Remote Sensing of Environment 129 (2013) 90-102

Contents lists available at SciVerse ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Estimating the fractional cover of growth forms and bare surface in savannas. A
multi-resolution approach based on regression tree ensembles

Ursula Gessner *?*1 Miriam Machwitz *€, Christopher Conrad ?, Stefan Dech *P

2 Department of Remote Sensing, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
> German Aerospace Center (DLR), German Remote Sensing Data Center (DFD), Muenchner Strasse 20, 82234 Oberpfaffenhofen, Germany
¢ Centre de Recherche Public — Gabriel Lippmann, Department of Environment and Agro-Biotechnologies (EVA), 41, rue du Brill, 4422 Belvaux, Luxembourg

ARTICLE INFO ABSTRACT

Article history:

Received 13 February 2012

Received in revised form 25 September 2012
Accepted 12 October 2012

Available online xxxx

Evaluations of existing land cover maps have revealed that high landscape heterogeneity and small patch
sizes are a major reason for misclassification. These problems globally occur in biomes of mixed vegetation
structure and are particularly relevant for African savannas. This paper presents a multi-resolution approach
to derive fractional cover of vegetation growth forms at sub-pixel level, aiming at an improved mapping of
land cover in the African grassland, savanna and shrubland biome. Fractional cover is delineated for woody
growth forms (trees and shrubs), herbaceous growth forms, and bare surface. The approach incorporates
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Sth/)—pixel fractional cover very high resolution (QuickBird/IKONOS, 0.6-1 m), high resolution (Landsat TM/ETM+, 30 m), and medium
Savanna resolution data (MODIS, 250 m). While QuickBird/IKONOS data are classified into discrete classes, at Landsat

Grassland and shrubland biome and MODIS resolutions, sub-pixel cover is delineated using non-parametric ensemble regression trees from
Africa the random forest family. The propagation of errors in the hierarchical multi-resolution approach is assessed
Vegetation structure with Monte Carlos simulations.
Land cover ) The multi-resolution approach allows the adequate description of the heterogeneous vegetation structure in
Multi-resolution analysis selected study regions of Southern Africa. The RMSE of the delineated fractional cover values range between
3.1% and 8.2% when compared with higher resolution data and between 4.4% and 9.9% when compared with
field surveys. Errors at the Landsat resolution show minor influence on the accuracy of the MODIS results.
Regarding the inter-resolution error propagation, for 90% of the Monte Carlo simulations, errors at the Landsat
resolution resulted in RMSEs for MODIS increased by less than 4% (woody vegetation), 3.5% (herbaceous vegeta-
tion) and 2% (bare surface).
© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Information on land cover and land cover change is fundamental in
many fields of environmental research. Land cover datasets are an im-
portant basis for monitoring processes in the context of global change
such as deforestation, degradation, and urban expansion. Moreover,
they are required in fields such as biodiversity, water management,
carbon storage, and ecosystem functions. The Global Terrestrial
Observing System (GTOS) selected land cover as one of the Terrestrial
Essential Climate Variables, i.e. as a terrestrial property which controls
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physical, biological and chemical processes with relevance to climate
(GTOS, 2008).

Accuracy assessments and comparisons between land cover
maps have proven their general value. But likewise, studies have
revealed that best accuracies are found for homogeneous land
cover classes while heterogeneous classes with a mixed vegetation
structure such as savannas are not as well represented. Small patch
sizes and high heterogeneity were identified to be major reasons
for misclassifications (Latifovic & Olthof, 2004; Smith et al., 2002,
2003). The validation of the global datasets GlobCover and MODIS
Land Cover Type (MCD12Q1) revealed elevated confusions for
mixed and spatially heterogeneous classes (Bicheron et al., 2008;
Bontemps et al., 2011; FriedlI et al., 2010). In a comparative study
of two global land cover maps, Giri et al. (2005) found major differ-
ences in class assignment for heterogeneous classes. Likewise,
Herold et al. (2008) identified a correlation between the homoge-
neity of a landscape and the agreement among four global land
cover datasets. They identified low accuracies in all datasets partic-
ularly for classes with mixed vegetation such as ‘mixed trees’,
‘shrublands’ and ‘herbaceous vegetation’. Herold et al. (2008) see
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an outstanding challenge for improved global land cover derivation
in enhancing the mapping of heterogeneous landscapes. For the
African continent, these mixed classes are mainly found in the
tropical and subtropical grassland, savanna and shrubland biome
(biome definition according to Olson et al., 2001).

The mentioned inconsistencies may arise from different causes.
Evidently, an important fact is that current land cover mapping activi-
ties rely on the distinction of discrete land cover classes. In biomes
such as the tropical and subtropical savanna, grassland and shrubland
biome, land cover is not discrete but rather characterized by a mixture
of growth forms, primarily grasses, shrubs and trees. Small patches
and gradual transitions between open and closed vegetation cover are
typical features of these landscapes while clear boundaries between
distinct land cover classes are rare.

