residence time, the nominal furnace 
temperature, and the initial molar fraction of methane. Dilution gas: helium. Indicators of 
uncertainty refer to maximum uncertainty for the residence time and to standard uncertainty for 
the yield. 
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Figure 4-25: Balance of hydrogen atoms as a function of the residence time, the nominal 
furnace temperature, and the initial molar fraction of methane. Dilution gas: helium. 
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4.5 Measurement of temperature 

A self-made thermocouple type S was used for the measurement of the temperature inside the 

reactor. It consists of two metal legs which are welded one-sided.83 The voltage between the 

legs at the cold junction is finally a function of the temperature of the measuring junction. An 

alumina capillary tube was employed in order to avoid contact of the two metal legs. 

Furthermore, an aluminum oxide tube84 closed at one side protects the thermocouple from 

reactive products of the decomposition of methane as well as from abrasive contact with the 

inner wall of the reactor and carbon particles. Figure 4-26 shows the assembly of the 

thermocouple. 

 

Figure 4-26: Assembly of the self-made thermocouple employed for temperature measurement 
inside the tube reactor (dimensions in mm) 

Temperature profiles were determined for each set of nominal furnace temperature and 

residence time moving the thermocouple by steps of 20 mm through the reactor, which was 

passed by the dilution gas used in the particular cracking experiment, assuring that the total 

standard volume flow corresponds to the one of the respective experiment. The exclusive 

employment of the dilution gas instead of the particular gas mixture had several reasons: 

                                                 
83 leg (+): 90 % Pt and 10 % Rh, leg (-): 100 % Pt; DIN EN 60584-2: 1994, class 1. Measuring junction 
welded by Janine Schneider (DLR WF-WP). Thermocouple calibrated by Claus-Jürgen Kröder (DLR WF-
HF). 
84 Manufacturer: FRIATEC AG, Mannheim, Germany. 
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 The determination of temperature profiles often took more than two hours. Usually 

clogging would have occurred during that time. 

 The deposition of generated carbon particles would have changed the optical properties 

of the thermocouple and finally influenced the temperature measurement. 

 The temperature changes at position 320 mm after adding methane in a cracking 

experiment were moderate, suggesting that temperature profiles gained for the dilution 

gas flow are very similar to temperature profiles developed in the cracking experiments. 

This was confirmed by further observations at other positions in the reactor during 

reference experiments. Thus, the sole consideration of temperature profiles for a pure 

dilution gas flow offered a reasonable possibility of reduction of experimental time.  

The measurement of temperature profiles started at position 320 mm and ended at the highest 

possible position of the thermocouple, which is position 0 mm, leading to temperature profiles 

with a length of 320 mm. All positions refer to the highest position of the inner wall of the 

protection tube, 1 mm (the wall-thickness of the protection tube) away from the tip of the 

thermocouple and approximately corresponding to the position of the measuring junction. By 

inclining the thermocouple, a maximum and a minimum temperature, which differ in part 

significantly, could be quantified at every axial position. An illustrating sketch is shown in Figure 

4-27. 

 

Figure 4-27: Start position, end position, and length of a measured temperature profile 
(dimensions in mm) 

Additionally, the outer wall temperatures at the entrance of the reactor, matching the upper 

edge of the inlet water cooler, and at the outlet of the reactor, matching the lower edge of the 

outlet water cooler, were measured using a thermocouple type K. It is assumed that the 

temperatures inside the reactor are similar to those of the outer wall at the entrance and the 
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outlet of the reactor. The axial temperature drop at these positions was estimated using 

experimental experience and measurements. In order to approximate the temperature profile 

between the measured temperature profile mostly within the heated region of the reactor and 

the temperatures at the inlet and the outlet of the reactor, respectively, a 3rd order polynomial fit 

was used. Therefore 2 to 4 certain high temperatures nearest to the inlet or the outlet were 

employed beside the temperatures at the inlet and outlet. At very low flow rates the 3rd order 

polynomial fit might lead to higher temperatures for the profile of minimum temperatures 

compared to the profile of maximum temperatures at the entrance of the reactor. In these 

cases, however, the temperatures only differ not more than 3 K and an average value is used 

for both profiles. This procedure results in a quite reasonable shape for the overall temperature 

profile starting at the inlet and ending at the outlet of the reactor. In very few cases the 

temperature profiles were smoothed at certain positions by calculating plausible temperatures 

based on the collectivity of measured temperatures. Figure 4-28 gives an example of 

temperature profiles determined following the aforementioned procedure. 
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Figure 4-28: Profiles of minimum and maximum temperatures (1400 °C nominal furnace 
temperature and 2600 sccm nominal standard volume flow of Ar, average pressure at the 
reactor inlet: 1.031 bar, average pressure at the reactor outlet: 1.014 bar) 

Considering the idea of a real externally heated tube reactor, one realizes that there is not only 

an axial temperature profile but also a radial temperature profile. Near the inlet of the reactor the 

wall of the reactor is hotter than the fluid passing it, whereas at the outlet of the reactor the 

situation is contradictory. At a certain axial position, at the here called switching point, the 

temperatures of wall and center of the reactor should be practically identically. Temperatures of 
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the maximum temperature profile are consequently assigned to the temperatures measured by 

the thermocouple in wall position and temperatures of the minimum temperature profile are 

assigned to the temperatures measured by the thermocouple in center position between the 

inlet of the reactor and the switching point. Downstream the switching point temperatures are 

allocated the other way round. 

The measurement chain concerning the measurement of the temperature is shown in Figure 

4-29. Similar to the measurement chain of the pressure, the output signal of the measuring 

device was interpreted by the data acquisition system. However, a transformation of the signal 

in the data acquisition system was not required. 

 

Figure 4-29: Measurement chain of the measurement of temperatures 

The positioning of the thermocouple was done manually, resulting in a particular uncertainty 

regarding the axial position. Since the contact between wall and thermocouple guarantees a 

high level of accuracy concerning the positioning of the thermocouple in wall position, 

uncertainty of radial positioning only has to be considered for the center position. Moreover, the 

elements of the measurement chain contribute to the overall uncertainty. Respective information 

is summarized in Table 4-12. 
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Table 4-12: Information about thermocouples and the subsequent measurement chain 

Position of thermocouple   Inside reactor Inlet and Outlet of reactor 

Type / class of thermocouple 
according to DIN EN 60584-2: 1994 

S / 1 K / 2 

Accuracy85 

0 °C – 1100 °C: 
+/- 1.0 K 

1100 °C – 1600 °C: 
+/- [1 + (T/°C - 1100) * 0.003] K

- 40 °C – 333 °C: 
+/- 2.5 K 

333 °C – 1200 °C: 
+/- 0.0075 * T/°C K 

ADAM 5000 module T/C 5018 

Temperature range 500 °C … 1750 °C 0 °C … 1370 °C 

Accuracy86 +/- 0.1 % of range: +/- 1.25 K +/- 0.1 % of range: +/- 1.37 K

Uncertainty due to rounding +/- 0.5 K 

Uncertainty due to axial positioning +/- 1 mm (estimated) 

Uncertainty due to radial positioning 
+/- 0.5 mm 

(estimated, center position only)
no 

(contact with outer wall) 

The maximum uncertainty of the temperature measurement in center position )( CPTCmax Tu  can 

be calculated by 

)()()(

)()()(

CPTCmaxround,CPTCmax,radialCPTCmax,axial

CPTCmaxADAM,CPTCmaxTC,CPTCmax









TuTuTu

TuTuTu
, Equation 80 

with the maximum uncertainty resulting from the thermocouple itself maxTC,u  and from the data 

acquisition system maxADAM,u  as well as from rounding maxround,u  according to Table 4-12. 

Maximum uncertainty caused by imprecise axial positioning max,axialu  was estimated following 

                                                 
85 cp. [TC, 2006], p. 7 
86 cp. [Advantech, 2007], p. 22 
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zTzT

Tu , Equation 81

whereas maximum uncertainty caused by imprecise radial positioning maxradial,u  was calculated 

by  

mm5.0
mm2

)( WPTCCPTC
CPTCmax,radial 


 



TT
Tu    . Equation 82 

It only contributes to uncertainty in negative direction as long as CPTCWPTC   TT  and vice versa.  

The maximum uncertainty of the temperature measurement in wall position )( WPTCmax Tu  was 

assessed similarly employing Equation 80 and Equation 81 rejecting )( WPTCmaxradial, Tu , the 

maximum uncertainty caused by imprecise radial positioning, as stated above. 

Figure 4-30 represents an example for temperature profiles determined for the temperatures 

measured by the thermocouple in wall position and in center position together with the position 

of the switching point. The maximum uncertainty of the temperatures measured by the 

thermocouple for this particular case is usually in the range of 6 K. Serious uncertainties may be 

found for the center position near the inlet of the reactor mainly due to a distinct radial 

temperature gradient. 
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Figure 4-30: Determined temperature profiles for the thermocouple in wall position (WP) and in 
center position (CP) (1400 °C nominal furnace temperature and 2600 sccm nominal standard 
volume flow of Ar, average pressure at reactor inlet: 1.031 bar, average pressure at reactor 
outlet: 1.014 bar, indicators of uncertainty refer to maximum uncertainty) 

An example for temperature profiles at conditions with higher nominal furnace temperature and 

standard volume flow is shown in Figure 4-31. A maximum temperature of 1424 °C was 

measured, which differs significantly from the nominal furnace temperature of 1600 °C. Either 

the flow was high enough to cool the wall down to temperatures dramatically lower than the 

furnace temperature or due to the geometrical situation and the high radial temperature gradient 

it was not possible to measure adequate temperatures near the wall. Remarkable radial 

temperature differences are also the reason for comparatively high uncertainty of the 

temperature measured in the center position. The switching point is not reached in the region 

where temperatures were determined but downstream the lowest position of the thermocouple. 
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Figure 4-31: Profiles of determined temperature profiles for the thermocouple in wall position 
(WP) and in center position (CP) (1600 °C nominal furnace temperature and 9800 sccm nominal 
standard volume flow of Ar, average pressure in above reactor: 1.039 bar, average pressure 
below reactor: 1.006 bar, indicators of uncertainty refer to maximum uncertainty) 

All determined temperature profiles related to the thermocouple in wall position and in center 

position for argon as well as for helium as the dilution gas can be found in Appendix C. 

4.6 Additional experiments 

Additional experiments were carried out in order to learn about the reliability of experimental 

results and to gain further information about the situation inside the reactor. Therefore selected 

reaction conditions were considered again in a second experimental campaign.87 A second filter 

featuring a PTFE filter element with a nominal pore diameter of 2 µm was implemented in 

parallel position to the original one. By adjusting a three way cock with 90°-bore connected 

downstream to both filters and a pipe toward the flue, it was possible to chose the path of the 

particle laden product flow. As before, a pure flow of dilution gas with the same total standard 

volume flow than the mixture of dilution gas and methane considered later on was fed to the 

reactor until temperatures at position 320 mm inside the reactor reached constant levels. Then 

methane was introduced to the system, while the standard volume flow of the dilution gas was 

reduced simultaneously. A sample of product gas was extracted by vacuum pump of the GC as 

soon as the temperature at position 320 mm did not change any more. When the sample 

extraction was finished the abovementioned three way cock was switched over in order to lead 

to product flow through the second filter (sample filter). This way it could be guaranteed that no 
                                                 

87 The second experimental campaign forms part of a student research paper, see [Maibauer, 2010]. 



4 Experimental  
   

 

 76 

particles formed during the first minutes after methane addition reached the second filter. 

Particles formed in this phase, in which temperatures in the reactor still approach a situation of 

thermal equilibrium, likely differ from particles formed later under more or less constant 

conditions. In order to allow the analysis of hydrocarbons higher than the C2-hydrocarbons, the 

GC was not stopped after ethyne was detected but was in operation for an extended period of 

time of 45 min. Targeting constant reaction conditions the experiment was stopped as soon as 

the pressure rose more than 10 mbar compared to the initial conditions or the temperature rose 

for more that 1 % of the initial temperature at position 320 mm in K. When neither the pressure 

related nor the temperature related stop criterion was fulfilled, the experiment was brought to an 

end after about 60 min. Then the particles present in the sample filter were removed. Carbon 

deposition between the outlet of the reactor and the filter were negligible. However, a significant 

amount of carbonaceous material could be removed from the inside of the reactor during the 

cleaning procedure employing a metal wire, which was moved through the reactor with utmost 

care. The wire was introduced in the gap between the thermocouple and the TC elbow after 

removing respective sealing nuts, when the temperature of the tube furnace reached values 

below 700 °C. Both, the carbon sample from the filter and from the reactor were prepared for a 

further analysis, namely the determination of the BET specific surface. An overview about 

reaction conditions covered in the second campaign with argon and helium as dilution gas is 

provided in Table 4-13 and Table 4-14, respectively. 

Table 4-13: Conditions covered in the second experimental campaign with argon as dilution gas 

Cinfurnace T  sccmintot,0N,V  %in,0CH4
x  Corresponding /furnaceT -set 

200 5 2 
1200 

685 5 4 

650 5 7 

1300 5 8 1300 

2600 5 9 

1400 5 12 

2600 2, 5, 10 13 1400 

3800 5 14 

1600 5 16 
1500 

2800 5 17 

2000 5 21 
1600 

3350 5 22 
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Table 4-14: Conditions covered in the second experimental campaign with helium as dilution gas 

Cinfurnace T  sccmintot,0N,V  %in,0CH4
x  Corresponding /furnaceT -set 

1300 3800 5 25 

2800 5 26 

3800 2, 5, 10 27 1400 

6500 5 28 

1500 3800 5 29 

The results of the second experimental campaign concerning the repeatability of results gained 

before (see Chapter 4.4), the location and the character of generated carbon as well as 

balances of H- and C-atoms are presented in the following chapters. 

4.6.1 Repeatability of results 

In order to access the repeatability of results concerning the conversion of methane, 

uX rel,1,,2CH4   was defined according to  

)( 1campaign ,CH

1,2CH2campaign ,CH
rel,1,,2CH

4

44

4 Xu

XX
X u





     Equation 83 

relating the difference of the conversion determined in the second campaign 2campaign ,CH4
X  and 

the average conversion to the standard uncertainty estimated for the conversion determined in 

the first campaign )( 1campaign ,CH4
Xu . The average conversion of methane respecting the first and 

second experimental campaign 1,2CH4 X  arises from  

 1campaign ,CH2campaign ,CH1,2CH 444
5.0 XXX     . Equation 84 

Similarly uY rel,1,,2H2  , uY rel,1,,2HC 62  , uY rel,1,,2HC 42  , and uY rel,1,,2HC 22   were calculated based on the 

yield of hydrogen, ethane, ethene, and ethyne as well as on respective standard uncertainties. 

As presented in Table 4-15, for experiments with argon as dilution gas calculated values vary 

from - 5.69 to 3.42; however, absolute values mostly lie in the range between 0.5 and 1.5.  
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Table 4-15: Differences between values for the conversion of methane as well as the yields of hydrogen, 
ethane, ethene, and ethyne gained in the second campaign and average values regarding the first and 
second campaign with argon as dilution gas related to respective standard uncertainties determined in the 
first campaign. (Reaction condition: nominal furnace temperature in °C - nominal total standard volume flow 
in sccm - nominal initial molar fraction of methane in %) 

Reaction 
condition -in 

rel,1,,2CH4 uX 
 

-in 

rel,1,,2H2 uY 
 

-in 

rel,1,,2HC 62 uY 

-in 

rel,1,,2HC 42 uY 
 

-in 

rel,1,,2HC 22 uY 

1200 - 200 - 5 -0.20 2.70 -0.36 -1.77 -0.47 

1200 - 685 - 5 1.23 2.80 -1.02 -1.73 -0.03 

1300 - 650 - 5 0.68 1.06 -0.56 -0.26 -0.61 

1300 - 1300 - 5 0.19 0.87 -0.13 -3.57 -0.73 

1300 - 2600 - 5 0.32 1.97 -0.04 -5.69 -0.66 

1400 - 1400 - 5 -0.07 -0.34 -1.34 1.13 0.93 

1400 - 2600 - 2 0.43 0.37 -1.14 -0.62 -0.39 

1400 - 2600 - 5 0.16 0.04 -0.29 0.35 0.15 

1400 - 2600 - 10 0.85 0.69 0.08 -0.26 -2.14 

1400 - 3800 - 5 0.40 2.06 -0.29 -1.50 -0.47 

1500 - 1600 - 5 0.76 0.36 0 / 0 -0.20 -0.76 

1500 - 2800 - 5 0.98 0.81 0 / 0 -0.65 -1.30 

1600 - 2000 - 5 3.12 0.21 0 / 0 -1.26 -1.85 

1600 - 3350 - 5 3.42 1.45 0 / 0 -1.50 -2.30 

Somewhat lower differences related to the estimated standard uncertainty were calculated for 

experiments with helium as dilution gas as can be seen in Table 4-16. Values range from - 1.01 

to 2.49, whereas absolute values mostly lie between 0.4 and 0.7. 

Table 4-16: Differences of values for the conversion of methane as well as the yields of hydrogen, ethane, 
ethene, and ethyne gained in the first and second experimental campaign with helium as dilution gas related 
to respective standard uncertainties. (Reaction condition: nominal furnace temperature in °C - nominal total 
standard volume flow in sccm - nominal initial molar fraction of methane in %) 

Reaction 
condition -in 

rel,1,,2CH4 uX 
 

-in 

rel,1,,2H2 uY 
 

-in 

rel,1,,2HC 62 uY 

-in 

rel,1,,2HC 42 uY 
 

-in 

rel,1,,2HC 22 uY 

1300 - 3800 - 5 0.32 2.49 -0.51 -0.14 0.74 

1400 - 2800 - 5 0.21 0.29 0.54 0.43 0.43 

1400 - 3800 - 2 1.72 0.26 0.49 -0.67 -0.48 

1400 - 3800 - 5 1.03 0.49 0.63 -0.20 -0.67 

1400 - 3800 - 10 0.01 -0.01 0.03 0.00 -0.39 

1400 - 6500 - 5 0.36 0.85 -0.08 -1.01 -0.21 

1500 - 3800 - 5 0.13 0.15 0 / 0 0.69 -0.76 

Since the difference between values gained in the two campaigns and the average value 

usually lies in range of the standard uncertainty, a quite good repeatability of results can be 
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deduced – in particular when taking into account that a simplified method of evaluation based 

on a two point calibration of the GC with respect to hydrogen and methane was adopted for the 

second campaign and that the second campaign was managed only with a pre-experimental 

calibration of the GC with respect to hydrogen, methane, and argon. 

4.6.2 Location and character of generated carbon 

As stated before, carbon deposit was not only found in the sample filter but also in the reactor. 

The weight of samples varied between 1 mg and 378 mg depending on the location of 

deposition, the reaction conditions, and the duration of the experiment. The samples from the 

filter showed a more or less uniform constitution, which could differ in general structure, 

macroscopic size of agglomerates, density, color, and odor depending on the reaction 

conditions. Respective examples are provided in Figure 4-32.  

    

Figure 4-32: Examples for samples from the filter gained in experiments with argon as dilution 
gas: 1400 - 2600 - 10 (a) and 1300 - 650 - 5 (b) (Reaction condition: nominal furnace temperature 
in °C - nominal total standard volume flow in sccm - nominal initial molar fraction of methane in 
%) 

As can be seen in Figure 4-32 (a), the samples may show a slightly brownish color indicating 

the presence of high molecular hydrocarbons. Mostly the samples from the reactor contained 

beside the particulate fraction a fraction of pyrocarbon which is a graphitic silvery deposition. 

The shape of the pyrocarbon fragments suggests its formation and deposition on the inner wall 

of the reactor. Some examples for carbon samples from the reactor are shown in Figure 4-33. 

Pyrocarbon volume fractions up to 100 % could be determined for samples from the reactor. 

However, an obvious dependency of the volume fraction of pyrocarbon in the samples from the 

reactor on the reaction conditions could not be found.  

(a) (b) 
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Figure 4-33: Examples for samples from the reactor gained in experiments with argon as 
dilution gas: 1400 - 2600 - 5 (a), 1600 - 2000 - 5 (b), 1500 - 2800 - 5 (c), and 1300 - 1300 - 5 (d) 
(Reaction condition: nominal furnace temperature in °C - nominal total standard volume flow in 
sccm - nominal initial molar fraction of methane in %) 

The BET specific surfaces of the particulate fraction of every sample providing the required 

mass of about 20 mg were determined with a maximum uncertainty in the range of 0.5 m2/g.88 

As can be seen in Figure 4-34, the values for the BET specific surface of samples from the 

reactor vary between 6.9 m2/g and 56.4 m2/g concerning experiments with argon as dilution gas 

and between 42.6 m2/g and 94.7 m2/g concerning experiments with helium as dilution gas. Most 

values can be found in the range from little less than 40 m2/g to 60 m2/g. Although great effort 

was made to entirely separate the pyrocarbon fraction from the particulate fraction, analyzed 

particulate sample may still have been contaminated with pyrocarbon to a certain extend, which 

is especially likely for measured BET values below 20 m2/g. Contrariwise, samples from the 

filter are characterized by somewhat higher BET specific surfaces in the range from 22.3 m2/g 

                                                 
88 Measurements carried out by Dr. Eusebiu Grivei, TIMCAL, Willebroek, Belgium. 10 min preheating at 
200 °C in nitrogen atmosphere. 

(a) (b) 

(c) (d) 
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and 139.1 m2/g for experiments with argon as dilution gas and from 56.2 m2/g to 66.4 m2/g for 

experiments with helium as dilution gas, as can be extracted from Figure 4-35. 
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Figure 4-34: Specific surface area of carbon samples collected from the reactor  
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Figure 4-35: Specific surface area of carbon samples collected from the filter 
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The BET specific surface of samples from the filter are mostly higher compared to those from 

the reactor, probably due to the fact that smaller particles – corresponding to high specific 

surfaces – are more likely able to pass the reactor and finally to reach the filter. The present 

extend of data does not allow a comprehensive analysis of the dependencies of the BET 

specific surface on the reaction conditions. However, it becomes clear that the BET specific 

surfaces do not attain more or less constant values but differ in part significantly. 

4.6.3 Balances of H- and C-atoms 

As presented before, the balance of H-atoms based on the considered H-containing species, 

which are methane, hydrogen, ethane, ethene, and ethyne, is practically satisfied for the whole 

range of experimental conditions. With the knowledge about the mass of carbon deposition in 

the experimental system, specifically in the reactor itself and the filter, formed during particular 

experiments, it was possible to assess the balance of C-atoms as well. The calculative fraction 

of H-atoms in component i  of the product gas P,in  Hˆ ix  arises from  

22426224
,0CH

P,in  H
P,in  H HC,HC,HC,H,CH

4
ˆ

4





 i

n

nf
x ii

i 


    Equation 85 

with if in  H  giving information about the number of H-atoms in one molecule of species i . The 

calculative fraction of H-atoms situated in other (not considered) species Pothers,in  Hx̂  was 

determined by 

22426224P,in  HPothers,in  H HC,HC,HC,H,CHˆ%100ˆ   ixx
i

i    . Equation 86 

If 0ˆ Pothers,in  H x , the fraction of H-atoms situated in other (not considered) species Pothers,in  Hx  

was set to 0 and the fraction of H-atoms in component i  of the product gas P,in  H ix  was 

calculated by  
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22426224
P,in  H

P,in  HP,in  H HC,HC,HC,H,CH
ˆ

%100
ˆ 


i

x
xx

i
i

ii    , Equation 87 

else Pothers,in  HPothers,in  H x̂x   and P,in  HP,in  H ˆ ii xx  . 

Similarly P,in  C ix , the fraction of C-atoms situated in component i  of the product gas, was 

determined by 

2242624
,0CH

P,in  C
P,in  C HC,HC,HC,CH

1
4





 i

n

nf
x ii

i 


    Equation 88 

with if in  C  giving information about the number of C-atoms in one molecule of species i . Beside 

gaseous products also solid products carry C-atoms, namely the carbon deposit in the reactor 

as well as the carbon deposit in the sample filter. The average molar deposition flow in the 

reactor reactorin  Cn  was estimated by  

Creactor,CH

reactorin  C
reactorin  C

4
Mt

m
n


     Equation 89 

employing the mass of carbon deposition inside the reactor reactorin  Cm , the period between the 

initialization and the termination of the methane flow reactor,CH4
t , and the molecular weight of 

carbon CM . Accordingly, the average molar deposition flow in the sample filter filterin  Cn  was 

calculated by  

Cfilter,CH

filterin  C
filterin  C

4
Mt

m
n


     Equation 90 

employing the mass of carbon deposition in the sample filter filterin  Cm  and the period between 

switching over of the three way cock to the sample filter and the termination of the methane flow 

filter,CH4
t . 
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With reactorin  Cn  and filterin  Cn  the fractions of C-atoms situated in the carbon deposition in the 

reactor Preactor,in  Cin  Cx  and in the filter Pfilter,in  Cin  Cx  could be calculated following 

filterin  C reactor,in  C
1 ,0CH

in  C
P,in  C

4





 i

n

nf
x ii

i 


   . Equation 91 

Since a deposition of pure carbon has been considered, 1filterin  Cin  Creactorin  Cin  C  ff . 

The fraction of C-atoms situated in other (not considered) species Pothers,in  Cx  was determined by 

filterin  Creactor,in  C,HC,HC,HC,CH

%100

2242624

P,in  CPothers,in  C



 
i

xx
i

i

   . Equation 92 

Figure 4-36 represents the fractions of H- and C-atoms in particular species respecting the 

experimental conditions listed in Table 4-13 and Table 4-14. In accordance with results 

presented in Chapter 4.4, the hydrogen balance is practically satisfied resulting in a marginal 

fraction of H-atoms in other (not considered) species. Contrariwise, remarkable amounts of C-

atoms form part of other species leading to high fractions of C-atoms in other species up to 

48.3 % and about 28.5 % on average. This indicates the presence of further C-rich species in 

the product flow. Small molar fractions of the C3-hydrocarbons propene (C3H6), propyne (C3H4), 

and probably propadiene (C3H4) were detected but with a molar fraction far below an order of 

magnitude, which could possibly explain a high value of Pothers,in  Cx , namely in the order of 

magnitude of ethane regarding propene and in the order of magnitude of ethene regarding 

propyne and propadiene. Low amounts of high molecular byproducts, in particular hydrocarbons 

with a high C/H-ratio, could better justify the practically perfect H-balance on the one hand and 

the significant disagreement of the C-balance on the other hand. Suggested by the partly 

colored appearance and strong-smelling characteristics of the samples, polycyclic aromatic 

hydrocarbons (PAH), such as naphthalene (C10H8)
89, could have been generated. The formation 

of PAHs involved in the thermal splitting of methane has already been reported.90  

                                                 
89 identified by Albermann in former experiments, cp. [Albermann, 2007], and confirmed by [Muradov, 
2010] 
90 cp. e. g. [Hu, 2003] 
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Figure 4-36: Fractions of H- and C-atoms situated in particular species as a function of the 
experimental conditions (nominal furnace temperature in °C - total standard volume flow in 
sccm - initial molar fraction of methane in %) 

 

4.7 Experiments with added C-particles 

In order to investigate heterogeneous effects caused by carbon particles, experiments were 

carried out employing an apparatus which allows seeding of the inlet gas.91 An overview about 

the general configuration of the seeding apparatus is provided in Figure 4-37. It features a 

rotating dosing as well as a rotating dispersing element, which permits the continuous 

generation of gas/particle-flow made of the inlet substances argon and carbon particles. 

Super P, a conductive carbon black with a typical BET specific surface of 62 m2/g and a nominal 

particle size of 40 nm, was used as seeding material.92 Depending on the number of revolution 

of the rotating dosing element different mass flows of particles were realized. The mass flow of 

the particles was determined employing the mass of particles found in a filter downstream the 

seeding apparatus and the respective duration of operation. It was found that a total standard 

volume flow of about 3610 sccm Ar allows almost complete discharge of dispersed particles 

                                                 
91 Construction, design, qualification, optimization, and control of the apparatus forms part of a student 
research project and a diploma thesis, see [Förster, 2009]. 
92 produced by TIMCAL, Willebroek, Belgium, cp. [TIMCAL, 2007] 
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from the seeding apparatus. The longer the operation time the higher the mass of particles in 

the filter. The prototype offers roughly linear characteristics a can be seen in Figure 4-38. 

 

Figure 4-37: General configuration of the seeding apparatus 
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Figure 4-38: Calibration of the seeding apparatus and determination of maximum, nominal, and 
minimum mass flow of Super P depending on the number of revolutions of the dosing element 
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Resulting from the small amounts of the seeding material, the maximum uncertainty of the 

measurement of the particle mass inside the filter or rather the mass gain of the particles inside 

the filter is relatively high (approximately 0.1 g). However, general trends can be identified. The 

determined mass flow increases, when the number of revolution of the dosing element 

increases. Maximum, nominal, and minimum mass flows were determined employing a fitting 

line through the origin respecting maximum, nominal, and minimum values, respectively, as is 

illustrated in Figure 4-38, exemplarily for a number of revolutions of 6 1/min. Here the 

uncertainty of the duration of operation, which was not higher than 2 s, was neglected.  

/furnaceT -set 14 with 5 % initial molar fraction of methane was chosen as the reference 

condition, because achieved conversion of methane and yield of hydrogen lie below 50 % and 

offer potential for enhancement. Although the corresponding total standard volume flow equals 

3800 sccm, a standard volume flow of approximately 3610 sccm was applied to the seeding 

apparatus, because only argon entered the disperser and 190 sccm methane were added 

downstream in order to provide a mixture with 5 % molar fraction of methane in the gas phase 

at the inlet of the reactor. The addition of Super P results in a considerable increase of the 

conversion of methane and of the yield of hydrogen as can be extracted from Figure 4-39. More 

precisely, with the maximum mass flow of 5.24 g/h Super P through the reactor it was possible 

to increase the conversion of methane and the yield of hydrogen by 18 % and 33 %, 

respectively. Contrariwise, the yield of ethyne shows only a weak dependency on the mass flow 

of carbon particles, while the yields of the other C2-hydrocarbons ethane and ethene decrease 

with rising mass flow of Super P – however, at comparatively low levels. Seeding obviously 

affects the cracking reactions, promoting the generation of the favored product hydrogen. The 

related yields of hydrogen and C2-hydrocarbons rose from 1.38 to an averaged value of 1.81, 

when the particle mass flow reached its maximum. Thus, the addition of carbon black to the flow 

entering the reactor leads to a higher cleanliness of the product flow.  
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Figure 4-39: Conversion of methane and yield of hydrogen as well as of ethane, ethene, and 
ethyne as a function of the applied mass flow of Super P related to values determined without 
seeding. Indicators of uncertainty refer to the average maximum uncertainty concerning the 
mass flow and to typical standard uncertainty concerning relative conversion and yields. 
Nominal furnace temperature: 1400 °C, nominal total standard volume flow: 3800 sccm, nominal 
molar fraction of methane in argon: 5 %, pressure between 1.012 bar and 1.031 bar. 

Seeding changes the reaction conditions inside the reactor in different ways. On the one hand 

the particles provide additional sites for heterogeneous reactions, whereas on the other hand 

the heat transfer between the reactor wall and the fluid is enhanced due to radiative effects. 

With the current configuration it was not possible to isolate these two effects, but it is admissible 

to state that the change of the conversion and yields is not only a result of a better heat transfer. 

This is because an unusual change of the temperature at the position 320 mm could not be 

detected after adding carbon particles, which could be expected for an extremely improved heat 

input in the fluid. An extinction of radiation in the visible regime by optical observation through 

the transparent glass tube at the outlet of the seeding apparatus with an inner diameter 

(corresponding to the maximum optical length) of 4 mm was not or only marginally noticeable 

although the absorption coefficient of carbon can be approximated by one. Since the inner 

diameter of the reactor equals 8 mm, the extinction in the reactor is higher than the extinction in 

the glass tube under the same circumstances. However, the consequences of a higher optical 

path are compensated by the increased volume flow in the reactor and the resulting lower 

concentration of carbon in the gas/particle-mixture, indicating that the extinction in the reactor 

should have the same order of magnitude than the extinction in the glass tube – also for 

radiation with other wavelengths, because the absorption coefficient does not exceed one.  
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The theoretical mass flow of generated carbon for the reference condition without seeding 

equals approximately 1.27 g/h. However, the examination of the carbon balance shows that the 

fraction of C-atoms in other (not considered) compounds of the product flow equals about 20 % 

resulting in a basically negligible mass flow of generated carbon. Consequently, the major part 

of carbon material inside the reactor originates from the seeding material and not from 

generated carbon. The surface provided by added particles in the heated region of the reactor 

RP,Super S  can be roughly estimated following 

 PSuper PSuper BET,RP,Super msS      Equation 93 

employing the BET specific surface of Super P PSuper BET,s , the mass flow of Super P dispersed 

by the seeding apparatus PSuper m , and the average residence time   according to Equation 55. 

