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Abstract

The topic of this dissertation is the observation of physical world events through a distributed
world model. So the events of interest occur in the world we live in. The basis for their
observation is a model of the relevant aspects of the physical world. These include more static
aspects like geometric models of stationary objects, e.g., houses and streets, but also dynamic

aspects, e.g., the position of mobile users or the temperature.

With the proliferation of mobile computing devices like personal digital assistants or mobile
phones with significant computing and communication capabilities, there is a trend to extend
computer support from the desktop to the physical world. As the focus of the mobile user may
be on other tasks, computer support should be proactive, providing the user with information
and services relevant in his current situation. The observation of high-level physical world

events is an enabler for these new kinds of services.

Due to the size of the data, different characteristics of the data, and a multitude of providers,
the world model data needed for the observation can be distributed over a number of servers.
We present a novel event service architecture that allows the observation of complex high-level

events through a distributed world model.

As the accuracy of the data is limited due to the characteristics of both the underlying sensor
data and the computer network, this has to be taken into account. We propose a concept for
specifying physical world events together with a threshold probability above which the event
is considered to have occurred. We then show how physical world events can be observed,

calculating the occurrence probability and comparing this to the specified threshold probability.

Finally, we present an evaluation based on a prototype implementation with a number of con-
crete events. The focus of the evaluation is on both the performance and the quality of the

observation, showing the general feasibility of our approach.
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Zusammenfassung

Beobachtung von Ereignissen der physischen Welt auf
Basis eines verteilten Umgebungsmodells

1 Einfihrung

Aktuelle technische Entwicklungen im Bereich der personlichen digitalen Assistenten (PDAs)
und der Mobiltelefonie, insbesondere in Bezug auf Kommunikationsfahigkeiten und Rechen-
leistung, machen Computerunterstiitzung in allen Situationen des tiglichen Lebens moglich.
Vielfiltige Sensorsysteme erlauben es, den aktuellen Zustand der physischen Welt zu erfassen.
Zusammen ergibt sich daraus eine Basis fiir neuartige Anwendungen und Dienste, die den ak-
tuellen Kontext des Benutzers beriicksichtigen. Man spricht daher auch von kontextbezogenen

Systemen.

Da der Fokus des mobilen Benutzers oft auf anderen Tétigkeiten und nicht auf dem mobilen
Gerit selbst liegt, sollte die Unterstiitzung mit Informationen und Diensten so proaktiv wie
moglich gestaltet werden. Dazu miissen Situationsidnderungen in der Umgebung erkannt wer-
den, und es muss darauf passend reagiert werden. Derartige Anderungen konnen als Ereignisse
modelliert werden. Ein typisches Beispiel fiir einen proaktiven Dienst ist ein Erinnerungsdienst,
der den Benutzer in passenden Situationen an Dinge erinnert, die er erledigen wollte; beispiels-
weise: ,,Hol die Theaterkarten an der Theaterkasse um die Ecke ab®.

Um solche Dienste zu realisieren, werden detaillierte Kontextinformationen benétigt. Da es
teuer ist, Kontextinformationen bereitzustellen und auf dem aktuellsten Stand zu halten, ist es
sinnvoll, eine Infrastruktur aufzubauen, die von mehreren Anwendungen gemeinsam genutzt
werden kann. Gleichzeitig ist es unrealistisch anzunehmen, dass es einen einzigen Anbieter
gibt, der die Kontextinformationen zentral bereitstellt. Ein moglicher Ansatz — wie er vom Pro-
jekt Nexus [Hohl et al. 1999] verfolgt wird — ist, Kontextinformationen in Form eines verteilten

Umgebungsmodells zur Verfiligung zu stellen.
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In dieser Dissertation wird untersucht, wie Ereignisse auf einem verteilten Umgebungsmodell
beobachtet werden konnen. Auf deren Basis konnen dann proaktive Dienste realisiert werden.
Dabei haben fiir den Benutzer interessante Ereignisse typischerweise ein hoheres Abstraktions-

niveau als einfache Anderungen eines Sensorwertes.

Diese Dissertation leistet folgende signifikante Beitrige zum Stand der Wissenschaft:

e Es wird ein Konzept prisentiert, das die Spezifikation von Ereignissen der physischen
Welt erlaubt und gleichzeitig die begrenzte Genauigkeit der zu Grunde liegenden Sens-

ordaten beriicksichtigt.

e Es werden Systemeigenschaften identifiziert, welche die Qualitéit der Ereignisbeobach-
tung beeinflussen. Diese miissen bei der Beobachtung so beriicksichtigt werden, dass die

spezifizierten Eigenschaften widergespiegelt werden.

e Es wird gezeigt, wie Ereignisse der physischen Welt auf Basis eines verteilten Umge-

bungsmodells beobachtet werden kdnnen.

e Es wird eine Architektur vorgeschlagen, welche die Ereignisbeobachtung auf verteilten

Modelldaten zu einem expliziten Bestandteil des Ereignisdiensts macht.

e Es wird beispielhaft gezeigt, wie konkrete rdaumliche Ereignisse implementiert werden

konnen.

e Basierend auf einem Prototyp wird die Machbarkeit des vorgeschlagenen Ansatzes ge-
zeigt. Der Fokus der Evaluierung liegt dabei sowohl auf der Performanz, als auch auf der

erzielten Beobachtungsqualitiit.

2 Grundlagen und Anforderungen

In diesem Abschnitt werden wesentliche Begriffe definiert, das Systemmodell vorgestellt und
Anforderungen an die Beobachtung von Ereignissen in der physischen Welt auf Basis eines

verteilten Umgebungsmodells formuliert.

Ein Umgebungsmodell ist als ein digitales Modell definiert, das einen Teil der physischen Welt
modelliert. Wesentliche Eigenschaften sind die Grofe, der Detaillierungsgrad, die Genauigkeit

und ob eine Historie verfiigbar ist.

Der Zustand des Umgebungsmodells zu einem bestimmten Zeitpunkt ist durch die Modellda-
ten, die zu diesem Zeitpunkt giiltig sind, und alle Informationen, die davon abgeleitet werden

konnen, gegeben.
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Ein Ereignis ist eine Anderung im Zustand des Umgebungsmodells. Ereignisbeobachtung ist
definiert als die Uberwachung des Umgebungsmodells im Hinblick auf das Eintreten eines spe-
zifizierten Ereignisses. Eine Ereignisbenachrichtigung ist die Nachricht, die verschickt wird,

wenn ein Ereignis eingetreten ist.

Das Systemmodel sieht vor, dass das Umgebungsmodell auf Umgebungsmodell-Servern ge-
speichert wird. Dynamische Aspekte des Umgebungsmodells werden durch Sensoren erfasst.
Auf Basis der Sensordaten werden die entsprechenden Modelldaten auf dem Umgebungs-
modell-Server aktualisiert. Wenn alle fiir die Ereignisbeobachtung notwendigen Daten auf ei-
nem Umgebungsmodell-Server vorhanden sind, kann die Ereignisbeobachtung lokal erfolgen.
Anderenfalls muss eine Beobachtersicht des Umgebungsmodells auf einem Server materiali-
siert werden, auf dem dann die Ereignisbeobachtung durchgefiihrt werden kann. Dazu muss
die Beobachtersicht iiber Aktualisierungsnachrichten auf dem aktuellen Stand gehalten wer-

den.

Fiir die Ereignisbeobachtung sind Systemeigenschaften, insbesondere Sensoreigenschaften und
die Eigenschaften des Computernetzes von zentraler Bedeutung, da sie die mogliche Qualitit
der Beobachtung bestimmen. Bendétigt werden hierfiir insbesondere die Genauigkeit von Sens-
ordaten, die Nachrichtenverzdgerung, die Uhrenabweichung und die zur Verfiigung stehende
Kommunikationsbandbreite. Fiir Computernetze sind diese Werte nicht automatisch verfiigbar,
und es konnen meist auch keine festen Schranken garantiert werden. In vielen Fillen kénnen
die Werte aber iiber die Zeit beobachtet und darauf basierend ,,statistische Garantien™gegeben
werden. In dieser Arbeit wird das Konzept von Ereignisdomdinen eingefiihrt, fiir welche die

bendtigten Werte bekannt sind.
Es wurden folgende generelle Anforderungen an ein System identifiziert, dass die Beobachtung
von Ereignissen der physischen Welt auf Basis eines verteilten Umgebungsmodells erlaubt:
1. Die Beobachtung von Ereignissen auf hohem Abstraktionsniveau muss unterstiitzt wer-
den.
2. Die Semantik der Ereignisse muss fiir den Benutzer klar verstdndlich sein.
3. Die Realisierungsdetails diirfen fiir den Benutzer nicht sichtbar sein.

4. Die Qualitdt der Beobachtung muss auf generische Art und Weise spezifizierbar sein,

unabhéngig von der konkreten Realisierung.
5. Das resultierende System muss skalierbar sein.
Die auf sehr hohem Abstraktionsniveau gehaltenen Anforderungen werden in den folgenden

Kapiteln konkretisiert, wenn es um die Diskussion von Lésungen geht, welche die Anforde-

rungen erfiillen.



3 Verwandte Arbeiten

In diesem Abschnitt werden kurz verwandte Arbeiten vorgestellt. Diese lassen sich folgen-
den Forschungsgebieten zuordnen: Aktive Datenbanken (Active Databases), verteilte Ereignis-
dienste (Event Services) und Publish-Subscribe Dienste, kontinuierliche Anfragen (Continuous
Queries), globale Pridikate (Global Predicates) und rdumliche Ereignisse (Spatial Events).

Aktive Datenbanken erlauben die Spezifikation von Ereignis-Bedingung-Aktion Regeln (Event-
Condition-Action Rules), wobei das Ereignis typischerweise eine Datenbankoperation ist. Wenn
diese eingetreten ist, wird die Bedingung tiberpriift und gegebenenfalls die Aktion ausgefiihrt
[Matthiessen and Unterstein 2000, Schmidt and Demmig 2001]. Einige Datenbanken erlau-
ben auch die Spezifikation von einfachen zusammengesetzten Ereignissen (composite events)
[Gehani et al. 1992, Chakravarty et al. 1993, Dittrich and Gatziu 2000]. Allerdings ist die Aus-
drucksfihigkeit dieser Sprachen fiir die Beschreibung von Ereignissen der physischen Welt
viel zu eingeschriankt. Aulerdem sind aktive Datenbanken in der Regel zentrale Systeme. Da-
mit erfiillen sie unsere Anforderungen fiir die verteilte Ereignisbeobachtung nicht, konnen aber

als Basis fiir die Implementierung von Umgebungsmodell-Servern dienen.