A better representation of heterogeneous landscapes could be
achieved by mapping the fractional cover of relevant land cover elements
on a continuous scale, a concept that has been suggested by DeFries et al.
(1995), Hansen et al. (2003), Heiskanen (2008) and Herold et al. (2008).
Datasets following this concept of continuous categories have already
been derived from medium resolution remote sensing data. The first
maps of this kind focused exclusively on the derivation of tree cover.
Examples are the global map of percentage tree cover, produced by
DefFries et al. (2000) from AVHRR data of 1992/93 at a spatial resolution
of 1 km, and a regional mapping approach for tropical woodlands and
parklands in Zambia based on MODIS data (Hansen et al., 2002b, 2005).
Another regional approach for forest biomes in southeast Asia was
presented by Tottrup et al. (2007), considering even different forest
types. A dataset that differentiates fractional cover of more than just
one growth form is the MODIS Vegetation Continuous Fields product
(VCF, MOD44B; Hansen et al., 2002a, 2003). Two editions of this product
are currently available. The collection 3 dataset gives information on the
sub-pixel proportion of trees, herbaceous vegetation and bare area for the
year 2001 at a resolution of 500 m. The MODIS-VCF collection 5 contains
proportional estimates only for tree cover and for the years 2000 to 2010
at a resolution of 250 m. The MODIS-VCF dataset has proven valuable
especially in areas of high tree cover for mapping percent tree cover in
Zambia (Hansen et al., 2005) and for depicting general tendencies of
forest change in southeast Asia (Tottrup et al., 2007). However, regional
assessments showed that pixel-level MODIS-VCF information has clear
limitations for the monitoring of tree cover (White et al., 2005), particu-
larly in landscapes of low tree density (Hansen et al,, 2005; Heiskanen,
2008; Montesano et al., 2009). Hansen et al. (2005) state that the global
land cover map that was used as a training dataset for MODIS-VCF
exhibits particularly low accuracies for wooded grassland and woodland
classes (i.e. savanna classes) which are due to high within-class heteroge-
neity. Thus, fractional vegetation cover mapping needs enhancement,
especially in regions of mixed vegetation structure, where discrete land
cover maps also exhibit inconsistencies (e.g. Bicheron et al.,, 2008; Friedl
et al., 2010; Herold et al., 2008).

Apart from qualitative considerations, definitional problems arise
when using tree cover or MODIS-VCF datasets in the African grassland,
savanna and shrubland biome. These datasets account only for trees
and partly (in MODIS-VCF, collection 3) delineate non-tree vegetation
as a whole, i.e. herbaceous and shrub vegetation cover as one layer.
However, in this biome, the differentiation between woody (trees and
shrubs) and herbaceous growth forms seems more adequate as the eco-
system services (ESS) of shrubs and trees are generally similar, while
grasses show rather different characteristics. Woody and herbaceous
components exhibit for example clear differences in magnitude and
seasonality of carbon sequestration, in provision of fodder and food, in
the suitability of ecosystems as habitats, in their influence on the water
cycle, water quality, and soil nutrients (e.g. Eldridge et al,, 2011; Lloyd
et al., 2008; Meik et al., 2002; Scholes & Archer, 1997).

With the aim to improve mapping of land cover in heterogeneous
landscapes, this paper applies a multi-resolution approach for deriving
fractional vegetation cover at regional scale. The procedure is tailored

to the African grassland, savanna and shrubland biome. Thus,
fractional cover is derived for the three most prevalent - and with
respect to ESS most meaningful - elements of land cover in this
biome: woody growth forms (trees and shrubs), herbaceous growth
forms and bare surface. The approach operates on three spatial
resolutions incorporating very high resolution imagery (QuickBird/
IKONOS, 0.6-1 m), multi-temporal high resolution data (Landsat
TM/ETM+, 30 m) and medium resolution, annual time series
(MODIS, 250 m). Sub-pixel proportions of growth forms are consid-
ered at Landsat and MODIS resolution. The fractional cover deriva-
tion is based on non-parametric ensemble regression trees from
the random forest family. The approach is applied for two Southern
African savanna ecosystems, the Kalahari Woodland Savanna and
the Central and Eastern Namibian Savanna. The propagation of errors
during the hierarchical multi-resolution approach is considered
using Monte Carlos simulations.

2. Study regions

The first study region, the Kalahari Woodland Savanna, is located
in northeastern Namibia (Fig. 1). The area is covered by Kalahari
sands with longitudinal dunes and only minor variations in elevation
(1050-1250 m above sea level). Typical for the region are deep,
sandy soils with low nutrient contents (ferralic Arenosols) and asso-
ciated petric Calcisols (FAO, 1998; Strohbach & Petersen, 2007). The
mean annual precipitation ranges between 450 mm in the southwest
and 750 mm in the northeast (Mendelsohn et al., 2002). In winter,
temperatures can fall below 8 °C while summer temperatures rise
up to 32-36 °C (Mendelsohn et al., 2002). The vegetation is charac-
terized by a heterogeneous mixture of open woodland savanna
(Burkeo-Pterocarpetea) and closed to open shrublands (Acacietea;
Strohbach & Petersen, 2007). The natural savanna vegetation is
considerably influenced by human activities as the rural population
strongly depends on natural resources for their livelihoods. In the
Kalahari Woodland Savanna, grazing and cropping are typical land
use activities, and large hardwood species are logged for timber.
Frequent and mostly land-use-related savanna fires are typical and
lead to a decrease in shrub density (Strohbach & Petersen, 2007).

The second study region, the Central and Eastern Namibian Savanna
(Fig. 1), comprises the vegetation types ‘Camelthorn Savanna’ and
‘Thornbush Shrubland’ (Giess, 1998). The elevation above sea level
varies between 1200 m and 1700 m. The most important soils in this
region are ferralic Arenosols on Kalahari sands with associated petric
Calcisols as well as chromic Cambisols and Regosols on sandstones
and schists (Mendelsohn et al., 2002). Annual rainfall ranges from
250 mm in the southeast to 500 mm in the northeast. In winter, tem-
peratures can drop to 0 °C while maximum summer temperatures
range between 30 and 36 °C (Mendelsohn et al., 2002). The vegetation
of the study area is dominated by fine-leaved and broad-leaved shrub-
and grassland savannas. Fine-leaved Acaciateae can be found on
relatively nutrient-rich soils while broad-leaved Combretaceae grow
on poorer substrates (Rothauge, 2006). Towards the north of the region,
Terminalia-Combretum associations are common (Strohbach et al.,
2004). Land use in the Central and Eastern Namibian Savanna is mainly
characterized by livestock farming on large tracts. Farmers suppress
fires as far as possible and thus the savanna vegetation burns only
exceptionally in this region.