Thus, with /gm62 2
PSuper BET, s , s0329.0 , and the maximum applied particle mass flow 

g/h24.5maxP,Super m  the maximum particle based surface area in the reactor can be calculated 

to 0.0030 m2. The geometrical inner surface of the heated region of the reactor nominally equals 

0.0063 m2 and therefore has the same order of magnitude. Therefore the reactor surface 

probably promotes heterogeneous reactions.  

The BET specific surface of carbon deposit recovered from the reactor and the sample filter is 

usually comparable to (or even higher than) figures of Super P, suggesting that also generated 

particles represent favored reaction sites and support heterogeneous paths of the reactions. 
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5 Kinetic evaluation 

For the kinetic evaluation of the experiments it was necessary to estimate realistic reactions 

conditions for all locations inside the reactor, in particular with respect to the reaction 

temperature, and to set up a suitable flow model as well as a kinetic model, which covers the 

dominating reactions.93 

5.1 Interpretation of measured temperatures 

The temperature on the surface of the protection tube of the thermocouple was a result of the 

convective heat transfer between the fluid and the protection tube as well as of the radiative 

heat transfer between reactor wall and the surface of the protection tube as is illustrated in 

Figure 5-1.  

 

Figure 5-1: Illustration of heat transfers contributing to the temperature measured with the 
thermocouple 

Respecting the diameters of the protection tube as well as of the inserted capillary tube and 

employing trigonometry, it can be shown that the distance between the contact line and the tip 

of the protection tube theoretically equals 1.368 mm. Thus, the distance between the center of 

the welded part of the thermocouple and the tip of the protection tube accounts for 

                                                 
93 Some basic considerations can be found in [Wullenkord, 2010 b]. 
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approximately 1.19 mm corresponding to the dimensions provided in Figure 4-26. It was 

postulated that HTl , the length of the heat transfer region relevant for the measurement of the 

temperature, equals 2.38 mm, which is double of the aforementioned distance allowing a 

symmetric consideration of the heat transfer with respect to the center of the measuring 

junction. 

Motivated by the low wall-thickness of the protection tube of the thermocouple (1 mm) and the 

helium filling, it was assumed that the upper part of the thermocouple corresponding to HTl  and 

including the measuring junction attained a uniform temperature. The thermal conductivity of 

FRIATEC’s AL23, which is the material of the reactor and the protection tube of the 

thermocouple, lies in the range of 5 W/(m K) at 1000 °C. The material properties of AL23 

provided by the manufacturer are content of Table 5-1.94 

Table 5-1: Stated thermal conductivity and emissivity of AL23 produced by FRIATEC 

Cin T  
Km

W
in  in  

100 30 - 

1000 5 0.21 

Since the amount of known data is very rare, but material properties had to be applied for 

subsequent calculation within a wide range of temperatures, other sources had to be used in 

order to estimate reasonable dependencies of the material properties on the temperature. The 

following chapter deals with material properties. Then the convective and radiative heat 

transfers are examined in detail before consequences are derived. 

5.1.1 Material properties of AL23 and used gases 

The software EES provides a database for the thermal conductivity of alumina (polycrystalline) 

in the temperature range between 300 K and 1000 K.95 Additional data for corundum, containing 

99 % alumina, can be found in [VDI, 2006]96 regarding the temperature range between 400 °C 

and 1200 °C. The approximation of the temperature depending function of the thermal 

conductivity of AL23 according to Figure 5-2 comprises the following steps: 

 determination of a fit function for the collective of values of the thermal conductivity 

comprising data from EES (for temperatures up to 726.85 °C corresponding to 1000 K) 

and [VDI, 2006] (for temperatures above 726.85 °C) 

                                                 
94 see [FRIATEC, 2003] 
95 EES: Engineering Equation Solver V8.412-3D (2009). Database provides data from [Incropera, 1996] 
and [Touloukian, 1972]. 
96 p. Deb 3 
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 calculation of the ratio between values given by [FRIATEC, 2003] and the fit function 

 determination of ratios for other temperatures by linear interpolation employing the 

above mentioned ratios with the constraint, that the value should be higher than 1 

 calculation of values of the thermal conductivity employing the fit function and the ratios 

evaluated for certain temperatures 

 determination of a 3rd order polynomial fit function for the values 
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Figure 5-2: Approximation of the thermal conductivity of AL23 for temperatures between 0 °C 
and 1600 °C employing various information 

The fit function for the thermal conductivity leads to a relative error of 0.21 % and - 1.65 % 

concerning the given values for 100 °C and 1000 °C, respectively. The values found in [EES, 

2009] do not match those from [VDI, 2006] for low temperatures. However, the shapes of the 

curves suggest that latter values represent a limit at higher temperatures, which is also 

admissible for the first case. 

Concerning the emissivity of AL23 the data sheet only provides one value, namely the 

emissivity for 1000 °C (see Table 5-1). Values found in [VDI, 2006]97 for the emissivity of 

alumina indicate a linear decrease with the temperature. Applying a linear fit function, a 

potential value for 1000 °C equals 0.533, what is about 2.54 times higher than the given value 

from the data sheet. Assuming that a linear decrease is admissible for AL23 and that the above 
                                                 

97 p. Ka 5 
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mentioned discrepancy factor is also valid for other temperatures, the emissivity of AL23 was 

approximated for a wider temperature range consistent with Figure 5-3. 
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Figure 5-3: Approximation of the emissivity of AL23 for temperatures between 0 °C and 1600 °C 
employing various information 

Material properties of used gases, specifically material properties of argon and helium, were 

mostly extracted from [VDI, 2006] and are summarized in Appendix D. 

5.1.2 Convective heat transfer 

A convective heat transfer took place between the protection tube of the thermocouple and the 

fluid passing it. The heat flux density on the wall of the thermocouple due to convection convTC,q  

can be calculated by  

 fluidwallTC,convconvTC, TTq      , Equation 94 

where conv  is the local convective heat transfer coefficient, wallTC,T  represents the temperature 

of the wall of the protection tube of the thermocouple and considering an internal flow fluidT  

stands for the adiabatic mixing temperature of the fluid at the respective axial position.98 

                                                 
98 cp. [Baehr, 2006], p. 11 et seqq.  
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Assuming a constant heat capacity of the fluid in the range of considered temperatures, fluidT  is 

defined as  

 
iR,

oTC,

d
2

fluid
fluid

R

R

rrTv
m

T 


    Equation 95 

for a flow through an annulus described by the inner radius of the reactor iR,R  and the outer 

radius of the thermocouple protection tube oTC,R . Employing Equation 1 and the relation 

between the amount of substance n  and the corresponding mass m , following  

nMm     , Equation 96 

where M  represents the molecular weight, the density   of an ideal gas can be calculated by  

T

pM




     Equation 97 

and leads to  

 




R,i

oTC,

d
2

fluid
fluid

R

R

rrv
pM

m
T




   . Equation 98 

The convective heat transfer coefficient can be estimated using Nusselt correlations. Employing 

the hydraulic diameter hd  and the average thermal conductivity of the fluid fluid  the Nusselt 

number Nu  is defined as 
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fluid

hconvNu


 d
    . Equation 99 

The thermal conductivity should be evaluated for an average temperature of the fluid regarding 

the temperatures at the inlet and at the outlet of the considered part of the reactor.99 

To estimate the order of magnitude of conv , the convective heat transfer in a concentric annular 

gap had to be examined. Ways to handle the problem can be found in [VDI, 2006]100; however, 

the provided equations are based on further constraints. Firstly only a constant wall temperature 

is considered. The part of interest of the thermocouple’s protection tube is its tip featuring a 

short length. It is admissible to consider this part to be isothermal. Secondly one has to decide, 

which of the following cases matches best to the considered problem:  

 heat transfer at inner pipe, outer pipe isolated 

 heat transfer at outer pipe, inner pipe isolated 

 heat transfer at inner and outer pipe, wall temperatures identical 

Since predominantly the heat transfer at the inner pipe affects the temperature measurement, 

the first situation was chosen for further calculations. Furthermore, in absence of additional 

knowledge about the velocity profile in an annulus featuring complex heat transfer processes 

properties of the fluid at a certain axial position were determined for  

 wallTC,wallR,fluid 5.0 TTT     , Equation 100 

the arithmetic mean of the wall temperatures of the reactor and the thermocouple. 

Generally a flow can be characterized by the Reynolds number Re , which is defined as 

                                                 
99 cp. [VDI, 2006], p. Gb 1 
100 p. Gb 1 et seqq. 
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
 vd 

 hRe    , Equation 101 

where   is the density, v  is the average velocity of the flow,   stands for the dynamic 

viscosity, and hd  for the hydraulic diameter. 

The average velocity v  arises from 

A

V
v


    , Equation 102 

based on the volume flow V  and the cross sectional area A , through which V  passes. 

Following [VDI, 2006]101 the hydraulic diameter hd  can be calculated with the above mentioned 

cross sectional area A  and the wetted perimeter of the cross section wP : 

w
h

4

P

A
d


    . Equation 103 

For an annular gap, in the present case defined by the outer diameter of the protection tube of 

the thermocouple oTC,d  and the inner diameter of the reactor iR,d , it can be shown that  

oTC,iR,h ddd     . Equation 104 

The Reynolds number never exceeds a value of 2300, which represents the reference value for 

the transition from laminar to turbulent flow. Flows characterized by Reynolds numbers below 

2300 are certainly laminar flows.102 Regarding a laminar flow in a region where temperature and 

velocity profiles develop coevally, the average Nusselt number aveNu  can be estimated by  

                                                 
101 p. LAB 4 
102 cp. [VDI, 2006], p. Ga 1 
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3 3
3

3
2

3
1ave NuNuNuNu     , Equation 105 

where 1Nu  refers to the Nusselt number regarding a fully developed flow, concerning both, 

temperature and velocity, and arises from  

8.0

iR,

oTC,
1 2.166.3 Nu















d

d
   , Equation 106 

where 2Nu  refers to the Nusselt number characterizing a thermally undeveloped flow with fully 

developed velocity profile and arises from 

3

1

HT

h

5.0

iR,

oTC,
2 PrRe14.01615.1 Nu 






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



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







l

d

d

d
   , Equation 107 

and where 3Nu  arises from 

2

1

HT

h
6

1

3 PrRe
Pr221

2
 Nu 




















l

d
   .103 Equation 108 

1Nu  and 2Nu  are functions of the ratio of the outer diameter of the protection tube of the 

thermocouple oTC,d  and the inner diameter of the reactor iR,d . Further dependencies exist on 

the Reynolds number Re , the Prandtl number Pr , and the considered length of the heat 

transfer region HTl . The Prandtl number is a function of properties of the fluid, namely the 

dynamic viscosity  , the thermal conductivity  , and the specific heat capacity at constant 

pressure pc , following 

                                                 
103 cp. [VDI, 2006], p. Gb 1 et seqq. Information from [Stephan, 1962] and [Martin, 1990] is provided.  
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
 pPr

c
    . Equation 109 

The standard volume flow was varied in the range from 95 sccm to 9800 sccm, when argon was 

used as dilution gas, and in the range from 2800 sccm and 6500 sccm, when helium was used 

as dilution gas. For the subsequent calculations the pressure was approximated by the standard 

pressure Np , since the aim of the calculations is just an estimation of the order of magnitude of 

the convective heat transfer coefficient.  

Figure 5-4 shows the convective heat transfer coefficient corresponding to the average Nusselt 

number aveNu  for different temperatures of the thermocouple and the reactor wall as well as for 

different standard volume flows of argon. Properties of the fluid, which are respected for the 

calculation of Nusselt numbers, were determined for an average temperature regarding the 

temperature of the thermocouple and the reactor wall.  
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Figure 5-4: Convective heat transfer coefficients for two temperatures of the tip of the 
thermocouple (800 °C and 1600 °C) as a function of the temperature difference between the 
thermocouple and the reactor wall as well as of the standard volume flow of argon. Material 
properties of argon were calculated for the arithmetic mean of the temperature of the 
thermocouple and the reactor wall and exemplarily for the maximum (max) and minimum (min) 
temperature of considered combinations. Standard pressure. 

Slightly different values can be found if not the average, but respective maximum or minimum 

temperatures are employed as also shown in the figure. However, values of the heat transfer 
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coefficient calculated for extreme temperatures do not extend the range of values calculated for 

average temperatures. The convective heat transfer coefficient strongly depends on the 

standard volume flow, whereas the influence of temperatures is moderate. Maximum heat 

transfer coefficients concerning the experiments with argon as the diluent can be found at a 

level of 300 W/(m2 K). 

Due to the high thermal conductivity of helium, the convective heat transfer coefficient is 

characterized by higher values compared to calculations with argon as can be seen in Figure 

5-5. Here values up to 1100 W/(m2 K) can be expected. 
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Figure 5-5: Convective heat transfer coefficients for two temperatures of the tip of the 
thermocouple (900 °C and 1500 °C) as a function of the temperature difference between the 
thermocouple and the reactor wall as well as of the standard volume flow of helium. Material 
properties of helium were calculated for the arithmetic mean of the temperature of the 
thermocouple and the reactor wall. Standard pressure. 

 

5.1.3 Radiative heat transfer 

A radiative heat transfer occurred between the wall of the thermocouple and the inner wall of 

the reactor. The heat flux density on the wall of the thermocouple due to radiation radTC,q , 

corresponding to the net radiative exchange between the surfaces of the thermocouple and the 

wall of the reactor, can be calculated by  
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 wallR,wallTC,radradTC, TTq      , Equation 110 

where rad  is the radiative heat transfer coefficient, wallTC,T  represents the temperature of the 

wall of the protection tube of the thermocouple and wallR,T  stands for the temperature of the 

inner wall of the reactor. 

The radiative heat transfer coefficient arises from  

 
 wallR,wallTC,

4
wallR,

4
wallTC,RTC,

rad TT

TTC




    , Equation 111 

employing RTC,C , a function comprising the optical and geometrical figures following 

    TCR,RTC,RTC

RTC,RTC
RTC, 111 





C    , Equation 112 

with the Stefan-Boltzmann constant  , the emissivity of the thermocouple TC , the emissivity of 

the reactor R  as well as the view factors RTC,  and TCR, .104 

The view factor 1,2  is defined as the fraction of radiation emitted by surface 1 which is captured 

by surface 2 .105 Since the surface of the reactor wall is much larger than the surface at the tip 

of the thermocouple and 1RTC,  , which means that approximately all radiation leaving the tip 

of the thermocouple is intercepted by the surface of the reactor wall, the reciprocity relation for 

view factors leads to 0TCR,  . Consequently, Equation 112 can be simplified and  

                                                 
104 cp. [VDI, 2006], p. A 6, p. Ka 7 
105 cp. [Incropera, 2002], p. 790 
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RTCRTC,  C    . Equation 113 

Radiative heat transfer coefficients calculated for two temperatures of the thermocouple and 

arising from the temperature difference for various temperatures of the reactor wall are 

presented in Figure 5-6 based on an emissivity function according to Figure 5-3. As can be 

extracted from the diagram, the radiative heat transfer coefficient lies in the range between 

16 W/(m2 K) and 23 W/(m2 K). 
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Figure 5-6: Radiative heat transfer coefficients for two temperatures of the tip of the 
thermocouple (800 °C and 1600 °C) as a function of the temperature difference between the 
thermocouple and the reactor 

 

5.1.4 Comparison of heat transfer coefficients and consequences 

The convective heat transfer coefficient reaches – partly an order of magnitude – higher values 

than the radiative heat transfer coefficient for all considered combinations as can be seen in 

Figure 5-7, where the ratio of convective to radiative heat transfer coefficient is depicted. A 

minimum ratio of about 4, determined for 95 sccm Ar, shows that the heat transfer between the 

reactor wall as well as the fluid to the thermocouple is dominated by convection. Thus, the 

measured temperature is predominantly a result of the convective heat transfer between the 

thermocouple and the surrounding fluid.  
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Figure 5-7: Ratio of convective heat transfer coefficient to radiative heat transfer coefficient for 
different combinations of temperature of the thermocouple (TC) and temperature of the reactor 
wall as a function of the standard volume flow of argon or helium. Material properties of argon 
and helium were calculated for the arithmetic mean of the temperature of the thermocouple and 
the reactor wall. Standard pressure. 

However, with the current configuration it was not possible to measure the temperature at a 

certain point inside the reactor, since the thermocouple covered around 25 % of the cross 

sectional area of the reactor and consequently the tip of the thermocouple attained a somehow 

averaged temperature of the fluid in contact. The geometrical situation is illustrated in Figure 

5-8. 

   

Figure 5-8: Geometrical situation of the thermocouple in center position (a) and in wall position 
(b) inside the reactor (sectional view). The color illustrates the temperature distribution in front 
of the thermocouple near the inlet of the reactor (red = hot, blue = cold). 

reactor 

(a) (b) 

inner wall 
of reactor 

contour of 
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measuring 
junction 
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As a result, only reaction conditions characterized by a moderate radial temperature gradient in 

the relevant region of the reactor should be considered for the kinetic evaluation, meaning the 

determination of kinetic parameters. A moderate radial temperature gradient assures that the 

temperatures of the fluid near the thermocouple, which could influence the temperature 

measurement, do not differ considerably. Consequently, at axial position z  the temperature in 

the center of the reactor, where the radial position accounts for 0, )(C zT  can be well 

approximated by the temperature of the thermocouple in center position )(CPTC zT  : 

)()0,()( CPTCC zTrzTzT     . Equation 114 

Moreover, the temperature of the thermocouple in wall position )(WPTC zT   is a good estimation 

of the temperature of the wall of the reactor, where the radial position accounts for the inner 

radius of the reactor iR,R , )(W zT  and the temperature of the fluid next to it: 

)(),()( WPTCiR,W zTRrzTzT     . Equation 115 

The latter supposition is fortified by the fact that radiative heat transport supported the 

measurement of the wall temperature. Furthermore, contact between the reactor wall and the tip 

of the thermocouple in wall position allowed a certain conductive heat transfer. 

It is assumed that a moderate radial temperature gradient at position z  is fulfilled, when  

2

K)(K)(
05.0K)()( CPTCWPTC

CPTCWPTC

zTzT
zTzT 




    . Equation 116 

The region of the reactor between 0z , corresponding to the upper edge of the heated region 

of the tube furnace, and mm320z , corresponding to the position of the tip of the 

thermocouple during the cracking experiments, was covered by temperature measurement. 

Maximum temperatures and by far most of temperatures higher than 75 % of the maximum 

temperature of the considered temperature profile on a K-scale can be found within the 

aforementioned limits. This region was considered as the relevant region. It comprises 17 

positions, since a step size of 20 mm was chosen for the temperature measurement. The 

temperature profiles determined with the thermocouple for different sets of nominal furnace 
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temperature and residence time were examined with respect to the radial temperature 

gradients. Table 5-2 gives an overview about the percentage of positions with moderate radial 

temperature gradients inside the relevant region according to the abovementioned definition 

regarding temperature profiles gained with argon. It was assumed that a percentage higher than 

75 % is acceptable and that respective sets of /furnaceT  could be employed for the kinetic 

evaluation, whereas other conditions – eight respecting argon – should be rejected for the 

evaluation step, due to an increased uncertainty of temperatures resulting from the lower 

percentage of valid positions. 

Table 5-2: Review of temperature profiles gained with argon regarding the existence of moderate radial 
temperature gradients in the relevant region of reactor 

/furnaceT -set Cinfurnace T  
Level of 

sccminArN,V  

Percentage of positions  
with moderate radial 

temperature gradients 
inside relevant region in % 

1 95 100 (17 / 17) 

2 200 100 (17 / 17) 

3 350 100 (17 / 17) 

4 685 100 (17 / 17) 

5 

1200 

2000 88.2 (15 / 17) 

6 340 100 (17 / 17) 

7 650 100 (17 / 17) 

8 1300 100 (17 / 17) 

9 2600 76.5 (13 / 17) 

10 

1300 

4800 64.7 (11 / 17) 

11 700 100 (17 / 17) 

12 1400 100 (17 / 17) 

13 2600 82.4 (14 / 17) 

14 3800 64.7 (11 / 17) 

15 

1400 

6500 29.4 (5 / 17) 

16 1600 100 (17 / 17) 

17 2800 82.4 (14 / 17) 

18 4600 58.8 (10 / 17) 

19 7200 29.4 (5 / 17) 

20 

1500 

9800 0 (0 / 17) 

21 2000 100 (17 / 17) 

22 3350 76.5 (13 / 17) 

23 6500 47.1 (8 / 17) 

24 

1600 

9800 5.9 (1 / 17) 

    

< 75 % 75 % – 99.9 % 100 %  
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As can be gathered from Table 5-3, regarding helium all sets of nominal furnace temperature 

and residence time meet the requirements defined above and could be employed for the kinetic 

evaluation. 

Table 5-3: Review of temperature profiles gained with helium regarding the existence of moderate radial 
temperature gradients in relevant region of reactor 

/furnaceT -set Cinfurnace T  
Level of 

sccminHeN,V  

Percentage of positions  
with moderate radial 

temperature gradients 
inside relevant region in % 

25 1300 3800 100 (17 / 17) 

26 2800 100 (17 / 17) 

27 3800 100 (17 / 17) 

28 

1400 

6500 94.1 (16 / 17) 

29 1500 3800 100 (17 / 17) 

    

< 75 % 75 % – 99.9 % 100 %  

Considering a laminar flow through the reactor a parabolic temperature profile at the axial 

position z  following  
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zTzTzTrzT     Equation 117 

is a reasonable approach for the radial temperature distribution ),( rzT  inside the tube reactor 

at the axial position z , employing respective temperatures of the wall and the center of the 

reactor )(W zT  and )(C zT .106 

5.2 Diffusion 

Diffusion inside the reactor could occur in axial ( z ) and radial ( r ) direction. The considered gas 

mixture only contained methane and argon or helium at the inlet of the reactor. However, while 

the reactions proceed other substances come into play. The diffusive mass flux density of gas 

component i  in a gas mixture containing speciesN  species *
ij  can be expressed as  

                                                 
106 cp. [Adunka, 2004], p. 6-34 
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j    , Equation 118 

if the average velocity of the mass of a volume element is chosen as the reference. Employed 

are the density of the gas mixture mix , the molecular weight of the considered component i  

iM , of other components k  kM , and of the gas mixture mixM  as well as the gradient of the 

molar fraction of component k  kx . In contrast to the simple formulation of the equation, the 

diffusion coefficients kiD ,
ˆ  for gas mixtures comprising more than two species are often 

unknown.107 

5.2.1 Axial diffusion 

Figure 5-9 represents the Péclet number Pe , calculable by  

PrRePe     , Equation 119 

as a function of the standard volume flow and the nominal furnace temperature evaluated for 

standard pressure being a good approximation of pressures observed during the experiments. 

Axial diffusion is negligible for most reaction conditions, since the Péclet numbers usually 

exceed a value of 10, which is a reasonable limit for the exclusion of any influences of 

downstream conditions on the conditions at a certain axial position.108 However, reaction 

conditions based on the two lowest standard volume flows of argon at 1200 °C nominal furnace 

temperature (95 sccm and 200 sccm) undercut the limit of 10, suggesting the disregard of 

concerned reaction conditions in subsequent kinetic calculations. 

                                                 
107 cp. [Baehr, 2006], p. 79 (information from [Sherwood, 1975]), p. 248 et seqq. and [VDI, 2006], 
p. Da 29 
108 cp. [Patankar, 1980], p. 102 
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Figure 5-9: Péclet number for different standard volume flows of argon and helium through the 
tube reactor based on the nominal furnace temperature and standard pressure 

 

5.2.2 Radial diffusion 

Diffusive radial molar flows were calculated for each considered product component i , rejecting 

all other components of the gas mixture except for the dilution gas (DG), in order to assess the 

relevance of radial diffusive effects. Although strictly speaking these values are only valid for 

respective binary mixtures, they should lead to a reliable estimation of the order of magnitude of 

diffusive flows, because in any case the dilution gas forms by far the main fraction of considered 

gas mixtures. Molar fractions of argon below 80 % were only observed in one case, at reaction 

conditions based on 20 % initial molar fraction of methane. Corresponding to Fick’s Law of 

Diffusion radial,ij , the diffusive molar flux density in radial direction concerning component i  in a 

binary gas mixture containing component i  and the dilution gas (DG) relative to the average 

radial molar velocity (  0 for laminar flow) can be calculated by  



5 Kinetic evaluation  
   

 

 108 

r

x
Dcj i

ii d

d
DG,radial,     , Equation 120 

where c  represents the concentration and DG,iD  the binary diffusion coefficient.109 According to 

the ideal gas law110, the concentration c  arises from  

T

p
c


    , Equation 121 

with the absolute pressure p , the universal gas constant  , and the temperature T . Binary 

diffusion coefficients kiD ,  also depend on the temperature T  as well as on the pressure p  and 

can be approximated by 
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D     Equation 122 

for low pressures employing the diffusion volume dV  (method of Fuller).111 The diffusion volume 

for different species is provided explicitly for simple molecules like helium, argon, and hydrogen, 

whereas values for more complex molecules like methane and the C2-hydrocarbons have to be 

calculated from contributions of different atoms forming the molecule. Respective values are 

provided in Table 5-4. 

Resulting from Equation 121 and Equation 122 DG,iDc   is independent from the pressure and 

proportional to 0.75T . The diffusive flux density reaches its maximum at the highest temperature, 

which can be approximated by the nominal furnace temperature furnaceT .  

 

 

                                                 
109 cp. [Baehr, 2006], p. 79 and [Incropera, 2002], p. 862 et seq. 
110 see Equation 1 
111 cp. [VDI, 2006], p. Da 27 et seq.  
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Table 5-4: Diffusion volume of various species used for the method of Fuller 

Species indV  

argon 16.2 

helium 2.67 

hydrogen 6.12 

methane 25.14 (= 1 * 15.9 + 4 * 2.31) 

ethane 45.66 (= 2 * 15.9 + 6 * 2.31) 

ethene 41.04 (= 2 * 15.9 + 4 * 2.31) 

ethyne 36.42 (= 2 * 15.9 + 2 * 2.31) 

A general measure of the relevance of radial diffusive effects may be the here introduced 

diffusive quotient iQ radial,D, , representing the ratio of the molar flux of component i  penetrating 

the cross section of the reactor )(zni  to the estimated characteristic radial molar diffusive flux of 

component i  through a certain diffusion face DA  evaluated at the axial position z  )(D zn ,i : 

Dradial,D
radial,D,

)(

)(

)(

Aj

zn

zn

zn
Q

i

i

,i

i
i 







   . Equation 123 

A characteristic diffusion face DA  was defined by m002.0D R , which is half of the inner radius 

of the reactor ( m004.0iR, R ), and m001.0z , being a reasonable increment for kinetic 

calculations as described later in Chapter 5.5. A respective illustration can be found in Figure 

5-10. 

 

Figure 5-10: Geometric situation in the context of radial diffusion 
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Since  

)()()()()( gtot, znzxznzxzn i
j

jii       , Equation 124 

employing the average molar fraction of component i  at the axial position z  )(zxi , and  

,0CHDG,0tot,g,0CHDG,0 44
2 nnnnn      , Equation 125 

because a maximum molar flow in the gas phase is achieved for total conversion of methane to 

hydrogen and carbon, )(gtot, zn  can be approximated by  

,0CHDG,0gtot, 4
)( nnzn      , Equation 126 

with a maximum uncertainty of  

 
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




   . Equation 127 

Thus, the maximum uncertainty implied by the aforementioned approximation of )(gtot, zn  is 

usually below 10 %.  

Applying Equation 120, Equation 124 as well as Equation 126 in Equation 123 and substituting 

finite differences for the derivative of ix  with respect to r , iQ radial,D,  can be assessed via 



5 Kinetic evaluation 
   

 111

 
DDG,

,0CHDG,0
radial,D,

4

A
r

x
Dc

nnx
Q

i
i

i
i










   . 

Equation 128 

It is assumed that the consideration of iR,Rr   and iiii xrxRrxx  )0()( iR,  lead to 

reasonable and roughly characteristic values for iQ radial,D, , whose calculation then could be 

simplified to  
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Equation 129 

evaluating DG,iDc   for the nominal furnace temperature furnaceT  and the pressure at the inlet of 

the reactor. 
4radial,CHD,Q  is depicted in Figure 5-11 as a function of the residence time, the 

nominal furnace temperature, the initial molar fraction of methane, and the dilution gas.  
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Figure 5-11: Diffusive quotient regarding methane as a function of the residence time, the 
nominal furnace temperature, the initial molar fraction of methane, and the dilution gas 
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Since ,0CHDG,0 4
nn    is practically constant for a /furnaceT -set, 

4radial,CHD,Q  (like all iQ radial,D, ) is 

independent from ,0CH4
x . 

4CHradial,D,Q  decreases with residence time and temperature. Somewhat 

lower values for 
4CHradial,D,Q  are achieved for helium as the dilution gas due to greater values of 

diffusion coefficients. The graphs indicate that radial diffusive effects may play a role, especially 

at higher residence times. Similar trends obtain for 
2Hradial,D,Q  as can be seen in Figure 5-12 as 

well as for 
62HCradial,D,Q , 

42HCradial,D,Q , and 
22HCradial,D,Q  (see Appendix D). While diffusive quotients 

for C2-hydrocarbons reach higher values than 
4CHradial,D,Q , 

2Hradial,D,Q  attains clearly lower values 

compared to 
4CHradial,D,Q  resulting from the high diffusivity of hydrogen. This suggests that radial 

diffusive effects concerning hydrogen could already play a role at lower residence times. 
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Figure 5-12: Diffusive quotient regarding hydrogen as a function of the residence time, the 
nominal furnace temperature, the initial molar fraction of methane, and the dilution gas 

The present information signifies that radial diffusive effects are mostly of minor importance. 

However, it has to be kept in mind, that diffusive fluxes were calculated based on a 

characteristic diffusion face with a length of 1 mm. Consequently, even for lower values of 

iQ radial,D,  diffusive fluxes could accumulate over several step sizes through the reactor. 

Moreover, the evolution of ix  in the reactor has to be evaluated later in order to verify 

abovementioned presumptions. 
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5.3 Flow model 

In order to investigate the character of the flow inside the reactor, simulations were carried out 

employing ANSYS112 for the unheated entrance region upstream the inlet of the reactor and 

COMSOL Multiphysics113 for the reactor itself. According to the measurement of temperature 

profiles, only the dilution gases were considered in the gas phase. Employed material property 

functions form part of Appendix D. 

5.3.1 Flow conditions at the inlet of the reactor 

Figure 5-13 represents the geometry upstream the inlet of the reactor, which was named the 

entrance region of the reactor. All parts of the entrance region have an inner diameter of 

0.008 m.  

 

Figure 5-13: Geometry upstream the inlet of the reactor (entrance region). Dimensions and axial 
positions in mm unless otherwise stated. 

As stated before, the Reynolds number, which is amongst others a function of the hydraulic 

diameter hd , provides information about the general character of a flow. For round tubes with 

an inner diameter id , it can be shown that 

                                                 
112 ANSYS 12.0.1 
113 COMSOL Multiphysics 3.4.0.248 

Equivalent  
geometry  
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ih dd     . Equation 130 

Reynolds numbers calculated for the conditions in the entrance region are lower than 2300 and 

denote that a laminar flow has to be considered in the entrance region (like also in the 

reactor).114 The entry length el  complies with the length of the region downstream an elbow or a 

vessel outlet, where the velocity profile of a flow has not developed entirely yet and can be 

estimated by 

ilame Re dbl     , Equation 131 

with 06.0lam b .115 Table 5-5 provides information about the Reynolds number in the entrance 

region and at the inlet of the reactor as well as the corresponding entry length regarding argon. 