Verteilte Ereignisdienste und Publish-Subscribe Dienste [Eugster et al. 2003] ermoglichen die
effiziente Verteilung von Ereignisbenachrichtigungen. Sie lassen sich nach dem Kommunikati-
onsmechanismus (Unicast oder Multicast), der Verteilungsstruktur (hierarchisch oder peer-to-
peer) und den Filtermechanismen (ID-basiert, Typ-basiert, Themen-basiert und Inhalts-basiert)
klassifizieren. Einige Publish-Subscribe Dienst unterstiitzen auch zusammengesetzte Ereignis-
se, z.B. [Carzaniga et al. 1998, Hinze and Voisard 2002, Pietzuch et al. 2003], allerdings gelten
in Bezug auf die Ausdrucksfihigkeit die gleichen Einschriankungen wie bei den Aktiven Daten-

banken. Die Ereignisbeobachtung auf einem verteilten Umgebungsmodell ist so nicht moglich.

Kontinuierliche Anfragen [Chen et al. 2000, Arasu et al. 2003] stellen persistente Anfragen an
ein Datenbanksystem dar. Hier steht die kontinuierliche Aktualisierung von Werten im Vorder-

grund, nicht das Eintreten von Ereignissen, was sich auch in der Anfragesprache ausdriickt.

Globale Prddikate [Cooper and Marzullo 1991, Schwarz and Mattern 1994] beschreiben glo-
bale Eigenschaften in einem verteilten System und sind iiber dem globalen Zustand definiert.
Ein typisches Anwendungsbeispiel fiir globale Pridikate ist das Debugging von verteilten An-
wendungen. Eine wesentliche Rolle spielt hierbei die Kausalitédt von Ereignissen, die z.B. mit
Vektoruhren charakterisiert werden kann. Kausalitidtsinformationen sind bei der Beobachtung
von Ereignissen auf einem verteilten Umgebungsmodell typischerweise nicht verfiigbar, des
Weiteren muss die Ungenauigkeit der Sensordaten entsprechend beriicksichtigt werden, was in

den hier beschriebenen Ansétzen nicht vorgesehen ist.

Réumliche Ereignisse, die sich auf die rdumliche Konstellation von Objekten beziehen, wurden

bisher primir fiir bestimmte Anwendungen in relativ lokalen Szenarien betrachtet, z.B. [Want et



xi

al. 1992,Harter et al. 1999,Naguib and Coulouris 2001]. Die hier verfolgten Ansétze sind meist
zu speziell und besitzen nicht die notige Skalierbarkeit fiir die Beobachtung von Ereignissen

auf verteilten Umgebungsmodellen.

4 Spezifikation von Ereignissen

In diesem Abschnitt wird vorgeschlagen, Ereignisse als Pradikate tiber dem Zustand des Um-
gebungsmodells zu definieren. Der Endbenutzer kann dabei aus einer Reihe von Vorlagen
auswihlen, fiir die eine entsprechende Auswertungslogik verfiigbar ist. Der begrenzten Ge-
nauigkeit der Daten wird Rechnung getragen, indem eine Wahrscheinlichkeit als Schwellwert
angegeben werden kann. Wenn die Wahrscheinlichkeit fiir das Eintreten des Ereignisses iiber
diesem Schwellwert liegt, wird eine Ereignisbenachrichtigung verschickt. Mit Hilfe dieser
Schwellwert-Wahrscheinlichkeit kann der Benutzer zwar nicht die absolute Qualitéit der Be-
obachtung bestimmen, da diese ausschlieBlich von den verfiigbaren Daten abhéngt, wohl aber
das Verhiltnis von Falschmeldungen zu Nichtmeldungen beeinflussen. Falschmeldungen sind
dabei Ereignisbenachrichtigungen zu Ereignissen, die sich in der physischen Welt gar nicht
ereignet haben und nur aufgrund der Ungenauigkeit der Daten beobachtet wurden. Nichtmel-
dungen sind dagegen Ereignisse, die sich in der physischen Welt zwar ereignet haben, aber
aufgrund der Ungenauigkeit der Daten nicht mit geniigend groBer Sicherheit beobachtet wer-

den konnten.

5 Generische Ereignisbeobachtung

In diesem Abschnitt wird gezeigt, welche Parameter die Qualitéit der Beobachtersicht bestim-
men, welche Klassen von Aktualisierungsprotokollen es gibt und wie diese die Beobachtersicht
beeinflussen, und schlieBlich, wie auf Basis der Beobachtersicht die Wahrscheinlichkeit fiir
das Eintreten eines Ereignisses berechnet werden kann. Diese wird dann mit der spezifizierten
Schwellwert-Wahrscheinlichkeit verglichen, um zu entscheiden, ob das Ereignis als eingetreten

betrachtet werden kann.

Der Zustand des Umgebungsmodells kann im einfachsten Fall als Menge von Attribut-Wert
Paaren betrachtet werden. Da die Ungenauigkeit eines Wertes beriicksichtigt werden muss,
kann er als Dichtefunktion iiber dem Genauigkeitsintervall angegeben werden. Wenn nur be-
kannt ist, dass der Wert innerhalb des Genauigkeitsintervalls liegen muss, kann eine Gleichver-
teilung angenommen werden. Wenn der exakte Wert bekannt ist, reduziert sich das Genauig-

keitsintervall auf einen einzigen Punkt.
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Aufgrund begrenzter Genauigkeiten bei der Uhrensynchronisation kann der Zeitpunkt einer
Aktualisierung des Modells nur als Zeitintervall angegeben werden. Auch hier kann fiir den

Aktualisierungszeitpunkt eine Dichtefunktion angegeben werden.

Bei den Aktualisierungsprotokollen kann man anfragende und berichtende Protokolle unter-
scheiden. Berichtende Protokolle entsprechen von ihrer Charakteristik her Ereignis-basierten
Systemen am besten. Daher beschrinken wir uns auf die Betrachtung dieser Protokollklasse,

die weiter in Wert- und Zeitbasierte Protokolle untergliedert werden kann.

Da die Ereignisbeobachtung auf der Beobachtersicht des Umgebungsmodells unter Beriicksich-
tigung der Dichtefunktionen fiir die Werteverteilung und das Aktualisierungsintervalls recht
komplex ist, werden zunéchst vereinfachende Annahmen gemacht, die dann schrittweise auf-
gehoben werden, um am Ende zu einer Losung fiir den allgemeinen Fall zu kommen. Hierbei
wird zunéchst die Berechnung fiir den Fall mit exakten Werten und exakten Aktualisierungs-
zeitpunkt vorgestellt. Im ndchsten Schritt wird der exakte Wert durch ein Genauigkeitsintervall
und dann durch eine allgemeine Dichtefunktion ersetzt. Parallel dazu wird die Berechnung bei
exakten Werten, aber einem Aktualisierungsintervall betrachtet. Setzt man die Teilergebnisse

zusammen, erhélt man den allgemeinen Fall.

6 Konzepte zur Beobachtung raumlicher Ereignisse

Nachdem im letzten Abschnitt ein generisches Konzept zur Ereignisbeobachtung vorgestellt
wurde, wird hier betrachtet, wie dieses angewendet werden kann, um konkrete Ereignisse zu
beobachten. Der Fokus liegt hierbei auf der Klasse der raumlichen Ereignisse. Rdumliche Er-
eignisse treten dann ein, wenn eine bestimmte raumliche Konstellation von Objekten erreicht

wird.

Als ersten Schritt dazu wird die Architektur eines Ereignisdienstes vorgestellt, der die Be-
obachtung von Ereignissen auf verteilten Umgebungsmodellen erlaubt. Auf konzeptioneller
Ebene wird der Ereignisdienst in zwei Komponenten aufgeteilt, den Beobachtungsdienst und
den Benachrichtigungsdienst. Der Beobachtungsdienst ist fiir die Beobachtung der Ereignisse
zustdndig. Die Aufgabe des Benachrichtigungsdiensts ist die effiziente Verteilung von Ereig-

nisbenachrichtigungen an interessierte Klienten.

Der Benachrichtigungsdienst besteht aus Benachrichtigungsknoten. Er verteilt Ereignisbenach-
richtigungen auf der Basis von IDs. Ereignisbenachrichtigungen werden direkt zwischen den
Benachrichtigungsknoten mit Ereignisquellen und Benachrichtigungsknoten mit Klienten wei-

tergeleitet. So wird sichergestellt, dass die Kommunikation innerhalb der Ereignisdoméne bleibt.

Der Beobachtungsdienst besteht aus Managementknoten und Beobachtungsknoten. Die Be-

obachtungsknoten sind fiir die eigentliche Beobachtung zustindig und sind im Computernetz
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verteilt. Realisiert wird die Beobachtung in Form von Beobachtungsmodulen, die mittels der
spezifizierten Parameter initialisiert werden. Die Managementknoten stellen fiir Klienten den
Zugangspunkt zum System dar. Wihrend der Registration miissen sie die Beobachtungsmo-
dule auf denjenigen Beobachtungsknoten platzieren, die aufgrund der Systemeigenschaften
und der darauf definierten Platzierungsstrategie am geeignetsten sind. Sie sind auferdem dafiir
zustindig, bei Anderungen der Konfiguration, z.B. der Verlagerung von relevanter Umgebungs-
modellinformation, die Platzierung entsprechend der Platzierungsstrategie anzupassen, oder die
Beobachtungsmodule nach Ablauf des Registrierungsintervalls zu deregistrieren, falls es nicht

vorher verldngert wurde.