Both study areas show a mixed composition of vegetation growth
forms with gradual transitions between more open and more closed
areas, which is a typical feature of semi-natural savanna ecosystems.
Fig. 2 illustrates this characteristic savanna vegetation structure
in the Kalahari Woodland Savanna. The scatter plot is based on a
QuickBird classification and displays the sub-pixel proportions of
growth forms within 30 mx 30 m grid cells. It is obvious that already
at this spatial resolution, the savanna landscape is dominated by a
heterogeneous mixture of herbaceous and woody vegetation with
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Fig. 1. Location of the study regions Kalahari Woodland Savanna and Central and Eastern Namibian Savanna and spatial coverage of applied satellite data.

gradual transitions. It is apparently impossible to subdivide the point
cloud of the scatter plot by distinct thresholds into discrete land cover
classes without a considerable loss of thematic content. Accordingly,
at 30 mx 30 m spatial resolution it is not possible to divide this land-
scape into discrete land cover classes.

3. Data
Data of one year was analyzed for each of the study regions. The
years of analysis start in October and end in September in order to

capture a complete vegetation phase (approximately October to April).
According to the availability of very high resolution data, the years
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Fig. 2. Vegetation composition of the central Kalahari Woodland Savanna in northern
Namibia with regard to fractional cover of herbaceous growth forms, woody growth
forms and bare surface. The plot displays the two growth forms and bare fractions
according to a classification of a QuickBird image (Fig. 1) summarized in grid cells of
30 mx30 m. The green lines indicate how data values are to be read on the plot
axes. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

2006/2007 and 2007/2008 were selected for the Kalahari Woodland
Savanna and the Central and Eastern Namibian Savanna, respectively.

3.1. QuickBird and IKONOS data

One very high resolution image was available for each study
region. A QuickBird dataset is located in the central part of the
Kalahari Woodland Savanna (center coordinate: 18°21'N/19°16'E,
Fig. 1). It was acquired on April 15 2007 and covers an area of
approximately 220 km?. The IKONOS image of the Central and East-
ern Namibian Savanna (center coordinates: 22°0'N/19°9’E, Fig. 1)
with an area of approximately 120 km? was recorded on March 24
2008. For each image, the panchromatic band with a spatial resolu-
tion of 0.6 m (QuickBird) and 1 m (IKONOS) was fused with the
2.4 m (QuickBird) and 4 m (IKONOS) multispectral bands (blue,
green, red and near-infrared). This resulted in four pan-sharpened
bands of 0.6 m and 1 m spatial resolution for QuickBird and
IKONOS respectively.

3.2. Landsat TM and ETM + data

Landsat TM and ETM + data were provided by the Landsat archive of
the United States Geological Survey (USGS) and by the archive of the
South African Council for Scientific and Industrial Research (CSIR). For
the Kalahari Woodland Savanna, four Landsat TM acquisitions (path
177/row 73) of 2007 were available (Table 1, Fig. 1). For the Central
and Eastern Namibian Savanna, one TM and two ETM + datasets of
2008 were selected (path 177/row 75, Table 1, Fig. 1). The ETM +
images exhibit data gaps due to the failure of the Scan Line Corrector
(SLC-off) on Landsat 7. The Landsat data provided by USGS showed
high geometric accuracy when compared with GPS measurements
from field campaigns and with IKONOS data and thus did not need
any further geometric correction. The TM images provided by CSIR
were co-registered to reference scenes of the USGS archive. For all TM
acquisitions, the co-registration resulted in a root mean squared error
(RMSE) of less than 15 m. Atmospheric correction was performed
with the ATCOR-2 software implemented in IDL (Richter, 1996, 2007).
Given the gaps in the ETM+ SLC-off acquisitions, all Landsat data
selected for the Central and Eastern Namibian Savanna were spatially
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Table 1
Landsat TM and ETM+ data analyzed at the intermediate resolution of the
multi-resolution approach.

Study area WRS-2 Date of Sensor  Archive
path/row  acquisition

Kalahari Woodland Savanna 177/73 15/02/2007 TM CSIR-SAC

Kalahari Woodland Savanna 177/73 06/05/2007 TM CSIR-SAC

Kalahari Woodland Savanna 177/73 23/06/2007 TM CSIR-SAC

Kalahari Woodland Savanna 177/73 25/07/2007 TM CSIR-SAC

Central and Eastern Namibian  177/75 09/01/2008 ETM+ USGS
Savanna

Central and Eastern Namibian ~ 177/75 22/04/2008 TM CSIR-SAC
Savanna

Central and Eastern Namibian ~ 177/75 16/05/2008 ETM+  USGS
Savanna

restricted to those areas where none of the three images had missing
data. Consequently, the fractional cover results at Landsat resolution
show data gaps for this study region.

Based on the Landsat datasets, a feature space was created that
consists of reflectance values, multispectral and multitemporal indices.
In addition to the reflectance values of the Landsat bands ranging from
visible to short-wave infrared wavelengths (bands 1 to 5 and band 7),
the Normalized Difference Vegetation Index (NDVI), Simple Ratio
(SR, pnir/Prep), Soil Adjusted Vegetation Index (SAVI; Huete, 1988)
and the Tasseled Cap Indices brightness, greenness and wetness (Crist
et al,, 1986; Jensen, 1996) were derived from all TM and ETM + reflec-
tances in the relevant bands. Furthermore, multitemporal indices were
created based on these monotemporal features. This was done by calcu-
lating the temporal mean, median, minimum, maximum and amplitude
for each of the above mentioned indices and reflectances. An example of
such a multitemporal index is the median NDVI of the four Landsat TM
datasets of the Kalahari Woodland Savanna (Table 1).