The entry length lies in the range between 0.0097 m and 0.9983 m.  

Respective information about the entry lengths to be taken into account for helium is given in 

Table 5-6. It can be seen that a significantly shorter distance is necessary in order to achieve a 

developed flow. Values for the entry length are clearly below 0.08 m. 

 

 

 

 

 

 

 

 

                                                 
114 cp. Chapter 5.1.2 
115 cp. [Munson, 2002], p. 448 and [Schröder, 2000], p. 148. Other value: 0.056, cp. [Baehr, 2006], p. 374. 
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Table 5-5: Reynolds numbers at the inlet of the reactor and corresponding entry lengths for argon 

/furnaceT -set Cinfurnace T  sccmintot,0N,V  Re  minel  

1 95 20 0.0097 

2 200 42 0.0204 

3 350 69 0.0333 

4 685 145 0.0697 

5 

1200 

2000 424 0.2036 

6 340 71 0.0343 

7 650 138 0.0661 

8 1300 276 0.1324 

9 2600 531 0.2548 

10 

1300 

4800 937 0.4496 

11 700 136 0.0654 

12 1400 297 0.1424 

13 2600 552 0.2649 

14 3800 805 0.3862 

15 

1400 

6500 1378 0.6616 

16 1600 318 0.1529 

17 2800 560 0.2689 

18 4600 929 0.4460 

19 7200 1462 0.7016 

20 

1500 

9800 1997 0.9587 

21 2000 393 0.1888 

22 3350 710 0.3408 

23 6500 1377 0.6608 

24 

1600 

9800 2080 0.9983 

 

Table 5-6: Reynolds numbers at the inlet of the reactor and corresponding entry lengths for helium 

/furnaceT -set Cinfurnace T  sccmintot,0N,V  Re  minel  

25 1300 3800 88 0.0422 

26 2800 64 0.0310 

27 3800 89 0.0428 

28 

1400 

6500 153 0.0734 

29 1500 3800 88 0.0422 

As can be seen in Figure 5-13, the length of the straight part of constant inner diameter above 

the inlet of the reactor equals 112 mm. As a consequence, a fully developed laminar velocity 

profile cannot be guaranteed for all experimental conditions leading to an entry length longer 

than 112 mm. Consulting Table 5-5, it becomes clear that applied experimental conditions 
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based on argon standard volume flows above 700 sccm lead to an entry length longer than the 

provided vertical way within the entrance region. Contrariwise, 112 mm are long enough to 

ensure a fully developed velocity profile for all applied experimental conditions regarding helium, 

due to the low Reynolds numbers. An ideal, fully developed laminar velocity profile )(rv  follows 
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r
vrv    ,116 Equation 132 

with the inner radius of the considered tubular part iR  and the average velocity according to 

Equation 102 evaluated for the conditions at the inlet of the reactor defined by the temperature 

inletR,T  and the pressure inletR,p . 

In order to provide appropriate information about the flow conditions at the inlet of the reactor for 

argon standard volume flows above 700 sccm and to know how much the actual velocity profile 

differs from the ideal one, the flow through the entrance region was simulated with ANSYS. 

Information about the geometry of the ANSYS model of the entrance region as well as about the 

mesh of the reactor inlet face is provided in Figure 5-14. Velocities along two lines on the 

reactor inlet face perpendicular to the axis of the reactor and to each other, namely Line X and 

Line Z, were evaluated. Both lines have a length of 8 mm corresponding to the diameter of the 

reactor. A position on Line X and Line Z relative to the center position is indicated by LineX  and 

LineZ , respectively. Further information about the configuration of the ANSYS models can be 

found in Appendix E. 

                                                 
116 cp. [Baehr, 2006], p. 376 
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Figure 5-14: Basics concerning the ANSYS 12 model of the entrance region as well as positions 
of Line X and Line Z on the reactor inlet face 

Figure 5-15 shows the result of the flow simulation with ANSYS 12 concerning the velocity 

component v  in Y-direction, which is the direction normal to the reactor inlet face, for /furnaceT -

set 11 based on a standard volume flow of 700 sccm Ar. Velocities u  and w  at the reactor inlet 

in X- and Z-direction, respectively, are usually significantly lower than the velocity in Y-direction 

and are not considered in the following. 

The velocity v  (multiplied by - 1 in order to provide positive values) along Line X and Line Z is 

represented in Figure 5-16 together with the fully developed laminar velocity profile for 

/furnaceT -set 11 (700 sccm Ar). As indicated by Equation 131, the length between the elbow of 

the entrance region and the inlet of the reactor is adequately long resulting in an almost 

completely mature velocity profile. Velocities along Line X and Line Z are practically equal to 

each other and velocities in Y-direction for an ideally laminar profile. 
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Figure 5-15: Results of flow simulations with ANSYS 12 – Velocity in Y-direction (normal to 
face) at the reactor inlet for a standard volume flow of 700 sccm Ar 
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Figure 5-16: Results of ANSYS 12 calculations for the velocity in Y-direction (normal to face) 
along Line X and Line Z at the reactor inlet compared to an ideally laminar velocity profile. 
Corresponding conditions: 700 sccm Ar and 1400 °C nominal furnace temperature. 
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As expected, a higher volume flow in the entrance region causes a worse congruence of the 

ideally laminar profile and the of velocity profiles along Line X and Line Z. Figure 5-17 

expresses the simulation output for /furnaceT -set 13 (1400 °C, 2600 sccm Ar).  
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Figure 5-17: Results of ANSYS 12 calculations for the velocity in Y-direction (normal to face) 
along Line X and Line Z at the reactor inlet compared to an ideally laminar velocity profile. 
Corresponding conditions: 2600 sccm Ar and 1400 °C nominal furnace temperature. 

In order to provide plausible information about the velocity distribution at the inlet of the reactor 

for subsequent 2D-simulations with COMSOL Multiphysics, velocity profiles determined by 

ANSYS had to be transformed into a reasonably averaged velocity profile. This was attempted 

by firstly computing an average value for every distance from the center point on Line X and 

Line Z following 

 )()(5.0)()( LineLineLineX LineLineX Line XvXvXvXv      Equation 133 

as well as 

 )()(5.0)()( LineLineLine ZLineLine ZLine ZvZvZvZv     , Equation 134 

and secondly by averaging the so determined velocity profiles by 
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  LineLineLine ZLineLineX Line

LineZX LineLineZX LineLineZX LineLineZX Line

with,)()(5.0

)()()()(

ZXZvXv

ZvZvXvXv



 
   . Equation 135 

Velocity profiles calculated for /furnaceT -set 24 (1600 °C, 9800 sccm Ar), which show the 

greatest discrepancy compared to the ideal case, are depicted in Figure 5-18.  
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Figure 5-18: Results of ANSYS 12 calculations for the velocity in Y-direction (normal to face) 
along Line X and Line Z at the reactor inlet compared to an ideally laminar velocity profile. 
Corresponding conditions: 9800 sccm Ar and 1600 °C nominal furnace temperature.  

With the intention of providing values for the velocity in Y-direction, normal to the reactor inlet 

face, at the reactor inlet as a function of the radial position r , 6th order polynomial fit functions 

were applied to the averaged velocity profiles ZX Line v  according to 

0)( 01
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2
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3
4

4
5

5
6

6fitted,ZX Line  rkrkrkrkrkrkrkrv     Equation 136 

as can be seen in Figure 5-17 and Figure 5-18. The coefficients 6k , 5k , 4k , 3k , 2k , 1k , and 0k  

for sets of nominal furnace temperature and standard volume flow, with an calculated entry 

length longer than the provided distance of 112 mm are provided in Appendix E along with 

further ANSYS results concerning the components of velocity in X-, Y-, and Z-direction on the 
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reactor inlet face. The conformance of ZX Line v  and fitted,ZX Line v  satisfies at least 99.2 % and 

typically around 99.6 % for the respected conditions. Additional calculations considering not 

only argon but a mixture of argon and methane with 10 % molar fraction of the latter species led 

to the conclusion that differences between fitted,ZX Line v  for the pure argon flow and the gas 

mixture are negligible. 

5.3.2 Flow conditions inside the reactor 

The fit functions for the averaged velocity profiles at the inlet of the reactor resulting from 

ANSYS calculations were employed in subsequent simulations with COMSOL Multiphysics 3.4. 

The usage of COMSOL Multiphysics targeted a better impression about probable conditions 

inside the reactor. An overview about the geometry and basic settings of the defined 2D reactor 

model is provided in Figure 5-19. The inlet of the reactor model used in COMSOL Multiphysics 

corresponds to the axial position 0z , whereas the outlet of the reactor can be found at 

position m833.0z . The thermocouple was implemented as a solid and uniform body in order 

to reduce the complexity of the model. The wall thickness of the reactor was virtually decreased 

to 1 mm. However, an influence on the results of the simulation is not expected, due to the fact 

that the temperature of the inner wall of the reactor was provided anyway.  

 

Figure 5-19: Geometry of the reactor model in COMSOL Multiphysics with the reactor wall, the 
fluid region, and the thermocouple (TC) along with basic settings. Level of mesh refinement: 3. 
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The conditions in the reactor were simulated based on the weakly compressible Navier-Stokes 

mode concerning the flow as well as on convection and conduction concerning the heat 

transfer. The weakly compressible Navier-Stokes mode comprises the fully compressible 

composition of the equation of continuity as well as the equations of momentum and is 

applicable for Mach numbers below 0.3. The Mach number is defined as 

sound

Ma
v

v
    , Equation 137 

with the velocity v  and the velocity of sound soundv , which for an ideal gas arises from  

 TRvsound    , Equation 138 

employing the specific gas constant R , the temperature T , and the specific heat ratio  .117 

The specific gas constant R  is connected to the universal gas constant   by 

M
R


    , Equation 139 

where M  represents the molecular weight of the considered gas, while the specific heat ratio 

  is defined as 

v

p

c

c
    .118 Equation 140 

Furthermore, the difference between the specific heat capacity at constant pressure pc  and the 

specific heat capacity at constant volume vc  results in the specific gas constant R :  

                                                 
117 cp. [Munson, 2002], p. 686 et seqq. 
118 cp. [Munson, 2002], p. 680 et seqq. 
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Rcc  vp    . Equation 141 

It can be shown, that a maximum Mach number around 0.03 for experiments with argon can be 

expected, whereas lower Mach numbers in the range of 0.006 represent the upper limit for 

experiments with helium. Consequently, the weakly compressible Navier-Stokes mode is 

applicable. 

In absence of definite information about the wall temperatures of the reactor, especially in the 

part above the heated region of the reactor, simplified temperature profiles for the wall were 

applied for the calculations with COMSOL Multiphysics. These simplified wall temperature 

profiles were defined by 

 the nominal furnace temperature within the heated length of the reactor 

( m463.0m213.0  z , corresponding to position 0 mm… 250 mm), 

 the measured temperature at the inlet of the reactor ( 0z , corresponding to position     

- 213 mm), 

 the measured temperature at the outlet of the reactor ( m833.0z , corresponding to 

position 620 mm), and 

 linear interpolation for positions in between.  

Preliminary calculations employing the established equations for the pressure drop in a laminar 

pipe flow indicated that the difference between the pressure at the inlet of the reactor and the 

outlet of the reactor should be marginal for the considered conditions.119 Higher measured 

pressure differences might have been a result of carbon deposit in region B as explained in 

Chapter 5.3.2.3. Therefore it is admissible to state that the pressure measured at the inlet of the 

reactor is relevant for the major part of the reactor. Thus, the pressure at the outlet of the 

reactor was set to the pressure measured at the reactor inlet.  

The mesh was refined until the output of the simulations was independent from the level of 

refinement. The independence was achieved for level 3 of mesh refinement corresponding to 

187189 nodes and 366912 elements. The reactor wall and the thermocouple were modeled 

according to material properties presented in Chapter 5.1.1. However, the significance of AL23 

properties on the results of the calculation is marginal. Although high temperatures – existent in 

                                                 
119 Respective equations can e. g. be found in [VDI, 2006], p. Lab 1 et seqq. 
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the cracking reactor – suggest the consideration of radiative heat transfer, simulations without 

are valid for the greatest part of the reactor, since the inert gases argon and helium represent 

transparent phases. The implementation of radiative heat transfer only influences the 

temperature distribution downstream the tip of the thermocouple, where radiative exchange 

occurs between the inner wall of the reactor and the surface of the thermocouple. Keeping the 

approximate character of the calculations in mind, the implementation of radiation was rejected 

in favor of a better time efficiency of the simulations. Further details characterizing the model 

designed with COMSOL Multiphysics can be found in Appendix F. 

5.3.2.1 Temperature distribution 

Depending on the standard volume flow through the reactor and the provided temperature of 

the inner wall of the reactor, the fluid region (as well as the thermocouple) attains particular 

temperature distributions as illustrated in Figure 5-20 showing views not true to scale.  

 

Figure 5-20: Results of COMSOL Multiphysics calculations based on a simplified temperature 
profile for the wall of the reactor concerning the temperature distribution in the reactor, in the 
wall of the reactor as well as in the thermocouple for different sets of nominal furnace 
temperature and standard volume flow: 1200 °C - 95 sccm Ar (a), 1400 °C - 2600 sccm Ar (b), 
1600 °C - 9800 sccm Ar (c), and 1400 °C - 3800 sccm He (d) 

The higher the standard volume flow the greater are the radial differences in temperature. Due 

to better thermal conductivity characteristics, radial temperature profiles for helium are more 

  (a) (b) 

  (c) (d)
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even than for argon. Figure 5-21 shows the results of COMSOL Multiphysics calculations 

concerning the center temperature ( 0r ) in region A as well as the temperature along the wall 

of the thermocouple ( m002.0r ) in region B compared to the temperature profiles determined 

by thermocouple measurements for selected sets of nominal furnace temperature and standard 

volume flow. Corresponding to Figure 5-20 the difference between the temperature in the center 

of the reactor and the applied temperature of the wall increases when the standard volume flow 

increases.  
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Figure 5-21: Results of COMSOL Multiphysics calculations based on a simplified temperature 
profile for the wall of the reactor concerning the temperature evaluation in the center of 
region A and along the wall of the thermocouple in region B compared to measurement with a 
thermocouple in wall and center position for different sets of nominal furnace temperature and 
standard volume flow: 1200 °C - 95 sccm Ar (a), 1400 °C - 2600 sccm Ar (b), 1600 °C - 9800 sccm 
Ar (c), and 1400 °C - 3800 sccm He (d) 

Although calculated and real values of temperature in the center of the reactor may differ in 

detail, for instance due to the simplified applied wall temperature, the shape of the graphs 

suggests that it is applicable to interpret the measured temperatures of the thermocouple in wall 

and center position as a somehow averaged temperature of the fluid in contact.120 

                                                 
120 cp. Chapter 5.1.4 

(a) (b) 

(c) (d)



5 Kinetic evaluation  
   

 

 126 

Consequently, basic characteristics of the results of the flow simulations should be transferable 

to the real situation. 

5.3.2.2 Flow lines and nested tube reactors 

In every case, flow lines show a certain kind of order more or less matching the ideal laminar 

flow conditions, which would be represented by flow lines parallel to the rotation axis of the 

reactor characterized by 0r . The flow lines for helium and for low standard volume flows of 

argon show good parallelism. However, the higher the standard volume flow the worse is the 

congruence with the ideally laminar situation. Further figures of flow lines can be found in 

Appendix F. 

 

 

Figure 5-22: Results of COMSOL Multiphysics calculations based on a simplified temperature 
profile for the wall of the reactor concerning flow lines for different sets of nominal furnace 
temperature and standard volume flow: 1200 °C - 95 sccm Ar (a), 1400 °C - 2600 sccm Ar (b), 
1600 °C - 9800 sccm Ar (c), and 1400 °C - 3800 sccm He (d) 

A plug flow reactor model considers a turbulent flow and consequently an equal residence time 

of every volume element entering the reactor. Contrariwise, a laminar flow features different 

residence times depending on the radial position. The radial position of a volume element being 

part of an ideally laminar flow keeps constant on its way through the reactor. In order to reflect 
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different residence times of volume elements, the reactor was virtually divided into nested tube 

reactors (NTR) as presented in Figure 5-23.121 

 

Figure 5-23: Illustration of the reactor divided into nested tube reactors (NTR) 

Since the flow lines are not perfectly parallel with respect to the vertical axis of symmetry, it is 

not advisable to apply an enormous number of nested units because a significant fraction of 

flow lines would leave the unit in which they started. Respecting extreme conditions, defined by 

1600 °C nominal furnace temperature and 9800 sccm Ar, a maximum number of five NTRs in 

region A and four NTRs in region B is rational as demonstrated in Figure 5-24. A reasonable 

number of NTRs in region A regarding the flow conditions not rejected for kinetic evaluations 

resulting from considerations explained before, predominantly in Chapter 5.1.4, is higher and 

lies in the range from five to ten. Here ten or less NTRs guarantee that most of flow lines stay in 

the same unit or at least enter it again after dropping out. 

After leaving region A the flow of amount of substance has to be distributed to the nested tube 

reactors of region B. Near the tip of the thermocouple the velocity of flow elements shows 

considerable components in radial direction. At axial position m537.0z , 5 mm downstream 

the tip of the thermocouple, radial velocities reach negligible levels again. Figure 5-25 (a) and 

(b) show the fraction of the total molar flow present in nested tube reactor 1 - 4 at position 

m537.0z  of region B, respectively as a function of the molar flow of argon and helium at the 

inlet of the reactor. It can be extracted that the concerning fraction is obviously independent 

from other factors like the temperature, since practically identical values are achieved for 

differing reaction conditions as long as the molar flow at the reactor inlet is comparable. Hence 

                                                 
121 cp. [Missen, 1999], p. 394 
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the aforementioned neglect of radiative heat transfer, which essentially influences the 

temperatures at the thermocouple, can be justified. 

 

Figure 5-24: Results of COMSOL Multiphysics calculations based on a simplified temperature 
profile for the wall of the reactor concerning flow lines for 1600 °C nominal furnace temperature 
and 9800 sccm argon with indication of virtual nested tube reactors (NTR) 

Resulting from the high dilution, the total molar flow through the reactor varies only slightly, 

namely at most by  ,0CHDG,0,0CH 44
nnx    as already stated in Chapter 5.2.2, with the progress of 

the reaction and, consequently, with the axial position in the reactor. Accordingly, the molar flow 

passing from region A to region B roughly matches the molar flow at the reactor inlet. Thus, it is 

admissible to distribute the total molar flow at the border between region A and region B to the 

particular virtual nested tube reactors of region B consistent with the polynomial fit functions 

introduced in Figure 5-25. Respective values for the coefficients 3k , 2k , 1k , and 0k  of the fit 

functions can be found in Appendix F.  
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Figure 5-25: Results of COMSOL Multiphysics calculations based on a simplified temperature 
profile for the wall of the reactor concerning the fraction of the molar flow at the inlet of the 
reactor in particular nested tube reactors in region B 5 mm downstream the tip of the 
thermocouple as a function of the molar flow of argon (a) and helium (b) at the reactor inlet 

 

5.3.2.3 Pressure distribution 

Figure 5-26 gives information about the pressure distribution inside the reactor for different sets 

of nominal furnace temperature and standard volume flow. As one could have expected, radial 

pressure differences are negligible. Contrariwise, a moderate pressure drop in axial direction 

has to be reported.  

The development of the pressure along lines of constant radius in region A ( m002.0r ) and 

region B ( m003.0r ) extracted from information provided in Figure 5-26 is represented in 

Figure 5-27. The COMSOL Multiphysics calculations show that the main pressure drop occurs 

in region B, where part of the cross section of the reactor is blocked by the thermocouple, and 

thereby confirm results of preliminary calculations referred to before.122 However, in most cases 

experimentally determined pressure drops are somewhat higher than the calculated ones as 

can be seen in Figure 5-27 exemplarily for the considered sets of nominal furnace temperature 

and standard volume flow. This is probably due to the deposit of generated carbon in the gap 

between thermocouple and reactor wall at locations where temperatures are not high enough to 

remove carbon deposit by burning. 

 

 

 

 

                                                 
122 see beginning of Chapter 5.3.2 
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Figure 5-26: Results of COMSOL Multiphysics calculations based on a simplified temperature 
profile for the wall of the reactor concerning pressure distribution inside the reactor for 
different sets of nominal furnace temperature and standard volume flow: 1200 °C - 95 sccm Ar 
(a), 1400 °C - 2600 sccm Ar (b), 1600 °C - 9800 sccm Ar (c), and 1400 °C - 3800 sccm He (d) 
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Figure 5-27: Results of COMSOL Multiphysics calculations based on a simplified temperature 
profile for the wall of the reactor concerning the pressure evaluation along average radii in 
region A and region B compared to experimental pressure differences between the inlet and the 
outlet of the reactor for different sets of nominal furnace temperature and standard volume flow 

Employing the present information, it is applicable to consider the pressure above the 

thermocouple as a constant, whereas a linear pressure drop is assumed for region B, where the 

thermocouple blocks the center of the reactor. Taking relevant axial locations into account, the 

pressure p  can be formulated as a function of the axial position z  according to 
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with mm320TC z . 

5.4 Kinetic model 

As stated above, the predominant species involved in the thermal dissociation of methane are – 

beside methane and the desired products hydrogen and carbon – the C2-hydrocarbons ethane, 
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ethene, and ethyne. Consequently, the applied kinetic model comprises the dehydrogenation 

reactions starting with methane, forming the C2-intermediates, and finally generating hydrogen 

and carbon: 

 2 CH4 (g) → C2H6 (g) + H2 (g)  {1} 

 C2H6 (g) → C2H4 (g) + H2 (g)   {2} 

 C2H4 (g) → C2H2 (g) + H2 (g)   {3} 

 C2H2 (g) → 2 “C” (s) + H2 (g)   {4} 

Numerous other species are involved in the cracking reactions; however, since the balance of 

hydrogen atoms is generally more or less satisfied, only low amounts of other (not considered) 

species could be found in the product flow. The partly remarkable disagreement concerning the 

balance of carbon atoms suggests that low fractions of further species with high C/H-ratio were 

implicated. Without the consideration of further species, the amount of substance of formed 

carbon is considerably overestimated.123 The reactions involved in the thermal dissociation of 

methane proceed in the gaseous phase (homogeneous character) and presumably on the 

surface of generated particles as well as on the wall of the reactor (heterogeneous character).124 

The extent of present experimental data prohibits a kinetic approach, which differentiates 

between homogeneous and heterogeneous reactions, because 

 the amount of generated carbon is not exactly predictable due to the presence of not 

considered C-rich species.  

 two types of generated carbon have to be distinguished: pyrocarbon and particulate 

carbon, whose functional dependencies of formation on the reaction conditions are not 

clear.  

 knowledge about functional dependencies of the BET surface of generated particulate 

carbon on the reaction conditions remains incomplete. 

 understanding of the fraction of generated carbon which does not pass the reactor but 

forms deposit inside is fragmentary. 

 information about favored locations of carbon deposit in the reactor is not concrete.  

                                                 
123 cp. Chapter 4.4 and Chapter 4.6.3 
124 cp. Chapter 4.7 
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Hence a certain reaction rate is interpreted as a combined result of homogeneous and 

heterogeneous effects. The reaction rate qr  of every considered reaction q  is a function of the 

reaction conditions, in particular of the temperature T  and the respective concentration of the 

reactant of reaction q  qcreactant, . It is defined in accordance with Equation 19, Equation 20, and 

Equation 21 by 

q

q
m

q
T

E

qq cekr reactant,,0

a,

 


   , Equation 143 

employing – respectively for reaction q  – the activation energy aE , the reaction order m , and 

the pre-exponential factor 0k .  

5.5 Procedure 

Different reactor models have been applied for the kinetic evaluation. In accordance with the 

findings concerning the flow conditions inside the reactor, a model based on nested tube 

reactors (NTR) was introduced.125 Since the relevance of radial diffusion could not be estimated 

sufficiently, two contrary cases were considered.126 On the one hand respective effects were 

entirely neglected, whereas on the other hand ideal radial diffusion (D) was presumed. 

Furthermore, a plug flow model (PFR) was applied as a reference model. 

For any model the volume of the reactor had to be divided into volume elements. Figure 5-28 

shows an illustration of one of these volume elements RV  along with entering and leaving 

molar flows. 

 

Figure 5-28: General configuration of a volume element of the reactor with ingoing and 
outgoing molar flows  

                                                 
125 cp. Chapter 5.3 
126 cp. Chapter 5.2.2 
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Depending on the reaction conditions, dominated by the reaction temperature RT  and pressure 

Rp , as well as on the kinetic parameters, the reaction rates of the considered reactions 1r , 2r , 

3r , and 4r  can be calculated employing Equation 143. In conformity with Equation 16 and the 

reaction scheme presented above, the molar flows leaving the particular volume element RV  

arise from 

R,1CH1entering,CHleaving,CH 444
Vrnn       Equation 144 

for methane, from 

R,2HC2R,1HC1entering,HCleaving,HC 62626262
VrVrnn       Equation 145 

for ethane, from 

R,3HC3R,2HC2entering,HCleaving,HC 42424242
VrVrnn       Equation 146 

for ethene, from 

R,4HC4R,3HC3entering,HCleaving,HC 22222222
VrVrnn       Equation 147 

for ethyne, from 

R,4H4R,3H3

R,2H2R,1H1entering,Hleaving,H

22

2222

VrVr

VrVrnn








    Equation 148 

for hydrogen, and from 
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R,4C""4entering,C""leaving,C"" Vrnn       Equation 149 

for carbon occupying qi ,  the stoichiometric coefficient of species i  concerning reaction q . The 

molar flow of the dilution gas keeps constant, since the inert dilution gas refuses to undergo any 

reaction. 

The concentration of species i  ic , input factor for the calculation of the reaction rate, was 

calculated following Equation 15, respecting the molar flows of gaseous species for the 

estimation of the volume flow according to the ideal gas law following 

22426224

entering,
R

R

HC,HC,HC,H,CHDG,






j

n
p

T
n

V

n
c

j
j

ii
i







   , 
Equation 150 

where the pressure was calculated depending on the considered axial position.127 A limitation of 

the sink terms guaranteed that the sink term of species i  (corresponding to the source term of 

species j  formed by the reaction, which consumes species i ) never exceeded the actual 

entering flow of species i . The molar flows leaving a particular volume element serve as the 

entering flows of the subsequent volume element. Finally, the calculated molar flows at the 

outlet of the reactor calculatedP,,CH4
n , calculatedP,,H2

n , calculatedP,,HC 62
n , calculatedP,,HC 42

n , and calculatedP,,HC 22
n  are 

employed in order to estimate the calculated conversion of methane and the calculated yields of 

hydrogen, ethane, ethene, and ethyne based on the respective initial molar flow of methane 

,0CH4
n . 

An optimization tool was used to find kinetic parameters, which allow best agreement between 

calculated values and experimental results.128 Following Chi-Square fitting the model error 

2
tot,E , which is the quantity to be minimized, was defined as  

                                                 
127 cp. Chapter 5.3.2.3, particularly Equation 142 
128 Optimization tool: Optimization Toolbox 4.0 embedded in MATLAB Version 7.6.0.324 (R2008a), 
Solver: “lsnonlin“ (Nonlinear least squares), algorithm based on the interior-reflective Newton method. For 
further information see Appendix G. 
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2
HC,

2
HC,

2
HC,

2
H,

2
CH,

2
tot, 22426224   EEEEEE     Equation 151 

featuring 
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and  
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k kj
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N

k
kjj    Equation 153 

based on sexperimentN  experimental conditions considered for the kinetic evaluation.129 The 

equations show that the difference between the calculated and measured conversion or yields 

for experimental condition k  was related to the estimated standard uncertainty of respective 

experimental results. The yield of ethane and ethyne partly attained quite low values. In order 

not to overvalue the respective contributions to 2
, jE , a limit of marginal extend LMEY  was 

introduced and set to 0.001, for both ethane and ethyne. If the experimental value of the yield 

lies below this limit, two cases were distinguished:  

)(
:2Case

0:1Case

HC,HC)001.0(

LME,

LME,calculated,,
,LME,calculated,,

,LME,calculated,,

2262LME,,

j

jkj
kjjkj

kjjkj

jkj

Yu

YY
EYY

EYY

jYY








   , Equation 154 

where the standard uncertainties )( LME, jYu  were estimated taking appropriate data into account. 

It was found that )(
62HCLME,Yu  and )(

22HCLME,Yu  can be approximated by 0.00027 and 0.0045, 

respectively, considering the relevant range close to LMEY . The total number of reaction 
                                                 

129 cp. [Press, 2007], p. 778 et seqq. and Chapter 2.4 
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conditions experimentally covered accounts for 88 (73 with Ar and 15 with He)130; however, due 

to the constrictions related to axial diffusion and the radial temperature gradient the number of 

experimental conditions employed for the kinetic evaluation was reduced to 57 (42 with Ar and 

15 with He).131 

Independent from the reactor model the axial step size through the reactor z  was set to 1 mm, 

which features a reasonable compromise between accuracy and speed of computation. 

Reference calculations with an axial step size of 0.1 mm indicated that only marginal variations 

of 2
tot,E  should be expected, if step sizes smaller than 1 mm were applied. Different initial 

parameter sets (IPSs) covering a wide range of potential values have been applied in order to 

increase the probability of the identification of the global minimum instead of a local one. 

Respective initial parameters are summarized in Table 5-7.  

Table 5-7: Initial parameter sets for the optimization process along with lower bounds (LB) and upper bounds 
(UB) of the parameters 

Initial Parameter Set (IPS) 
Parameter 

1 2 3 4 5 6 7 8 9 10 11 12 
LB UB

a,1E  381.0 381.0 381.0 381.0 571.5 190.5 571.5 190.5 571.5 190.5 571.5 190.5 0 700

)log( 1,0k  13.65 13.65 13.65 13.65 20.48 6.825 20.48 6.825 6.825 20.48 6.825 20.48 0.5 25 

1m  1 1 1 1 1.5 0.5 1.5 0.5 1 1 1 1 0.25 3 

a,2E  334.9 289.0 334.9 289.0 502.4 167.5 433.5 144.5 502.4 167.5 433.5 144.5 0 700

)log( 2,0k  16.65 14.00 16.65 14.00 24.98 8.325 21.00 7.000 8.325 24.98 7.000 21.00 0.5 25 

2m  1 1 1 1 1.5 0.5 1.5 0.5 1 1 1 1 0.25 3 

a,3E  167.0 167.0 167.0 167.0 250.5 83.50 250.5 83.50 250.5 83.50 250.5 83.50 0 700

)log( 3,0k  8.410 8.410 8.410 8.410 12.62 4.205 12.62 4.205 4.205 12.62 4.205 12.62 0.5 25 

3m  1 1 1 1 1.5 0.5 1.5 0.5 1 1 1 1 0.25 3 

a,4E  167.5 167.5 125.6 125.6 251.3 83.75 188.4 62.80 251.3 83.75 188.4 62.80 0 700

)log( 4,0k  10.33 10.33 6.23 6.23 15.50 5.165 9.345 3.115 5.165 15.50 3.115 9.345 0.5 25 

4m  2 2 1 1 3 1 1.5 0.5 2 2 1 1 0.25 3 

mol

kJ
inaE , 

)1(

30 m

mol

s

1
in

m

k








 , inm  

IPSs 1-4 feature values on the basis of [Kozlov, 1962] 
IPS 1 combines maximum values, IPS 4 combines minimum values 
IPS 5 = IPS 1 * 1.5, IPS 6 = IPS 1 * 0.5, IPS 7 = IPS 4 * 1.5, IPS 8 = IPS 4 * 0.5 

IPSs 9-12 are based on crosswise multiplication of aE  and )log( 0k  of IPSs 1 and 4 by 1.5 and 0.5 

                                                 
130 cp. Chapter 4.2 
131 cp. Chapter 5.1.4 and Chapter 5.2.1 
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The common logarithm of the pre-exponential factor was altered by the optimization tool instead 

of the pre-exponential factor itself with the purpose of dealing with values, which have a 

somehow comparable order of magnitude. 

Temperatures of the wall and the center of the reactor at axial position z , )(W zT  and )(C zT , 

respectively, were determined by linear interpolation employing the sets of measured 

temperatures. The following chapters provide further details about the applied reactor models. 

5.5.1 Reactor model: Plug flow reactor 

A common plug flow model (PFR) served as a reference model considering only an axial 

division of the reactor into volume elements as is illustrated in Figure 5-29. 