Die Registrierung der Beobachtung geschieht in zwei Phasen. In der Registrierungsphase wird
angefangen von den Umgebungsmodell-Servern zu den Beobachtungsknoten, also von unten
nach oben, die Ereignisbeobachtung vorbereitet. In der Initialisierungsphase wird in umgekehr-
ter Richtung, von oben nach unten, die Ereignisbeobachtung initialisiert. Der Grund fiir dieses
Vorgehen liegt darin, dass einerseits zur Auswahl geeigneter Beobachtungsknoten die benétig-
ten Umgebungsmodell-Server bekannt sein miissen, andererseits konnen direkt bei der Initiali-
sierung Aktualisierungsereignisse ausgelost werden und die Beobachtungsknoten miissen dar-

auf vorbereitet sein.

Fiir die Ereignisbeobachtung selbst leiten die Umgebungsmodell-Server Aktualisierungsnach-
richten an Benachrichtigungsknoten weiter, die diese an interessierte Klienten — in diesem Fall
Beobachtungsknoten — verteilen. Auf Basis der dadurch aktualisierten Beobachtersichten wer-
den dann auf dem Beobachtungsknoten die Ereignisse beobachtet. Bei deren Eintreten werden
Aktualisierungsnachrichten wiederum an Benachrichtigungsknoten weitergeleitet, die diese an

interessierte Klienten — in diesem Fall in der Regel Benutzeranwendungen — verteilen.

Zur Klassifikation der Ereignisse werden Aspekte identifiziert, die fiir die Ereignisbeobachtung
relevant sind: Ereignis-Ausloser, ob durch Wert- oder Zeitanderung ausgelost; Anzahl der dy-
namischen Parameter, also der Parameter deren Werte sich im Laufe der Beobachtung &ndern,
wie z.B. die Position eines Benutzers; ob Parameterwerte spezifisch oder variabel sind, also
ein ganz bestimmtes Objekt oder eine Klasse von Objekten beschreiben; ob es sich um ein Er-
eignis oder ein Aktualisierungsereignis handelt, bei dem der neue Wert im Vordergrund steht;
und schlieBlich, ob das Ereignis lokal auf einem Umgebungsmodel-Server beobachtet werden
kann, oder nicht. Anhand dieser Aspekte werden exemplarisch einige rdumliche Ereignisse

klassifiziert.

Zwei auf verteilten Umgebungsmodelldaten zu beobachtende Ereignisse — OnMeeting, also
wenn sich zwei oder mehr Benutzer treffen, und OnCloseTo, also wenn ein Benutzer an ei-
nem Gebdude mit bestimmten Eigenschaften vorbeikommt — werden im Folgenden genauer
betrachtet.
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Zur effizienten Beobachtung wird eine diskretisierte Form der Beobachtersicht préisentiert. Au-
Berdem wird das Wert-basierte Aktualisierungsprotokoll vorgestellt, das auf Basis von Aktua-

lisierungsereignissen realisiert wird.

Des Weiteren wird die generelle Struktur der Beobachtungsmodule beschrieben. Wesentliche
Schritte sind hier die Uberpriifung einer einfachen Approximation des Pridikats, um festzustel-
len, ob das Ereignis iiberhaupt eingetreten sein kann, die Uberpriifung, ob das Ereignis bereits
vorher eingetreten ist, und wenn noch erforderlich, ob das Ereignis wihrend oder am Ende des
Aktualisierungsintervalls eingetreten ist. AnschlieBend wird gezeigt, wie auf Basis der vorge-
stellten Schritte die Beobachtung der beiden ausgewéhlten Beispielereignisse konkret realisiert

werden kann.

7 Evaluation

Der Fokus dieses Abschnittes liegt auf der Evaluation der vorgestellten Konzepte, Methoden,
Algorithmen und der Architektur zur Ereignisbeobachtung auf verteilten Umgebungsmodellen.
Ziel ist dabei deren prinzipielle Machbarkeit zu zeigen. Dazu werden insbesondere die Perfor-

manz und die Qualitit der Beobachtung untersucht.

Als Evaluationsmethode wurde die Emulation gewéhlt, da nur so die Vielzahl der relevanten
Aspekte beriicksichtigt werden kann, deren Einfluss a priori nur schwer abgeschitzt werden
konnte. Bei der Emulation wird reale Software auf realen Clusterknoten ausgefiihrt, wobei
eine Netztopologie zwischen den Clusterknoten emuliert wird. Simuliert werden nur bestimmte
Eingabeparameter. Im Fall der Beobachtung rdaumlicher Ereignisse sind das die Positionen der

mobilen Benutzer.

Um die Emulation durchfiihren zu konnen, musste ein kompletter Prototyp implementiert wer-
den. Die Implementierung wurde in Java durchgefiihrt; die Kommunikation zwischen den
Komponenten basiert auf TCP Sockets. Die Beobachtung der Ereignisse auf den Beobach-
tungsknoten wird durch Beobachtungsmodule realisiert, die lokal vorhanden oder von einem

entfernten Server geladen werden konnen.

Als Emulationsumgebung wurden bis zu 17 Knoten eines Emulationsclusters bestehend aus
Pentium IV 2,4 GHz PCs verwendet, die tiber ein 100 MBit LAN miteinander vernetzt waren.

Thematisch ist diese Dissertation eng mit dem Projekt Nexus [Hohl e al. 1999,Rothermel et al.
2003d, Grossmann et al. 2005] an der Universitit Stuttgart verbunden. Das Ziel des Projektes
ist es, die Nutzung und Verwaltung von grolen Umgebungsmodellen zu untersuchen. Inner-
halb des Projekt Nexus ist dabei ein Lokationsdienst [Leonhardi and Rothermel 2002, Leon-

hardi 2003] entstanden, der die Positionsinformation von mobilen Objekten verwaltet. Der Lo-
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kationsdienst besteht aus einer Hierarchie von Lokations-Servern, die als Umgebungsmodell-

Server fiir die Emulation verwendet werden.

Da es fiir die Evaluation unrealistisch ist, eine grole Anzahl mobiler Benutzer mit mobilen End-
gerdten, GPS und drahtloser Kommunikation in der physischen Welt herumlaufen zu lassen,
miissen die Positionsinformationen der Benutzer simuliert werden. Auf Basis von Mobilitéts-
modellen, welche die Bewegung von Benutzern modellieren, wurden dabei Positionsfolgen
generiert, die dann benutzt wurden, um die Lokations-Server in Echtzeit zu aktualisieren, In
anderen Bereichen wurde bereits gezeigt, dass die verwendeten Mobilititsmodelle Auswirkun-
gen auf das Ergebnis von Evaluationen haben [Camp ef al. 2002,Nuevo and Grégoire 2003, Tian
et al. 2002]. Daher wurden hier drei verschiedene Mobilitdtsmodelle betrachtet: ein einfaches
Modell, bei dem sich die mobilen Objekte auf geradem Weg zwischen zufillig ausgewihlten
Punkten bewegen, ein Graph-basiertes Modell, bei dem sich die mobilen Objekte an die Kanten
des Graphs halten und ein drittes, komplexeres Modell, bei dem zusitzlich das Verhalten der

Benutzer beim Einkaufen in der Innenstadt modelliert wurde.

Zur Untersuchung der Performanz wird zunéchst der Durchsatz der einzelnen Komponenten
untersucht, die fiir die eigentliche Beobachtung relevant sind: der Lokations-Server, der Be-

nachrichtigungsknoten und der Beobachtungsknoten mit den Beobachtungsmodulen.

Der Durchsatz fiir einen Lokations-Server liegt bei etwa 94 Positionsaktualisierungen in der
Sekunde, wenn pro mobiles Objekt ein DistPosUpdate Ereignis registriert wurde. DistPosUp-
date Ereignisse sind besonders relevant, da sie als Basis fiir die Beobachtung von OnMeeting
und OnCloseTo Ereignissen dienen. Fiir den Benachrichtigungsdienst ergibt sich ein Durchsatz
von etwa 200 Ereignisbenachrichtigungen pro Sekunde, unabhéngig von der Anzahl der regi-
strierten Ereignisse. Der Beobachtungsknoten mit registrierten OnMeeting Ereignissen erlaubt
einen durchschnittlichen Durchsatz von etwa 165 DistPosUpdate Ereignisbenachrichtigungen
in der Sekunde.

Diese Ergebnisse geben einen ungefihren Eindruck, welche Performanz vom Prototypen des
Ereignisdienstes zu erwarten ist, reichen aber fiir eine Gesamtbewertung nicht aus. Das gilt
insbesondere deshalb, da die Qualitit der Beobachtung von der Qualitét der verfiigbaren Daten
abhingig ist. Die Qualitdt der Daten wiederum héngt von der Charakteristik der Daten und der
Anderungshiufigkeit ab. Beispielsweise braucht man fiir FuBginger eine geringere Aktualisie-

rungsrate als fiir Autos, wenn eine bestimmte absolute Genauigkeit garantiert werden soll.

Daher wurden Benutzerbewegungen auf Basis des komplexen Mobilitdtsmodells fiir FuBgédnger
in der Innenstadt simuliert, um die Skalierbarkeit des Ereignisdienstes in Bezug auf die Anzahl
der Beobachtungsknoten zu untersuchen. Dabei hat sich gezeigt, dass ein einzelner Beobach-
tungsknoten unter diesen Umstinden mehr als 400 registrierte OnMeeting Ereignisse verkraf-
tet und sich die Kapazitit durch die Hinzunahme weiterer Beobachtungsknoten wie erwartet

linear erhoht. Die Ende-zu-Ende Latenz von der Aktualisierung der Positionsinformation im
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Lokations-Server bis zur Auslieferung der Ereignisbenachrichtigung fiir ein OnMeeting Ereig-

nis beim Klienten liegt bei etwa 1,2 Sekunden.

Zur Untersuchung der Beobachtungsqualitidt wird die Sequenz der Ereignisse, die vom Er-
eignisdienst beobachtet wurden, mit der Sequenz von Ereignissen verglichen, die sich in der
physischen Welt tatsdchlich ereignet haben. Als MaB fiir die Beobachtungsqualitit dient da-
bei der Anteil der Falschmeldungen an den insgesamt gemeldeten Ereignissen und der Anteil

Nichtmeldungen an der Gesamtzahl der tatsdchlichen Ereignisse.