3.3. Annual MODIS time series

The MODIS dataset comprised 16-day composites of Enhanced
Vegetation Index (EVI), NDVI and the MODIS band 1 (red), band 2
(near-infrared, NIR), band 3 (blue) and band 7 (mid-infrared, MIR)
reflectances. All datasets were extracted from the 250 m MODIS stan-
dard product MOD13Q1, collection 5, distributed by the NASA Land
Processes Distributed Active Archive Center (LP DAAC). The 16-day
composites were assembled as time series for the years 2006/2007
(Kalahari Woodland Savanna) and 2007/2008 (Central and Eastern
Namibian Savanna). Each time series starts in October and ends in
September, according to the vegetation seasonality in Southern
African savannas. To avoid measurements of low quality, the MODIS
Quality Assessment Science Datasets (QA-SDS) were inspected and
all composites with the layer ‘VI usefulness’ being lower than the
fourth best quality level were rejected. The data gaps were filled by
linear temporal interpolation. The analysis of QA-SDS and the subse-
quent interpolation was performed using the tool TiSeG (Colditz
et al.,, 2008).

From the annual MODIS time series, 90 metrics were generated as
input features at the coarsest level of the multi-resolution approach.
The six time series (i.e. EVI, NDVI, red, NIR, blue, MIR) were subdivided
into dry season and vegetation period. The duration of vegetation
period and dry season was determined for each pixel individually in
order to account for spatial variability in the onset of rainfall. They
were defined by calculating the inflection points of the EVI time series
which had been smoothed beforehand by discrete Fourier transforma-
tion (Jakubauskas et al., 2001). From each of the reflectances and indices
we calculated mean, median, minimum, maximum and amplitude of
the dry season, of the rainy season, and of the complete year.

3.4. Acquisition dates and temporal data coverage

Fig. 3 shows the acquisition dates of the employed very high and
high resolution data embedded in the phenological cycle of one year
(MODIS-NDVI for October to September). At the highest spatial
resolution, data from a single acquisition date was analyzed. The
QuickBird and IKONOS imagery were scheduled such that they
approximately capture the peak of annual vegetation development.
In this way they can provide a high quality reference dataset in accor-
dance with the UN Land Cover Classification System (LCCS) require-
ment to assess land cover in terms of the fullest seasonal plant
development (Di Gregorio, 2005). At the intermediate resolution,
the three and four Landsat acquisitions represent snapshots of differ-
ent phenological phases like the approximate state of maximum
vegetation development but also the green-up phase, senescence
and dry season, as far as data were available. In terms of MODIS,
continuous annual time series describe the full vegetation cycle of
one year in time-steps of 16 days.

4. Methods

4.1. Multi-resolution approach for deriving the fractional cover of
vegetation growth forms

The procedure for deriving the fractional cover of vegetation growth
forms and bare surface is presented in Fig. 4. The workflow is repeated
for each cover component separately. Very high resolution information
on vegetation cover is delineated by classification of QuickBird or
IKONOS imagery. This information is spatially aggregated to the 30 m
resolution of Landsat and used as learning and validation data for this
intermediate level. Random forest regression trees are then employed
on Landsat TM and ETM + data for delineating sub-pixel fractional
cover of woody vegetation, herbaceous vegetation and bare surface re-
spectively. The resulting 30 m continuous cover values are aggregated
to the 250 m resolution of MODIS. Finally, at the coarsest resolution,
continuous cover values are delineated from MODIS data, again using
random forest regression trees. This time, the learning samples for the
regression trees are a subset of the degraded 250 m results of the
Landsat level. The following sections describe the individual steps of
the multi-resolution approach and its validation in detail.

4.2. Classification of QuickBird and IKONOS imagery

QuickBird and IKONOS data were classified into discrete classes
using a supervised object- and pixel-based maximum likelihood
approach. The classification was based on training areas extracted
from 15 to 20 rectangular subsets of the very high resolution data.
These subsets, with a size of 600 mx600 m, were equally spaced
over the images on a 2.5 km grid. The subsets were segmented
using an optimized segmentation approach after Esch et al. (2008).
From the resulting segments, training areas for four classes were
selected for the Kalahari Woodland Savanna. In the Central and
Eastern Namibian Savanna - due to higher variations in the density
of grassland patches - six classes were distinguished. For each class,
the surface cover composition was specified (Table 2) with the help
of field data that had been collected close to the acquisition dates of
the imagery (+1 week). These field data consisted of 60 mx 60 m
plots, where woody vegetation cover, herbaceous vegetation cover
and bare surface were estimated visually on the ground. For trees,
shrubs, and grasses, the average height was additionally recorded.
Furthermore, from the center of the field plots, pictures were taken
in a northward, eastward, southward and westward direction.

Even at a spatial resolution of 0.6 m to 1 m, some classes consist of
a mixture of bare surface, herbaceous growth forms and woody
growth forms (e.g. dwarf shrubs). For the class ‘cast shadow’ that is
caused by trees, an assignment of growth form and bare surface
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Fig. 3. Acquisition dates and temporal coverage of the remote sensing datasets for the Kalahari Woodland Savanna (left) and the Central and Eastern Namibian Savanna (right).

fractions is not straightforward. It was assumed that the growth
forms in the study regions are, by approximation, equally distributed
in space. Thus, for estimating the growth form composition of
surfaces obscured by cast shadows of trees, the overall proportion of
woody vegetation, herbaceous vegetation and bare surface in each
image was identified. Cast shadows were then assumed to approxi-
mately obscure surfaces with a growth form composition equal to
these overall proportions.