 

Figure 5-29: Illustration of a plug flow model applied to the tube reactor with thermocouple (TC) 

The relevant reaction temperature at axial position z  )(R zT  was estimated by area-related 

averaging of a parabolic temperature profile132 defined by the temperature of the center of the 

reactor )(C zT  and the temperature at the wall of the reactor )(W zT  leading to  

 )()(5.0)()( CWCR zTzTzTzT     . Equation 155 

In region B, starting at position 319 mm, the size of the axial volume element is reduced due to 

the presence of the thermocouple.  

                                                 
132 see Equation 117 
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5.5.2 Reactor model: Nested tube reactors 

In order to approximate the laminar flow conditions inside the reactor and to consider radial 

temperature differences, a more complex reactor model based on nested tube reactors (NTR) 

was suggested above.133 Thereby the reactor with inner radius iR,R  was divided into NTRN  

nested tube reactors with uniform thickness r  arising from  

NTR

iR,

N

R
r     . Equation 156 

The outer radius o,jr  and inner radius i,jr  of NTR j  meet  

i,o, jjj rrrr      Equation 157 

and can consequently be calculated respecting 0i,1 r . An illustration of the reactor model is 

provided in Figure 5-30. 

 

Figure 5-30: Illustration of a nested tube reactor model applied to the tube reactor with 
thermocouple (TC) 

 

                                                 
133 see Chapter 5.3.2.2 
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At the inlet of the reactor the total volume flow had to be distributed to NTRN  nested tube 

reactors. 0,jV , the volume flow entering nested tube reactor j  with the inner radius i,jr  and the 

outer radius o,jr , was determined by  

rrrvAvV
j

j

r

rA

j ˆdˆ2)ˆ(d
o,

i,

0,       , Equation 158 

employing the velocity profile )(rv  according to Equation 132 if a fully developed laminar 

velocity profile can be expected or according to Equation 136 if not. Since the conditions for the 

ANSYS simulations and the real conditions for the cracking experiment differ slightly, a 

correction factor was used being multiplied with each 0,jV  assuring that the sum of all 0,jV  

equals the total volume flow at the inlet of the reactor for the particular experiment. Respective 

molar flows of dilution gas and methane at the inlet of nested tube reactor j , jnDG,  and jn ,CH4
 , 

were obtained using the ideal gas law and the initial molar fraction of methane.134 The nested 

units were regarded separately meaning that no interaction takes place between each other and 

molecules either present at the inlet of the reactor or formed by reactions in a particular NTR 

stay inside. )(NTRR, zT j , the temperature in NTR j  at the axial position z , was approximated by 

evaluating the presumed parabolic temperature profile at the mean radius jr  arising from 

 i,o,5.0 jjj rrr      Equation 159 

employing the respective outer radius o,jr  and inner radius i,jr . 

The calculated total molar flow at position 319 mm, which corresponds to the tip of the 

thermocouple, was distributed to the four nested tube reactors downstream, that is region B, in 

accordance with respective COMSOL Multiphysics simulation results presented before.135 In 

region B )( NTRR, zT j , the relevant temperature in NTR j  at axial position z , was approximated 

by linear interpolation following 

                                                 
134 see Equation 2 and Equation 5 
135 cp. Chapter 5.3.2.2 
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 oTC,
oTC,iR,

CW
C NTRR,

)()(
)()( Rr

RR

zTzT
zTzT jj 




     Equation 160 

with the outer radius of the thermocouple oTC,R . In region B m002.0oTC,i1,  Rr . 

Two different numbers of NTR in region A were considered consistent with reasonable limits 

stated in Chapter 5.3.2.2, namely 5NTR N  (5 NTR) and 10NTR N  (10 NTR). 

5.5.3 Reactor model: Nested tube reactors with ideal radial 
diffusion 

The reactor model based on nested tube reactors with ideal radial diffusion comprises all 

features of the NTR model. However, an ideal radial diffusion step was attached to every 

reaction step as illustrated in Figure 5-31. Following Equation 120, ideal radial diffusion means 

that radial differences of molar fractions degrade attaining a value of 0.  

 

Figure 5-31: Illustration of reaction steps and diffusion steps for reactor models based on 
nested tube reactors with (NTR + D) and without ideal radial diffusion (NTR) 

Hence the average molar fractions of all components i  of the flow after the reaction step was 

calculated from  

z z + Δz z – Δz 
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22426224

1
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



. Equation 161 

The molar flows after diffusion were determined under the assumption that the total molar flow 

of gaseous components in the considered NTRs do not change as a result of the diffusion step. 

Consequently, )(, zzn ji  , the molar flow of component i  in NTR j  entering a volume 

element at axial position zz  , arises from 

22426224

reactionafter ,,reactionafter diffusionafter ,,,

HC,HC,HC,H,CHDG,

)()()()(



 
k

znzxznzzn
k

jki,jiji 
   . Equation 162 

5.6 Kinetic parameters and further results 

Best fit kinetic parameters determined by the optimization tool are presented for the applied 

reactor models in Table 5-8 along with the respective values for 2
tot,E , the quantity, which was 

minimized, as well as its constituents 2
CH, 4E , 2

H, 2E , 2
HC, 62E , 2

HC, 42E , and 2
HC, 22E . As can be 

seen, the reactor model based on five nested tube reactors (5 NTR) lead to best agreement 

between experimental results and simulation resulting in 178092
tot, E . However, the 

optimization tool was capable of identifying best fit kinetic parameters, which lead to 

comparable 2
tot,E  for all models. The results for five nested tube reactors with ideal radial 

diffusion (5 NTR + D) are very similar to those of the plug flow model (PFR) concerning both, 

the kinetic parameters and the achieved error of the model. The extension of the number of 

NTR from five to ten (10 NTR and 10 NTR + D) leads to almost identical results compared to 

the models based on five nested tube reactors. In the following, model 5 NTR which achieved 

the lowest value for 2
tot,E  is analyzed more in detail. 
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Table 5-8: Comparison of best fit kinetic parameters and achieved agreement between experiments and 
optimization procedure for different reactor models: plug flow reactor (PFR), 5 nested tube reactors (5 NTR), 
5 nested tube reactors with ideal radial diffusion (5 NTR + D), 10 nested tube reactors (10 NTR), and 10 
nested tube reactors with ideal radial diffusion (10 NTR + D) 

Reactor model   PFR 5 NTR 5 NTR + D 10 NTR 10 NTR + D

a,1E  499.4 510.1 499.5 510.3 499.5 

)log( 1,0k  17.37 17.77 17.37 17.79 17.37 

Best fit 
kinetic 

parameters 
of reaction 

{1} 1m  1.331 1.283 1.329 1.286 1.328 

a,2E  418.2 433.9 418.2 433.3 418.8 

)log( 2,0k  17.12 17.75 17.13 17.74 17.15 

Best fit 
kinetic 

parameters 
of reaction 

{2} 2m  1.044 1.049 1.046 1.050 1.044 

a,3E  343.1 374.7 343.9 373.8 344.1 

)log( 3,0k  14.29 15.36 14.31 15.34 14.31 

Best fit 
kinetic 

parameters 
of reaction 

{3} 3m  1.333 1.301 1.328 1.303 1.327 

a,4E  13.25 29.01 13.10 29.04 13.08 

)log( 4,0k  2.282 2.657 2.273 2.704 2.272 

Best fit 
kinetic 

parameters 
of reaction 

{4} 4m  1.966 1.599 1.965 1.638 1.964 

2
CH, 4E  7470 7700 7508 7689 7509 

2
H, 2E  1706 1688 1719 1752 1717 

2
HC, 62E  323 306 309 310 300 

2
HC, 42E  7570 6618 7550 6661 7577 

2
HC, 22E  1239 1498 1245 1426 1247 

Selection of 
experiments 

for kinetic 
evaluation:  
42 x Ar and 

15 x He 
2

tot,E  

quantity to be 
minimized 

18308 17809 18331 17838 18349 

mol

kJ
inaE , 

)1(

30 m

mol

s

1
in

m

k








 , inm  

The number of degrees of freedom of a model freedom of degreesN  arises from the difference of the 

number of data points points dataN  and the number of adjustable parameters parametersN  according 

to  

parameterspoints datafreedom of degrees NNN     . Equation 163 

Since 57 reaction conditions were employed for the kinetic evaluation and each reaction 

condition provides a result concerning 
4CHX , 

2HY , 
62HCY , 

42HCY , and 
22HCY , the number of data 
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points finally adds up to 285. On the other hand there are three kinetic parameters for each of 

the four considered reactions. Consequently, 12parameters N  and 273freedom of degrees N . A fairly 

good fit is typically characterized by freedom of degrees
2

tot, NE  . Contrariwise, the best present model 

features freedom of degrees
2

tot, 17809 NE  , indicating either an improper estimation of standard 

uncertainties or a weakness of the model itself.136 This issue will be discussed later.  

Table 5-9 gives information about the differences between calculated (reactor model 5 NTR with 

best fit kinetic parameters leading to 178092
tot, E ) and experimentally determined values for 

4CHX , 
2HY , 

62HCY , 
42HCY , and 

22HCY . On average the absolute differences here equal 0.0657 and 

0.0602 regarding the conversion of methane and the yield of hydrogen, respectively, 

corresponding to an average relative difference of about 14.5 %. Higher relative differences 

have to be reported pertaining to the yields of C2-hydrocarbons. However, the yields of ethane 

and ethene, calculated and measured, are mostly much lower than the other considered 

quantities. Generally about two thirds of the derived differences are smaller than the relevant 

average value.  

Table 5-9: Information about differences between quantities calculated with reactor model 5 NTR employing 
best fit kinetic parameters and experimentally determined quantities  

Absolute differences 
Absolute differences  

relative to experimental results 
(data not used if experimental result = 0)Quantity 

Average in - 
Fraction of values smaller 

than average in % 
Average in - 

Fraction of values smaller 
than average in % 

4CHX  0.0657 70.2 0.143 71.9 

2HY  0.0602 66.7 0.146 71.9 

62HCY  0.000664 64.9 2.86 78.9 

42HCY  0.00575 61.4 0.538 52.6 

22HCY  0.0806 59.6 0.473 70.2 

 

 

 

 

                                                 
136 cp. [Press, 2007], p. 778 et seqq. 
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The uncertainty of molar flows at the inlet and the outlet of the reactor were respected by the 

estimation of the uncertainty of the conversion of methane and the yields of hydrogen as well as 

of the C2-hydrocarbons, which form part of the error of the model and thus of the quantity, which 

was minimized by the optimization tool. Beside the mentioned figures also temperatures and 

pressures inside the reactor, being input information of the kinetic evaluation, are affected by 

uncertainty. In order to assess the relevance of these uncertainties, two further sets of 

temperature and pressure were investigated for the best model 5 NTR. The first extreme of 

conditions inside the reactor was determined by combination of minimum temperatures and 

pressures ( minmin , pT ), calculated by means of maximum negative uncertainty. Minimum 

temperatures and pressures generally cause a decrease of reaction rates. Contrariwise, the 

second extreme is related to maximum reaction rates based on maximum temperatures and 

pressures ( maxmax , pT ) arising from respective maximum positive uncertainty. As can be seen in 

Table 5-10, good agreement between the results determined for nominal and extreme 

conditions concerning temperature and pressure inside the reactor has to be reported. Found 

best fit kinetic parameters and model errors for the extreme conditions practically conform to 

figures for nominal conditions. A somehow lower 2
tot,E  was achieved for the set of minimum 

temperatures and pressures. The good agreement indicates that the uncertainty of measured 

temperatures and pressures is low enough for a definite determination of kinetic parameters.  

Different IPSs usually resulted in practically identical best fit kinetic parameter values and 

consequently to practically identical model errors indicating that global minima were found. 

However, in some cases IPS 9, 10, 11, or 12, which are based on opposed modification of the 

activation energies and the common logarithms of the pre-exponential factors,137 led to local 

minima featuring clearly higher values of 2
tot,E  compared to the best fit situation: IPS 9 for PFR, 

IPSs 10-12 for 5 NTR, 5 NTR + D, 10 NTR, IPSs 9 and 11 for 10 NTR + D, IPSs 10 and 12 for 

5 NTR employing minimum temperatures and pressures, and IPS 11 for 5 NTR employing 

maximum temperatures and pressures.  

 

 

 

                                                 
137 cp. Table 5-7 
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Table 5-10: Comparison of best fit kinetic parameters and achieved agreement between experiments and 
optimization procedure for the reactor model based on 5 nested tube reactors (5 NTR) considering sets of 
nominal, minimum, and maximum temperatures and pressures 

Reactor model   5 NTR 
5 NTR 

( minmin , pT ) 

5 NTR 

( maxmax , pT ) 

a,1E  510.1 508.0 511.1 

)log( 1,0k  17.77 17.77 17.76 

Best fit 
kinetic 

parameters 
of reaction 

{1} 1m  1.283 1.304 1.280 

a,2E  433.9 431.8 435.3 

)log( 2,0k  17.75 17.75 17.75 

Best fit 
kinetic 

parameters 
of reaction 

{2} 2m  1.049 1.055 1.048 

a,3E  374.7 371.9 375.6 

)log( 3,0k  15.36 15.34 15.35 

Best fit 
kinetic 

parameters 
of reaction 

{3} 3m  1.301 1.316 1.299 

a,4E  29.01 29.63 29.22 

)log( 4,0k  2.657 2.687 2.650 

Best fit 
kinetic 

parameters 
of reaction 

{4} 4m  1.599 1.593 1.596 

2
CH, 4E  7700 7442 7635 

2
H, 2E  1688 1638 1684 

2
HC, 62E  306 300 320 

2
HC, 42E  6618 6654 6681 

2
HC, 22E  1498 1501 1537 

Selection of 
experiments 

for kinetic 
evaluation:  
42 x Ar and 

15 x He 
2

tot,E  

quantity to be 
minimized 

17809 17534 17857 

mol

kJ
inaE , 

)1(

30 m

mol

s

1
in

m

k



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
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Figure 5-32 gives information about the relative change of the model error of 5 NTR, when a 

particular kinetic parameter was varied keeping the other kinetic parameters constant. Within 

the considered limits of variation the model error increases most with the change of activation 

energies and common logarithms of reaction {1}, reaction {2}, and reaction {3}, whereas the 

kinetic parameters of reaction {4} and the reaction orders of all reactions influence the model 

error only marginally. The clear dependence of the model error 2
tot,E  on aE  and )log( 0k  can be 

explained by exponential expressions. By trend, kinetic parameters of the first reactions show 

greater influence than the ones of subsequent reactions, because the latter reactions are 

affected by products of the first reactions. 
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Figure 5-32: Model error related to the model error for best fit kinetic parameters as a function 
of kinetic parameters related to the best fit kinetic parameters (reactor model 5 NTR) 

An analysis of molar fractions in the considered nested tube reactors at a function of the axial 

position calculated employing the reactor model 5 NTR and respective best fit kinetic 

parameters indicates that the assumption )()( zxzx ii   – made in Chapter 5.2.2 in order to 

assess radial diffusive effects – is in fact a realistic one, at least regarding the order of 

magnitude. Confirming values for the maximum radial difference of molar fractions related to the 

mean, averaged for the heated region of the reactor and for all experiments used for the kinetic 

evaluation, are provided in Table 5-11 along with standard deviation of values resulting from the 

particular reaction conditions. The greatest averaged value was calculated for ethyne and 

approaches 2.6. 

Table 5-11: Averaged maximum radial differences of molar fractions in the heated region of the reactor for 
results associated with reactor model 5 NTR and respective best fit kinetic parameters 

Species i  



inmin,max,

z
i

ii

x

xx
 

averaged for the heated region of the reactor 
averaged for all experiments used for the kinetic evaluation 

Standard 
deviation 

concerning the 
experiments 

in - 

methane 0.93 0.70 

hydrogen 1.86 1.20 

ethane 1.22 0.72 

ethene 1.90 1.10 

ethyne 2.59 1.76 
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Subsequently conversions and yields associated with results gained with reactor model 5 NTR 

and respective best fit kinetic parameters are exemplarily compared to experimental findings 

expanding the general information given in Table 5-9. Beside reaction conditions characterized 

by 5 % methane (molar fraction) in argon, all reaction conditions dealing with helium as dilution 

gas are considered. Further comparative diagrams can be found in Appendix G.  

Figure 5-33, Figure 5-34, Figure 5-35, Figure 5-36, and Figure 5-37 represent corresponding 

graphs concerning the conversion of methane, the yield of hydrogen, the yield of ethane, the 

yield of ethene, and the yield of ethyne, respectively, considering argon as dilution gas. 

According to the achieved model error ( 178092
tot, E ) and Table 5-9, more or less clear 

disagreement of experimentally determined and calculated values has to be reported. However, 

the graphs often show qualitative consistence and calculated values mostly lie within or at least 

close to the range, which is defined by maximum experimental uncertainty. This observation 

applies to both, reaction conditions used and not used for the kinetic evaluation. 
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Figure 5-33: Comparison of experimentally determined conversion of methane (as a function of 
the residence time and the nominal furnace temperature) with calculated values employing 
reactor model 5 NTR and respective best fit kinetic parameters. 5 % initial molar fraction of 
methane in argon. Indicators of uncertainty refer to maximum uncertainty (black: used for 
kinetic evaluation, gray: not used for kinetic evaluation).  
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Figure 5-34: Comparison of experimentally determined yield of hydrogen (as a function of the 
residence time and the nominal furnace temperature) with calculated values employing reactor 
model 5 NTR and respective best fit kinetic parameters. 5 % initial molar fraction of methane in 
argon. Indicators of uncertainty refer to maximum uncertainty (black: used for kinetic 
evaluation, gray: not used for kinetic evaluation). 
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Figure 5-35: Comparison of experimentally determined yield of ethane (as a function of the 
residence time and the nominal furnace temperature) with calculated values employing reactor 
model 5 NTR and respective best fit kinetic parameters. 5 % initial molar fraction of methane in 
argon. Indicators of uncertainty refer to maximum uncertainty (black: used for kinetic 
evaluation, gray: not used for kinetic evaluation). 
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Figure 5-36: Comparison of experimentally determined yield of ethene (as a function of the 
residence time and the nominal furnace temperature) with calculated values employing reactor 
model 5 NTR and respective best fit kinetic parameters. 5 % initial molar fraction of methane in 
argon. Indicators of uncertainty refer to maximum uncertainty (black: used for kinetic 
evaluation, gray: not used for kinetic evaluation). 
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Figure 5-37: Comparison of experimentally determined yield of ethyne (as a function of the 
residence time and the nominal furnace temperature) with calculated values employing reactor 
model 5 NTR and respective best fit kinetic parameters. 5 % initial molar fraction of methane in 
argon. Indicators of uncertainty refer to maximum uncertainty (black: used for kinetic 
evaluation, gray: not used for kinetic evaluation). 
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Results gained in experiments with helium as dilution gas are compared to results from the 

kinetic evaluation concerning the conversion of methane, the yield of hydrogen, the yield of 

ethane, the yield of ethene, and the yield of ethyne, in Figure 5-38, Figure 5-39, Figure 5-40, 

Figure 5-41, and Figure 5-42, respectively. The agreement between calculated and measured 

values is definitely better than the agreement achieved for argon as the dilution gas. Measured 

values could regularly be reproduced by calculation within the limits of maximum uncertainty. 
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Figure 5-38: Comparison of experimentally determined conversion of methane (as a function of 
the residence time, the nominal furnace temperature, and the initial molar fraction of methane) 
with calculated values employing reactor model 5 NTR and respective best fit kinetic 
parameters. Dilution gas: helium. Indicators of uncertainty refer to maximum uncertainty. 
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Figure 5-39: Comparison of experimentally determined yield of hydrogen (as a function of the 
residence time, the nominal furnace temperature, and the initial molar fraction of methane) with 
calculated values employing reactor model 5 NTR and respective best fit kinetic parameters. 
Dilution gas: helium. Indicators of uncertainty refer to maximum uncertainty. 
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Figure 5-40: Comparison of experimentally determined yield of ethane (as a function of the 
residence time, the nominal furnace temperature, and the initial molar fraction of methane) with 
calculated values employing reactor model 5 NTR and respective best fit kinetic parameters. 
Dilution gas: helium. Indicators of uncertainty refer to maximum uncertainty. 
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Figure 5-41: Comparison of experimentally determined yield of ethene (as a function of the 
residence time, the nominal furnace temperature, and the initial molar fraction of methane) with 
calculated values employing reactor model 5 NTR and respective best fit kinetic parameters. 
Dilution gas: helium. Indicators of uncertainty refer to maximum uncertainty. 
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Figure 5-42: Comparison of experimentally determined yield of ethyne (as a function of the 
residence time, the nominal furnace temperature, and the initial molar fraction of methane) with 
calculated values employing reactor model 5 NTR and respective best fit kinetic parameters. 
Dilution gas: helium. Indicators of uncertainty refer to maximum uncertainty. 
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The standard uncertainties of estimated best fit parameters for the reactor model 5 NTR, which 

were calculated following the procedure explained in Chapter 2.4, are presented in Table 5-12, 

whereas the calculated covariance matrix )(ψCov  can be found in Appendix G. As can be seen 

in the table, the standard uncertainties of measured conversions and yields, which contribute to 

2
tot,E , and the model itself allow the determination of best fit kinetic parameters with remarkably 

low standard uncertainty, mainly below 2.5 % relative to the estimated parameter value. 

Somewhat higher uncertainties have to be reported for the kinetic parameters of reaction {4} 

which describes the decay of ethyne. That corresponds to their comparatively low influence on 

the model error as depicted before in Figure 5-32. 

Table 5-12: Standard uncertainties of best fit kinetic parameters for model 5 NTR 

Kinetic parameters ψ  Best fit value 
Absolute standard 

uncertainty 
Relative standard 
uncertainty in % 

a,1E  510.1 1.82 0.36 

)log( 1,0k  17.77 0.0634 0.36 

1m  1.283 0.00710 0.55 

a,2E  433.9 9.38 2.16 

)log( 2,0k  17.75 0.349 1.97 

2m  1.049 0.0251 2.39 

a,3E  374.7 3.14 0.84 

)log( 3,0k  15.36 0.114 0.74 

3m  1.301 0.0127 0.97 

a,4E  29.01 3.73 12.86 

)log( 4,0k  2.657 0.133 5.00 

4m  1.599 0.0335 2.10 

mol

kJ
inaE , 

)1(

30 m

mol

s

1
in

m

k








 , inm  

The matrix of correlation coefficients for the kinetic parameters ψ  )(ψCorr  derived from the 

covariance matrix is provided in Table 5-13. Except for the correlation of parameters bound to 

the same reaction, values do generally not exceed 0.25 and are mostly clearly below this limit. 

However, for all reactions a high correlation between the activation energy and the common 

logarithm of the pre-exponential factor is evident featuring correlation coefficients between 0.97 

and 1. Suggested by the high correlation, these parameters can be varied simultaneously that 

way that the change of the model error is moderate. The combined standard uncertainty of 
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quantities derived from parameters with high correlation increases due to the fact that 

covariances have to be taken into account.138  

Table 5-13: Matrix of correlation coefficients calculated based on the best fit kinetic parameters for model 
5 NTR. Blocks colored in orange indicate the correlation of kinetic parameters describing the same reaction. 

)(ψCorr  1 2 3 4 5 6 7 8 9 10 11 12 Related to

1 1.00 1.00 0.63 0.01 0.02 0.08 0.10 0.14 0.24 -0.02 0.00 0.09 a,1E  

2 1.00 1.00 0.68 0.01 0.02 0.09 0.08 0.12 0.25 -0.02 0.00 0.09 )log( 1,0k  

3 0.63 0.68 1.00 -0.01 0.01 0.12 -0.10 -0.04 0.25 -0.01 -0.01 0.01 1m  

4 0.01 0.01 -0.01 1.00 0.98 0.07 0.01 -0.02 -0.06 0.00 0.00 0.01 a,2E  

5 0.02 0.02 0.01 0.98 1.00 0.28 0.01 -0.03 -0.06 0.00 0.00 0.01 )log( 2,0k

6 0.08 0.09 0.12 0.07 0.28 1.00 -0.03 -0.03 0.01 0.00 0.00 0.00 2m  

7 0.10 0.08 -0.10 0.01 0.01 -0.03 1.00 0.97 0.09 0.00 0.02 0.09 a,3E  

8 0.14 0.12 -0.04 -0.02 -0.03 -0.03 0.97 1.00 0.34 0.00 0.02 0.09 )log( 3,0k

9 0.24 0.25 0.25 -0.06 -0.06 0.01 0.09 0.34 1.00 -0.01 0.00 0.03 3m  

10 -0.02 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 -0.01 1.00 0.97 -0.29 a,4E  

11 0.00 0.00 -0.01 0.00 0.00 0.00 0.02 0.02 0.00 0.97 1.00 -0.06 )log( 4,0k

12 0.09 0.09 0.01 0.01 0.01 0.00 0.09 0.09 0.03 -0.29 -0.06 1.00 4m  

mol

kJ
inaE , 

)1(

30 m

mol

s

1
in

m

k

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5.7 Discussion 

Best fit values for the kinetic parameters were determined employing an optimization tool by 

minimizing the model error. Regarding the particular models seriously different applied initial 

parameter sets usually lead to practically identical best fit values for the kinetic parameters and 

consequently to same values of the minimum model error. Thus, a global character of the 

determined minimum model errors is indicated. The lowest value for the model error could be 

located for the reactor model based on five nested tube reactors without the consideration of 

radial diffusion (5 NTR). The corresponding model based on ten nested tube reactors features 

virtually equal agreement and best fit kinetic parameters suggesting that the laminar flow 

characteristics are respected sufficiently well by employing five nested tube reactors. The same 

conclusion can be drawn by comparing the reactor models involving ideal radial diffusion. For 

models respecting radial diffusion, minimum model errors only about 2.9 % higher than those of 

                                                 
138 cp. [ISO, 2008], p. 21 
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the models disregarding radial diffusion could be achieved. Thus, it is indicated that the limiting 

conditions concerning radial diffusion are capable of reflecting the real conditions inside the 

reactor more or less comparably well, or in other words, that the real conditions can be found 

somewhere between the extreme effects. However, in spite of the principal difference of the 

models, there exists remarkable conformity of derived best fit values of the kinetic parameters. 

Except for parameters of reaction {4}, best fit values corresponding to models with ideal radial 

diffusion do not differ more than 8.2 % and mainly not more than 3.6 % from values 

corresponding to models without radial diffusion. This could signify a rudimentarily universal 

character of the determined parameter values. The gained best fit parameter values and the 

achieved model error as well as its components are practically identical for the plug flow model 

and for the models based on nested tube reactors featuring ideal radial diffusion. Obviously, the 

latter models basically approach plug flow conditions. This proposes that the approximation of 

laminar flow does not offer any advantage, when perfect radial diffusion is assumed, and that a 

more sophisticated consideration of radial diffusion is advisable. It is admissible to state that 

reaction temperatures were considered reasonably, since reaction conditions with doubtful 

temperature distribution were excluded from the kinetic evaluation. Taking the residual 

uncertainty of temperatures as well as the uncertainty of pressures inside the reactors into 

account, additional optimization runs were performed based on the best present model 5 NTR. 

The resulting best fit parameter values conform to values determined for the sets of nominal 

temperature and pressure. Thus, the accuracy of temperatures and pressures is high enough to 

definitely calculate best fit parameter values. Furthermore, a distinct finding concerning the 

determined parameter values is indicated by quite low standard uncertainties derived from the 

covariance matrix. Except for the correlation between the activation energy and the common 

logarithm of the pre-exponential factor related to the same reaction the correlation between the 

kinetic parameters is usually negligible. In spite of the relatively high model error, reactor model 

5 NTR is capable of reflecting general tendencies and orders of magnitude of methane 

conversion as well as of yields of hydrogen, ethane, ethene, and ethyne. When maximum 

uncertainty is taken into account, calculated values are often in reach of results of both, 

experiments with argon and helium as dilution gas.  

In literature the integers 1 and 2 are suggested as reaction orders of the thermal decomposition 

of methane as well as the thermal decomposition of C2-hydrocarbons without presence of 

additional material as presented in Chapter 3.4. Contrariwise, parameter fitting to model 5 NTR 

led to values between 1 and 2, namely 1.283, 1.049, 1.301, and 1.599 for reaction {1}, {2}, {3}, 

and {4}, respectively. The fractional nature of derived parameters is not a general sign of poor 

quality but confirms the summarizing character of net reactions and possibly reveals limitations 

of a simplified kinetic approach considering a wide range of reaction conditions. The calculated 

activation energy of reaction {1} lies beyond the scope of activation energies reported in 
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literature. However, also the pre-exponential factor is somewhat higher and accounts for a 

partial compensation. The activation energies of the other decomposition reactions follow the 

vague trend depending on the number of H-atoms as indicated by literature values exposed in 

Chapter 3.4.3. Activation energies of the thermal decomposition of ethyne reported in literature 

are much higher than the determined value of 29.01 kJ/mol suggesting some principal 

differences of mechanisms relevant for the direct pyrolysis of ethyne on the one hand and for 

the decomposition of ethyne in presence of unconverted methane and other reaction products 

on the other hand. The best fit parameter set of reaction {4} is somehow similar to the 

parameters reported in [Schulz, 1985], where parameters were also fitted to data gained in 

experiments investigating the thermal decomposition of methane. When results of this work are 

compared to findings presented in literature, is has to be taken into account that reaction 

temperatures employed there for further calculations often have an approximate nature due to 

imprecise measurement techniques (e. g. pyrometer measurements concerning the outer wall, 

calculation from shock speed, thermocouple measurements at particular locations), which of 

course imply an uncertainty of stated parameter values. Furthermore, uncertainties may result 

from assumed ideal flow conditions, which could be doubtful as shown in this work. 

Experiments under seeding conditions showed that carbon black, featuring a specific surface 

similar to the particle samples extracted from the reactor and the filter, has great potential to 

enhance heterogeneous reactions. Thus, a respective activity of generated particulate carbon is 

indicated. Consequently, the relatively high model error is probably partly attributed to the 

simplified kinetic model, which does not distinguish between homogeneous effects and 

heterogeneous effects. However, the assessment of surface area provided by generated 

particles is complicated by the presence of not considered species, which hold significant 

fractions of C-atoms, and by uncertainties related to the characteristics of formed carbon as well 

as the locations of carbon deposition.  
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6 Summary and Outlook 

The kinetics of the thermal decomposition of methane was investigated using an alumina 

tubular reactor with an inner diameter of 8 mm heated by a vertical electric tube furnace. 

Experiments at absolute pressures around 1 bar were carried out using argon and helium as 

dilution gases. The initial molar fraction of methane was varied between 2 % and 10 %. Nominal 

furnace temperatures ranged from 1200 °C to 1600 °C. Initial total standard volume flows, 

varied from 95 sccm to 9800 sccm, led to residence times between 0.0115 s and 1.47 s. 

Depending on the reaction conditions, conversions of methane between 1.20 % and 99.8 % 

were achieved, whereas the yields of hydrogen lay in the range from 0.546 % to 95.4 %. 

Similarly to the yield of hydrogen, the conversion of methane increases with residence time and 

temperature, while the initial molar fraction of methane has minor influence. Beside hydrogen 

and carbon, the intermediates ethane, ethene, and ethyne could be found at the outlet of the 

reactor featuring maximum yields of 0.927 %, 5.63 %, and 62.5 %, respectively. The detected 

species form major part of the gaseous product flow and the hydrogen balance is practically 

satisfied for every reaction condition. Graphs confirm that ethane is the first formed C2-

hydrocarbon followed by ethene and ethyne. The yield of C2-hydrocarbons related to the yield of 

hydrogen generally decreases when the temperature, the residence time, and / or the initial 

molar fraction of methane increase. In order to achieve product flows predominantly containing 

hydrogen and carbon, reaction conditions characterized by low dilution of methane, high 

reaction temperatures, and high residence times should be applied.  