Die Genauigkeit der Daten und die Diskretisierungsgranularitdt in Wert- und Zeitdimension
wurden als wesentliche Parameter identifiziert, die Auswirkungen auf die Beobachtungsqualitét
haben. Weiterhin wird untersucht, ob durch die Spezifikation der Schwellwert-Wahrschein-
lichkeit das Verhéltnis von Falschmeldungen zu Nichtmeldungen in der gewiinschten Weise
beeinflusst werden kann. AuBlerdem wird noch betrachtet, welchen Einfluss das zu Grunde

gelegte Mobilitdtsmodell auf die Ergebnisse hat.

Die Ergebnisse fiir OnMeeting Ereignisse zeigen, dass die Qualitit der Beobachtung, wie er-
wartet, stark von der Qualitdt der Daten abhiingig ist. Fiir die Genauigkeit der Positionen
der mobilen Benutzer wurden 10 m und 30 m gewihlt. Fiir Nichtmeldungen ergeben sich
fiir die Schwellwert-Wahrscheinlichkeiten 50%, 70% und 90% die folgenden Vergleichswer-
te: 50% : 3,7%/16,4% — 70 % : 5,6%/20,4% — 90 % : 10,9%/31,2%. Fiir Falschmeldungen
erhilt man folgende Werte: 50% : 3,7%/6,5% —70 % : 1,9%/1,9% — 90 % : 0,8%/1,9%. Die
Unterschiede sind also bei den Nichtmeldungen mit Faktoren zwischen 2,9 und 4,4 besonders
deutlich. Die Schwellwert-Wahrscheinlichkeiten wirken sich wie erwartet aus. Fiir steigende
Schwellwert-Wahrscheinlichkeiten steigt der Anteil der Nichtmeldungen, wiahrend der Anteil
der Falschmeldungen fillt. Bei der Granularitiit in Wert- und Zeitdimension wurden die Kom-
binationen 0,1/0,1 und 0,3/0,3 gewihlt. Hier sind die Unterschiede deutlich geringer; die jewei-
ligen Faktoren liegen unter 1,4, so dass auch mit der geringeren Granularitit noch akzeptable
Ergebnisse erzielt werden. Was die Mobilitidtsmodelle betrifft, zeigt sich, dass die Unterschiede

insbesondere beim Anteil der Nichtmeldungen signifikant sind.

Anhand eines Prisenz-Dienstes auf Basis von OnMeeting Ereignissen wird gezeigt, wie die

Dimensionierung des Ereignisdienstes fiir ein Innenstadt-Szenario aussehen konnte.

Insgesamt konnte die generelle Machbarkeit des Ansatzes in Bezug auf Performanz und Be-
obachtungsqualitit gezeigt werden. Fiir jedes konkrete Einsatzgebiet muss abhéngig von den
verfiigbaren Daten, der Infrastruktur und den Anwendungsanforderungen ein sinnvoller Kom-

promiss zwischen Performanz und Beobachtungsqualitidt gefunden werden.
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Introduction

1.1 Motivation

Recent technical trends provide the basis for taking computer support from the desktop into the
physical world. Small user devices like Personal Digital Assistants (PDAs) or even cell phones
have computing power equal to those of PCs a few years ago. They also have communication
capabilities like 3G cellular technology, wireless LAN, or Bluetooth. For the year 2005, 600
million mobile Internet users were predicted for Europe alone [Kolmel 2004].

At the same time more and more everyday objects are equipped with embedded comput-
ers [Mattern 2004]. These can control complex processing steps or allow the user to provide

detailed instructions regarding their mode of operation.

The progress in the area of sensor technology has lead to ever smaller and cheaper sensors for

a wide range of application areas [Hellerstein et al. 2003].

Together with cheap and easy to use identification technologies like RFID (Radio Frequency
Identification) and NFC (Near Field Communication) it will be possible to bridge the divide that

currently still exists between the physical world and the virtual world of computer systems.

On this basis, new kinds of applications and services become possible that directly support mo-
bile users taking into account their location, their activity etc. Such information is commonly
referred to as context. Context comprises not only dynamic sensor information, e.g. modeling
location and movement, but also more static information like streets, houses, rooms etc. Ser-
vice enablers that provide this kind of information are geographic information systems (GIS)
and map services like Mapquest [Mapquest 2006], Mappoint [Mappoint 2006], and Google
Earth [Google Earth 2006] with its relatively detailed satellite images that in combination with

position information allow a visualization of the current location of users and their environment.

1



2 1. INTRODUCTION

Since the focus of mobile users may be on real-world tasks and not on the computing device
itself, it is important that the computing device provides proactive support, notifying the user
when something of interest has happened. These services that pay attention to the current
situation of the user and proactively provide information and services are also called proactive

services.

Proactive services that support the mobile user need to have information about the current
situation of the mobile user. Typically, they have to react to changes in the situation of the
mobile users. These changes may imply that new information is provided to the users, new
services have become available or that some action is required from the users. Such changes
can be modeled as events. The event is being observed and on the occurrence of the event, an

event notification is sent to a user application or service.

A typical example for a proactive service that can be realized based on the observation of
events is a reminder service. It provides reminders about something the user wanted to do at
the appropriate moment: “Pick up the theater tickets at the ticket booth of the theater round the

corner”, “the shop you are just passing has the DVD player you are interested in for a good
price” or “your friend Harry is close by and it is his birthday today ...”.

All these applications and services need context information. Creating and keeping complex
context information up-to-date is expensive. Thus it makes sense to provide a common in-
frastructure for accessing context information to all of them, allowing the sharing of context

information.

Regarding the structure of the common infrastructure, it is unrealistic to assume a centralized
architecture with a single provider that provides detailed context information on a world-wide
scale. Therefore, the context information relevant to an application or service may be dis-

tributed over a number of servers, possibly from different providers.

One approach for such a context infrastructure — as proposed by the Nexus project [Hohl et al.
1999] [Grossmann et al. 2005] — is to provide the context information structured in form of a
world model. This world model will be distributed over different servers. The distribution of
the context information will typically be according to geographical location, but probably also
the characteristics of the information [Grossmann ef al. 2005, Drosdol ef al. 2004], e.g., the
update rate, and different providers may supply different parts of the model.

We believe that any infrastructure for providing context information on a large scale will be
based on some kind of model distributed over multiple servers with the possibility of integrat-
ing different providers. Hence, we assume a distributed physical world model as the basis of
our work. This conforms with the view of the Nexus project that provided the framework in
which our research was conducted. Hence, the Nexus platform also provided the basis for our
evaluation. However, the presented results apply to all approaches that provide dynamic context

information through a distributed model.
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Therefore, to provide a basis for proactive services, events that occur in the physical world have

to be observed through a distributed physical world model.

1.2 State of the Art and Contribution

Event-based systems can be characterized by an event chain consisting of three consecutive
steps: the observation of events, the notification of interested entities about the occurrence of

an event and the action taken as a result of the event occurrence.

The main focus of existing work on event-based systems is on the efficient distribution of
event notification messages. The application areas range from loosely integrating software
components [Barrett ef al. 1996] to large-scale publish-subscribe services [Eugster et al. 2003,
Carzaniga et al. 2001].

The observation of events in these event systems is not part of the event system itself, but is
local to so-called event sources or event producers.

Most of the event systems allow the filtering and some also the composition of event notification
messages within the event distribution structure. Filtering is applied to the type, subject or con-
tent of a single notification message. Composition operators allow the observation of composite
events. These operators are typically very general, i.e., can be applied to any event notification
messages, and their expressiveness is limited, e.g., to that of regular expressions [Pietzuch et

al. 2003] or propositional logic [Hinze and Voisard 2002] with temporal extensions.

The observation of events based on distributed model state — as needed in the case of distributed
physical world models to proactively support mobile users — is not supported by the event

systems themselves.

The observation of physical world events has been investigated for a number of applications in
the area of location-aware and context-aware systems. These applications are targeted at small
indoor environments, e.g., office buildings, making it possible to have a centralized model

based on which physical world events can be observed locally.

The evaluation of global predicates has been a focus of research in distributed systems [Schwarz
and Mattern 1994, Chase and Garg 1998]. The approaches typically focus on causal dependen-
cies, looking at all combinations of local states that reflect the causal dependencies and thus
correspond to global states, the system may have been in. Causal dependencies are typically
not modeled in physical world models. For example, two effects picked up by sensors may be
causally related in the physical world, but this cannot automatically be reflected in the physical
world model. Also, the evaluation of global predicates in distributed systems mostly takes place

after the execution is complete. There are also approaches for looking at the current state, but
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that typically requires strong interference with the program execution, i.e., temporarily halt-
ing the execution of processes, which is not possible in the physical world. Therefore, these

approaches are not suitable for the distributed observation of physical world events.

In this dissertation we investigate how physical world events can be observed. In particular, we
show that it is feasible to provide large-scale support for observing high-level physical world
events through a physical world model distributed over many servers. A platform based on
these concepts can then serve as a basis for a large number of context-aware applications that

proactively support users.

We talk about high-level events, as the user will typically be interested in events that are mean-
ingful to him in the physical world. These are typically on a higher abstraction level than the
simple change of a sensor value. So the user will not be interested so much in the fact that
his position has changed, but what this entails, e.g., that he just entered a location at which he
wanted to be reminded of something like that he wanted to pick up theater tickets at the ticket
booth.

The contributions of this dissertation are the following:

We present a concept for specifying physical world events taking the limited accuracy of

the underlying sensor data into account.

o We identify the system properties that influence the quality of the event observation and
show how they have to be considered in the observation, reflecting the characteristics of
the event specification.

e We show how physical world events can be observed through a distributed world model.

e We propose an architecture that makes the observation of events an explicit part of the

event service.
e We show how the observation of a number of concrete spatial events can be implemented.

e We present an evaluation based on a prototype implementation of this event service ar-
chitecture to show the general feasibility of the approach. The focus of the evaluation is

on both the performance and the quality of the observations.