4.3. Spatial aggregation and sampling for training and validation

The IKONOS and QuickBird classifications were aggregated to the
Landsat TM pixel size of 30 m by averaging the cover values over the
coarser grid cells. The results were layers of continuous sub-pixel
percentages of woody cover, herbaceous cover and bare surface. These
three layers served as a data set for the learning procedure of the regres-
sion trees and for their validation at Landsat resolution. From each layer,
approximately 4000 learning and 2000 validation samples (no overlap)
were extracted. The samples were equally distributed over the extent of

the image. The share of samples with a certain cover value (0-100%) in
the number of all extracted samples was defined according to the
percentage to which this cover value occurred in the reference data
set (stratified weighted sampling). Later in the multi-resolution
approach, this scaling and sampling procedure was repeated for the
30 m fractional cover results of the Landsat resolution which again
resulted in approximately 4000 learning and 2000 validation samples
for the 250 m MODIS resolution.

4.4. Random forest regression tree ensembles

At the Landsat and MODIS resolutions, sub-pixel cover of woody
vegetation, herbaceous vegetation and bare surface were delineated
using non-parametric random forest regression tree ensembles, which
belong to the Classification and Regression Tree methods (CART;
Breiman et al., 1984; Breiman, 2001). Studies have shown that single
regression trees deliver relatively low accuracies (e.g. Garzon et al.,
2006; Liu & Wu, 2005) but combining several trees to regression tree
ensembles can significantly improve the results (e.g. Breiman, 1996,

& 3
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Fig. 4. Schematic workflow of the multi-resolution approach for the derivation of fractional cover of woody vegetation, herbaceous vegetation and bare surface.
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Table 2
Classes of the QuickBird- and IKONOS-based classification and the class-specific growth
form composition.

Class Woody cover [%]  Herbaceous cover [%]  Bare [%]
QuickBird image of Kalahari Woodland Savanna

Shrubland/woodland 100 0 0
Grassland 10 60 30
Bare 0 30 70
Cast shadow 40 30 30
IKONOS image of Central and Eastern Namibian Savanna

Shrubland/woodland 90 5 5
Open grassland 0 30 70
Medium dense grassland 5 55 40
Closed grassland 0 100 0
Bare 0 0 100
Cast shadow 70 15 15

2001; Garzon et al., 2006; Xu et al.,, 2005). Therefore, in this study,
ensemble random forest regression trees were generated using bagging
techniques (Breiman, 2001). First, the individual regression trees
were constructed. During this construction process, binary recursive
partitioning is applied with the aim to estimate a dependent variable
(here: the fractional cover) by means of multiple independent variables
(here: the remote sensing metrics, see Sections 3.2 and 3.3). The regres-
sion trees are constructed on the basis of a set of so called learning sam-
ples which are comparable to the training data of traditional supervised
classification approaches. Starting at the root of a regression tree (root
node) and in a hierarchical sequence of binary splits, the dataset is
divided into subspaces (nodes) which are as homogeneous as possible.
As splitting criterion, a threshold value s is chosen such that Eq. (1) is
minimized.

Y v+ X iyt (1)

Yilxij<s YilXij>s

Here, Y denotes the dependent and X the independent variables.y
represents the mean of all elements y;, and the threshold value s can
take any value of the independent variables X;. The final nodes of a
tree are called leaves. The mean value of the dependent variable of
all leaf elements is assigned to each of these leaves. As the
constructed trees are partly fitted to noise in the learning samples,
they show reduced generalization capability to make correct predic-
tions for data that have not been included in the learning process.
To avoid this overfitting, pruning methods can be applied which cut
off less important branches. Here, the relevance of branches and splits

is identified by means of training data, that have not been included in
the tree growing process (pruning data). After a number of test runs
with varying types of pruning, we decided to perform pruning
based on a cost complexity sequence of sub-trees (Breiman et al.,
1984) where the sub-tree with the 50 best predicting leaves was
selected.

With the aim to generate ensembles of several single regression
trees, the random forest technique of bagging (Breiman, 1996) was
applied. Test runs showed that the accuracy increased with increasing
ensemble size but stabilized as soon as 12-15 trees were included.
Thus, we constructed 15 regression trees on subsets of the learning
samples by randomly drawing 50% of the samples each time. The
results of the 15 single trees were combined by weighted averaging.
The weight for each leaf was defined according to the leaf-specific
RMSE calculated from the learning samples.

A measure that indicates the importance of each of the independent
variables for the fractional cover estimation is the increase in mean
squared error (%IncMSE). This measure is calculated by constructing
each tree of an ensemble with and without the specific variable. For
all trees, the differences in error of these two variants are recorded,
averaged and normalized by their standard deviation. For all regression
tree analyses, the software R (R Development Core Team, 2011) with
the packages tree (Ripley, 2012) and randomForest (Liaw & Wiener,
2002) were used.

4.5. Assessment of accuracy and error propagation

Both at the Landsat and MODIS resolutions and for each cover type,
validation sample sets of approximately 2000 pixels (Section 4.3) were
analyzed. The results were compared to the validation samples of
QuickBird/IKONOS (degraded to 30 m) and Landsat (degraded to
250 m) respectively, and RMSEs were calculated.

In addition, the Landsat-based results of the Central and Eastern
Namibian Savanna were validated with field data collected in March
and April 2008. Cover fractions were surveyed on the ground with the
point intercept method (Bonham, 1989) on 14 plots of 60 mx 60 m
(Fig. 5, left). Depending on the heterogeneity of the landscape, 3-5 tran-
sects with a length of 60 m were placed within each of these plots.
Along the transects, the dominant cover type (woody vegetation,
herbaceous vegetation and bare soil) was recorded in intervals of 1 m.
At each interval, a circular area with a diameter of 10 cm was assessed
(Fig. 5, right). For comparison with Landsat data, average values of
woody vegetation cover, herbaceous vegetation cover and bare surface
cover were calculated for each field plot from the 180 to 300 individual

T

60m

| 3-5 transects
- intervals (1m)

60m

Fig. 5. Layout of a point intercept field plot for fractional vegetation cover surveys.
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Table 3