Additional experiments attested good repeatability of results. Furthermore, the collection of 

carbon samples from the reactor and the downstream filter allowed the assessment of the 

balance of carbon atoms, which showed disagreement up to 48.3 % and about 28.5 % on 

average. Low molar fractions of the C3-hydrocarbons propene, propyne, and most likely 

propadiene were detected, but determined molar fractions lay far below an order of magnitude 

which could possibly account for the disagreement of the carbon balance, namely in the order of 

magnitude of ethane regarding propene and in the order of magnitude of ethene regarding 

propyne and propadiene. This leads to the conclusion that small amounts of not considered 

high molecular substances with a low H/C-ratio were probably present in the product flow.  

Usually more carbon could be found in the reactor than in the filter. The BET specific surface of 

carbon samples from the reactor ranged from 6.9 m2/g to 94.7 m2/g, whereas BET specific 

surfaces of samples from the filter were somewhat higher and ranged from 22.3 m2/g to 

139.1 m2/g. The samples from the reactor not only contained particulate carbon but also up to 

100 % volume fraction of pyrocarbon formed at the inner wall of the reactor. A clear 

dependency of the sample constitution on the reaction conditions could not be extracted. 
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A novel apparatus was employed in order to add Super P, a carbon black with a typical BET 

specific surface of 62 m2/g, to the gaseous flow at the inlet of the reactor and to examine the 

reactions under seeding conditions. By inserting a mass flow of 5.24 g/h Super P through the 

reactor, the conversion of methane and the yield of hydrogen could be increased by 18 % and 

33 %, respectively, compared to the reference conditions without seeding defined by 1400 °C 

nominal furnace temperature, 3800 sccm total standard volume flow at the inlet of the reactor, 

and 5 % initial molar fraction of methane in argon. Simultaneously the yield of hydrogen related 

to the yield of C2-hydrocarbons rose from 1.38 to an averaged value of 1.81, indicating that 

seeding offers the possibility to enhance reaction rates and to raise the cleanliness of the 

product flow as also reported in literature. Since the specific surface of Super P is similar to the 

specific surface of extracted particle samples, rate increasing influence of generated particles is 

suggested. The geometrical inner surface of the heated region of the reactor lay in the same 

order of magnitude as the surface provided by added particles. It could consequently have 

offered reaction sites as well and could thereby have enhanced heterogeneous reactions. 

Temperature profiles inside the reactor were determined for every set of nominal furnace 

temperature and total standard volume flow with a self-made thermocouple type S shielded by 

an alumina protection tube. Instead of gas mixtures containing methane, pure flows of the 

respective dilution gas were employed. At every considered axial position a maximum and a 

minimum temperature could be measured by inclining the thermocouple. The higher the total 

standard volume flow the greater was the measured radial temperature difference reaching 

maximum levels of about 400 K. Helium caused clearly lower radial temperature differences 

than argon resulting from better heat transfer characteristics. The temperature measurement 

was influenced by convection and radiation. A comparison of respective heat transfer 

coefficients showed that the temperature measurement was dominated by the convective heat 

transfer. The geometrical situation disallowed a reasonable association of measured 

temperatures and temperatures of the fluid at the wall and in the center of the reactor for every 

case. Provided that a moderate radial temperature gradient could be expected, such an 

alignment was executed. Experimental results were respected in the kinetic evaluation, only if 

they were gained for conditions which ensure that at least 75 % of the considered positions in 

the relevant region of the reactor show a moderate radial temperature gradient. 

Axial diffusion could generally be neglected as was shown by Péclet number considerations. 

Though two sets of nominal furnace temperature and residence time, which could involve 

significant axial diffusion, were excluded from the kinetic evaluation. Calculations concerning 

radial diffusion indicate that respective effects are mostly of minor importance. Nonetheless, 

radial diffusion may become more relevant the higher the residence time is – possibly reaching 

noteworthy levels especially regarding hydrogen.  
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The flow through the entrance region and the reactor was generally laminar. However, it was 

shown that a fully developed laminar velocity profile could not be expected at the inlet of the 

reactor for every considered reaction condition. Simulations with ANSYS allowed assessing the 

velocity profiles at the inlet of the reactor, which more or less differ from the ideal case 

predominantly depending on the applied volume flow. Subsequent simulations with COMSOL 

Multiphysics were carried out in order to develop a general idea of the flow characteristics inside 

the reactor providing simplified temperature profiles of the wall. Even though not perfectly 

parallel to each other and to the axis of symmetry of the reactor, in all cases flow lines clearly 

show a general order which reflects the laminar characteristics of the flow. It was confirmed that 

the main pressure drop occurred in the lower part of the reactor, where the center was occupied 

by the thermocouple. 

The shape of flow lines calculated with COMSOL Multiphysics led to the establishment of a 

reactor model based on virtual nested tube reactors. Five different reactor models were applied. 

Based on five and ten nested tube reactors four different models were created by implementing 

ideal radial diffusion on the one hand and by entire disregard of radial diffusion on the other 

hand. Furthermore, a plug flow model served as a reference case. A simplified kinetic model 

comprising the net dehydrogenation reactions of methane and the intermediates ethane, 

ethene, and ethyne according to  

 2 CH4 (g) → C2H6 (g) + H2 (g)  {1} 

 C2H6 (g) → C2H4 (g) + H2 (g)   {2} 

 C2H4 (g) → C2H2 (g) + H2 (g)   {3} 

 C2H2 (g) → 2 “C” (s) + H2 (g)   {4} 

with the rate of reaction { q } defined as  

q

q
m

q
T

E

qq cekr reactant,,0

a,

 


     

was considered. Resulting from the lack of information related to the formation and deposition of 

carbon it was refused to differentiate between homogeneous and heterogeneous reactions. 

Employing an optimization tool, best fit values for the kinetic parameters – the activation energy 

aE , the common logarithm of the pre-exponential factor )log( 0k , and the reaction order m  – for 

all four reactions were determined by minimizing the model error following Chi-Square fitting. 
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The model error was a function of the differences between experimentally assessed and 

calculated conversions and yields as well as of estimated standard uncertainties of measured 

values. Best agreement between experimental results and calculations, respecting 42 reaction 

conditions with argon as diluent and 15 reaction conditions with helium as diluent, could be 

achieved with the reactor model based on five nested tube reactors when the radial diffusion 

was neglected. Respective values for kinetic parameters and standard uncertainties derived 

from the covariance matrix are: 

00710.0283.1,
m

mol

s

1
log0634.077.17)log(,

mol

kJ
82.11.510 1

)1(

31,01a,

1























mkE
m

0251.0049.1,
m

mol

s

1
log349.075.17)log(,

mol

kJ
38.99.433 2

)1(

32,02a,

2























mkE
m

 

0127.0301.1,
m

mol

s

1
log114.036.15)log(,

mol

kJ
14.37.374 3

)1(

33,03a,

3























mkE
m

 

0335.0599.1,
m

mol

s

1
log133.0657.2)log(,

mol

kJ
73.301.29 4

)1(

34,04a,

4























mkE
m

 

The correlation of parameters not associated with the same reaction is generally low. However, 

for all reactions a high correlation between the activation energy and the common logarithm of 

the pre-exponential factor was revealed featuring correlation coefficients close to 1. Therefore, 

also covariances have to be taken into account for the determination of uncertainty of quantities 

derived from the kinetic parameters. Very similar best fit kinetic parameters were found for 

extreme values of temperatures and pressures, which represent input data for the kinetic 

calculations. Moreover, best fit kinetic parameters for the other considered reactor models as 

well as resulting model errors are somehow comparable with the results for the reactor model 

based on five nested tube reactors without radial diffusion, indicating a rudimentarily universal 

character of the determined values of the kinetic parameters. This work provides a 

comprehensive and traceable analysis of uncertainty in all relevant fields of the kinetic 

evaluation. The uncertainty in measurement and its propagation were respected. Finally the 

standard uncertainty as well as the correlation of derived kinetic parameters was declared, what 

can be rarely found in respective literature.  

The given values for the kinetic parameters lead to a minimum model error, but the model error 

remains relatively high. Great effort was made to estimate representative standard uncertainties 
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of experimental findings. Furthermore, only reaction conditions were considered which feature a 

reasonable assessment of the temperature distribution. Consequently, the model error is 

basically attributed to an imprecise model. On average the differences between calculated and 

experimentally determined values for the conversion of methane, the yield of hydrogen, the 

yield of ethane, the yield of ethene, and the yield of ethyne equal 0.0657, 0.0602, 0.000664, 

0.00575, and 0.0806, respectively. Mean differences related to experimental results lie in the 

fair region of 14.5 % for the conversion of methane and the yield of hydrogen, but show clearly 

higher values regarding the yields of ethane, ethene, and ethyne: 286 %, 53.8 %, and 47.3 %. 

However, especially concerning ethane and ethene the latter differences appear to be less 

radical when the lower level of measured values is taken into account. Moreover, general trends 

are respected and calculated values for the conversion of methane as well as the yields of 

hydrogen and C2-hydrocarbons are often in reach of maximum uncertainty of experimental 

results.  

Two potentially problematic fields could be identified regarding the discrepancy of the models. 

The considered models either assume ideal radial diffusion or totally neglect respective effects. 

The real conditions might have featured diffusive characteristics, which cannot globally be 

described by these extreme cases. In principle, this problem may be solved with extensive work 

of implementation, which goes beyond the scope of this work. In addition, the kinetic model 

ignores any heterogeneous effects either on the wall of the reactor or on the surface of formed 

carbon. An appropriate assessment of provided surfaces is complicated in several respects. It 

was shown that a remarkable fraction of C-atoms formed part of not considered species. 

Consequently, the amount of generated carbon is overestimated as long as other relevant 

species are not respected. Important (intermediate) species could be benzene and particular 

PAHs. The formed carbon refuses uniform characteristics regarding the principal constitution 

(particulate carbon vs. pyrocarbon) and specific surfaces. In absence of suitable information, a 

possibility to practically include heterogeneous effects in a model could be a modification of the 

activation energy that way that this parameter is not constant but a function of an accessible 

dimension, such as the concentration of formed carbon. However, significant fraction of formed 

carbon does not keep a dispersed state in the flow but forms deposit on the wall and there 

alters surface related properties. Before heterogeneous reactions on the wall and on the surface 

of generated particles can be implemented accurately, further research has to be done in order 

to understand the dependencies of carbon formation and locations of deposition on the reaction 

conditions. As long as fundamental information about related mechanisms is not available, the 

transfer of kinetic laws to arbitrary specifications of reactors and reaction conditions implies an 

uncertainty difficult to assess. 
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Formula symbols 

   

A  matrix consisting of partial derivatives various 

A  cross sectional area, face m2 

peakA  peak area of GC measurement mV s 

a  activity - 

a  half width of an interval  various 

a  upper limit for a measured value various 

a  lower limit for a measured value various 

b  uncertainty factor % 

lamb  factor for a laminar flow - 

RTC,C  factor comprising emissivity and geometry of 
thermocouple and reactor 

W / (m2 K4) 

c  concentration mol / m3 

pc  specific heat capacity at constant pressure J / (kg K) 

vc  specific heat capacity at constant volume J / (kg K) 

D  diffusion coefficient in a binary gas mixture m2 / s 

D̂  diffusion coefficient in a gas mixture with more than two 
species 

m2 / s 

d  diameter m 

hd  hydraulic diameter m 

E  error - 

aE  activation energy kJ / mol 

F  factor, ratio of stoichiometric coefficients - 

f  factor regarding number of certain atoms in a molecule - 
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G  Gibbs energy (free enthalpy) J 

I  electric current A 

j  diffusive molar flux related to the average molar velocity mol / (s m2) 

*j  diffusive mass flux related to the average mass velocity kg / (s m2) 

k  coefficient of a polynomial fit function various 

k  rate constant (mol / m3)(1-Σmi) / s 
and others 

pk  coverage factor - 

0k  pre-exponential factor (mol / m3)(1-Σmi) / s 
and others 

l  length m 

el  entry length m 

M  molecular weight g / mol 

Ma  Mach number - 

m  mass kg 

m  reaction order - 

im  reaction order regarding component i  - 

m  mass flow kg / s or g / h 

N  total number (e. g. of runs, of species in a gas mixture) - 

Nu  Nusselt number - 

n  amount of substance mol 

n  molar flow mol / s 

n  average molar flow mol / s 

Pe  Péclet number - 

Pr  Prandtl number - 

wP  wetted perimeter m 

p  pressure bar 

p  average pressure bar 
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Np  standard pressure (1.01325) bar 

DQ  diffusive quotient - 

q  heat flux density W / m2 

  universal gas constant (8.314472, see [Stroppe, 2008]) J / (mol K) 

R  specific gas constant J / (kg K) 

R  radius  m 

Re  Reynolds number - 

r  reaction rate (equivalent ~) mol / (s m3) or 
mol / (s m2) or 
mol / (s kg) 

r  radial position, radius m or mm 

r̂  radial position, radius m or mm 

r  mean radius m or mm 

S  surface m2 

s  specific surface m2 / g 

rels  relative standard deviation % 

maxrel,s  maximum relative deviation % 

T  temperature K or °C 

NT  standard temperature (273.15) K 

t  time min or s 

U  voltage V 

Û  voltage V 

u  velocity component in X-direction (ANSYS) m / s 

u  standard uncertainty various 

maxu  maximum uncertainty various 

maxu  average maximum uncertainty various 

V  volume  m3 

dV  diffusion volume - 
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V  volume flow m3 / s 

NV  standard volume flow (referring to NT  and Np ) sccm 

v  velocity / velocity component in Y-direction (ANSYS) m / s 

v  average velocity m / s 

w  velocity component in Z-direction (ANSYS) m / s 

X  conversion % or - 

X  average conversion % or - 

ix  vector of variables defining a condition i  various 

x  molar fraction % or - 

x  measured value various 

x̂  molar fraction % or - 

x  average molar fraction % or - 

Y  yield % or - 

y  quantity, which is a function of other quantities various 

iy  part of data point, observation related to condition i  various 

iy~  discrepancy between observation and model related to 
condition i  relative to the standard deviation of the 
observation  

- 

z  axial position m or mm 

   

α  matrix used to determine a covariance matrix various 

  heat transfer coefficient W / (m2 K) 

kl  component of matrix α  in row k  and column l  various 

2  merit function to be minimized (Chi-Square fitting) - 

RG  free enthalpy of reaction J 

0
RH  standard reaction enthalpy J 

LineX  position on Line X relative to the center position  m 

uX rel,1,,2CH4   difference of conversions of methane related to - 
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standard uncertainty respecting experimental campaign 
1 and 2 

uY rel,1,,2HC 22   difference of yields of ethyne related to standard 
uncertainty respecting experimental campaign 1 and 2 

- 

uY rel,1,,2HC 42   difference of yields of ethene related to standard 
uncertainty respecting experimental campaign 1 and 2 

- 

uY rel,1,,2HC 62   difference of yields of ethane related to standard 
uncertainty respecting experimental campaign 1 and 2 

- 

uY rel,1,,2H2   difference of yields of hydrogen related to standard 
uncertainty respecting experimental campaign 1 and 2 

- 

LineZ  position on Line Z relative to the center position m 

  emissivity - 

  view factor - 

  dynamic viscosity N s / m2 

  specific heat ratio - 

  thermal conductivity W / (m K) 

  average thermal conductivity W / (m K) 

  chemical potential J / mol 

  kinematic viscosity m2 / s 

  stoichiometric coefficient - 

  density kg / m3 

  Stefan-Boltzmann constant (5.67040 10-8, see [Baehr, 
2006] ) 

W / (m2 K4) 

  standard deviation various 

  residence time s 

  average residence time s 

ψ  vector of model parameters various 

ψ  model parameter various 

   

)(Corr  matrix of correlation coefficients  

)(Cov  covariance matrix  
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f  general function  

  nabla operator, gradient   

 

 

Indices and subscripts 

  

AL23  alumina, material manufactured by FRIATEC 

Ar  argon 

ave  average 

C  carbon 

4CH  methane 

CP  center position 

22HC  ethyne 

42HC  ethene 

62HC  ethane 

HCC2-  C2-hydrocarbons 

c  combined 

cat  catalyst 

cond  conductive 

conv  convective 

D  diffusive 

DG  dilution gas 

eq  equivalent 

g  gaseous 

H  hydrogen 

He  helium 

HT  heat transfer 
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2H  hydrogen 

h  hydrodynamic 

het  heterogeneous 

hom  homogeneous 

i  inner 

i  component i  of a gas mixture 

i  condition i  

ig  ideal gas 

j  run j  of a collectivity of experimental runs 

j  interval j  of a collectivity of intervals defined by molar fractions 

j  species j  

j  nested tube reactor j  

k  component k  of a gas mixture 

k  experiment k  

k  row of a matrix 

k  model parameter k  

LME  limit of marginal extend 

l  column of a matrix 

l  model parameter l  

MFC  mass flow controller 

max  maximum 

min  minimum 

mix  mixture 

N  at standard conditions ( NN , pT ) 

N  total number 

o  outer 

P  product 

PT  protection tube 
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q  reaction q  

R  reaction 

R  reactor 

R  resistor 

rad  radiative 

rel  relative, related 

s  solid 

T  transpose (of matrix) 

TC  thermocouple 

tot  total 

WP  wall position 

  

0  initial conditions 

0  at standard / reference condition 

1  inverse (of matrix) 

  

   positive 

   negative 

 

 

Abbreviations and chemical nomenclature 

  

AB  acetylene black 

AC  activated carbon 

32OAl  alumina 

Ar  argon 

ave  average 

BET  Brunauer, Emmett and Teller (specific surface) 
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C""  particulate carbon 

CB  carbon black 

CC  coal char 

CCS  carbon capture and storage 

2CH  methylene radical 

3CH  methyl radical 

4CH  methane 

CO  carbon monoxide 

2CO  carbon dioxide 

CSP  concentrating solar power 

nmHC  hydrocarbons (not further specified) 

22HC  ethyne 

42HC  ethene 

62HC  ethane 

HCC2-  C2-hydrocarbons 

43HC  propyne or propadiene 

63HC  propene 

83HC  propane 

34HC  unsaturated hydrocarbon radical featuring 4 C-atoms and 3 H-atoms 

810HC  naphthalene 

c  combined 

cat  catalyst 

D  diffusion 

DG  dilution gas 

DLR  Deutsches Zentrum für Luft- und Raumfahrt e.V. (German Aerospace 
Center) 
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DWV  Deutscher Wasserstoff- und Brennstoffzellen-Verband e.V. (German 
Hydrogen and Fuel Cell Association) 

EUMENA  Europe, Middle East, North Africa 

g.e.  for example 

seq.et  et sequens 

seqq.et  et sequentes 

FS  full scale 

GC  gas chromatograph 

GCF  gas correction factor 

GUM  Guide to the expression of uncertainty in measurement 

H  hydrogen atom 

He  helium 

HID  helium ionization detector 

2H  hydrogen 

OH2  water 

IPCC  Intergovernmental Panel on Climate Change 

IPS  initial parameter set 

104HC-i  isobutane 

Kr  krypton 

LB  lower bounds 

M  collision partner 

MFC  mass flow controller 

MFR  mixed flow reactor 

2MoSi  molybdenum disilicide 

MS  molecular sieve 

max  maximum 

min  minimum 

Ne  neon 
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NTR  nested tube reactor(s) 

Ni  nickel 

2N  nitrogen 

s.n.  not specified 

104HC-n  unbranched butane 

OM  order of magnitude 

2O  oxygen 

P  product species 

PAH  polycyclic aromatic hydrocarbon 

PFR  plug flow reactor 

PTFE  polytetrafluoroethylene 

Pt  platinum 

Rh  rhodium 

SLM  standard liter per minute (referring to NT  and Np ) 

SOLHYCARB
 

Hydrogen from solar thermal energy: high temperature solar chemical 
reactor for co-production of hydrogen and carbon black from natural gas 
cracking (European project) 

sccm  standard cubic centimeters per minute (referring to NT  and Np ) 

TCD  thermal conductivity detector 

UB  upper bounds 

X  direction of a Cartesian coordinate system 

Y  direction of a Cartesian coordinate system 

Z  direction of a Cartesian coordinate system 
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Appendix A: Thermodynamics 
Table of Appendix 1: Species considered for calculations of equilibrium compositions. Species in gray form 
significant part of composition at equilibrium. 
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Figure of Appendix 1: Equilibrium compositions at 0.5 bar as a function of the temperature 
(based on an initial amount of 1 kmol methane) 
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Figure of Appendix 2: Equilibrium compositions at 2 bar as a function of the temperature 
(based on an initial amount of 1 kmol methane) 
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Appendix B: Gas chromatograph  

 

Table of Appendix 2: Parameters of gas chromatograph and their set points 

Parameter Set point Actual 

Pressure of Carrier #1 21 psi 21 psi 

Pressure of Carrier #2 21 psi 21 psi 

Pressure of HID make up gas 21 psi 20 psi 

Ion Current of HID 120 mA 120 mA 

Temperature of valve 60 °C 67 °C 

Temperature of HID (labeled as Detector 1) 200 °C 205 °C 

Temperature of TCD 251 °C 257 °C 

Sensitivity of HID medium gain 

Sensitivity of TCD high gain 

 

 

Figure of Appendix 3: Valve in “Load” position and “Inject” position 
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Figure of Appendix 4: Temperature program and event program for the measurement procedure 
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Figure of Appendix 5: Temperature program and event program for the column bake-out 
procedure 
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Figure of Appendix 6: Example for a chromatogram of the product gas respecting signals of the 
HID. Hydrocarbons with a molecular weight higher than the C2-hydrocarbons were not 
considered.  

 

Figure of Appendix 7: Example for a chromatogram of the product gas respecting signals of the 
TCD. Hydrocarbons with a molecular weight higher than the C2-hydrocarbons were not 
considered. 
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Figure of Appendix 8: Example for a GC calibration curve: methane detected by the HID (2nd 
order polynomial) 
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Figure of Appendix 9: Example for GC calibration curves: C2-hydrocarbons detected by the HID 
(2nd order polynomial) 
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Figure of Appendix 10: Example a GC calibration curve: argon detected by the TCD (line) 

 

Table of Appendix 3: Standard deviations, maximum positive deviations, and maximum negative deviations 
relative to mean peak areas determined in GC measurements (HID) for different molar fractions of hydrogen 
(extreme values in red) 

Molar 
fraction 

# Runs day 1 
# Runs day 2 

... 
%inrels  %inmaxrel,

s  %inmaxrel,
s  

100 ppm 
4 
3 
4 

1.47 
0.29 
7.29 

1.53 
0.17 
7.09 

-2.00 
-0.33 
-7.41 

1 % 

6 
48 
48 
9 

1.38 
1.05 
0.61 
0.82 

1.48 
2.14 
1.39 
1.63 

-1.80 
-2.48 
-1.29 
-0.74 

10 % 19 0.39 0.62 -0.70 
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Table of Appendix 4: Standard deviations, maximum positive deviations, and maximum negative deviations 
relative to mean peak areas determined in GC measurements (HID and TCD) for different molar fractions of 
methane (extreme values in red) 

Detector 
Molar 

fraction 

# Runs day 1
# Runs day 2

... 
%inrels  %inmaxrel,

s  %inmaxrel,
s  

100 ppm 
4 
3 
4 

0.74 
0.56 
3.06 

1.02 
0.49 
2.35 

-0.75 
-0.62 
-4.13 

HID 

1 % 

9 
22 
14 
14 
14 
6 

0.28 
0.28 
0.34 
1.07 
0.84 
0.23 

0.40 
0.77 
0.51 
1.11 
1.58 
0.30 

-0.51 
-0.34 
-0.63 
-2.11 
-1.15 
-0.29 

TCD 1 % 

9 
22 
14 
14 
5 

0.77 
0.53 
0.62 
0.67 
0.68 

1.68 
0.85 
1.05 
0.99 
0.90 

-0.92 
-1.21 
-0.93 
-1.09 
-0.58 

 

Table of Appendix 5: Standard deviations, maximum positive deviations, and maximum negative deviations 
relative to mean peak areas determined in GC measurements (TCD) for different molar fractions of argon 
(extreme values in red) 

Molar 
fraction 

# Runs day 1
# Runs day 2

... 
%inrels  %inmaxrel,

s  %inmaxrel,
s  

98.8 % 

8 
5 
5 
5 
5 
5 

0.25 
0.39 
0.59 
0.45 
0.64 
0.43 

0.29 
0.34 
0.73 
0.61 
1.05 
0.75 

-0.39 
-0.53 
-0.57 
-0.50 
-0.68 
-0.35 
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Table of Appendix 6: Standard deviations, maximum positive deviations, and maximum negative deviations 
relative to mean peak areas determined in GC measurements (HID) for different molar fractions of ethane 
(extreme values in red) 

Molar 
fraction 

# Runs day 1 
# Runs day 2 

... 
%inrels  %inmaxrel,

s  %inmaxrel,
s  

100 ppm 
4 
3 
4 

3.76 
1.63 
0.39 

3.71 
1.45 
0.48 

-3.75 
-1.77 
-0.45 

490 ppm 

14 
8 
5 
5 
5 
5 
5 

0.52 
0.64 
0.54 
0.81 
0.53 
1.20 
0.44 

0.87 
0.84 
0.54 
1.03 
0.78 
1.28 
0.37 

-1.21 
-0.59 
-0.60 
-0.69 
-0.50 
-1.48 
-0.62 

1 % 
5 
4 
9 

2.49 
0.44 
0.56 

1.67 
0.57 
0.74 

-4.31 
-0.35 
-1.11 

 

Table of Appendix 7: Standard deviations, maximum positive deviations, and maximum negative deviations 
relative to mean peak areas determined in GC measurements (HID) for different molar fractions of ethene 
(extreme values in red) 

Molar 
fraction 

# Runs day 1 
# Runs day 2 

... 
%inrels  %inmaxrel,

s  %inmaxrel,
s  

100 ppm 
4 
3 
4 

3.06 
1.35 
1.38 

3.34 
1.53 
1.03 

-3.00 
-1.04 
-1.95 

1040 ppm 

14 
8 
5 
5 
5 
5 
5 

1.04 
0.44 
0.65 
0.77 
0.53 
1.74 
0.41 

1.05 
0.53 
0.70 
0.91 
0.73 
1.02 
0.41 

-2.30 
-0.51 
-0.73 
-0.61 
-0.52 
-3.10 
-0.52 

1 % 
5 
4 
9 

2.44 
0.16 
0.82 

1.57 
0.20 
1.33 

-4.28 
-0.20 
-1.39 
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Table of Appendix 8: Standard deviations, maximum positive deviations, and maximum negative deviations 
relative to mean peak areas determined in GC measurements (HID) for different molar fractions of ethyne 
(extreme values in red) 

Molar 
fraction 

# Runs day 1
# Runs day 2

... 
%inrels  %inmaxrel,

s  %inmaxrel,
s  

100 ppm 
4 
3 
4 

4.86 
1.87 

14.49 

5.27 
2.09 

16.38 

-4.66 
-1.52 

-13.59 

0.5 % 
5 
4 
9 

4.89 
0.51 
2.91 

3.19 
0.67 
3.08 

-8.57 
-0.49 
-4.13 

1.01 % 

14 
8 
5 
5 
5 
5 
5 

4.31 
3.87 
1.57 
3.79 
2.88 
5.06 
5.78 

5.07 
3.99 
1.84 
4.54 
2.65 
6.80 
8.33 

-9.45 
-7.80 
-2.25 
-5.93 
-3.89 
-5.11 
-7.11 

 

Table of Appendix 9: Maximum relative deviation of GC measurements for hydrogen (HID) 

H2   HID 
Molar fraction in % 

maximum relative deviation 
measured and extended (safety factor) 
estimated (assumed worst case factor) 

basic / 
substituting 
additional 

lower bound 
of interval 

upper bound 
of interval POSITIVE NEGATIVE 

0.001 0 0.00316 78.0 (10) -81.5 (10) 

0.01 0.00316 0.0316 
7.09 

7.80 (1.1) 
-7.41 

-8.15 (1.1) 

0.1 0.0316 0.316 5.08 -5.44 

1 0.316 3.16 
2.14 

2.35 (1.1) 
-2.48 

-2.73 (1.1) 

10 3.16 31.6 
0.622 

0.684 (1.1) 
-0.697 

-0.767 (1.1) 

minimum molar fraction applied or determined in experiments: 0.01 % 
maximum molar fraction applied or determined in experiments: 17.0 % 
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Table of Appendix 10: Maximum relative deviation of GC measurements for methane (HID) 

CH4   HID 
Molar fraction in % 

maximum relative deviation 
measured and extended (safety factor) 
estimated (assumed worst case factor) 

basic / 
substituting 
additional 

lower bound 
of interval 

upper bound 
of interval POSITIVE NEGATIVE 

0.001 0 0.00316 25.9 (10) -45.4 (10) 

0.01 0.00316 0.0316 
2.35 

2.59 (1.1) 
-4.13 

-4.54 (1.1) 

0.1 0.0316 0.316 2.16 -3.43 

1 0.316 3.16 
1.58 

1.74 (1.1) 
-2.11 

-2.32 (1.1) 

10 3.16 31.6 8.69 (5) -11.6 (5) 

minimum molar fraction applied or determined in experiments: 0.00152 % 
maximum molar fraction applied or determined in experiments: 3.37 % 
molar fractions > 1 % rarely employed  

 

Table of Appendix 11: Maximum relative deviation of GC measurements for methane (TCD) 

CH4   TCD 
Molar fraction in % 

maximum relative deviation 
measured and extended (safety factor) 
estimated (assumed worst case factor) 

basic / 
substituting 
additional 

lower bound 
of interval 

upper bound 
of interval POSITIVE NEGATIVE 

0.1 0.0316 0.316 9.24 (5) -6.66 (5) 

1 0.316 3.16 
1.68 

1.85 (1.1) 
-1.21 

-1.33 (1.1) 

10 3.16 31.6 1.85 (1) -1.33 (1) 

minimum molar fraction applied or determined in experiments: 0.105 % 
maximum molar fraction applied or determined in experiments: 20.0 % 
molar fractions < 0.6 % rarely employed 
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Table of Appendix 12: Maximum relative deviation of GC measurements for argon (TCD) 

Ar   TCD 
Molar fraction in % 

maximum relative deviation 
measured and extended (safety factor) 
estimated (assumed worst case factor) 

basic / 
substituting 
additional 

lower bound 
of interval 

upper bound 
of interval POSITIVE NEGATIVE 

98.8 31.4 100 
1.05 

1.16 (1.1) 
-0.679 

-0.747 (1.1) 

minimum molar fraction applied or determined in experiments: 78.8 % 
maximum molar fraction applied or determined in experiments: 100 % 

 

Table of Appendix 13: Maximum relative deviation of GC measurements for ethane (HID) 

C2H6   HID 
Molar fraction in % 

maximum relative deviation 
measured and extended (safety factor) 
estimated (assumed worst case factor) 

basic / 
substituting 
additional 

lower bound 
of interval 

upper bound 
of interval POSITIVE NEGATIVE 

0.001 0 0.00316 40.8 (10) -41.3 (10) 

0.01 0.00316 0.0221 
3.71 

4.08 (1.1) 
-3.75 

-4.13 (1.1) 

0.049 0.0221 0.0700 
1.28 

1.41 (1.1) 
-1.48 

-1.63 (1.1) 

0.1 0.0700 0.316 1.51 -2.36 

1 0.316 3.16 
1.67 

1.84 (1.1) 
-4.31 

-4.74 (1.1) 

minimum molar fraction applied or determined in experiments: 0.0000206 % 
maximum molar fraction applied or determined in experiments: 1 % 
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Table of Appendix 14: Maximum relative deviation of GC measurements for ethene (HID) 

C2H4   HID 
Molar fraction in % 

maximum relative deviation 
measured and extended (safety factor) 
estimated (assumed worst case factor) 

basic / 
substituting 
additional 

lower bound 
of interval 

upper bound 
of interval POSITIVE NEGATIVE 

0.001 0 0.00316 36.7 (10) -33.0 (10) 

0.01 0.00316 0.0322 
3.34 

3.67 (1.1) 
-3.00 

-3.30 (1.1) 

0.104 0.0322 0.322 
1.05 

1.16 (1.1) 
-3.10 

-3.41 (1.1) 

1 0.322 3.16 
1.57 

1.73 (1.1) 
-4.28 

-4.71 (1.1) 

minimum molar fraction applied or determined in experiments: 0.00159 % 
maximum molar fraction applied or determined in experiments: 1.00 % 

 

Table of Appendix 15: Maximum relative deviation of GC measurements for ethyne (HID) 