The contributions listed above represent an important step towards the realization of proactive
services as described in the motivation. With the observation of physical world events through
a physical world model, it becomes possible to efficiently monitor situations of interest in
the physical world experienced by the user. The event observation can take place within an
infrastructure that provides the necessary computing and communication capacity, relieving

the mobile user device of the burden of collecting all the necessary information and doing
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complex calculations. Only if an event of interest has occurred, this has to be communicated,

reducing the communication overhead to a minimum.

The event observation as presented here is especially targeted at the observation of physical
world events, taking into account the limited accuracy of sensor information. However, most
of the concepts are not restricted to the observation of physical world events. They can be
applied to any other situation in which the data based on which the events are to be observed is

distributed over multiple services.

1.3 Structure

This dissertation is structured as follows: In Chapter 2 we lay the foundations for this work. We
first give definitions for the most important terms and then present our system model. These
foundations provide the basis for putting this dissertation into the context of the related work

in Chapter 3.

In Chapter 4, we look at event observation from the user’s perspective and discuss how events
can be specified taking into account the limited data accuracy available through the distributed

world model.

In the following chapters we discuss the observation of physical world events on different
abstraction levels. Chapter 5 focuses on the conceptual level, presenting a general approach for

observing events through a distributed world model based on our system model.

Chapter 6 represents a more concrete level, showing how the general concepts can be applied to
realize the observation of spatial events. We first propose our event service architecture imple-
menting the observation of events through physical world model stored on distributed physical
world model servers. Then we discuss the observation of certain spatial events. Spatial events
are an important class of physical world events based on spatial relations between mobile and
stationary objects. Finally, in Chapter 7, we show the application of the concepts on a practi-
cal level, presenting an evaluation based on a prototype implementation of the event service,

focusing on performance and quality of observation.

In Chapter 8 we conclude the dissertation and give an outlook on promising future research

topics.
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Foundations and Requirements

In this chapter we first give an overview of what we refer to as observation of physical world
events through a physical world model and provide some definitions as the basis for the fol-
lowing discussion. As the next step, we present our system model. After having laid these
foundations for our work, we derive the general requirements for the observation of physical
world events through a physical world model.

2.1 Overview and Definitions

The events we focus on here occur in the world we live in, i.e., the physical world. We chose
the term physical world, because it makes clear that the events we want to observe refer to
physical objects like people, cars or houses and do not originate from within a virtual world

that exists solely within a computer system.

We give the following definition for physical world events.

Definition 1 (Physical world event) A physical world event is an observable change in the

state of the physical world.

This definition refers to the “state of the physical world”. The problem with this term is that it is
hard to explicitly define it. Humans have an implicit understanding of what it means if “a door
is closed”, “somebody is close to a shoe shop” or “two people have a conversation”. Natural
languages provide the concepts, but the exact meaning may depend on the current context or
even the cultural background.

A physical world event occurs, if the state of the world changes and this can be observed, i.e.,

a human being could observe the physical world, notice the change, and describe it.

7
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If we want to map the concept of physical world events to a computer system, we have to make
it explicit and formalize it. For the observation of physical world events, we need an explicit
model of the physical world through which events can be observed. The term model is widely
used in the area of computer science, so we have to define what we mean by physical world

model.

Definition 2 (Physical world model) A physical world model is a digital model of some part
of the physical world. The model data reflects the state of the physical world at a specified time.
The semantics of the model data, i.e., the concepts used to model the physical world, is defined

by a physical world model schema.

~ Physical
B World

Physical
World

Figure 2.1: Physical world model

Figure 2.1 illustrates the mapping between physical world and physical world model.

Important aspects of the physical world model are the scale, the level of detail and the accuracy
with which the physical world is modeled and the history of physical world model state that is
provided. They determine the physical world events that can be observed through the physical
world model:

e The scale can range from a small scale model of the physical world, e.g., a room or a
building, to a medium scale, e.g., a campus or a city, to a large scale, e.g., a state or a
country, and to truly global scale. Our focus is on medium to large scale models.

e The level of detail may range from a coarse-grained model, e.g., only major roads and
the position of cars, to a fine-grained model, e.g., all the objects in a room.

e The accuracy of the model data may also vary. For example a position may be accurate
to within a couple of meters, as provided by the Global Positioning System (GPS), or to
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within a couple of centimeters or even millimeters. The accuracy of the time at which

certain model data was valid may also differ, ranging from milliseconds to days.

e The available history as a minimum has to provide the current and the directly preceding
previous state of the physical world model. However, it may also provide the state over
a longer period of time, allowing the observation of additional classes of events that not

only take the most recent, but also previous changes into account.

The concept of events implies the modeling of dynamic aspects, i.e., changes in the model data
over time, e.g., the position of mobile objects over time. In order to have the position of a
mobile object with a certain accuracy at any point in time, the position data has to be made
available with such an accuracy and in such a frequency that, given the worst-case movement
characteristics of the mobile object, the desired accuracy can still be guaranteed for any point

in time.

Taken together, the aspects of scale and level of detail determine the size of the model, i.e.,
the model data to be managed. The amount of model data that can be managed by a single
server is inherently limited, so given a certain model size, the model data has to be distributed

to multiple servers.

The dynamics of the model data, i.e., the frequency of updates, also have to be taken into

consideration, as the number of updates a model server can manage per unit of time is limited.

The aspects of physical world model management that are relevant for the observation of phys-
ical world events will be discussed in more detail in the following sections and chapters. A
general discussion about the management of large-scale physical world models can be found
in [Grossmann et al. 2005].

With the physical world model as a basis we can now define physical world model state, which

in turn will be the basis for our event definition.

Definition 3 (Physical world model state) The physical world model state at a point in time
is given by the model data that is considered to be valid at that point in time and all the

information that can be derived from that data.

The reason for extending the definition of physical world model state beyond the plain model
data is that a lot of information relevant for the observation of physical world events is implic-
itly given by the model data. For example, if the position of objects is given in geographic
coordinates, spatial relationships like the distance between them are implicitly given as well.
Another example is the transitive relation between objects, where the simple relations are ex-

plicitly modeled, but the transitive relation has to be derived. The relations implicitly provided
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by the model are often the basis for observing events. This allows the observation of events on
an abstraction level that is suitable for humans, even though the original modal data itself only
provides a lower abstraction level. Thus, we also refer to such events as high-level events, as

opposed to simple changes in the model data, which we also refer to as low-level events.

We define the term event as follows:

Definition 4 (Event) A physical world model event is a change in the physical world model
state.
As these are the events we mostly discuss in this dissertation, we directly use the term event for

reasons of brevity.

So, what we are really interested in are physical world events. Observing physical world events
directly, e.g., by analyzing video images, is often not possible or not wanted, at least not on
a larger scale. However, a digital world model may provide the model data necessary for
observing the event. So the event that we actually observe is the “image” of the physical world

event as seen through the model.

We now give two definitions closely related to the term event:

Definition 5 (Event observation) Event observation is the monitoring of the physical world

model for the occurrence of events.

So we use the term event observation for the process of observing, not for the fact that an
event has actually occurred — the event itself stands for the fact that it has occurred. So, strictly
speaking, the observation is not targeted at one particular instance of an event that will actually
occur, but at a large set of potential events that might occur. In connection with the observation,

the term event on its own is also used in that sense.

Definition 6 (Event notification message) An event notification message is sent as the result

of the detection of an event occurrence. It provides the relevant information about the event.

Ideally an event occurrence should be detected if and only if the physical world event has
occurred and the event notification message should be available immediately. Unfortunately,
this is not possible due to the limited accuracy of the physical world model data and the system

characteristics as we will see in the following section.
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2.2 System Model

The physical world model is stored on physical world model servers. As discussed in the
previous section, the potentially large scale of the model and the different model data charac-
teristics, especially the dynamics of model data, require that the physical world model is stored

on a potentially large number of different physical world model servers.

physical
world events

Sensors

Figure 2.2: Event observation on a single physical world model server

Figure 2.2 shows the observation of events on a single physical world model server. The dy-
namic parts of the physical world model are updated by sensor systems. The low-level pro-
cessing, filtering, and fusion of real sensor data that may take place before the physical world
model is updated is not considered here. The only requirement we have is that the resulting

model data provides information about its accuracy.

Events are observed on the model data. If an event occurrence is detected, an event notification
message is sent to all clients that have subscribed to corresponding event notification messages.
Clients are software components that may perform an action as the result of receiving an event
notification message. Clients act on behalf of human users who directly or indirectly initiate

the observation.

This local event observation is only possible if all model data needed for the event observation

is available locally, which does not apply to the general case.

Figure 2.3 shows event observation for the case that the required model data is distributed over
several physical world model servers. As already mentioned, this is likely to be the case in
large scale systems, because the amount of model data that can be managed by a single server
is limited. Still, there are a number of further reasons for distributing the model over multiple

physical world model servers:



12 2. FOUNDATIONS AND REQUIREMENTS

e Economical: There may be competing providers running their own infrastructures, e.g.,
cell phone providers that provide the current location of their customers. They may make

this data available to third-party providers on request of the customer.

e Organizational: There may be different providers for different classes of model data,
e.g., cell phone providers for location information, cities for basic data about streets and

houses, tourism boards for sights and cultural “events”.

In addition, a geographic area may be split up into different service areas according to
administrative boundaries with one physical world model server being responsible for
one service area. Especially at the boundaries between service areas, data from multiple

service areas may be needed for observing an event.

o Technical: There may be different sensor systems, e.g., an indoor tracking system that
determines the location of mobile objects in the infrastructure and other sensors on a

mobile device itself determining other aspects like orientation or temperature.

Sensor data may have different characteristics like update frequency. Sometimes special
index structures for efficient access are needed, e.g., in the case of mobile sensors, a
spatial index that can cope with frequent changes of location [Grossmann et al. 2005].

The points in the system where the information is captured and the possible optimizations
with respect to the characteristics of the data may lead to a distribution of the data, even

though the geographical locations for which the data is captured may be very close.

e Optimization: The servers may be placed close (with respect to the communication path)

to the sensors to reduce unnecessary overhead as much as possible.

To observe an event all the relevant model data has to be available at one location, so that an
observer can observe the event. We also call this the observer view of the physical world model.
Typically, each physical world model server runs on a separate node. So, if the observer runs
on another node, also called observer node, the model data needed for the observer view of the
physical world model has to be copied and updated as necessary from all the physical world

model servers that originally store the model data.