Root mean squared errors (RMSE) of fractional cover datasets delineated from Landsat and MODIS when compared to the validation datasets based on QuickBird/IKONOS and

Landsat data, respectively and RMSE delineated from field surveys.
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Study region Sensor RMSE RMSE
higher resolution field surveys
Kalahari Woodland Savanna Landsat TM Woody vegetation 8.2
(path 177, row 73) Herbaceous vegetation 53
Bare surface 4.1
MODIS Woody vegetation 8.1
Herbaceous vegetation 4.6
Bare surface 3.6
Central and Eastern Namibian Savanna Landsat TM and ETM + Woody vegetation 5.9 6.5
(path 177, row 75) Herbaceous vegetation 52 9.9
Bare surface 6.0 4.4
MODIS Woody vegetation 3.1
Herbaceous vegetation 3.1
Bare surface 32

records. These average values were compared with the mean fractional
cover values of the four nearest Landsat pixels.

As a consequence of the hierarchical, multi-resolution structure
of the fractional cover delineation, the learning samples at MODIS
resolution are contaminated by an error which has been committed
at Landsat resolution. Therefore, inter-resolution error propagation
was evaluated for the Kalahari Woodland Savanna using Monte
Carlo simulations (e.g. Heuvelink, 1998). The basic idea of this
approach is to repeatedly construct regression tree ensembles at
MODIS resolution after having contaminated the fractional cover
values of the learning samples with an estimate of their error. For
each Monte Carlo simulation, this error was randomly sampled
from the estimated error distribution of the Landsat-based learning
samples at 250 m resolution. To estimate this error distribution,
the validation samples of the QuickBird level were aggregated to
250 m and subtracted from the regression tree results at Landsat
resolution, also aggregated to 250 m. The resulting differences
were tested for normality and the corresponding normal distribution
was used as an estimate for the distribution of errors of the Landsat-
derived learning samples. Based on this error distribution, 1000

woody vegetation

herbaceous vegetation

Monte Carlo simulations were calculated for each cover type. The
results of the Monte Carlo simulations indicate the typical variation
of accuracy associated with the error of the input data.

5. Results and discussion
5.1. Accuracy and error propagation

The validation results for woody vegetation, herbaceous vegetation
and bare surface with the higher resolution data showed RMSE values
ranging between 3.1% and 8.2%. Table 3 gives an overview of the
RMSE for the datasets at 30 m and 250 m spatial resolutions and for
the three cover types. The respective scatter plots of the validation
samples versus the multi-resolution results are shown in Figs. 6 and 7.
The validation with field plots resulted in similar RMSE values ranging
from 4.4% to 9.9% (Table 3).

Field validation showed highest errors for herbaceous vegetation
with an overestimation of herbaceous cover in the Landsat product. A
reason for this overestimation could be a misinterpretation of dwarf
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Fig. 6. Scatterplots of regression tree results and validation data for the Kalahari Woodland Savanna. The diagonal lines indicate a 4-10% deviation.
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Fig. 7. Scatterplots of regression tree results and validation data for the Central and Eastern Namibian Savanna. The diagonal lines indicate a 4-10% deviation.

shrubs as grasses in the IKONOS classification and consequently also in
the Landsat data.

In the Kalahari Woodland Savanna, best accuracies were achieved
for bare surface (RMSE: 4.1% and 3.6%). In contrast, woody vegetation
turned out to be the most difficult cover type in this study area
(RMSE: 8.2% and 8.1%). When comparing the spectral characteristics
of woody vegetation and soil in the Kalahari Woodland Savanna,
soils show a higher homogeneity, due to the rather uniform Kalahari
sands. The woody vegetation component in contrast is composed of
a high variety of shrub and tree species even including a smaller
proportion of evergreen trees (Strohbach & Petersen, 2007). As a
consequence, slight variations exist in the spectral characteristics of
leaves and canopies of different species that are related to phenology,
chemical composition, leaf structure and leaf angle inclination. These
variations affect the Bidirectional Reflectance Distribution Function
BRDF and shadow fractions in the canopy that might complicate the
delineation of woody cover in this region. A different situation exists
in the Central and Eastern Namibian Savanna where, when compared
to higher resolution data, woody vegetation and bare surface are
delineated with similar accuracies (Table 3). Here, woody species
are exclusively deciduous. The geology however is relatively hetero-
geneous and includes sands, sandstones and schists, resulting in a
higher variety of the soil's spectral characteristics. Thus for both
bare surface and woody cover, the results in both study regions
suggest a relationship between the homogeneity of the spectral and
phenological characteristics of the target cover type and the accuracy
of delineated cover values.

In both study regions and for all cover types, RMSEs for MODIS are
lower than those for Landsat based results. Partly, this difference in
accuracy may be attributed to resolution effects, which typically have
an influence on the accuracy of remote sensing products. In many
cases, accuracy improves with increasing spatial resolution. However,
there is not a general rule in terms of direction and magnitude of
resolution effects, and they seem to depend on the spatial, temporal
and spectral characteristics of the regarded land cover and landscape
(e.g. Hansen et al., 2002b; Irons et al., 1985; Marceau et al., 1994;

Moody & Woodcock, 1995; Yanchen, 2008). Fig. 8 can help to better
interpret the influence of resolution on the error of the presented
results at Landsat and MODIS levels. The plot shows the mean absolute
errors of the Landsat-based results — compared to the QuickBird
reference - when Landsat results are continuously degraded to coarser
grid cells of up to 1 km. For all three cover types, errors decline with
increasing grid cell size. The decline is markedly steeper between 30 m
and 250 m than between 250 m and 1 km, which is similar to the scal-
ing behavior found by Hansen et al. (2002b) for woodlands in Zambia.

The inter-resolution propagation of errors from Landsat to MODIS
level is not accounted for in Table 3. This error propagation was assessed
with Monte Carlo simulations for the Kalahari Woodland Savanna.