C2H2   HID 
Molar fraction in % 

maximum relative deviation 
measured and extended (safety factor) 
estimated (assumed worst case factor) 

basic / 
substituting 
additional 

lower bound 
of interval 

upper bound 
of interval POSITIVE NEGATIVE 

0.001 0 0.00316 180 (10) -97.2 (6.5) 

0.01 0.00316 0.0316 
16.4 

18.0 (1.1) 
-13.6 

-15.0 (1.1) 

0.1 0.0316 0.224 9.49 -11.7 

0.5 0.224 0.711 
3.19 

3.51 (1.1) 
-8.57 

-9.43 (1.1) 

1.01 0.711 3.18 
8.33 

9.16 (1.1) 
-9.45 

-10.4 (1.1) 

minimum molar fraction applied or determined in experiments: 0.000150 % 
maximum molar fraction applied or determined in experiments: 1.99 % 
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Appendix C: Reaction conditions and experimental results  

 

Table of Appendix 16: Various information about reaction conditions for with argon as dilution gas and 
nominal furnace temperatures of 1200 °C and 1300 °C (nominal furnace temperature in °C - nominal total 
standard volume flow in sccm - nominal initial molar fraction of methane in %) I 

Set sccminAr,0N,V sccmin,0CHN, 4
V sccmintot,0N,V  %in,0CH4

x  

1200 - 95 - 2 93.06 1.1 2.7 1.898 0.0 0.1 94.96 1.999 

1200 - 95 - 5 90.10 1.1 2.6 4.735 0.1 0.1 94.84 4.993 

1200 - 95 - 10 85.51 1.1 2.6 9.513 0.1 0.2 95.02 10.01 

1200 - 200 - 2 195.5 1.8 4.1 4.027 0.1 0.1 199.5 2.018 

1200 - 200 - 5 189.8 1.7 4.0 10.03 0.1 0.2 199.8 5.019 

1200 - 200 - 10 179.9 1.7 3.9 19.95 0.4 0.9 199.9 9.982 

1200 - 350 - 2 343.7 2.9 6.2 7.060 0.1 0.1 350.8 2.013 

1200 - 350 - 5 333.3 2.8 6.0 17.54 0.4 0.8 350.8 4.999 

1200 - 350 - 10 313.9 2.7 5.8 35.13 0.4 1.1 349.0 10.07 

1200 - 685 - 2 671.2 5.5 10.8 13.50 0.3 0.8 684.7 1.972 

1200 - 685 - 5 650.4 5.3 10.5 34.19 0.4 1.1 684.6 4.994 

1200 - 685 - 10 616.4 5.0 10.0 69.09 0.6 1.5 685.5 10.08 

1200 - 2000 - 2 1959 20.3 49.3 39.94 0.5 1.1 1999 1.998 

1200 - 2000 - 5 1905 19.9 48.6 100.2 1.8 4.3 2005 4.997 

1200 - 2000 - 10 1804 19.3 47.2 200.1 2.3 5.7 2004 9.985 

1200 - 2000 - 20 1600 18.1 44.3 400.1 3.8 9.1 2000 20.00 

1300 - 340 - 2 332.9 2.8 6.0 6.717 0.3 0.7 339.6 1.978 

1300 - 340 - 5 323.1 2.7 5.9 16.98 0.4 0.8 340.1 4.993 

1300 - 340 - 10 306.5 2.6 5.7 33.89 0.4 1.1 340.4 9.956 

1300 - 650 - 2 637.0 5.2 10.3 12.91 0.3 0.8 649.9 1.986 

1300 - 650 - 5 616.9 5.0 10.0 32.58 0.4 1.0 649.5 5.016 

1300 - 650 - 10 584.3 4.8 9.6 64.91 0.6 1.5 649.2 10.00 

1300 - 1300 - 2 1276 16.3 39.8 26.06 0.4 0.9 1302 2.001 

1300 - 1300 - 5 1236 16.1 39.2 65.05 0.6 1.5 1301 5.000 

1300 - 1300 - 10 1172 15.8 38.3 130.1 2.0 4.7 1302 9.992 

1300 - 2600 - 2 2549 24.2 57.6 51.64 0.5 1.3 2601 1.986 

1300 - 2600 - 5 2470 23.6 56.5 129.3 2.0 4.7 2599 4.974 

1300 - 2600 - 10 2340 22.8 54.7 259.4 2.7 6.5 2599 9.979 

1300 - 4800 - 2 4695 49.4 120.5 95.96 1.8 4.2 4791 2.003 

1300 - 4800 - 5 4556 48.6 118.6 239.6 2.6 6.2 4796 4.996 

1300 - 4800 - 10 4345 47.3 115.6 460.6 4.2 9.9 4806 9.585 

standard uncertainty   /   maximum uncertainty
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Table of Appendix 17: Various information about reaction conditions for with argon as dilution gas and 
nominal furnace temperatures of 1400 °C, 1500 °C, and 1600 °C (nominal furnace temperature in °C - nominal 
total standard volume flow in sccm - nominal initial molar fraction of methane in %) I 

Set sccminAr,0N,V  sccmin,0CHN, 4
V sccmintot,0N,V %in,0CH4

x  

1400 - 700 - 2 686.0 13.8 31.5 14.02 0.4 0.8 700.0 2.003 

1400 - 700 - 5 665.2 13.8 31.2 35.03 0.4 1.1 700.2 5.003 

1400 - 700 - 10 629.5 13.6 30.7 69.95 0.7 1.6 699.5 10.00 

1400 - 1400 - 2 1373 16.8 41.1 27.83 0.4 1.0 1401 1.987 

1400 - 1400 - 5 1330 16.6 40.5 69.90 0.7 1.6 1400 4.993 

1400 - 1400 - 10 1258 16.2 39.5 140.0 2.0 4.8 1398 10.01 

1400 - 2600 - 2 2549 24.2 57.6 51.67 0.5 1.3 2601 1.987 

1400 - 2600 - 5 2471 23.6 56.5 129.8 2.0 4.7 2601 4.991 

1400 - 2600 - 10 2340 22.8 54.7 260.5 2.7 6.5 2601 10.02 

1400 - 3800 - 2 3718 43.6 106.9 76.15 1.8 3.9 3794 2.007 

1400 - 3800 - 5 3615 43.1 105.4 190.4 2.3 5.5 3805 5.003 

1400 - 3800 - 10 3427 42.1 102.8 380.2 3.5 8.2 3807 9.986 

1400 - 6500 - 2 6362 60.4 143.9 129.5 2.0 4.7 6492 1.995 

1400 - 6500 - 5 6168 59.0 141.2 324.6 3.1 7.4 6493 5.000 

1400 - 6500 - 7.1 6044 58.2 139.4 458.5 4.2 9.9 6503 7.051 

1500 - 1600 - 2 1566 17.9 43.8 31.99 0.4 1.0 1598 2.002 

1500 - 1600 - 5 1522 17.6 43.2 80.00 1.8 4.0 1602 4.994 

1500 - 1600 - 10 1433 17.2 42.0 159.9 2.1 5.1 1593 10.04 

1500 - 2800 - 2 2743 25.9 61.7 55.64 0.6 1.4 2799 1.988 

1500 - 2800 - 5 2665 25.0 59.2 140.0 2.0 4.8 2805 4.991 

1500 - 2800 - 10 2522 24.0 57.2 280.5 2.8 6.8 2803 10.01 

1500 - 4600 - 2 4504 48.2 117.9 91.98 1.8 4.2 4596 2.001 

1500 - 4600 - 5 4369 47.4 116.0 229.7 2.5 6.1 4599 4.995 

1500 - 4600 - 10 4166 46.2 113.1 430.9 4.0 9.5 4597 9.374 

1500 - 7200 - 2 7056 65.2 153.6 144.0 2.0 4.9 7200 2.000 

1500 - 7200 - 5 6824 63.6 150.3 360.0 3.4 7.9 7184 5.011 

1500 - 7200 - 6.3 6735 63.0 149.1 454.5 4.2 9.8 7190 6.322 

1500 - 9800 - 2 9600 83.8 189.2 196.6 2.3 5.6 9797 2.007 

1500 - 9800 - 3.1 9490 83.0 187.7 304.3 3.0 7.1 9794 3.107 

1500 - 9800 - 5 9350 81.9 185.7 464.7 4.3 10.0 9815 4.735 

1600 - 2000 - 2 1960 20.3 49.4 40.01 0.5 1.1 2000 2.000 

1600 - 2000 - 5 1903 19.9 48.6 99.91 1.8 4.3 2003 4.988 

1600 - 2000 - 10 1800 19.3 47.1 200.8 2.3 5.7 2001 10.04 

1600 - 3350 - 2 3285 29.8 69.3 66.76 0.6 1.5 3352 1.992 

1600 - 3350 - 5 3189 29.1 67.9 167.5 2.1 5.2 3357 4.990 

1600 - 3350 - 10 3020 27.9 65.6 334.7 3.2 7.6 3355 9.977 

1600 - 6500 - 2 6367 60.4 143.9 129.9 2.0 4.7 6497 1.999 

1600 - 6500 - 5 6180 59.1 141.3 326.3 3.1 7.4 6506 5.015 

1600 - 6500 - 7.1 6045 58.2 139.4 459.2 4.2 9.9 6504 7.060 

1600 - 9800 - 2 9576 83.6 188.9 195.8 2.3 5.6 9772 2.004 

1600 - 9800 - 3 9486 82.9 187.6 294.1 2.9 7.0 9780 3.007 

1600 - 9800 - 5 9339 81.8 185.5 460.7 4.2 9.9 9800 4.701 

standard uncertainty   /   maximum uncertainty
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Table of Appendix 18: Various information about reaction conditions for with argon as dilution gas and 
nominal furnace temperatures of 1200 °C and 1300 °C (nominal furnace temperature in °C - nominal total 
standard volume flow in sccm - nominal initial molar fraction of methane in %) II 

barinnletiR,p barinoutletR,p
Set 

start end start end 

sin  # Runs 

1200 - 95 - 2 1.006 1.006 0.999 0.999 1.46 0.218 1 

1200 - 95 - 5 1.005 1.005 0.998 0.997 1.46 0.218 1 

1200 - 95 - 10 1.009 1.009 0.999 0.999 1.47 0.218 1 

1200 - 200 - 2 1.008 1.008 1.009 1.009 0.697 0.0974 2 

1200 - 200 - 5 1.008 1.008 1.009 1.009 0.696 0.0971 2 

1200 - 200 - 10 1.008 1.008 1.009 1.009 0.696 0.0993 1 

1200 - 350 - 2 1.006 1.006 1.008 1.008 0.396 0.0539 2 

1200 - 350 - 5 1.006 1.006 1.008 1.008 0.396 0.0546 2 

1200 - 350 - 10 1.006 1.006 1.007 1.007 0.398 0.0549 1 

1200 - 685 - 2 1.006 1.007 1.006 1.007 0.203 0.0273 1 

1200 - 685 - 5 1.006 1.007 1.006 1.007 0.203 0.0273 2 

1200 - 685 - 10 1.006 1.007 1.006 1.007 0.203 0.0273 1 

1200 - 2000 - 2 1.012 1.012 1.013 1.013 0.0699 0.0101 1 

1200 - 2000 - 5 1.012 1.012 1.013 1.013 0.0696 0.0102 2 

1200 - 2000 - 10 1.012 1.012 1.013 1.013 0.0697 0.0102 1 

1200 - 2000 - 20 1.012 1.012 1.013 1.013 0.0698 0.0102 1 

1300 - 340 - 2 0.995 0.995 0.996 0.996 0.379 0.0523 1 

1300 - 340 - 5 0.994 0.994 0.996 0.996 0.378 0.0522 2 

1300 - 340 - 10 0.994 0.994 0.996 0.996 0.377 0.0522 1 

1300 - 650 - 2 1.004 1.005 1.004 1.005 0.200 0.0270 1 

1300 - 650 - 5 1.005 1.005 1.005 1.005 0.200 0.0270 2 

1300 - 650 - 10 1.005 1.005 1.005 1.005 0.200 0.0270 1 

1300 - 1300 - 2 1.012 1.011 1.013 1.013 0.100 0.0152 1 

1300 - 1300 - 5 1.011 1.011 1.012 1.013 0.100 0.0152 2 

1300 - 1300 - 10 1.011 1.011 1.012 1.013 0.100 0.0154 1 

1300 - 2600 - 2 1.009 1.009 1.007 1.007 0.0501 0.00709 1 

1300 - 2600 - 5 1.009 1.009 1.008 1.008 0.0502 0.00715 2 

1300 - 2600 - 10 1.009 1.009 1.008 1.008 0.0502 0.00715 2 

1300 - 4800 - 2 1.020 1.020 1.019 1.019 0.0275 0.00400 2 

1300 - 4800 - 5 1.020 1.020 1.018 1.019 0.0275 0.00399 2 

1300 - 4800 - 10 1.020 1.020 1.018 1.019 0.0274 0.00399 1 

maximum uncertainty
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Table of Appendix 19: Various information about reaction conditions for with argon as dilution gas and 
nominal furnace temperatures of 1400 °C, 1500 °C, and 1600 °C (nominal furnace temperature in °C - nominal 
total standard volume flow in sccm - nominal initial molar fraction of methane in %) II 

barininletR,p barinR,outletp
Set 

start end start end 

sin  # Runs 

1400 - 700 - 2 1.003 1.003 1.005 1.005 0.174 0.0295 1 

1400 - 700 - 5 1.003 1.003 1.005 1.005 0.174 0.0295 2 

1400 - 700 - 10 1.003 1.003 1.005 1.005 0.174 0.0296 1 

1400 - 1400 - 2 1.011 1.012 1.004 1.004 0.0877 0.0132 2 

1400 - 1400 - 5 1.021 1.021 1.010 1.010 0.0886 0.0133 1 

1400 - 1400 - 10 1.026 1.030 1.010 1.010 0.0893 0.0136 2 

1400 - 2600 - 2 1.031 1.031 1.025 1.025 0.0482 0.00680 1 

1400 - 2600 - 5 1.048 1.048 1.030 1.030 0.0490 0.00695 1 

1400 - 2600 - 10 1.045 1.046 1.028 1.028 0.0488 0.00694 1 

1400 - 3800 - 2 1.013 1.013 1.012 1.012 0.0324 0.00484 1 

1400 - 3800 - 5 1.013 1.013 1.012 1.013 0.0323 0.00482 2 

1400 - 3800 - 10 1.013 1.014 1.012 1.012 0.0323 0.00482 1 

1400 - 6500 - 2 1.058 1.058 1.050 1.050 0.0198 0.00279 1 

1400 - 6500 - 5 1.057 1.057 1.049 1.049 0.0198 0.00279 2 

1400 - 6500 - 7.1 1.057 1.057 1.049 1.049 0.0197 0.00279 1 

1500 - 1600 - 2 0.985 0.985 0.984 0.984 0.0707 0.0105 2 

1500 - 1600 - 5 0.984 0.984 0.984 0.984 0.0704 0.0106 1 

1500 - 1600 - 10 0.985 0.985 0.984 0.984 0.0709 0.0106 1 

1500 - 2800 - 2 1.010 1.010 1.006 1.006 0.0414 0.00585 1 

1500 - 2800 - 5 1.011 1.011 1.005 1.005 0.0413 0.00585 1 

1500 - 2800 - 10 1.017 1.024 1.005 1.005 0.0417 0.00591 1 

1500 - 4600 - 2 1.025 1.025 1.024 1.024 0.0256 0.00373 1 

1500 - 4600 - 5 1.027 1.027 1.024 1.024 0.0256 0.00373 2 

1500 - 4600 - 10 1.028 1.028 1.024 1.024 0.0256 0.00374 1 

1500 - 7200 - 2 1.016 1.016 1.011 1.011 0.0162 0.00227 2 

1500 - 7200 - 5 1.016 1.016 1.011 1.011 0.0162 0.00228 2 

1500 - 7200 - 6.3 1.015 1.016 1.010 1.010 0.0162 0.00228 1 

1500 - 9800 - 2 1.018 1.017 1.005 1.005 0.0119 0.00164 3 

1500 - 9800 - 3.1 1.016 1.017 1.004 1.004 0.0119 0.00164 1 

1500 - 9800 - 5 1.016 1.016 1.004 1.004 0.0119 0.00164 1 

1600 - 2000 - 2 1.008 1.008 1.008 1.008 0.0547 0.00790 2 

1600 - 2000 - 5 1.008 1.008 1.009 1.009 0.0546 0.00797 1 

1600 - 2000 - 10 1.009 1.009 1.009 1.009 0.0547 0.00798 1 

1600 - 3350 - 2 1.034 1.034 1.032 1.032 0.0335 0.00467 1 

1600 - 3350 - 5 1.035 1.035 1.032 1.032 0.0335 0.00469 2 

1600 - 3350 - 10 1.036 1.037 1.032 1.032 0.0335 0.00470 1 

1600 - 6500 - 2 1.052 1.052 1.044 1.044 0.0176 0.00248 2 

1600 - 6500 - 5 1.054 1.055 1.044 1.044 0.0176 0.00248 2 

1600 - 6500 - 7.1 1.055 1.057 1.044 1.044 0.0176 0.00249 1 

1600 - 9800 - 2 1.033 1.033 1.022 1.022 0.0115 0.00158 1 

1600 - 9800 - 3 1.033 1.033 1.023 1.023 0.0115 0.00158 2 

1600 - 9800 - 5 1.034 1.035 1.023 1.023 0.0115 0.00158 1 

maximum uncertainty
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Table of Appendix 20: Conversion of methane as well as yields of hydrogen and ethyne along with respective 
maximum and standard uncertainties for experiments with argon as dilution gas and nominal furnace 
temperatures of 1200 °C and 1300 °C 

Set %in
4CHX  %in

2HY  %in
22HCY  

1200 - 95 - 2 81.81 0.9693 3.551 -4.467 82.05 3.381 15.84 -13.64 24.08 1.504 6.448 -5.455

1200 - 95 - 5 82.70 0.6514 2.574 -3.015 80.63 2.555 12.46 -10.61 16.44 1.159 4.774 -3.591 

1200 - 95 - 10 82.74 0.6057 2.437 -2.842 80.21 2.887 13.60 -11.39 12.08 1.011 4.199 -2.802 

1200 - 200 - 2 71.68 1.213 4.378 -5.287 58.16 2.089 9.496 -7.981 28.10 2.921 11.54 -7.476 

1200 - 200 - 5 73.46 0.8297 3.217 -3.712 63.64 1.074 5.223 -4.912 18.78 1.596 5.807 -4.580 

1200 - 200 - 10 73.92 0.9432 3.891 -4.682 69.72 2.659 13.06 -10.78 13.90 1.324 5.712 -3.632 

1200 - 350 - 2 50.39 2.280 7.617 -8.927 41.55 1.738 6.938 -5.977 22.71 2.127 8.874 -4.607 

1200 - 350 - 5 55.39 2.112 7.754 -9.445 48.66 1.584 7.599 -6.431 18.73 1.773 7.784 -4.535 

1200 - 350 - 10 59.38 1.787 6.668 -7.980 52.67 1.699 8.302 -7.004 14.36 1.283 5.275 -3.513 

1200 - 685 - 2 17.87 3.211 12.17 -14.76 9.316 1.572 5.332 -4.456 10.45 1.900 8.082 -3.907 

1200 - 685 - 5 24.09 2.542 10.03 -11.82 19.88 0.9276 3.957 -3.284 11.22 1.468 6.223 -3.049 

1200 - 685 - 10 29.15 2.451 9.403 -11.05 23.38 0.7941 3.550 -3.107 10.67 1.231 4.979 -2.818 

1200 - 2000 - 2 7.044 4.379 15.94 -7.044 0.8381 0.06438 0.2514 -0.1993 0.09395 0.8529 4.671 -0.07012

1200 - 2000 - 5 2.734 3.728 15.07 -2.734 1.003 0.06605 0.2809 -0.2221 0.2320 0.03713 0.1448 -0.09034

1200 - 2000 - 10 2.523 3.544 14.39 -2.523 1.346 0.08716 0.3628 -0.2862 0.4195 0.08027 0.3248 -0.1652

1200 - 2000 - 20 3.577 3.414 14.05 -3.577 2.196 0.1345 0.5468 -0.4735 0.7550 0.1337 0.5645 -0.2660

1300 - 340 - 2 91.67 0.6194 1.977 -2.747 87.19 4.872 12.81 -15.07 37.08 3.729 16.71 -10.90 

1300 - 340 - 5 91.18 0.4318 1.589 -1.956 85.95 2.896 14.05 -11.79 26.06 2.191 9.337 -6.405 

1300 - 340 - 10 89.96 0.4264 1.617 -1.955 85.10 3.087 14.86 -12.29 19.47 1.847 7.032 -5.477 

1300 - 650 - 2 83.54 1.366 4.468 -5.339 72.29 3.156 14.43 -11.69 36.06 4.889 21.63 -10.86 

1300 - 650 - 5 83.45 0.8142 2.869 -3.446 78.05 2.581 12.18 -10.29 25.65 2.409 10.13 -6.009 

1300 - 650 - 10 82.45 0.6171 2.400 -2.811 77.95 2.790 12.76 -10.69 21.39 1.812 6.120 -5.954 

1300 - 1300 - 2 61.63 2.148 7.603 -9.561 48.18 1.897 9.194 -7.647 36.76 4.877 21.28 -10.88 

1300 - 1300 - 5 63.55 1.639 6.125 -7.269 54.29 1.652 8.180 -7.035 27.50 2.731 11.31 -7.049 

1300 - 1300 - 10 63.15 1.704 6.701 -8.193 58.03 2.119 10.88 -9.014 21.80 1.816 6.755 -6.473 

1300 - 2600 - 2 19.05 2.603 10.40 -12.22 9.418 1.574 4.993 -4.378 8.064 0.7638 2.404 -2.544 

1300 - 2600 - 5 19.23 2.803 11.45 -13.61 13.02 0.5577 2.539 -2.140 8.659 0.6402 2.259 -2.308 

1300 - 2600 - 10 22.10 2.579 10.49 -12.28 14.54 0.4611 2.220 -1.906 8.219 0.5504 2.164 -1.787 

1300 - 4800 - 2 1.196 2.680 8.978 -1.196 0.5461 0.03740 0.1575 -0.1218 0.01521 0.1667 0.9270 -0.01226

1300 - 4800 - 5 1.401 1.498 5.407 -1.401 0.6944 0.04302 0.1740 -0.1391 0.09628 0.03771 0.1913 -0.02746

1300 - 4800 - 10 1.744 1.287 4.565 -1.744 0.9496 0.06674 0.2667 -0.2065 0.1515 0.03804 0.1405 -0.08064

standard uncertainty   /   maximum uncertainty
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Table of Appendix 21: Yields of ethane and ethene along with respective maximum and standard 
uncertainties for experiments with argon as dilution gas and nominal furnace temperatures of 1200 °C and 
1300 °C 

Set %in
62HCY  %in

42HCY  

1200 - 95 - 2 0.002102 0.0006941 0.003017 -0.001157 1.222 0.1492 0.5782 -0.4325 

1200 - 95 - 5 0.006905 0.002274 0.009456 -0.003721 2.281 0.2369 0.8061 -0.7474 

1200 - 95 - 10 0.02731 0.008992 0.03733 -0.01469 3.069 0.2865 0.9783 -0.9334 

1200 - 200 - 2 0.01790 0.005117 0.02112 -0.008536 1.560 0.1426 0.4105 -0.5190 

1200 - 200 - 5 0.01827 0.005076 0.02026 -0.008685 2.105 0.06331 0.2542 -0.2770 

1200 - 200 - 10 0.02368 0.008549 0.03774 -0.01276 2.419 0.09122 0.4579 -0.3639 

1200 - 350 - 2 0.1020 0.02954 0.1196 -0.04710 2.222 0.1352 0.3693 -0.5364 

1200 - 350 - 5 0.05376 0.01804 0.07809 -0.02796 2.060 0.07521 0.3117 -0.3339 

1200 - 350 - 10 0.03947 0.01336 0.05695 -0.02050 2.189 0.07380 0.3591 -0.2974 

1200 - 685 - 2 0.3922 0.05315 0.2108 -0.1366 4.055 0.1635 0.6166 -0.7274 

1200 - 685 - 5 0.2533 0.02931 0.1097 -0.07694 3.304 0.07226 0.3335 -0.3494 

1200 - 685 - 10 0.1931 0.02316 0.08048 -0.06375 2.891 0.1159 0.5553 -0.3774 

1200 - 2000 - 2 0.5438 0.03971 0.1564 -0.1249 0.7854 0.05362 0.2134 -0.1728 

1200 - 2000 - 5 0.4634 0.03022 0.1165 -0.1122 0.9795 0.03192 0.1246 -0.1642 

1200 - 2000 - 10 0.4296 0.01781 0.07483 -0.07524 1.066 0.02777 0.1275 -0.1410 

1200 - 2000 - 20 0.3994 0.01089 0.05423 -0.05097 1.206 0.04511 0.2273 -0.1727 

1300 - 340 - 2 0.02406 0.008360 0.03936 -0.01342 0.7001 0.09583 0.4001 -0.2694 

1300 - 340 - 5 0 0 0 0 1.518 0.06559 0.2795 -0.2722 

1300 - 340 - 10 0.008609 0.002954 0.01265 -0.004528 2.313 0.07861 0.3856 -0.3194 

1300 - 650 - 2 0 0 0 0 0.6750 0.08840 0.3428 -0.2395 

1300 - 650 - 5 0.003538 0.003132 0.01382 -0.003538 1.231 0.04978 0.1560 -0.2437 

1300 - 650 - 10 0.009792 0.003335 0.01415 -0.004961 1.895 0.05800 0.2642 -0.2449 

1300 - 1300 - 2 0.07641 0.02603 0.1141 -0.03947 2.203 0.1377 0.4511 -0.5913 

1300 - 1300 - 5 0.05719 0.01900 0.08162 -0.02881 1.976 0.05010 0.2059 -0.2708 

1300 - 1300 - 10 0.05004 0.01705 0.07590 -0.02606 1.976 0.06930 0.3527 -0.3042 

1300 - 2600 - 2 0.7084 0.09525 0.3338 -0.2536 4.711 0.1945 0.8124 -0.7475 

1300 - 2600 - 5 0.5056 0.05334 0.1619 -0.1872 3.795 0.1223 0.5984 -0.5170 

1300 - 2600 - 10 0.3585 0.02466 0.07693 -0.09631 3.087 0.06393 0.3354 -0.3020 

1300 - 4800 - 2 0.4898 0.06397 0.2456 -0.1700 0.5579 0.07083 0.2677 -0.1939 

1300 - 4800 - 5 0.4411 0.04950 0.1639 -0.1507 0.7043 0.05524 0.1665 -0.2071 

1300 - 4800 - 10 0.4304 0.02840 0.09654 -0.1055 0.8667 0.03248 0.1297 -0.1423 

standard uncertainty   /   maximum uncertainty 
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Table of Appendix 22: Conversion of methane as well as yields of hydrogen and ethyne along with respective 
maximum and standard uncertainties for experiments with argon as dilution gas and nominal furnace 
temperatures of 1400 °C, 1500 °C, and 1600 °C 

Set %in
4CHX  %in

2HY  %in
22HCY  

1400 - 700 - 2 97.14 0.1821 0.6575 -0.8572 89.17 3.785 10.83 -15.54 47.54 4.285 19.69 -13.07

1400 - 700 - 5 96.55 0.1960 0.7136 -0.8869 92.55 3.295 7.451 -13.89 35.40 3.222 12.70 -10.42

1400 - 700 - 10 95.89 0.2149 0.8147 -0.9734 89.18 3.576 10.82 -14.53 29.23 1.791 7.687 -6.547

1400 - 1400 - 2 91.98 0.5799 2.016 -2.243 86.01 2.499 12.72 -11.27 40.63 2.718 11.63 -8.904

1400 - 1400 - 5 92.20 0.3351 1.265 -1.516 86.68 2.807 13.32 -11.71 32.54 3.839 14.73 -10.13

1400 - 1400 - 10 90.38 0.3799 1.563 -1.915 85.92 3.199 14.08 -13.42 40.68 2.322 10.17 -8.720

1400 - 2600 - 2 74.57 1.027 3.847 -4.573 62.52 2.572 11.29 -9.667 46.41 3.484 14.09 -10.14

1400 - 2600 - 5 75.02 1.027 3.969 -4.836 66.42 2.120 10.10 -9.393 33.08 3.798 15.28 -9.856

1400 - 2600 - 10 73.14 0.8804 3.667 -4.323 63.04 2.183 10.61 -8.865 36.51 2.131 8.647 -7.525

1400 - 3800 - 2 44.92 2.566 9.912 -12.21 33.96 1.575 7.448 -6.134 26.99 2.686 11.69 -7.503

1400 - 3800 - 5 48.22 2.176 8.500 -10.11 37.96 1.175 5.965 -5.091 24.44 2.141 8.957 -6.047

1400 - 3800 - 10 48.43 2.216 8.511 -10.16 40.66 1.323 6.575 -5.581 20.37 1.851 6.908 -5.780

1400 - 6500 - 2 10.72 3.852 14.63 -10.72 5.622 0.3513 1.466 -1.174 2.780 0.4776 1.628 -1.286

1400 - 6500 - 5 11.24 3.319 12.78 -11.24 7.030 0.2444 1.120 -0.9666 4.199 0.5705 2.237 -1.316

1400 - 6500 - 7.1 11.97 3.258 12.66 -11.97 7.972 0.3576 1.560 -1.288 4.704 0.6589 2.605 -1.499

1500 - 1600 - 2 99.06 0.03339 0.1393 -0.1558 90.83 2.326 9.171 -10.36 50.93 3.998 16.28 -12.05

1500 - 1600 - 5 98.35 0.1295 0.4164 -0.5492 91.24 3.471 8.757 -13.63 43.12 4.422 18.86 -12.31

1500 - 1600 - 10 97.81 0.1718 0.5196 -0.7160 92.98 3.453 7.016 -12.94 39.79 2.338 10.15 -7.955

1500 - 2800 - 2 95.41 0.3640 1.152 -1.306 83.40 2.212 10.88 -9.481 59.53 5.671 22.59 -14.66

1500 - 2800 - 5 94.43 0.2947 1.038 -1.284 84.89 2.847 13.97 -11.74 48.13 4.356 16.23 -13.57

1500 - 2800 - 10 93.32 0.2765 1.060 -1.253 85.04 3.055 14.56 -12.18 39.32 2.395 11.66 -6.487

1500 - 4600 - 2 77.00 1.220 3.988 -6.030 63.66 2.637 12.57 -10.41 48.05 3.867 16.13 -12.06

1500 - 4600 - 5 76.16 0.9083 3.571 -4.217 66.06 1.982 9.855 -8.465 40.57 4.016 15.71 -11.09

1500 - 4600 - 10 74.26 1.055 4.046 -4.834 67.89 2.313 11.20 -9.445 35.87 2.090 8.449 -7.358

1500 - 7200 - 2 43.19 2.250 8.638 -10.17 33.95 1.074 5.193 -4.405 25.72 1.686 6.410 -5.782

1500 - 7200 - 5 44.95 2.380 8.706 -10.27 36.86 1.309 5.882 -5.188 22.96 1.803 7.108 -5.233

1500 - 7200 - 6.3 44.59 2.523 9.127 -10.89 37.49 1.281 5.915 -5.173 21.98 1.773 7.164 -5.015

1500 - 9800 - 2 24.57 2.966 10.99 -13.11 16.47 0.6877 2.994 -2.495 9.381 1.633 7.651 -2.320

1500 - 9800 - 3.1 26.69 2.986 10.94 -12.91 17.39 0.7358 3.163 -2.649 10.41 1.896 8.345 -3.073

1500 - 9800 - 5 27.66 2.978 10.84 -12.80 18.58 0.7994 3.423 -2.846 10.49 1.645 7.865 -2.274

1600 - 2000 - 2 99.83 0.008091 0.02845 -0.03537 92.32 2.367 7.679 -10.48 43.43 3.356 13.01 -10.27

1600 - 2000 - 5 99.60 0.02220 0.07924 -0.1001 95.35 3.422 4.648 -14.17 38.23 3.740 15.29 -10.86

1600 - 2000 - 10 99.33 0.03315 0.1224 -0.1491 91.43 3.325 8.566 -13.58 35.17 2.068 8.630 -7.406