If the size of the model data needed from one of the servers is very large or the updates are very
frequent, an optimization is to observe the event local to that observer to avoid having to copy

to and update the model data on a different node.

Since the model is distributed, the update of the observer view is very important. The update
protocol ultimately determines the accuracy of the model data available for the observation.
The update protocol is realized in form of update messages. The update messages provide
current model data. For update messages, the same communication mechanism can be used as

for event notification messages.
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physical  gengors
world events

Figure 2.3: Event observation based on distributed model data

The main difference between update messages and event notification messages is that the pur-
pose of the former is primarily to communicate new data, whereas the purpose of the latter is

to convey the fact that an event has occurred.

Figure 2.4 shows the underlying system model for composite events. In the case of composite
events, simple events are observed locally. Event notifications instead of update notifications
are then propagated. Composite events are observed as a combination of events based on the

event notification messages rather than on an observer view of a model.

So the main difference between the two models lies in their conceptual basis. In the case of
composite events, the conceptual basis consists of events that have occurred. A composite event
has occurred if a specified combination of other events has occurred. In the case of observing
physical world events on a view of the physical world model, the conceptual basis is the state
of the physical world, as seen through the observer view. A physical world model event has
occurred if there was a specified change in the state of the physical world model.

Update messages are not directly interpreted as notifications about the occurrence of events;
rather the data they provide is used to update the observer view of the physical world model
and only based on that the event observation takes place.

The focus of this dissertation is on the observation of events through a distributed physical
world model, not on composite events as they are typically found in publish-subscribe services.

The differences will further be detailed in the next chapter that covers the related work.

However, as we will see in Chapter 6, the architecture of the resulting event service also allows

the observation of composite events. We will also see that event notification messages inform-
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Figure 2.4: Composite event observation

ing about locally observed events may also be needed for the efficient implementation for the

event observation on observer nodes.

After having presented the system model with the relevant components and the relationships
between the components, we discuss properties of the resulting system in the next section that

are relevant for the event observation.

2.3 System Properties

The properties relevant for the observation of events are the properties of the sensors and the
properties of the computer network, as they determine the quality of the model data available

for the event observation and thereby the quality of the event observation itself.

2.3.1 Sensor Properties

The highly dynamic parts of the physical world model have to be updated automatically as
manual updates by humans are not feasible at the update rates necessary. This means that
ultimately the model data has to be provided by sensors in the physical world. However, before
the physical world model is updated, the sensor data may be processed and data from different

sensors may be fused. The resulting data can be seen as coming from a virtual sensor.
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The properties of a sensor and the sensor data it produces are provided by the manufacturer in
form of data sheets. For virtual sensors, the respective properties have to be derived from the

properties of the contributing real sensors and the processing.

The properties relevant for the event observation are accuracy, precision, resolution and update
interval [Chatfield 1970]:

e Accuracy refers to the agreement between the measured value and the true value.

e Precision refers to the repeatability of a measurement. Whereas accuracy refers to the
absolute difference between the measured value and the true value, precision refers to the

relative difference between different measured values.

e Resolution refers to the smallest change in the measured value that can be determined
reliably. The accuracy can only be given with respect to the given resolution.

e Update interval refers to the time interval between a value and the following value pro-

vided by a sensor.

For the observation of most events, measured values from different sensors are needed or mea-
sured values have to be compared to static values. Thus, the accuracy is most relevant for our
work as the comparison of the values has to be done with respect to the true value. The infor-
mation about precision is helpful in cases where measurements from the same sensor have to

be compared.

The accuracy of a value can be given as an accuracy interval — in n-dimensional space, if
the measured value is n-dimensional. This means that the true value lies within the accuracy
interval. Typically, the probability for a value within the accuracy interval being the true value
is not equally distributed over the accuracy interval.

Therefore, the accuracy is often given in form of probabilities: 1-sigma specifies the interval
in which 68.3% of the measured values lie, 2-sigma the interval in which 95.5% of the values
lie and 3-sigma the interval in which 99.7% of the values lie. On this basis, a probability
distribution can be found that approximates the actual distribution. In many cases, a normal
distribution is a good approximation for the distribution over the accuracy interval. If the values

are equally distributed over the interval, we have a uniform distribution.

Taking the TIM GPS (Global Positioning System) Sensor as an example [u-blox ag 2002],
the 2D accuracy in continuous mode (update interval: 1 s) is given as 1-sigma = 2.8 m, 2-
sigma = 4.9 m and 3-sigma = 7.9 m. This is a statistical average, as the accuracy of the GPS
systems depends, among other factors, on the location, the time and the number of operating
GPS satellites visible [GPS 1995]. If such information is available, it can be considered.
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If precision information for a sensor is also available, it could be utilized for events where values
from the same sensor are compared. This makes sense for high-precision sensors that are not
well calibrated with respect to the true value. Since the handling of precision information is

analogous to accuracy, we do not consider it for the remainder of this dissertation.

The resolution of the data provided by a sensor, i.e., the number of digits, determines the usage
of the data, e.g., it does not make sense to define an event requiring a resolution in the range of

centimeters, if the resolution of the data is only in the range of meters.

Finally, the update interval, together with the maximum change of a value over time, e.g., the
maximum speed, provides information about how far a value may be off, before it is updated

by a new value.

2.3.2 Computer Network Properties

As the model data of the physical world model is distributed over physical world model servers
running on different physical computer nodes connected by a communication network, the
properties of the computer network are relevant, if we want to observe events based on data
that is distributed over the different nodes. Figure 2.5 shows an example of such a computer

network with physical world model servers and observers distributed over the physical nodes.

(®) @)
(©)
@ @ Observer
Local
Ej Model

Figure 2.5: Computer network with physical world model servers and observers

The computer network properties that are primarily relevant for the event observation are mes-
sage delay, clock skew and bandwidth:

e The message delay is the delay incurred by an update message or event notification mes-
sage from the time it is sent by the sending component until it is received by the receiving

component. The message delay consists of the network delay and the processing delay,
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i.e., the processing of the message by the implementation of the communication proto-
col. The message delay is important for the observation of events, because it determines
when, after a change, the state of the physical world model can be checked for the occur-
rence of an event. This is the case, when no other update messages may still be delayed
that report changes that have taken place before the given change, as these may have an

influence on the outcome of the check.

e The clock skew gives the time by which two computer clocks differ. It is important for
the observation of events, because it has to be taken into account when determining the
time at which a state change has occurred. The current clock skew is usually not known,
but if a certain bound on the maximum clock skew between two clocks is known, the
occurrence time can be given as the time interval timestamp £ maximum_clock_skew.

So, the larger the clock skew is, the larger is the time interval.

e The available bandwidth between different nodes limits the maximum number of update

messages or event notification messages that can be sent per unit of time.

As we can see, we need information about the properties of the computer network for the
observation of events. In the next subsection, we present a concept for modeling the computer

network properties.

2.3.3 Event Domains

For large computer networks, e.g., the Internet as one extreme case, there are neither bounds on
delay or clock skew, nor can any bandwidth be guaranteed. However, for a given set of nodes,
especially within local area networks, reasonable values for delay and clock skew can be given.
Unless these networks can guarantee certain real-time bounds, which cannot be assumed in the
general case, the given values are no strict upper bounds for delay and clock skew, but “sta-
tistical guarantees”. This is sufficient for our purposes, because due to the restricted accuracy
of the sensor data, we cannot give more than statistical guarantees for the event observation

anyway.
To specify these values, we introduce the concept of an event domain.
Definition 7 (Event domain) An event domain consists of a set of nodes connected by a com-

puter network for which statistical guarantees for relevant properties between any two nodes

are given.

So a given bound on a property means that between any nodes of the event domains this bound

applies, e.g., the maximum delay of a message from the time it is sent by any given node until
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Event Domain 1

Figure 2.6: Event Domains

it is received by any other. In this dissertation, we consider the computer network properties
presented in the previous subsection, i.e., the maximum message delay, the maximum clock

skew and the minimum available bandwidth.

Figure 2.6 shows a number of event domains in an example network. These event domains can
overlap and one event domain can be included in another event domain, so any node can be in

multiple event domains.

Typical starting points for defining event domains are the computers in a subnet, the computers
in subnets connected by a single router, the computers of a single company or the computers
within an autonomous system. If suitable long-term statistics are available, an event domain

consisting of otherwise connected computers can also be defined.

For the observation of an event, we need to find the event domain with the most suitable combi-
nation of properties that includes all the nodes involved in the event observation, i.e., the local
model nodes, the observer nodes and all nodes that are needed for passing on notification mes-
sages. Different strategies for optimizing the event observation with respect to the underlying
properties are briefly discussed in Section 5.5.

In the future, the concept of event domains can be extended to include dynamic information,
like the current load of the network. This may be especially useful for optimistic observation
strategies, e.g., assuming an average delay instead of a maximum. Another option is to incor-
porate means for resource reservation in order to guarantee a distinct upper bound for the delay.

The necessary dynamic information could be supplied by a system management component.
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2.4 Requirements

With the general definitions, the system model and the relevant system properties, we can now
define the overall requirements for observing physical world events through a physical world
model.

The overall goal of this work is to show how large-scale support can be provided for observing
high-level physical world events through a world model distributed over many servers. This
leads to the requirements discussed in the following. Most of the requirements refer to the
user. This user can be the end user, e.g., the one running an application on a mobile device, or

the application programmer.
Requirement 1 The observation of high-level events has to be supported.

This means that the events must be on the right abstraction level for the user, i.e., based on
concepts the user is familiar with. Simply notifying the user that certain values have changed

will not be sufficient in most cases. The next requirement is closely related to this.
Requirement 2 The event semantics have to be clear to the user.

For the event semantics to be clear, the mapping between physical world and physical world
model has to be clear, as the user is really interested in physical world events.

As the physical world model can only provide an image of the physical world with limited
accuracy, this has to be taken into account regarding the event semantics. In particular, these

issues have to be addressed in the specification of the event.