The error of the Landsat-based learning samples was identified by
comparing the aggregated 250 m Landsat results with the aggregated
250 m QuickBird classification. Errors were found to be by approxima-
tion normally distributed with mean errors of 5.6%, 3.4% and 2.7% for
woody, herbaceous and bare cover respectively. Standard deviations
were 5.5%, 3.3% and 2.7% respectively. The frequency distributions of
the RMSE of 1000 Monte Carlo simulations for woody cover, herbaceous

—o— woody vegetation
—4— herbaceous vegetation
—»— bare surface

mean absolute error [%]

T
500

T
250
length of grid cell side [m]

T
30 140

Fig. 8. Mean absolute error of fractional cover derived from Landsat data in the Kalahari
Woodland Savanna. The errors are based on a comparison between the QuickBird
classification and the Landsat-derived results at grid cell sizes between 30 mx30 m
and 1 kmx1 km.
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Fig. 9. Frequency of RMSE resulting from 1000 Monte Carlo simulations

cover and bare surface (Fig.9) indicate that extreme RMSEs of up to 20%
(Fig. 9, woody vegetation) can occur occasionally with woody vegeta-
tion, but for all cover types, the frequency of RMSE decreases nearly
exponentially with increasing error. 90% of the Monte Carlo simulations
resulted in an RMSE of less than approximately 12% for woody vegeta-
tion, 8% for herbaceous vegetation and 5.5% for bare surface. Thus, the
pure effect of inter-resolution error propagation was - for 90% of the
simulations - a decrease in RMSE of less than 4% (woody vegetation),
3.5% (herbaceous vegetation) and 2% (bare surface).

In a woodland to savanna region in Zambia, Hansen et al. (2002b)
derived tree cover in a similar approach to the one presented here.
Major differences between the procedure of Hansen et al. (2002b)
and the approach of this study are the use of single regression trees
versus random forest regression ensembles and the derivation of
only tree cover versus the derivation of woody vegetation cover,
herbaceous vegetation cover and bare surface fractions. Hansen
et al. (2002b) created a 250 m MODIS tree cover map with an overall
RMSE of 6.76%, but as they examined validation samples which had
also been used for training, an independently calculated RMSE

herbaceous vegetation

for woody growth forms, herbaceous growth forms and bare surface.

would be higher. For the same region in Zambia, Hansen et al.
(2005) derived tree cover using the MODIS-VCF algorithm and
single date images, composites and metrics of 500 m MODIS data.
They achieved standard errors of 7.1% to 7.8% when using the train-
ing samples for validation, and a standard error of 11.5% when
excluding the training data from validation. They noted problems
in particular for the Kalahari woodlands at the low end of tree
cover and assigned these difficulties to poor training data and high
soil reflectances of the bright Kalahari sands. A quantitative com-
parison of our results with the MODIS-VCF product would also be
interesting but is limited for two reasons. First, the MODIS-VCF
layer bare cover and non-tree vegetation cover are only available
for the year 2001. As in semi-arid areas, these cover types are highly
variable at interannual time-scales, a comparison with our results of
2006/07 and 2007/08 is not meaningful. Second, concerning the
temporally more stable woody growth forms, the MODIS-VCF
layer tree cover (available for 2000-2010) is not quantitatively
comparable with the layer woody cover, as the latter includes not

only trees but also shrubs.
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Fig. 10. Importance of MODIS variables for the delineation of woody vegetation cover, herbaceous vegetation cover and bare surface in the Kalahari Woodland Savanna.
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5.2. Variable importance

The relevance of the MODIS variables for the delineation of fractional
cover in the Kalahari Woodland Savanna is illustrated in Fig. 10. The
plots list the 30 most important variables for the estimation of woody
vegetation cover, herbaceous vegetation cover and bare surface. For
the identification of woody vegetation, variables delineated from MIR
and NDVI time series are most important, while metrics of EVI, NIR,
NDVI and blue are of highest relevance for herbaceous vegetation. For
both vegetation growth forms, metrics of the rainy season, of the dry
season and of the full year are found among the 30 most important
variables. For the delineation of bare surface, highest relevance was
identified for variables based on MIR and NDVI, but dry season metrics
are of minor importance.

5.3. Mapping results

Fig. 11 shows the fractional cover of woody growth forms, herba-
ceous growth forms and bare surface in the Kalahari Woodland Savanna
as delineated from Landsat data. The maps reproduce the vegetation
structure of the region as a heterogeneous mixture of open woodland
savanna and closed to open shrublands with hardly any abrupt
borders between distinct land cover classes. The extensive patches of

19°00°E 20°00°E
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comparatively low woody vegetation cover and high bare fractions
southeast of the road B8 are mainly due to the deeper Kalahari sands
and to recurring savanna fires in this area. In the western third of the
Landsat scene, the typical vegetation structure of longitudinal Kalahari
dune systems is clearly depicted by the maps of woody and herbaceous
vegetation cover. On dune crests we mainly find open woodlands with
higher herbaceous proportions while in interdunal depressions, woody
vegetation cover is typically higher and grass cover is sparser
(Strohbach & Petersen, 2007).

Also at MODIS resolution, the heterogeneous vegetation structure
and gradual transitions of the Kalahari Woodland Savanna are well
depicted (Fig. 12). In the vicinity to the urban areas of Rundu, the
extent of cleared savanna is observable. The areas of agricultural
land use along the Okavango River and in the west of the study region
are characterized by low woody, high bare and high herbaceous
fractions. In the central and western study region, the longitudinal
dunes with their distinct alterations of vegetation structure are
delineated also at MODIS resolution.