1600 - 3350 - 2 99.07 0.07378 0.2319 -0.2636 89.40 2.366 10.60 -9.969 57.31 4.428 17.24 -12.82

1600 - 3350 - 5 98.74 0.05770 0.2113 -0.2563 87.97 2.876 12.03 -11.83 47.97 4.758 18.88 -12.95

1600 - 3350 - 10 98.40 0.08117 0.2846 -0.3522 89.30 3.213 10.70 -12.75 44.23 2.576 10.36 -9.031

1600 - 6500 - 2 81.45 0.7573 2.918 -3.465 68.29 2.759 12.54 -10.77 52.48 5.810 24.72 -13.81

1600 - 6500 - 5 82.21 0.6971 2.550 -3.252 69.83 1.825 9.193 -7.976 45.72 3.391 10.97 -12.37

1600 - 6500 - 7.1 82.18 0.6914 2.506 -3.287 69.98 2.231 10.72 -9.090 43.86 2.538 9.995 -8.812

1600 - 9800 - 2 59.29 2.017 7.080 -8.598 47.85 1.993 8.740 -7.543 36.36 3.667 15.29 -8.967

1600 - 9800 - 3 60.05 1.858 6.565 -7.909 48.56 1.795 8.182 -6.804 35.22 3.389 13.87 -8.471

1600 - 9800 - 5 60.33 1.807 6.464 -7.656 49.63 1.399 6.796 -5.848 32.32 3.298 12.41 -8.945

standard uncertainty   /   maximum uncertainty
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Table of Appendix 23: Yields of ethane and ethene along with respective maximum and standard 
uncertainties for experiments with argon as dilution gas and nominal furnace temperatures of 1400 °C, 
1500 °C, and 1600 °C 

Set %in
62HCY  %in

42HCY  

1400 - 700 - 2 0 0 0 0 0.5509 0.07239 0.2976 -0.2061 

1400 - 700 - 5 0 0 0 0 1.254 0.06496 0.2511 -0.2844 

1400 - 700 - 10 0 0 0 0 1.885 0.07017 0.3366 -0.2986 

1400 - 1400 - 2 0.003151 0.002818 0.01267 -0.003151 0.3387 0.03696 0.1402 -0.1074 

1400 - 1400 - 5 0.007131 0.002657 0.00977 -0.005311 0.7959 0.09221 0.3175 -0.2765 

1400 - 1400 - 10 0.003977 0.001208 0.00516 -0.002086 1.585 0.1595 0.5790 -0.5276 

1400 - 2600 - 2 0.1376 0.04532 0.1862 -0.07365 1.232 0.1476 0.5206 -0.4106 

1400 - 2600 - 5 0.02749 0.006741 0.02920 -0.01136 1.144 0.1294 0.4440 -0.4030 

1400 - 2600 - 10 0.02853 0.009400 0.03920 -0.01536 1.518 0.1538 0.5256 -0.4911 

1400 - 3800 - 2 0.2660 0.07736 0.3459 -0.1262 3.967 0.1605 0.7386 -0.6822 

1400 - 3800 - 5 0.1649 0.01776 0.07427 -0.04513 2.857 0.08801 0.4134 -0.4106 

1400 - 3800 - 10 0.1384 0.01586 0.06179 -0.04250 2.519 0.09055 0.4541 -0.3552 

1400 - 6500 - 2 0.9270 0.04428 0.1973 -0.1617 3.031 0.1666 0.5934 -0.6853 

1400 - 6500 - 5 0.6821 0.02523 0.1068 -0.1036 2.867 0.07627 0.3423 -0.3607 

1400 - 6500 - 7.1 0.6089 0.02132 0.09258 -0.08971 2.785 0.08949 0.4232 -0.3661 

1500 - 1600 - 2 0.003479 0.002441 0.01016 -0.003479 0.2810 0.07570 0.3099 -0.1369 

1500 - 1600 - 5 0 0 0 0 0.6696 0.07387 0.2746 -0.2313 

1500 - 1600 - 10 0.001202 0.0002669 0.001182 -0.0004535 1.211 0.07445 0.3128 -0.2554 

1500 - 2800 - 2 0 0 0 0 0.2670 0.07388 0.2920 -0.1338 

1500 - 2800 - 5 0 0 0 0 0.5788 0.06182 0.1852 -0.2175 

1500 - 2800 - 10 0.002498 0.0008504 0.003635 -0.001291 1.039 0.03545 0.1485 -0.1637 

1500 - 4600 - 2 0.04934 0.01690 0.07327 -0.02672 0.9479 0.1177 0.4334 -0.3426 

1500 - 4600 - 5 0.02691 0.009111 0.03837 -0.01430 1.046 0.07002 0.2431 -0.2609 

1500 - 4600 - 10 0.02510 0.008578 0.03624 -0.01341 1.275 0.04965 0.2237 -0.2001 

1500 - 7200 - 2 0.3427 0.04281 0.1519 -0.1193 4.032 0.1805 0.7601 -0.6905 

1500 - 7200 - 5 0.2117 0.03001 0.1057 -0.07852 2.943 0.1001 0.4556 -0.4024 

1500 - 7200 - 6.3 0.1984 0.02815 0.09983 -0.07388 2.806 0.09371 0.4372 -0.3801 

1500 - 9800 - 2 0.8078 0.1046 0.3865 -0.2635 4.036 0.1247 0.4585 -0.6152 

1500 - 9800 - 3.1 0.6309 0.07450 0.2569 -0.2083 3.656 0.1038 0.4171 -0.4985 

1500 - 9800 - 5 0.5169 0.05458 0.1695 -0.1747 3.315 0.09535 0.4182 -0.4217 

1600 - 2000 - 2 0 0 0 0 0.1753 0.04303 0.1682 -0.08384 

1600 - 2000 - 5 0 0 0 0 0.4195 0.05258 0.1898 -0.1564 

1600 - 2000 - 10 0 0 0 0 0.7946 0.03957 0.1671 -0.1546 

1600 - 3350 - 2 0 0 0 0 0.2050 0.05686 0.2249 -0.1021 

1600 - 3350 - 5 0 0 0 0 0.4260 0.05043 0.1781 -0.1457 

1600 - 3350 - 10 0 0 0 0 0.7928 0.03918 0.1607 -0.1478 

1600 - 6500 - 2 0.02206 0.006038 0.02497 -0.01060 0.7013 0.06283 0.2632 -0.1698 

1600 - 6500 - 5 0.01513 0.002919 0.01243 -0.005170 0.7764 0.04094 0.1414 -0.1660 

1600 - 6500 - 7.1 0.02524 0.007794 0.03309 -0.01203 0.8567 0.03464 0.1136 -0.1665 

1600 - 9800 - 2 0.2088 0.06091 0.2583 -0.09609 2.138 0.1158 0.4077 -0.4603 

1600 - 9800 - 3 0.1473 0.04467 0.1919 -0.06619 1.915 0.08474 0.2941 -0.3666 

1600 - 9800 - 5 0.1188 0.03763 0.1589 -0.05736 1.794 0.05966 0.2427 -0.2657 

standard uncertainty   /   maximum uncertainty
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Table of Appendix 24: Various information about reaction conditions for with helium as dilution gas (nominal 
furnace temperature in °C - nominal total standard volume flow in sccm - nominal initial molar fraction of 
methane in %) I 

Set sccminHe,0N,V sccmin,0CHN, 4
V sccmintot,0N,V  %in,0CH4

x  

1300 - 3800 - 2 3726 45.0 110.2 75.98 1.8 3.9 3802 1.998 

1300 - 3800 - 5 3612 44.4 108.6 188.8 2.3 5.5 3801 4.967 

1300 - 3800 - 10 3428 43.5 106.0 379.1 3.5 8.2 3807 9.958 

1400 - 2800 - 2 2742 25.9 61.6 55.97 0.6 1.4 2798 2.000 

1400 - 2800 - 5 2656 25.3 60.4 139.9 2.0 4.8 2796 5.004 

1400 - 2800 - 10 2516 24.4 58.4 280.3 2.8 6.8 2796 10.02 

1400 - 3800 - 2 3720 45.0 110.1 76.00 0.7 1.6 3796 2.002 

1400 - 3800 - 5 3605 44.4 108.5 190.1 2.3 5.5 3795 5.009 

1400 - 3800 - 10 3414 43.4 105.8 379.9 3.5 8.2 3794 10.01 

1400 - 6500 - 2 6365 61.4 147.1 129.8 2.0 4.7 6495 1.999 

1400 - 6500 - 5 6167 60.1 144.3 325.3 3.1 7.4 6492 5.011 

1400 - 6500 - 7.1 6044 59.2 142.6 462.6 4.2 9.9 6507 7.110 

1500 - 3800 - 2 3724 45.0 110.1 75.86 1.8 3.9 3800 1.996 

1500 - 3800 - 5 3619 44.5 108.7 190.3 2.3 5.5 3809 4.996 

1500 - 3800 - 10 3429 43.5 106.0 379.9 3.5 8.2 3809 9.974 

standard uncertainty   /   maximum uncertainty

 

Table of Appendix 25: Various information about reaction conditions for with helium as dilution gas (nominal 
furnace temperature in °C - nominal total standard volume flow in sccm - nominal initial molar fraction of 
methane in %) II 

barinnletiR,p barinR,outletp
Set 

start end start end 

sin  # Runs 

1300 - 3800 - 2 1.011 1.011 1.012 1.011 0.0344 0.00516 1 

1300 - 3800 - 5 1.011 1.012 1.011 1.012 0.0344 0.00516 1 

1300 - 3800 - 10 1.012 1.012 1.011 1.011 0.0343 0.00515 3 

1400 - 2800 - 2 1.016 1.016 1.008 1.008 0.0441 0.00623 1 

1400 - 2800 - 5 1.019 1.021 1.007 1.007 0.0443 0.00630 1 

1400 - 2800 - 10 1.019 1.022 1.017 1.017 0.0443 0.00630 1 

1400 - 3800 - 2 1.020 1.020 1.011 1.011 0.0326 0.00487 1 

1400 - 3800 - 5 1.021 1.022 1.011 1.011 0.0327 0.00490 1 

1400 - 3800 - 10 1.025 1.032 1.020 1.020 0.0329 0.00494 1 

1400 - 6500 - 2 1.015 1.015 1.012 1.012 0.0190 0.00270 2 

1400 - 6500 - 5 1.014 1.014 1.012 1.012 0.0190 0.00270 1 

1400 - 6500 - 7.1 1.014 1.014 1.011 1.011 0.0189 0.00269 1 

1500 - 3800 - 2 1.004 1.004 1.003 1.004 0.0303 0.00455 1 

1500 - 3800 - 5 1.005 1.007 1.004 1.004 0.0303 0.00454 1 

1500 - 3800 - 10 1.008 1.014 1.004 1.004 0.0304 0.00457 1 

maximum uncertainty
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Table of Appendix 26: Conversion of methane as well as yields of hydrogen and ethyne along with respective 
maximum and standard uncertainties for experiments with helium as dilution gas 

Set %in
4CHX  %in

2HY  %in
22HCY  

1300 - 3800 - 2 27.66 3.305 12.36 -15.12 12.32 1.587 7.041 -3.550 11.94 1.532 6.067 -4.040 

1300 - 3800 - 5 28.66 2.920 10.88 -12.89 18.35 0.8927 3.797 -3.124 13.04 1.398 5.659 -3.435 

1300 - 3800 - 10 29.27 2.939 10.21 -11.89 18.70 0.7316 2.984 -2.580 11.65 1.146 4.508 -2.839 

1400 - 2800 - 2 87.70 0.9724 3.001 -3.366 74.14 2.914 12.10 -10.46 57.62 4.837 18.93 -12.64 

1400 - 2800 - 5 88.99 0.5118 1.801 -2.172 83.86 2.660 12.46 -10.53 26.58 2.396 9.766 -6.225 

1400 - 2800 - 10 86.88 0.4214 1.605 -1.890 80.41 2.666 11.82 -10.08 27.41 1.570 5.860 -5.223 

1400 - 3800 - 2 76.28 1.882 5.872 -6.619 69.57 3.073 12.75 -10.75 58.58 5.830 22.45 -14.94 

1400 - 3800 - 5 80.83 0.6809 2.654 -3.125 73.41 2.577 12.89 -9.194 40.84 5.313 20.47 -12.92 

1400 - 3800 - 10 80.12 0.9446 3.252 -3.900 68.67 2.379 10.63 -9.061 28.05 1.624 6.188 -5.469 

1400 - 6500 - 2 56.21 1.635 6.168 -7.357 43.32 1.898 8.262 -6.779 37.22 2.768 10.43 -8.727 

1400 - 6500 - 5 55.31 1.882 6.583 -7.756 43.03 1.484 6.343 -5.613 32.67 3.220 11.62 -8.727 

1400 - 6500 - 7.1 53.11 2.015 6.971 -8.200 41.28 1.313 5.711 -5.048 30.27 3.210 11.90 -8.119 

1500 - 3800 - 2 98.09 0.1449 0.4613 -0.6041 80.45 3.722 16.87 -13.97 62.50 5.733 24.63 -15.98 

1500 - 3800 - 5 97.60 0.1843 0.5617 -0.7102 91.10 2.903 8.896 -11.66 31.61 3.193 11.93 -8.922 

1500 - 3800 - 10 96.15 0.2983 0.8543 -1.028 83.84 3.824 13.00 -10.96 37.08 2.410 8.144 -7.226 

standard uncertainty   /   maximum uncertainty

 

Table of Appendix 27: Yields of ethane and ethene along with respective maximum and standard 
uncertainties for experiments with helium as dilution gas 

Set %in
62HCY  %in

42HCY  

1300 - 3800 - 2 0.6523 0.09196 0.3531 -0.2425 5.627 0.2265 0.9929 -0.9298 

1300 - 3800 - 5 0.4182 0.05071 0.1705 -0.1483 4.267 0.1423 0.6731 -0.5588 

1300 - 3800 - 10 0.3475 0.02663 0.08381 -0.09158 3.583 0.1575 0.7060 -0.4738 

1400 - 2800 - 2 0.006659 0.002191 0.008834 -0.003525 0.5848 0.06730 0.2349 -0.1800 

1400 - 2800 - 5 0.003452 0.001137 0.004670 -0.001844 0.6314 0.07455 0.2553 -0.2138 

1400 - 2800 - 10 0.006802 0.002430 0.01001 -0.003667 1.172 0.04527 0.1889 -0.1664 

1400 - 3800 - 2 0.02281 0.007510 0.03050 -0.01212 0.8611 0.0996 0.3526 -0.2677 

1400 - 3800 - 5 0.01514 0.004985 0.02053 -0.008105 0.9308 0.1064 0.3549 -0.3201 

1400 - 3800 - 10 0.02167 0.007374 0.03103 -0.01094 1.192 0.03440 0.1345 -0.1623 

1400 - 6500 - 2 0.1663 0.05841 0.2456 -0.08926 3.324 0.1746 0.6862 -0.6263 

1400 - 6500 - 5 0.1450 0.02173 0.07465 -0.05463 2.843 0.09745 0.4158 -0.3706 

1400 - 6500 - 7.1 0.1493 0.02249 0.07703 -0.05632 2.846 0.08876 0.3893 -0.3425 

1500 - 3800 - 2 0 0 0 0 0.2893 0.08084 0.3377 -0.1474 

1500 - 3800 - 5 0 0 0 0 0.3583 0.04527 0.1627 -0.1214 

1500 - 3800 - 10 0.0006207 0.0002132 0.0008924 -0.0003158 0.8666 0.03964 0.1089 -0.1365 

standard uncertainty   /   maximum uncertainty 
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Table of Appendix 28: Profiles of temperatures related to the thermocouple in wall position (WP) and center 
position (CP) for a nominal furnace temperature of 1200 °C determined in experiments with argon as dilution 
gas 

sc
cm

sc
cm

ba
r

ba
r

620 40 5 40 5 40 5 40 5 26 5 26 5 40 5 40 5 40 5 40 5

600 53 53 47 47 36 36 52 52 56 58
580 73 73 57 57 53 54 72 73 86 90
560 102 102 71 71 77 80 100 101 126 133
540 137 137 91 91 108 113 135 137 176 187
520 180 180 116 116 147 153 177 179 234 250
500 230 230 147 147 192 200 226 228 299 319
480 285 285 186 186 244 254 281 284 370 394
460 347 347 232 232 303 314 341 346 446 474
440 414 414 287 287 368 381 408 413 524 556
420 485 485 352 352 440 453 480 486 604 638
400 562 562 426 426 518 531 557 564 684 721
380 643 643 512 512 602 615 639 647 764 801
360 728 728 609 609 692 704 726 733 841 878
340 816 816 718 718 788 797 817 824 915 950
320 907 7 907 7 840 10 840 10 889 8 896 10 911 8 919 10 981 6 1014 14

300 1001 7 1001 7 976 10 976 10 996 8 999 9 1009 8 1017 10 1048 6 1072 12

280 1066 6 1066 6 1054 7 1054 7 1063 6 1064 6 1076 6 1082 8 1101 5 1120 10

260 1123 6 1123 6 1115 6 1116 6 1122 6 1123 6 1128 5 1131 6 1145 5 1154 7

240 1167 5 1167 5 1161 5 1162 5 1166 5 1168 6 1169 5 1171 5 1178 5 1181 5

220 1189 4 1189 4 1186 4 1187 5 1190 4 1190 4 1191 4 1192 4 1194 4 1194 4

200 1202 4 1202 4 1200 4 1200 4 1204 4 1204 4 1204 4 1205 4 1203 4 1200 4

180 1209 3 1209 3 1208 3 1208 3 1211 3 1211 3 1211 3 1212 4 1206 3 1202 4

160 1213 3 1213 3 1212 3 1212 3 1215 3 1215 3 1215 3 1215 3 1206 3 1199 5

140 1215 3 1215 3 1215 3 1214 3 1217 3 1216 3 1217 3 1217 3 1202 3 1190 7

120 1215 3 1215 3 1214 3 1214 3 1217 3 1216 3 1216 3 1216 3 1195 4 1177 8

100 1213 3 1213 3 1212 3 1212 3 1214 3 1214 3 1213 3 1213 3 1184 4 1158 11

80 1208 3 1208 3 1208 3 1208 3 1210 3 1209 4 1207 4 1206 4 1169 4 1135 13

60 1200 4 1200 4 1200 4 1200 4 1202 4 1201 4 1197 4 1195 5 1145 4 1106
40 1186 4 1186 4 1186 4 1186 4 1186 4 1185 5 1179 4 1175 5 1116 1054 21

20 1162 5 1162 5 1161 5 1160 5 1160 5 1157 6 1150 5 1145 7 1068 6 991
0 1124 6 1124 6 1118 7 1118 7 1116 6 1112 7 1103 7 1095 9 1001 7 913 30

-20 1053 1053 1044 1044 1042 1038 1026 1016 909 818
-40 955 955 945 945 945 940 926 915 805 718
-60 837 837 827 827 830 826 809 798 693 613
-80 707 707 697 697 705 701 680 671 577 507
-100 571 571 562 562 574 571 548 540 460 403
-120 436 436 429 429 445 442 417 411 349 305
-140 308 308 303 303 324 322 295 290 246 216
-160 196 196 192 192 216 215 187 184 157 140
-180 105 105 103 103 129 128 100 99 86 79
-200 42 42 42 42 68 67 41 41 38 37
-213 20 6 20 6 20 6 20 6 45 6 45 6 20 6 20 6 20 6 20 6

1.003

1.009

94.86

95

349.2

350

1.005

1.015

200.1

200

1.014

3rd order polynomial fit
measured

switching point

maximum uncertainty in K

1.000

1.0121.012

684.7

685

1.009

1.024

2001

2000

smoothed CinWPT C T  CinCPT C T

 
nominalAr,N ,V

 
actualAr,N ,V

 
inletR,p

 
outletR,p
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Table of Appendix 29: Profiles of temperatures related to the thermocouple in wall position (WP) and center 
position (CP) for a nominal furnace temperature of 1300 °C determined in experiments with argon as dilution 
gas 

sc
cm

sc
cm

ba
r

ba
r

620 23 5 23 5 20 5 20 5 20 5 20 5 31 5 31 5 57 6 57 6

600 35 36 33 33 34 35 50 51 80 82
580 57 58 57 58 61 63 83 87 118 122
560 88 90 92 93 100 103 129 135 168 174
540 127 130 137 139 149 153 185 194 229 238
520 175 179 191 193 207 213 250 263 300 310
500 230 236 252 256 273 281 323 340 377 390
480 292 299 321 325 346 356 402 424 459 474
460 361 370 395 400 425 437 487 512 545 562
440 437 446 475 481 508 522 574 602 632 651
420 518 527 560 566 595 610 663 694 719 739
400 604 614 647 654 685 701 752 785 804 825
380 695 704 738 745 775 792 840 874 886 906
360 790 799 830 837 866 883 926 960 961 981
340 889 896 923 930 956 972 1007 1039 1029 1046
320 991 8 996 9 1016 7 1022 9 1043 7 1058 11 1082 7 1111 14 1087 6 1106 11

300 1096 8 1098 8 1108 7 1113 9 1127 7 1140 10 1150 6 1174 12 1138 5 1134 6

280 1164 6 1165 7 1170 6 1176 8 1182 6 1192 8 1197 5 1212 9 1177 5 1168 7

260 1222 6 1223 6 1224 6 1227 6 1234 6 1241 7 1240 5 1246 6 1209 5 1190 9

240 1262 5 1263 5 1263 5 1264 5 1267 5 1271 6 1269 5 1268 5 1230 4 1198 12

220 1284 4 1285 5 1284 4 1284 4 1287 4 1288 4 1282 4 1279 5 1238 4 1187 16

200 1297 4 1297 4 1296 4 1295 4 1297 4 1297 4 1289 4 1287 4 1240 3 1175
180 1304 4 1304 4 1302 4 1302 4 1303 4 1303 4 1290 3 1287 4 1236 4 1174 19

160 1308 4 1308 4 1306 4 1305 4 1305 3 1305 3 1289 4 1282 6 1224 4 1180
140 1309 3 1309 3 1307 3 1307 3 1306 4 1305 4 1284 4 1264 9 1213 4 1177 14

120 1309 3 1309 3 1306 3 1306 4 1303 4 1302 4 1274 4 1251 10 1197 4 1134 22

100 1307 4 1307 4 1304 4 1303 4 1299 4 1296 5 1260 4 1230 13 1178 4 1063 35

80 1303 4 1303 4 1299 4 1298 4 1291 4 1285 6 1243 4 1186 19 1152 4 1011 43

60 1295 4 1294 4 1290 4 1288 5 1277 4 1268 7 1221 5 1145 24 1133 5 918 61

40 1281 5 1280 5 1274 5 1270 6 1254 5 1235 10 1183 5 1101 27 1092 5 826
20 1256 5 1255 6 1247 5 1242 7 1218 6 1193 13 1138 7 1030 1042 6 736
0 1213 8 1211 8 1201 8 1193 10 1157 8 1124 16 1059 8 946 36 972 7 648

-20 1124 1122 1111 1103 1055 1022 964 853 889 564
-40 1014 1012 1000 992 942 908 856 750 796 483
-60 885 883 872 864 816 784 739 642 695 407
-80 746 744 733 725 683 655 618 533 590 336
-100 601 600 589 583 548 524 498 427 485 272
-120 459 458 449 444 418 399 382 326 384 214
-140 326 325 317 313 296 282 275 234 290 163
-160 209 208 201 199 190 181 182 155 206 120
-180 114 113 108 106 104 99 107 92 136 87
-200 48 48 44 43 45 43 55 49 83 62
-213 23 6 23 6 20 6 20 6 20 6 20 6 34 6 34 6 52 7 52 5

340 650 1300 2600 4800

339.4 649.2 1301 2599 4800

1.010 1.009 1.019 1.016 1.013

1.010 1.009 1.019 1.013 1.009

measured maximum uncertainty in K

3rd order polynomial fit
smoothed switching point CinWPTC T  CinCPTC T

 
nominalAr,N ,V

 
actualAr,N ,V

 
inletR,p

 
outletR,p
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Table of Appendix 30: Profiles of temperatures related to the thermocouple in wall position (WP) and center 
position (CP) for a nominal furnace temperature of 1400 °C determined in experiments with argon as dilution 
gas 

sc
cm

sc
cm

ba
r

ba
r

620 27 5 27 5 60 6 60 6 60 6 60 6 60 6 60 6 60 6 60 6

600 43 43 83 83 84 86 86 89 85 87
580 75 76 120 121 123 127 127 133 126 130
560 121 122 169 172 174 182 181 191 180 187
540 178 180 230 235 237 249 248 261 247 256
520 245 248 300 306 310 325 324 341 322 335
500 321 325 378 386 390 409 408 429 406 421
480 404 409 462 472 477 500 497 523 495 512
460 492 499 550 562 568 594 591 620 587 606
440 584 592 642 655 661 691 687 719 680 700
420 679 687 735 749 756 788 783 817 773 791
400 774 783 827 843 849 883 877 912 863 879
380 868 877 918 934 940 974 967 1002 948 960
360 960 969 1005 1021 1027 1060 1051 1086 1027 1032
340 1048 1056 1087 1103 1108 1139 1128 1160 1096 1092
320 1125 7 1132 9 1162 7 1177 10 1181 7 1210 14 1198 7 1227 14 1155 6 1142 9

300 1211 7 1218 9 1230 7 1243 10 1245 6 1265 11 1250 6 1270 10 1198 5 1165 12

280 1271 6 1275 7 1286 6 1296 8 1294 6 1307 9 1292 5 1299 7 1230 5 1185 15

260 1325 6 1326 6 1332 6 1339 7 1337 6 1342 6 1323 5 1327 6 1261 5 1191 21

240 1360 5 1362 6 1366 5 1370 6 1365 5 1365 5 1338 5 1350 8 1280 4 1208 22

220 1380 5 1380 4 1383 4 1384 5 1379 4 1377 5 1360 5 1358 4 1284 4 1196
200 1391 4 1391 4 1393 4 1393 4 1386 4 1379 5 1362 4 1353 7 1283 3 1171 32

180 1398 4 1397 4 1398 4 1398 4 1388 4 1376 7 1359 4 1333 1284 4 1148 38

160 1401 4 1401 4 1401 4 1400 4 1386 4 1374 7 1351 4 1304 17 1276 1 1121 44

140 1402 4 1402 4 1401 4 1400 4 1382 4 1369 7 1337 4 1275 20 1262 4 1072
120 1402 4 1402 4 1399 4 1397 4 1374 4 1358 9 1323 4 1247 24 1248 4 1017 63

100 1400 4 1399 4 1394 4 1392 5 1364 5 1334 1303 4 1210 28 1232 5 971
80 1395 4 1394 4 1385 4 1378 6 1342 5 1298 17 1281 5 1176 32 1195 5 923 74

60 1387 4 1386 5 1371 5 1359 8 1320 5 1252 23 1253 5 1115 40 1159 5 859 81

40 1370 5 1368 6 1348 5 1330 10 1293 6 1209 1215 6 1054 47 1113 6 805 83

20 1344 6 1339 7 1311 6 1287 13 1243 7 1144 32 1158 7 981 52 1039 7 731 84

0 1299 7 1293 9 1251 8 1216 17 1175 8 1052 39 1086 8 876 61 953 8 656 81

-20 1218 1211 1152 1107 1068 951 982 768 855 578
-40 1108 1101 1032 986 950 836 869 659 749 499
-60 977 971 897 852 820 715 748 552 638 420
-80 831 826 751 712 684 591 622 448 526 344
-100 680 675 602 570 548 468 497 351 417 271
-120 529 525 457 433 416 352 376 262 314 205
-140 386 384 322 306 294 247 266 183 221 145
-160 259 258 204 196 188 156 170 117 141 95
-180 155 155 109 107 102 84 94 66 78 56
-200 82 82 45 45 43 36 41 32 35 30
-213 54 7 54 7 20 6 20 6 20 6 20 6 20 6 20 5 20 6 20 5

3rd order polynomial fit
smoothed switching point

6501

measured maximum uncertainty in K

1.007 1.000 1.014 1.002 1.036

1.005 1.012 1.031

3800 6500

701.3 1399.0

700 1400 2600

2603 3795

1.024 1.065

 CinWPTC T  CinCPTC T

 
nominalAr,N ,V

 
actualAr,N ,V

 
inletR,p

 
outletR,p
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Table of Appendix 31: Profiles of temperatures related to the thermocouple in wall position (WP) and center 
position (CP) for a nominal furnace temperature of 1500 °C determined in experiments with argon as dilution 
gas 

sc
cm

sc
cm

ba
r

ba
r

620 24 5 24 6 30 6 30 6 37 6 37 6 66 6 66 6 94 6 94 6

600 45 47 54 55 63 63 96 97 126 127
580 84 88 95 99 107 107 143 143 171 177
560 139 145 153 160 166 167 203 205 227 239
540 207 215 224 236 239 240 275 279 294 312
520 286 297 307 323 323 325 356 363 368 393
500 375 389 399 419 416 418 445 454 450 480
480 471 487 498 523 516 519 539 550 536 570
460 573 591 602 631 620 624 637 649 625 659
440 677 698 708 741 726 731 736 748 715 747
420 783 805 816 851 832 837 835 845 804 830
400 888 911 921 958 936 942 931 938 892 905
380 990 1013 1023 1061 1036 1041 1022 1024 975 970
360 1087 1110 1118 1156 1128 1134 1106 1101 1053 1022
340 1177 1198 1206 1240 1212 1218 1181 1167 1123 1060
320 1257 7 1278 13 1286 7 1316 15 1288 7 1292 8 1251 7 1223 13 1188 1079 31

300 1331 7 1340 9 1346 6 1371 13 1341 6 1348 8 1291 5 1245 16 1230 5 1078 42

280 1383 6 1394 9 1392 6 1405 9 1383 6 1381 6 1326 5 1274 18 1266 1094
260 1427 6 1429 6 1433 6 1437 6 1417 5 1415 6 1355 5 1281 23 1296 5 1111 50

240 1462 6 1463 6 1461 5 1462 5 1440 5 1429 7 1373 4 1301 22 1321 1101
220 1479 5 1479 5 1475 5 1475 5 1449 4 1444 6 1385 4 1288 1335 4 1088 65

200 1489 4 1488 5 1482 4 1478 5 1452 4 1441 7 1384 4 1267 35 1337 1084
180 1494 4 1493 4 1484 4 1482 5 1451 4 1433 9 1384 4 1226 45 1325 5 1099 60

160 1496 4 1496 4 1484 4 1477 6 1447 5 1421 12 1372 5 1174 55 1303 1084
140 1497 4 1495 5 1480 4 1469 8 1432 4 1379 19 1348 1126 1284 4 1056
120 1495 4 1492 5 1473 5 1450 11 1424 4 1335 28 1323 5 1081 66 1267 1017
100 1491 4 1486 6 1458 5 1426 13 1410 5 1288 37 1306 4 1035 1251 4 967 77

80 1483 5 1475 7 1442 5 1392 18 1384 5 1226 46 1289 4 989 80 1232 905
60 1469 5 1454 9 1421 5 1351 24 1359 5 1176 53 1267 5 946 1211 4 838 100

40 1448 5 1431 10 1389 6 1298 1320 6 1093 1230 6 891 91 1188 5 767
20 1417 7 1389 14 1344 7 1222 38 1265 7 1005 1177 6 825 1139 7 693
0 1355 9 1315 19 1282 8 1127 1196 9 909 1107 8 751 1065 617

-20 1254 1203 1179 1017 1085 807 1005 670 972 541
-40 1130 1077 1058 896 966 702 893 586 864 466
-60 987 936 922 769 837 596 773 500 747 393
-80 833 787 776 640 702 493 648 415 625 324
-100 674 637 628 513 567 394 522 333 503 259
-120 519 491 483 393 437 302 402 257 386 199
-140 374 355 348 283 316 219 291 188 277 147
-160 246 236 230 189 210 148 193 128 183 103
-180 143 139 134 113 125 93 114 81 106 68
-200 72 72 67 61 64 54 59 48 54 43
-213 44 7 44 7 42 6 42 6 38 6 38 6 36 6 36 5 34 6 34 5