As far as the user is concerned, specifying the observation of events should be as easy and
straightforward as possible. Especially, the user should not have to be concerned with imple-

mentation details, leading to a further requirement:
Requirement 3 The realization details have to be transparent to the user.

Relevant realization issues are especially the distributed storage of the physical world model
and the exact implementation of the event observation. Since both of these issues play an im-
portant role for the event observation and ultimately for the event semantics, there is a potential
conflict between Requirement 2 and Requirement 3. This conflict can only be resolved, if the
aspects relevant for the event semantics can be specified in a generic way, independent of the
concrete realization. As these aspects pertain to the quality of the observation of events, we

talk about quality of observation as a specialization of quality of service.



20 2. FOUNDATIONS AND REQUIREMENTS

Requirement 4 [t must be possible to specify the quality of observation in a generic way,

independent of the concrete realization.

Relevant quality of observation aspects are the percentage of observed events for which no
corresponding physical world events have occurred (false positives), the percentage of physical
world events that have occurred, but have not been observed through the physical world model
(false negatives), and the delay from the occurrence of the physical world event to receiving
the event notification message informing about the event. These aspects mostly depend on
the accuracy of the model data and the characteristics of the underlying computer network as

discussed in the previous section.

Finally, events have to be supported on a large scale.

Requirement 5 The resulting system must be scalable.

The scalability pertains to the number of physical world model servers that can be integrated,
the number of events that can be observed at any time and the number of event notification

messages that can be handled per unit of time.

The requirements presented here are all high-level requirements that will be further refined in
the following chapters when it comes to the discussion of the solutions fulfilling the require-

ments.



Related Work

Events and event-based communication play an important role in many areas of computer sci-
ence: There is an event-based programming style, e.g., graphical user interfaces are typically
programmed on that basis. Events are used in active databases, e.g., to trigger further changes
when the data in one table has changed. In information dissemination systems, the concept of
events can be found, as well as in distributed systems and network management applications. In
the first section we look at some of the characteristics of event systems. In the second section,
we identify those areas that are more closely related to our work. In the remaining sections we

look at these areas in detail.

3.1 Characteristics of Event Systems

In the following, we first discuss a number of characteristics that are often associated with event

systems:

o Push communication

Event-based communication is typically source-initiated. Clients (or subscribers) can
subscribe to events and receive event notification messages when an event has occurred.
The information is actually pushed onto interested clients. Therefore, this style of com-

munication is called push communication.

Push communication is in contrast to the request-response style of communication, e.g., in
client-server applications, where the initiative is on the side of the client. There the client pulls

the information and therefore we also talk about pull communication.

21
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The use of push communication can help to reduce the communication overhead, because com-
munication only takes place when something has actually happened. Alternatively, the client
would have to poll the server for the same information regularly. If multiple clients are inter-
ested in the same events, the use of a multicast notification service can help to reduce commu-
nication overhead even further, because the same event notification message has to go over the
same link only once. Overall, event-based communication can improve scalability by reducing
communication overhead. Additional important characteristics of event-based communication

are the following:

e Non-blocking send

The event source (or publisher) does not need to wait for acknowledgements. It can

continue its execution.

o Asynchronous communication

Event-based communication is often asynchronous. The event subscriber (or consumer)

does not have to be ready to receive the event notification message. It can process it later

e Anonymous communication

The event sources (or publishers) and interested clients do not have to know about each
other. The communication can be completely anonymous. The event notification mech-

anism just needs to know how to deliver the event notification messages.

e N:m communication

With event-based communication an » : m communication can be realized, i.e., there can

be n event sources (or publishers) and m clients.

These characteristics make event-based communication ideally suited for the loose coupling
of software components [Barrett et al. 1996]. The software components do not need to know
anything about each other, they just have to provide the information that an event has occurred,

so that interested components can be informed.

The characteristics also fit very well into our application domain, as push-based communication
reduces the load on mobile devices and their wireless communication access. Asynchronous
communication is important for the decoupling of the event sources, e.g., physical world model
servers, from the mobile clients and anonymity of the event sources and event clients fits very
well with the idea that the mobile clients should not need to know about the details of the

distributed infrastructure.
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3.2 Overview of Related Work

In the following we look at those research areas that are more closely related to our work. Since
our focus is on event observation through a distributed model, we are primarily interested in
events in distributed systems. However, we will also look at centralized systems in which events
based on complex relations between objects can be specified and at centralized systems that fall

into our application domain.

The event chain in event-based systems consists of three consecutive steps: the observation of
events, the notification about the occurrence of an event and the action that is taken as a result
of an event. The notification step in centralized systems may not be explicit, because a direct

interaction between observation and action components is possible.

Figure 3.1 shows five research areas that are close to our research focus and classifies them

according to the presented aspects.
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Figure 3.1: Related work

e Active databases — databases that support the specification of triggers that initiate further

actions when a certain event occurs.

o Distributed event services and publish-subscribe systems — focus on the efficient delivery

of event notifications to interested clients.

e Continuous queries — queries are continuously executed on changing data providing a

continuous stream of data.
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e Global predicates — allow the specification of predicates on distributed global state.

e Spatial event systems — Spatial events occur when a certain spatial constellation of objects
is reached. Spatial event systems allow the specification of spatial events and, possibly,

actions to be performed as the result of an event occurrence

These five areas will be discussed in more detail in the following sections.

3.3 Active Databases

Traditional databases store data persistently and provide efficient access to the data. Active
databases extend this functionality through triggers. The triggers are activated by events, e.g., a
data update in a certain table. Triggers are typically defined in form of Event-Condition-Action
Rules (ECA). Based on the occurrence of a simple event, a condition is checked, and if that
condition is fulfilled, an action is carried out. The condition can be a method or procedure that

returns true or false.

The trigger concept is part of SQL 99 [Matthiessen and Unterstein 2000]. SQL 99 has data
manipulation operations, i.e., insert, update, and delete, as possible events. The standard is
supported by DB2 and Sybase [Schmidt and Demmig 2001], Informix additionally supports
triggers for select statements and Oracle also provides triggers for changes in database schemas

(i.e., create, alter, and drop), user login/logout, database shutdown and server errors.

Active databases are typically centralized components, so the system model is a more general
version of the one shown in Figure 2.2 with the sensors standing for any source that leads to an
update of the database. Internally, the notification step of the event chain is not represented in
the event, condition, action sequence. However, the notification of external components may
be one of the possible actions taken as a result of an event occurrence. Other possible actions

are normal database operations.

Concepts regarding the quality of observation are not foreseen, because active databases are

typically not targeted at observing physical world events.

There has been some research on the composition of simple events in active databases. Event
algebras have been proposed that have a number of predicate constructors [Gehani et al. 1992,
Chakravarty et al. 1993, Dittrich and Gatziu 2000]. The expressiveness of these languages is
usually restricted to either that of regular expressions or propositional logic extended by op-
erators expressing temporal relationships. These constructors may be sufficient for combining
events on the database level, but cannot express the high-level events we want to observe. How-
ever, active databases can serve as a basis for implementing physical world model servers on

which more complex events can be observed.
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3.4 Distributed Event Services and Publish-Subscribe Services

Distributed event services and publish-subscribe systems are often used as synonyms describing
the same concepts. Event service may be the more general term, whereas publish-subscribe

service describes how the system works.

Event Notification Service
Publish-/Subscribe-Service

" :
) t
advertlSE ’ Au blish subscribm) fy

Subscribe

Figure 3.2: Publish Subscribe Architecture

Figure 3.2 shows the underlying event architecture. There are publishers who publish event
notifications and there are subscribers who subscribe to certain kinds of event notification
messages. When an event notification message is published, the publish-subscribe service is
responsible for delivering the event notification message to all interested subscribers. Some
systems require that before publishers start publishing event notification messages of a certain
type, they have to advertise this, so that the structure for efficiently delivering event notification

messages can be set up.

There are a large number of publish-subscribe systems for different application areas. A good
overview is given in [Eugster et al. 2003]. Publish-subscribe systems can be classified ac-
cording to the communication mechanism, which can be unicast-based or multicast-based, the
underlying distribution structure, which can be hierarchical or peer-to-peer, and the filtering
mechanism, which can be ID-based, type-based, subject-based, or content-based. ID-based fil-
tering means that clients can specify an event ID they are interested in and they receive only
event notification messages with this specific ID. Type-based means that the event notification
messages are typed and that the filtering can be done according to this type. Subject-based
filtering allows the specification of a subject, possibly with wildcards. Finally, with content-
based addressing, the client can specify the content of event notifications he is interested in,
which is typically done in form of attribute-value pairs. Whereas filtering applies to the content
of a single event notification message, composite event concerns the relation between multi-
ple different event notification messages. With the available operators event patterns can be

specified.
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Regarding the event chain, the focus is clearly on the notification. The observation is the
responsibility of the publishers, if we disregard the composition of events for now. Any actions

have to be carried out by the subscribers.

A large number of different event services exist. Therefore, we will discuss a number of ex-
amples that provide a good overview of the area and classify them according to the aspects

described above.

No Filtering

The CORBA (Common Object Request Broker Architecture) Event Service Specification [Ob-
ject Management Group 2004a] describes an event service based on an information channel
with multiple suppliers and consumers. With the event channel a decoupling between suppliers
and consumers is realized. Event channels have to be set up explicitly. The specification does
not give any details how the event channel has to be implemented. Composite events can only
be realized through building a tree with multiple channels and the composition takes place at

intermediate supplier/consumer nodes.

Herald [Cabrera et al. 2001] is an event service developed by Microsoft Research in Redmond.
The event distribution is based on different rendezvous points. A special focus has been on the
scalability of the service and resilience against failure. The basic service provides no service
for finding rendezvous points, no complex specification and no composition of events. The idea
is that such functionality can be layered on top.

Subject-based Filtering

Subject-based filtering was proposed in [Oki et al. 1993] for the distributed Information Bus
architecture. In the Information Bus, subjects identify data objects, are hierarchically structured
and are chosen by applications or users. Consumers can subscribe to partially specified subjects

using wild cards.

A well-known commercial system that uses subject-based filtering is TIBCO Rendezvous [TIBCO
2006]. TIBCO Rendezvous is used in financial services like stock information. It is based on a
hierarchical system and provides reliable delivery of event notifications.