The delineated fractional cover datasets capture and characterize
different typical land cover elements of the savanna landscapes at
the three regarded spatial resolutions. Fig. 13 focuses on a subregion
in the center of the Kalahari Woodland Savanna and compares the
cover of woody vegetation delineated from QuickBird (left), Landsat
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Fig. 11. Fractional cover of woody growth forms, herbaceous growth forms and bare surface delineated from Landsat TM data for the Kalahari Woodland Savanna.



100

17°0'0"E

18°00"E

U. Gessner et al. / Remote Sensing of Environment 129 (2013) 90-102

19°0'0"e 20°0'0"E

woody vegetain cover [%]
% ?‘;jgﬁ = 3 :3 —— Okavango River
[ 120-30 M 70-80 — roads j
[ 30 - 40 [ 80 - 90  location of
[ 40 - 50 [ 90 - 100 ' Landsat data

19°0'0"S

17°0'0"E 18°0'0"E

18°00'

herbaceous vegetation cover [%]
[ ]o-10 @ S0-60

‘|:| 10-20 @ 60-70 — Okavango River
[720-30 g 70 -80 —— roads )
[[77130-40 [ 80-90  location of
[ 40 - 50 EE 90 - 100 Landsat data

19°00"S

17°0'0"E 18°0'0"E

19°0'0"E 20°0'0"E

18°0'0"S

bare surface cover [%)]

20 10-10 I 50-60 ) |
g': 10-20-60-70 —Okavango River
T |20 -30 M 70-80 —— reads J

[0 30 - 40 [ 80 - 90— location of
[ 40 - 50 @ 90- 100 Landsatdata

Fig. 12. Fractional cover of woody growth forms, herbaceous growth forms and bare surface delineated from MODIS data for the Kalahari Woodland Savanna.

(center) and MODIS (right). A north-south oriented fire-proof fence
subdivides the region into a western, fire protected area and an
eastern area where fires occur every second year on average. At the
highest resolution, individual shrubs and trees could be identified in
the classification. Agricultural fields and the oval thicket structures
with gradual transitions to neighboring open savanna vegetation are
well depicted at the highest resolution. The slight differences in
woody cover inside and outside the fire-proof fencing are observable
with rather dense and open shrub understory respectively. At the
resolution of Landsat, shrubs and trees are captured as cover fractions
at sub-pixel level (Fig. 13, center). This allows for an appropriate
characterization of the savanna vegetation structure with gradual
transitions between areas of open savanna and closed thickets at
the 30 m spatial resolution. Based on discrete land cover classes it
would not be possible to capture these spatial patterns with their
gradual characteristics. Furthermore, in the Landsat-based results,
agricultural fields can clearly be identified as well as the slight
differences in vegetation structure between areas of low and high

fire frequency west and east of the fence. At MODIS resolution, smaller
landscape elements such as small agricultural fields and thickets are
blurred (Fig. 13, right). However, the general characteristics with
gradual transitions between open and closed vegetation structure are
still well reproduced in the form of sub-pixel fractional cover. Also at
this coarsest level, the slight differences in vegetation structure due to
differences in fire frequency are clearly depicted.

6. Conclusions

In this study, sub-pixel fractional cover of woody growth forms
(trees and shrubs), herbaceous growth forms, and bare surface were de-
lineated for two savanna landscapes in Southern Africa. The considered
cover types constitute the main components of land cover in savannas
and represent meaningful units with respect to ESS. The fractional
cover values were derived with a multi-resolution approach based on
random forest regression techniques and optical remote sensing data
of three spatial resolutions (QuickBird/IKONOS, Landsat, MODIS). The



U. Gessner et al. / Remote Sensing of Environment 129 (2013) 90-102 101

Fig. 13. Woody cover delineated from QuickBird (left), Landsat TM (center) and MODIS (right) data for a subregion in the central Kalahari Woodland Savanna. A fire-proof fence
crosses the region from north to south. It subdivides the area into savanna vegetation with low (west) and high (east) fire frequency.

results showed that the approach allows the description of the charac-
teristic features of vegetation structure in savanna landscapes. Root
mean squared errors of the fractional cover datasets range between
3.1% and 8.2% when compared to higher resolution data, and between
44% and 9.9% when compared to field surveys. In general, spectrally
homogeneous cover types could be estimated with higher accuracies
than heterogeneous cover types. The influence of error propagation
from the Landsat to the MODIS level was estimated by Monte Carlo
simulations. These analyses showed minor inter-resolution propagation
of errors with 90% of the Monte Carlo simulations resulting in an in-
crease of RMSE of less than 4% (woody vegetation), 3.5% (herbaceous
vegetation) and 2% (bare surface) at MODIS level.

In the presented procedure, the vegetation structure is delineated as
sub-pixel cover already at a spatial resolution of 30 m. This allows for a
better characterization of the grassland, savanna and shrubland biome
which has a highly mixed vegetation structure at this intermediate spa-
tial resolution. Accordingly, the mapping results of the intermediate
resolution are less generalized and consequently build a sound basis
for the estimation of fractional cover at MODIS resolution.

The presented approach is generally suitable for grasslands, savannas
and shrublands, also outside Africa. However, high resolution data
(~1 m) for the region is a prerequisite, and Landsat and MODIS feature
spaces need to be adapted to the prevalent phenological characteristics.
For regional land cover mapping activities in such landscapes, the
presented fractional cover delineation has a high potential to improve
traditional discrete classification approaches. If required for certain appli-
cations or for reason of comparison with other datasets, the presented
fractional cover information can be aggregated to discrete classes in
accordance with the UN LCCS (Di Gregorio, 2005) where class definitions
are generally based on the coverage of growth forms. This kind of concept
could lead to an improved representation of the particularly problematic
heterogeneous classes in global land cover maps not only for the African
grasslands, savannas and shrublands but presumably also for other
heterogeneous biomes and ecotones such as the tundra, the taiga-
tundra ecotone and the steppe regions.
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