1600 2800 4600 7200 9800

1600 2800 4597 7194 9780

0.984 1.004 1.016 1.011 1.027

0.984 0.996 1.012 1.002 1.009

measured maximum uncertainty in K

3rd order polynomial fit
smoothed switching point CinWPTC T  CinCPTC T

 
nominalAr,N,V

 
actualAr,N,V

 
inletR,p

 
outletR,p
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Table of Appendix 32: Profiles of temperatures related to the thermocouple in wall position (WP) and center 
position (CP) for a nominal furnace temperature of 1600 °C determined in experiments with argon as dilution 
gas 

sc
cm

sc
cm

ba
r

ba
r

620 27 6 27 6 80 6 80 6 80 6 80 6 140 6 140 6

600 53 55 113 114 112 113 178 180
580 97 102 162 165 162 165 228 237
560 159 167 227 233 228 234 290 308
540 235 246 305 313 308 317 363 391
520 323 338 394 405 399 411 443 482
500 422 439 492 506 499 513 529 579
480 528 549 596 613 604 621 620 678
460 640 663 704 724 713 732 714 777
440 755 780 814 837 824 843 808 873
420 870 896 924 949 932 952 902 963
400 983 1010 1032 1058 1037 1055 993 1044
380 1092 1120 1135 1161 1136 1150 1079 1113
360 1195 1222 1231 1256 1225 1234 1158 1168
340 1289 1313 1317 1341 1303 1304 1230 1205
320 1373 8 1398 14 1397 8 1418 13 1370 7 1361 9 1295 7 1221 22

300 1441 7 1455 10 1453 7 1470 11 1411 6 1387 11 1338 6 1214 34

280 1488 6 1496 8 1494 6 1503 8 1446 6 1408 14 1373 5 1214 44

260 1531 6 1537 8 1536 6 1533 6 1477 5 1422 18 1400 5 1240 44

240 1562 6 1562 5 1559 5 1556 6 1499 5 1441 19 1424 5 1247 48

220 1578 5 1577 5 1571 5 1565 6 1506 4 1427 25 1422 4 1259 45

200 1587 5 1586 5 1575 4 1563 7 1505 4 1450 19 1418 4 1238 49

180 1591 4 1591 4 1577 4 1562 8 1499 5 1427 25 1411 4 1228
160 1594 4 1593 5 1574 4 1554 10 1484 5 1369 35 1400 4 1209 53

140 1593 4 1592 5 1568 5 1546 10 1471 5 1316 45 1392 5 1160 63

120 1591 4 1586 6 1556 5 1538 10 1453 5 1262 54 1373 5 1123 68

100 1587 5 1579 7 1543 5 1518 12 1437 5 1193 68 1362 4 1077
80 1578 5 1566 8 1530 5 1476 20 1411 5 1111 82 1348 5 1016 90

60 1563 5 1544 10 1507 6 1419 30 1381 5 1042 92 1326 5 935 105

40 1543 6 1523 11 1466 6 1332 42 1343 5 947 1288 6 850
20 1508 7 1474 17 1418 7 1238 54 1310 7 855 1238 763
0 1444 9 1383 1346 10 1129 63 1242 759 1158 8 674

-20 1336 1268 1221 1003 1144 663 1051 586
-40 1203 1132 1088 873 1024 568 932 499
-60 1052 982 940 740 889 475 802 415
-80 888 825 786 608 744 386 668 336
-100 720 666 630 480 596 303 533 262
-120 555 512 479 360 451 227 404 196
-140 401 370 340 252 318 161 285 138
-160 265 245 218 160 200 105 182 90
-180 155 145 119 88 107 61 99 53
-200 79 76 50 39 43 32 42 28
-213 50 7 50 6 20 7 20 6 20 6 20 5 20 6 20 5

2000 3350 6500 9800

2006 3349 6493 9810

1.008 1.041 1.066 1.039

1.007 1.024 1.036 1.006

measured maximum uncertainty in K

3rd order polynomial fit
smoothed switching point CinWPTC T  CinCPTC T

 
nominalAr,N,V

 
actualAr,N,V

 
inletR,p

 
outletR,p
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Table of Appendix 33: Profiles of temperatures related to the thermocouple in wall position (WP) and center 
position (CP) determined in experiments with helium as dilution gas 

°C
sc

cm
sc

cm
ba

r
ba

r

620 24 5 24 5 23 5 23 6 20 5 20 6 37 6 37 6 23 6 23 6

600 45 45 45 46 42 43 64 64 49 51
580 80 81 83 85 80 82 106 107 92 95
560 129 131 136 138 134 136 164 165 151 156
540 190 192 200 204 200 204 234 236 224 230
520 260 263 276 281 278 283 315 318 309 316
500 338 342 360 366 364 370 404 408 403 412
480 423 428 450 458 457 465 500 504 504 514
460 512 517 546 555 555 564 599 604 610 621
440 604 610 644 654 656 666 701 707 719 730
420 696 704 744 754 758 768 803 809 828 840
400 788 796 842 853 857 869 902 909 935 947
380 877 886 937 949 954 965 997 1004 1038 1050
360 962 971 1028 1039 1045 1056 1085 1092 1134 1146
340 1040 1050 1112 1122 1128 1139 1165 1172 1222 1233
320 1113 6 1123 9 1190 7 1200 9 1205 7 1215 9 1239 7 1246 9 1303 7 1316 11

300 1169 6 1179 8 1250 6 1256 8 1263 6 1272 8 1286 6 1292 7 1360 6 1364 7

280 1216 5 1225 8 1300 6 1305 7 1307 6 1312 7 1324 5 1328 6 1405 6 1409 7

260 1257 5 1267 8 1344 6 1346 6 1348 6 1352 7 1358 5 1363 7 1445 6 1449 7

240 1282 5 1284 5 1371 5 1374 6 1374 5 1376 5 1380 5 1381 5 1471 5 1472 5

220 1296 4 1297 4 1387 4 1387 4 1389 4 1389 4 1391 4 1392 4 1485 5 1485 5

200 1303 4 1304 4 1396 4 1396 4 1397 4 1397 4 1397 4 1397 4 1493 4 1492 5

180 1307 4 1308 4 1401 4 1400 4 1401 4 1401 4 1399 4 1399 4 1497 4 1496 4

160 1309 3 1309 3 1403 4 1402 4 1403 4 1402 4 1398 4 1398 4 1498 4 1498 4

140 1308 4 1308 4 1403 4 1403 4 1402 4 1402 4 1394 4 1392 5 1498 4 1498 4

120 1305 4 1305 4 1402 4 1401 4 1400 4 1400 4 1386 4 1383 5 1497 4 1496 4

100 1299 4 1298 4 1398 4 1398 4 1395 4 1394 4 1372 5 1365 7 1492 4 1491 5

80 1286 4 1283 5 1392 4 1390 5 1386 4 1383 5 1347 6 1332 10 1485 5 1483 5

60 1268 5 1261 7 1380 5 1378 5 1371 5 1366 7 1305 7 1272 15 1470 5 1466 6

40 1233 6 1222 10 1359 5 1353 7 1338 6 1329 9 1242 7 1194 20 1444 6 1435 9

20 1174 7 1147 14 1321 7 1307 10 1288 8 1265 13 1159 9 1093 26 1395 7 1383 11

0 1091 8 1064 15 1250 8 1236 12 1201 1176 1042 9 965 28 1320 9 1301 14

-20 992 962 1145 1129 1095 1068 937 850 1205 1186
-40 879 849 1024 1008 973 945 818 731 1076 1057
-60 758 730 891 875 840 814 695 614 934 916
-80 634 608 749 736 702 679 572 501 784 768
-100 510 488 606 595 564 544 454 395 633 619
-120 391 374 467 458 431 415 343 298 486 475
-140 282 270 338 331 308 296 243 212 350 341
-160 188 180 224 220 201 193 157 139 231 225
-180 112 108 132 130 115 111 91 83 134 131
-200 59 58 67 67 56 54 46 45 67 65
-213 40 6 40 6 41 6 41 6 33 6 33 6 32 5 32 5 39 7 39 6

1300 1400 1400 1400 1500

3807 2798 3800 6499 3800

1.026 1.021 1.022 1.024 0.997

1.025 1.019 1.019 1.019 0.994

measured maximum uncertainty in K

3rd order polynomial fit
smoothed switching point

3800 2800 3800 6500 3800

 CinWPTC T  CinCPTC T

 
inletR,p

 
outletR,p

 
furn aceT

 
nominalHe,N,V

 
actualHe,N,V
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Appendix D: Fluid material properties and diffusion  

 

Table of Appendix 34: Material properties of argon partly as a function of the temperature 

Material property Function Source 

Molecular weight 95.39
g/mol

Ar 
M

 [VDI, 2006], 
p. Dca 2 

Specific heat 
capacity at 

constant pressure 
3.520

K)J/(kg
Arp, 

c
 [VDI, 2006], 

p. Dca 23 

Dynamic viscosity 
4

81
3

41

2
1186

2
Ar

K
1076.2

K
10668.1

K
101263.4

K
101279.8106196.1

s/mN




























TT

TT

 [VDI, 2006], 
p. Dca 31 

Thermal 
conductivity 

2
953Ar

K
1078.7

K
107.4103.4

K)W/(m






  TT

 
[VDI, 2006], 
p. Dca 39 

 

Table of Appendix 35: Material properties of helium partly as a function of the temperature 

Material property Function Source 

Molecular weight 4.0026
g/mol

He 
M

 [Mortimer, 1996], 
p. 745 

Specific heat 
capacity at 

constant pressure 
5193.1

K)J/(kg
Hep, 

c
 [VDI, 2006], 

p. Dca 23 

Dynamic viscosity 
4

81
3

41

2
1186

2
He

K
1084.2

K
10479.1

K
101007.3

K
1013.6109223.3

s/mN




























TT

TT

 [VDI, 2006], 
p. Dca 31 

Thermal 
conductivity 4

41
3

01

2
742He

K
10914.1

K
100071.1

K
101489.2

K
1057.4104.3

K)W/(m




























TT

TT

 [VDI, 2006], 
p. Dca 39 
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Figure of Appendix 11: Diffusive quotient regarding ethane as a function of the residence time, 
the nominal furnace temperature, the initial molar fraction of methane, and the dilution gas 
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Figure of Appendix 12: Diffusive quotient regarding ethene as a function of the residence time, 
the nominal furnace temperature, the initial molar fraction of methane, and the dilution gas 
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Figure of Appendix 13: Diffusive quotient regarding ethyne as a function of the residence time, 
the nominal furnace temperature, the initial molar fraction of methane, and the dilution gas 
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Appendix E: Calculations with ANSYS  

 

Table of Appendix 36: Information about general settings for the calculations with ANSYS 12 

Mesh information  

Physical preference 
Mesh method 

CFD 
Automatic (Patch conforming / Sweeping) 

Settings 
    Maximum Body Size 
    Inflation 
        Maximum Layers 
        Transition 
        Growth rate 
        Inflation Algorithm 

 
4E-04 m 
 
2 
Smooth, Transition ratio 0.272 
1.2 
Pre 

Statistics 
Nodes 
Elements 

 
403715 
1667453 

Domain physics  

Type Fluid 

Material 
Fluid definition 
 
Morphology 

Argon 
Material Library, user defined for reference conditions, pure 
substance, calorically perfect ideal gas 
Continuous Fluid 

Setting 
Buoyancy Model 
Domain Motion 
Reference Pressure 
Heat Transfer Model 
    Fluid Temperature 
Turbulence Model 

 
Non Buoyant 
Stationary 
Reactor inlet pressure 
Isothermal 
Reactor inlet temperature 
Laminar 

Boundary physics  

Inlet face (of entrance region) 
Flow Regime 
Mass And Momentum 
    Normal Speed 

 
Subsonic 
Normal Speed 
average speed  

Outlet face (of entrance region) 
Flow Regime 
Mass And Momentum 
Relative Pressure 

 
Subsonic 
Static Pressure 
0 bar 

Walls (of entrance region) 
Mass And Momentum 

 
No Slip Wall 

Solver control  

Basic settings 
Advection Scheme 
Convergence control 
    Timescale Control 
    Length Scale Option 
    Timescale Factor 
Convergence Criteria 
    Residual type 
    Residual target 
    Conservation target 

 
High Resolution 
 
Auto timescale 
Aggressive 
1.0 
 
RMS 
1E-06 
1E-04 

Equation Class Settings Continuity, Momentum 

Advanced options Global Dynamic Model Control 
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Figure of Appendix 14: Results of flow simulations with ANSYS 12 – Velocity in X-direction 
(parallel to face) at the reactor inlet for a standard volume flow of 700 sccm Ar 

 

Figure of Appendix 15: Results of flow simulations with ANSYS 12 – Velocity in Z-direction 
(parallel to face) at the reactor inlet for a standard volume flow of 700 sccm Ar 
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Figure of Appendix 16: Results of flow simulations with ANSYS 12 – Velocity in X-direction 
(parallel to face) at the reactor inlet for a standard volume flow of 2600 sccm Ar 

 

Figure of Appendix 17: Results of flow simulations with ANSYS 12 – Velocity in Y-direction 
(normal to face) at the reactor inlet for a standard volume flow of 2600 sccm Ar 
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Figure of Appendix 18: Results of flow simulations with ANSYS 12 – Velocity in Z-direction 
(parallel to face) at the reactor inlet for a standard volume flow of 2600 sccm Ar 

 

Figure of Appendix 19: Results of flow simulations with ANSYS 12 – Velocity in X-direction 
(parallel to face) at the reactor inlet for a standard volume flow of 9800 sccm Ar 
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Figure of Appendix 20: Results of flow simulations with ANSYS 12 – Velocity in Y-direction 
(normal to face) at the reactor inlet for a standard volume flow of 9800 sccm Ar 

 

Figure of Appendix 21: Results of flow simulations with ANSYS 12 – Velocity in Z-direction 
(parallel to face) at the reactor inlet for a standard volume flow of 9800 sccm Ar 
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Table of Appendix 37: Coefficients of the polynomial fit function for the approximation of averaged velocity 
profiles at the inlet of the reactor. 

/furnaceT  )mm/(sin i
ik  

- 
set 6k  5k  4k  3k  2k  1k  0k  

5 -1.46961E+15 1.76766E+13 -7.44044E+10 1.18131E+08 -1.23928E+05 3.42689E+01 1.26064E+00 

8 -4.40221E+14 4.83776E+12 -1.61002E+10 7.58349E+06 -2.40424E+04 6.62798E+00 8.48611E-01 

9 -2.37714E+15 2.97222E+13 -1.33812E+11 2.43183E+08 -2.47299E+05 6.87565E+01 1.68981E+00 

10 -3.42516E+15 4.61344E+13 -2.36305E+11 5.05774E+08 -5.46973E+05 1.62766E+02 3.05639E+00 

12 -5.53268E+14 6.19635E+12 -2.18588E+10 1.70492E+07 -3.25138E+04 9.05793E+00 9.15241E-01 

13 -2.25989E+15 2.84492E+13 -1.29427E+11 2.39223E+08 -2.43357E+05 6.77897E+01 1.58450E+00 

14 -2.79340E+15 3.72920E+13 -1.85612E+11 3.84844E+08 -4.06780E+05 1.17127E+02 2.20985E+00 

15 -3.81975E+15 4.52614E+13 -2.21302E+11 4.70673E+08 -5.04308E+05 1.60090E+02 3.30858E+00 

16 -8.18284E+14 9.31907E+12 -3.45001E+10 3.53003E+07 -5.18058E+04 1.44728E+01 1.15986E+00 

17 -2.68651E+15 3.39121E+13 -1.54905E+11 2.88083E+08 -2.93237E+05 8.17667E+01 1.87827E+00 

18 -3.15818E+15 4.25351E+13 -2.17571E+11 4.64999E+08 -5.02286E+05 1.49323E+02 2.79716E+00 

19 -5.07327E+15 5.85432E+13 -2.79832E+11 5.88089E+08 -6.20250E+05 1.97535E+02 4.02807E+00 

20 -1.16594E+16 1.23838E+14 -5.35837E+11 1.06155E+09 -1.00631E+06 3.28436E+02 5.05363E+00 

21 -1.49427E+15 1.77358E+13 -7.26584E+10 1.07640E+08 -1.17152E+05 3.25357E+01 1.42472E+00 

22 -2.67737E+15 3.51676E+13 -1.70303E+11 3.42289E+08 -3.55471E+05 1.00493E+02 1.95438E+00 

23 -3.77435E+15 4.48292E+13 -2.19843E+11 4.68526E+08 -5.02414E+05 1.59972E+02 3.29918E+00 

24 -1.17506E+16 1.24183E+14 -5.33103E+11 1.05118E+09 -9.86948E+05 3.22354E+02 4.74821E+00 

 

 

 

 

 

 

 

 

 

 



Appendix  
   

 

 232 

Appendix F: Calculations with COMSOL Multiphysics  

 

Table of Appendix 38: Information about general settings for the calculations with COMSOL Multiphysics 

Basics  

Geometry 2D, axial symmetry 

Modus of application 
    Fluid flow 
        Standard type of element 
        Type of analysis 
        Model of turbulence 
    Heat transfer 
        Standard type of element 
        Type of analysis 
        Model of turbulence 

 
Weakly compressible Navier-Stokes 
Lagrange - P2 P1 
Stationary 
None 
General heat transfer with disabled radiative heat transfer 
Lagrange - P2 J1 
Stationary 
None 

Mesh information  

Settings 
    Predefined mesh size 
    Method of refinement 
    Level of refinement 

 
Normal 
Regular 
3 

Statistics 
Nodes 
Elements 
Degrees of freedom 

 
187189  
366912 (triangular) 
1690584 

Domain condition  

Fluid 
    Material 
    Density 
    Heat transfer 

 
Argon or helium (user defined material properties) 
Function of temperature and pressure 
Convection 

Reactor wall and thermocouple 
    Material 
    Density 
    Specific heat capacity at 
    constant pressure 
    Heat transfer 

 
AL23 
3825 kg/m3 
900 J/(kg K) 
 
Conduction 

Boundary conditions  

Inlet face of fluid domain 
 

Velocity profile provided 
Temperature provided 

Outlet face of fluid domain 
 

Pressure provided 
Convective flux 

Inner face of reactor wall 
 

No-slip wall 
Temperature provided 

Outer face of thermocouple 
 

No-slip wall 
Temperature linked to temperature variable 

Other faces 
 

No-slip wall 
Thermal insulation 

Solver control  

Type of analysis 
Linear solver of equations 
Convergence Criteria 
    Relative accuracy 
Newton damping 

Stationary 
Direct (UMFPACK) 
 
1E-06 
activated 
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Figure of Appendix 22: Results of COMSOL Multiphysics calculations based on a simplified 
temperature profile for the wall of the reactor concerning flow lines for different standard 
volume flows of argon and a nominal furnace temperature of 1200 °C: 95 sccm (a), 200 sccm (b), 
350 sccm (c), 685 sccm (d), and 2000 sccm (e) 

 

 

Figure of Appendix 23: Results of COMSOL Multiphysics calculations based on a simplified 
temperature profile for the wall of the reactor concerning flow lines for different standard 
volume flows of argon and a nominal furnace temperature of 1300 °C: 340 sccm (a), 650 sccm 
(b), 1300 sccm (c), 2600 sccm (d), and 4800 sccm (e) 

 

 

Figure of Appendix 24: Results of COMSOL Multiphysics calculations based on a simplified 
temperature profile for the wall of the reactor concerning flow lines for different standard 
volume flows of argon and a nominal furnace temperature of 1400 °C: 700 sccm (a), 1400 sccm 
(b), 2600 sccm (c), 3800 sccm (d), and 6500 sccm (e) 

 

 

Figure of Appendix 25: Results of COMSOL Multiphysics calculations based on a simplified 
temperature profile for the wall of the reactor concerning flow lines for different standard 
volume flows of argon and a nominal furnace temperature of 1500 °C: 1600 sccm (a), 2800 sccm 
(b), 4600 sccm (c), 7200 sccm (d), and 9800 sccm (e) 

 

 (a)   (b)    (c)     (d)     (e) 

 (a)   (b)    (c)     (d)     (e) 

 (a)   (b)    (c)     (d)     (e) 

 (a)   (b)    (c)     (d)     (e) 
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Figure of Appendix 26: Results of COMSOL Multiphysics calculations based on a simplified 
temperature profile for the wall of the reactor concerning flow lines for different standard 
volume flows of argon and a nominal furnace temperature of 1600 °C: 2000 sccm (a), 3350 sccm 
(b), 6500 sccm (c), 9800 sccm (d) 

 

 

Figure of Appendix 27: Results of COMSOL Multiphysics calculations based on a simplified 
temperature profile for the wall of the reactor concerning flow lines for different sets of 
standard volume flow of helium and nominal furnace temperature: 1300 °C - 3800 sccm (a), 
1400 °C - 2800 sccm (b), 1400 °C - 3800 sccm (c), 1400 °C - 6500 sccm (d), and 1500 °C - 
3800 sccm (e) 

 

Table of Appendix 39: Coefficients of the polynomial fit function for the approximation of fractions of the 
molar flow at the inlet of the reactor present 5 mm downstream the tip of the thermocouple in particular 
nested tube reactors (NTR) of region B. 

i
ik s/mol)(in  

Gas NTR 

3k  2k  1k  0k  

1 -2.0556E+05 3.7537E+03 -1.1197E+01 1.3511E-01 

2 -3.5574E+05 4.6347E+03 -1.3581E+01 3.2845E-01 

3 3.1172E+05 -4.4580E+03 1.0098E+01 3.6014E-01 
Ar 

4 2.4958E+05 -3.9304E+03 1.4679E+01 1.7630E-01 

1 - -9.7174E+01 -2.4543E-01 1.3266E-01 

2 - -1.2551E+02 -3.8322E-01 3.2631E-01 

3 - 8.9136E+01 1.6390E-01 3.6212E-01 
He 

4 - 1.3355E+02 4.6474E-01 1.7891E-01 

 

 

 

  (a)    (b)    (c)     (d)

 (a)   (b)    (c)     (d)     (e) 
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Appendix G: Optimization tool and results of kinetic evaluation  

 

Table of Appendix 40: Information about the optimization tool used for the determination of kinetic 
parameters 

Optimization tool 
 
Solver 
Algorithm 
Algorithm settings 
    Subproblem algorithm 

Optimization Toolbox 4.0 embedded in  
MATLAB Version 7.6.0.324 (R2008a) 
“lsnonlin“ (Nonlinear least squares) 
Large scale 
 
Cholesky factorization 

Stopping criteria 
X tolerance 
Function tolerance 

 
1E-06 (default) 
1E-06 (default) 

Approximated derivates 
    Finite differences 
        Minimum perturbation 
        Maximum perturbation 

 
 
1E-08 (default) 
0.1 (default) 
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Figure of Appendix 28: Comparison of experimentally determined conversion of methane (as a 
function of the residence time and the nominal furnace temperature) with calculated values 
employing reactor model 5 NTR and respective best fit kinetic parameters. 2 % initial molar 
fraction of methane in argon. Indicators of uncertainty refer to maximum uncertainty (black: 
used for kinetic evaluation, gray: not used for kinetic evaluation). 
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Figure of Appendix 29: Comparison of experimentally determined conversion of methane (as a 
function of the residence time and the nominal furnace temperature) with calculated values 
employing reactor model 5 NTR and respective best fit kinetic parameters. 10 % initial molar 
fraction of methane in argon. Indicators of uncertainty refer to maximum uncertainty (black: 
used for kinetic evaluation, gray: not used for kinetic evaluation). 
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Figure of Appendix 30: Comparison of experimentally determined conversion of methane (as a 
function of the residence time and the nominal furnace temperature) with calculated values 
employing reactor model 5 NTR and respective best fit kinetic parameters. Diverse initial molar 
fractions of methane in argon. Indicators of uncertainty refer to maximum uncertainty (black: 
used for kinetic evaluation, gray: not used for kinetic evaluation). 
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Figure of Appendix 31: Comparison of experimentally determined yield of hydrogen (as a 
function of the residence time and the nominal furnace temperature) with calculated values 
employing reactor model 5 NTR and respective best fit kinetic parameters. 2 % initial molar 
fraction of methane in argon. Indicators of uncertainty refer to maximum uncertainty (black: 
used for kinetic evaluation, gray: not used for kinetic evaluation). 
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Figure of Appendix 32: Comparison of experimentally determined yield of hydrogen (as a 
function of the residence time and the nominal furnace temperature) with calculated values 
employing reactor model 5 NTR and respective best fit kinetic parameters. 10 % initial molar 
fraction of methane in argon. Indicators of uncertainty refer to maximum uncertainty (black: 
used for kinetic evaluation, gray: not used for kinetic evaluation). 
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Figure of Appendix 33: Comparison of experimentally determined yield of hydrogen (as a 
function of the residence time and the nominal furnace temperature) with calculated values 
employing reactor model 5 NTR and respective best fit kinetic parameters. Diverse initial molar 
fractions of methane in argon. Indicators of uncertainty refer to maximum uncertainty (black: 
used for kinetic evaluation, gray: not used for kinetic evaluation). 
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Figure of Appendix 34: Comparison of experimentally determined yield of ethane (as a function 
of the residence time and the nominal furnace temperature) with calculated values employing 
reactor model 5 NTR and respective best fit kinetic parameters. 2 % initial molar fraction of 
methane in argon. Indicators of uncertainty refer to maximum uncertainty (black: used for 
kinetic evaluation, gray: not used for kinetic evaluation). 
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Figure of Appendix 35: Comparison of experimentally determined yield of ethane (as a function 
of the residence time and the nominal furnace temperature) with calculated values employing 
reactor model 5 NTR and respective best fit kinetic parameters. 10 % initial molar fraction of 
methane in argon. Indicators of uncertainty refer to maximum uncertainty (black: used for 
kinetic evaluation, gray: not used for kinetic evaluation). 
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Figure of Appendix 36: Comparison of experimentally determined yield of ethane (as a function 
of the residence time and the nominal furnace temperature) with calculated values employing 
reactor model 5 NTR and respective best fit kinetic parameters. Diverse initial molar fractions of 
methane in argon. Indicators of uncertainty refer to maximum uncertainty (black: used for 
kinetic evaluation, gray: not used for kinetic evaluation). 
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Figure of Appendix 37: Comparison of experimentally determined yield of ethene (as a function 
of the residence time and the nominal furnace temperature) with calculated values employing 
reactor model 5 NTR and respective best fit kinetic parameters. 2 % initial molar fraction of 
methane in argon. Indicators of uncertainty refer to maximum uncertainty (black: used for 
kinetic evaluation, gray: not used for kinetic evaluation). 
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Figure of Appendix 38: Comparison of experimentally determined yield of ethene (as a function 
of the residence time and the nominal furnace temperature) with calculated values employing 
reactor model 5 NTR and respective best fit kinetic parameters. 10 % initial molar fraction of 
methane in argon. Indicators of uncertainty refer to maximum uncertainty (black: used for 
kinetic evaluation, gray: not used for kinetic evaluation). 
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Figure of Appendix 39: Comparison of experimentally determined yield of ethene (as a function 
of the residence time and the nominal furnace temperature) with calculated values employing 
reactor model 5 NTR and respective best fit kinetic parameters. Diverse initial molar fractions of 
methane in argon. Indicators of uncertainty refer to maximum uncertainty (black: used for 
kinetic evaluation, gray: not used for kinetic evaluation). 
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Figure of Appendix 40: Comparison of experimentally determined yield of ethyne (as a function 
of the residence time and the nominal furnace temperature) with calculated values employing 
reactor model 5 NTR and respective best fit kinetic parameters. 2 % initial molar fraction of 
methane in argon. Indicators of uncertainty refer to maximum uncertainty (black: used for 
kinetic evaluation, gray: not used for kinetic evaluation). 
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Figure of Appendix 41: Comparison of experimentally determined yield of ethyne (as a function 
of the residence time and the nominal furnace temperature) with calculated values employing 
reactor model 5 NTR and respective best fit kinetic parameters. 10 % initial molar fraction of 
methane in argon. Indicators of uncertainty refer to maximum uncertainty (black: used for 
kinetic evaluation, gray: not used for kinetic evaluation). 
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Figure of Appendix 42: Comparison of experimentally determined yield of ethyne (as a function 
of the residence time and the nominal furnace temperature) with calculated values employing 
reactor model 5 NTR and respective best fit kinetic parameters. Diverse initial molar fractions of 
methane in argon. Indicators of uncertainty refer to maximum uncertainty (black: used for 
kinetic evaluation, gray: not used for kinetic evaluation). 
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Table of Appendix 41: Covariance matrix calculated based on the best fit kinetic parameters for model 5 NTR 

)(ψCov  1 2 3 4 5 6 7 8 9 10 11 12 Related to

1 3.29 
E+00 

1.15 
E-01 

8.14 
E-03 

1.43 
E-01 

1.27 
E-02 

3.86 
E-03 

5.56 
E-01 

2.86 
E-02 

5.57 
E-03 

-1.39
E-01 

-2.94 
E-04 

5.61 
E-03 a,1E  

2 1.15 
E-01 

4.02 
E-03 

3.05 
E-04 

4.05 
E-03 

4.45 
E-04 

1.45 
E-04 

1.53 
E-02 

8.82 
E-04 

2.03 
E-04 

-4.92
E-03 

-2.38 
E-05 

1.83 
E-04 

)log( 1,0k  

3 8.14 
E-03 

3.05 
E-04 

5.05 
E-05 

-7.35 
E-04 

2.97 
E-05 

2.10 
E-05 

-2.34
E-03 

-3.47
E-05 

2.24 
E-05 

-3.60
E-04 

-1.13 
E-05 

2.46 
E-06 1m  

4 1.43 
E-01 

4.05 
E-03 

-7.35 
E-04 

8.79 
E+01 

3.20 
E+00

1.57 
E-02 

4.36 
E-01 

-2.21
E-02 

-7.54
E-03 

1.22 
E-03 

3.77 
E-03 

4.04 
E-03 a,2E  

5 1.27 
E-02 

4.45 
E-04 

2.97 
E-05 

3.20 
E+00 

1.22 
E-01 

2.42 
E-03 

5.52 
E-03 

-1.15
E-03 

-2.70
E-04 

-7.56
E-04 

9.96 
E-05 

1.38 
E-04 

)log( 2,0k

6 3.86 
E-03 

1.45 
E-04 

2.10 
E-05 

1.57 
E-02 

2.42 
E-03 

6.30 
E-04 

-2.41
E-03 

-8.36
E-05 

2.19 
E-06 

-3.05
E-04 

-8.13 
E-06 

3.59 
E-06 2m  

7 5.56 
E-01 

1.53 
E-02 

-2.34 
E-03 

4.36 
E-01 

5.52 
E-03 

-2.41
E-03 

9.88 
E+00

3.45 
E-01 

3.66 
E-03 

3.61 
E-02 

9.32 
E-03 

9.36 
E-03 a,3E  

8 2.86 
E-02 

8.82 
E-04 

-3.47 
E-05 

-2.21 
E-02 

-1.15 
E-03 

-8.36
E-05 

3.45 
E-01 

1.29 
E-02 

4.85 
E-04 

2.20 
E-04 

2.97 
E-04 

3.39 
E-04 

)log( 3,0k

9 5.57 
E-03 

2.03 
E-04 

2.24 
E-05 

-7.54 
E-03 

-2.70 
E-04 

2.19 
E-06 

3.66 
E-03 

4.85 
E-04 

1.61 
E-04 

-4.70
E-04 

-5.23 
E-06 

1.40 
E-05 3m  

10 -1.39 
E-01 

-4.92 
E-03 

-3.60 
E-04 

1.22 
E-03 

-7.56 
E-04 

-3.05
E-04 

3.61 
E-02 

2.20 
E-04 

-4.70
E-04 

1.39 
E+01

4.81 
E-01 

-3.68 
E-02 a,4E  

11 -2.94 
E-04 

-2.38 
E-05 

-1.13 
E-05 

3.77 
E-03 

9.96 
E-05 

-8.13
E-06 

9.32 
E-03 

2.97 
E-04 

-5.23
E-06 

4.81 
E-01 

1.77 
E-02 

-2.82 
E-04 

)log( 4,0k

12 5.61 
E-03 

1.83 
E-04 

2.46 
E-06 

4.04 
E-03 

1.38 
E-04 

3.59 
E-06 

9.36 
E-03 

3.39 
E-04 

1.40 
E-05 

-3.68
E-02 

-2.82 
E-04 

1.12 
E-03 4m  
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