Content-based Filtering

The CORBA Notification Service [Object Management Group 2004b] goes a step further than

the CORBA Event Service, allowing content-based filtering. However, there is only one filter
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object per channel and the filter constraint language is based on Boolean expressions, so it has

a relatively limited expressive power.

JEDI [Cugola et al. 1998] is an object-oriented infrastructure that supports the development
and execution of event-based systems. Events in the sense of the JEDI system are special kinds
of messages consisting of strings, with the first string being the event name and the following

strings the event parameters. JEDI provides filtering with regular expressions over the strings.

Gryphon is a research project at IBM’s Watson Research Center. The goal of the Gryphon
event service is to distribute large amounts of data in real-time, e.g., news distribution at large-
scale “events” like Olympic games. It supports subject-based and content-based addressing,

and addresses security and privacy aspects, but not event composition.

Content-based Filtering and Event Composition

The READY Event Service [Gruber et al. 1999] allows the same filtering expressions as the
CORBA Notification Service, but additionally supports different composition operators like
AND, OR and SEQUENCE. The WHERE operator allows the analysis of relationships between

sub-events. For efficiency reasons, the event specification is moved towards the publishers.

The goal of the Siena Project [Carzaniga ef al. 1998, Carzaniga et al. 2001] was to develop an
Internet-scale event service. It supports content-based filtering and event patterns.

The goal of the Hermes project [Pietzuch et al. 2003, Pietzuch 2004] at the University of Cam-
bridge is to develop a framework for event composition that can be added on top of existing
middleware architectures. Event composition is based on regular expressions extended by oper-
ators expressing temporal relationships. The observation is realized by mobile detection objects

that are optimally placed in an overlay distribution network.

Multicast and Peer-to-Peer Overlay Network

The Overcast service [Canotti et al. 2000] is based on a reliable multicast protocol on an
application-layer overlay network. Its goal is the efficient use of bandwidth and it is targeted at

content distribution, supporting only 1:m communication.

Scribe [Rowstron et al. 2001] is an event notification infrastructure based on the Pastry [Row-
stron and Druschel 2001] framework. Both systems have been developed as part of a coop-
eration between Microsoft Research in Cambridge, Rice University, Purdue University, the
University of Washington and Microsoft Research in Redmond. Pastry provides a basic struc-
ture for peer-to-peer applications. It is based on an overlay network and the routing is done

according to node ID. The node with the closest ID can be used as a rendezvous point.
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Other System Models

Current projects in the area of event services also look at other system models, like grids,
wireless sensor networks and mobile ad hoc networks. Steam [Meier and Cahill 2002] is an
event-based middleware for wireless ad hoc networks, [Yoneki and Bacon 2004] presented a
peer-to-peer event broker grid in a hybrid network environment and [Taherian et al. 2004]

investigated event dissemination in mobile wireless sensor networks.

Summary

Overall we can see that there are a huge number of different event services. Their main focus
is on the efficient delivery of event notifications in different scenarios. Some services provide
the functionality to observe composite events. However, the expressiveness of the respective
event algebras is usually limited to regular expressions [Pietzuch ef al. 2003, Pietzuch 2004] or
propositional logic with temporal extensions [Hinze and Voisard 2002]. In general, filtering and

pattern recognition are strongly intertwined with the delivery of event notification messages.

The supported composition operators allow the combination of arbitrary event notification mes-
sages. In contrast to these composite events, we want to observe arbitrarily complex high-level
events on the state of a distributed model. This requires a much more complex language for
describing events. In our case, the number of possible events is infinite, so they cannot be au-
tomatically provided by publishers; the observation of events has to be explicitly initiated. An
additional issue is the quality of observation that has to be taken into account. Existing event
services are mostly not targeted at physical world events, so the limited data accuracy is not an

issue.

Therefore, the existing event services do not provide a solution to our goal of observing physical

world events through a distributed world model.

3.5 Continuous Queries

A continuous query is a persistent query to a database system. It continuously provides query
results based on changing data, i.e., first the current result is returned and then, based on changes

in the data, new results are provided without the requesting client having to provide a new query.

Whenever there is a change on the data that may be relevant for the continuous query, it is
checked, if the conditions for providing a new result are satisfied, e.g., if the change in the
value(s) is above a certain delta. Instead of providing a complete result each time, it may be

sufficient to provide the delta.
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We can differentiate between two types of continuous queries. We have the first type of con-
tinuous query, if the value itself changes. For example, this is typically the case if we want to
receive updates on sensor values. We have the second type of continuous query, if the changing
value is not part of the result itself, but modifies the query, leading to different results. An ex-
ample is a mobile user who receives new information about his environment when his position

changes.

In general, there is a certain duality between events and continuous queries, with the change
itself being the focus of the former and the new value being the focus of the latter. Often,
events can be realized on top of continuous queries or the evaluation of a continuous query can

be triggered based on events that indicate that a relevant change has occurred.

There is no clear line between publish-subscribe systems and continuous query systems. For
example, both are used for updating stock quotes, e.g. [Chen et al. 2000] and [Huang and
Garcia-Molina 2001]. The main difference seems to be, whether the underlying concept is that
of a database system, and, as a result, whether the description language is a query language as
found in databases or not. There are also a number of approaches that try to closely integrate

publish-subscribe and database systems [Lehner 2005, Doraiswamy et al. 2005].

The query language depends on the underlying database system. There are SQL-based lan-
guages like the Continuous Query Language (CQL) [Arasu ef al. 2003], but also XML-based
continuous query languages like NiagaraCQ [Chen et al. 2000]. These are all general purpose
languages. This means that the abstraction level is fixed to the level of available data (as op-
posed to a suitably high abstraction level for the user). Also, there is no generic way to express

the quality of observation, so it has to be encoded directly into the query.

The scale of continuous query system ranges from centralized database systems to distributed
Internet scale XML-based query systems [Chen et al. 2000]. One mechanism for achieving
scalability is the grouping of queries based on common signatures. The underlying assumption
here is that there are classes of queries or at least subqueries that have a common signature.

Overall, existing systems for continuous queries do not fulfill all our requirements, especially
with respect to taking limited accuracy of the data and the properties of the computer network
into account. However, they may provide a suitable basis for implementing the observation of

high-level physical world events on top.

3.6 Global Predicates

Global predicates describe global properties in distributed systems and are defined over global
state. A typical application area for global predicates is the debugging of distributed applica-

tions, where the question of interest is, if the property holds during the distributed execution
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or in other words, if the predicate is satisfied at runtime. As there cannot be an omniscient
observer who can put all local events into a global order, only the causality of events can be

taken into account, i.e., the effect must not be considered before its cause.

Causality can be fully characterized using vector timestamps [Schwarz and Mattern 1994]. The
vector timestamp includes an element with a logical time for each process. This requires that
the number of processes is fixed and known beforehand. Each process updates its logical time
in each step and sends its vector with every message. On receiving a message, the local vector
is updated taking the maximum for each vector element of the previous local vector and the
vector that came with the message. With this information it can be determined if two events are
causally dependent or concurrent.

The approach suggested by [Cooper and Marzullo 1991, Chase and Garg 1998] (and others),
constructs a lattice of global states. A lattice of global states describes all possible sequences
of local states that are consistent with causality. This corresponds to all the sequences of events
that could in principle have been observed by an observer. A path through this lattice cor-
responds to one possible observation. Cooper and Marzullo define three different predicate
qualifiers, possibly F, definitely F and currently F and provide algorithms for determining if
they hold. Possibly F holds, if there is a path through the lattice of states so that F holds for
some global state on the path. This means that there is one possible observation of the dis-
tributed computation for which F holds. Definitely F holds, if all possible paths through the
state lattice contain a state for which F holds. This means that F holds for all possible obser-
vations. Currently F holds, if F holds at the current point in the computation. For determining
if currently F holds, it is necessary to temporarily block processes. However, it is guaranteed
that there is a logical execution of the unblocked system so that ' holds. Unfortunately, it can
be shown [Schwarz and Mattern 1994] that while blocking a valid F' can go undetected.

A general problem of possibly F and definitely F is that the whole lattice of states has to be
considered, a computation which can be prohibitively expensive, because there may be O(mn)
global states, where n is the total number of processes and m the maximum number of relevant

execution steps of a single process.

The problem of applying this approach to our problem is that in a lot of cases causality between
different subevents may exist in the real world, but this is not necessarily represented in the
model. In addition, the model may be distributed over a large and possibly changing number

of servers, which would make the use of vector timestamps problematic.

This means that we have to rely on real time for ordering the events [Liebig et al. 1999]. Then,
we do not have a lattice of discrete states to determine if the event has occurred. The accuracy
of the data may be limited, which has to be taken into account for the event observation, i.e.,
it may only be possible to determine that an event has occurred with a certain probability.
Possibly F only says that F' may have occurred without further qualifying it, and definitely F
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that it can be guaranteed that F has occurred, which may not correspond to what the user wants
to know, given the limited accuracy of the available model data. Also, we have to detect the
occurrence for an event at runtime, not after an algorithm has finished and blocking the system

is not possible.

Therefore, we cannot rely on the algorithms that have been presented for evaluating global

predicates.

3.7 Spatial Event Systems

There are a number of systems that support location events or spatial events, i.e., events that
occur when a certain constellation of mobile objects or a constellation of mobile objects with
regard to their environment is reached. A number of groups from the University of Cambridge
and the Olivetti Research Laboratory (ORL) that later became the AT&T Laboratories in Cam-
bridge have conducted research in this area.

The ORL has developed two different kinds of indoor positioning systems, the Active Badge
system [Want et al. 1992] and the Active Bat system [Harter ef al. 1999]. The Active Badge
system is based on infrared (IR) technology and can locate badges that are within range of a
receiver. The Active Bat system uses ultrasonic signals to locate an active bat. The accuracy is

in the range of 10 cm.
Based on these positioning systems a number of location-aware systems have been built.

In [Hayton et al. 1996] composite spatial events are discussed that are all based on the Ac-
tive Badge event that a certain mobile object was seen at a certain location. The composition

operators are:

WITHOUT (A-B): an event A has occurred without a previous B
e SEQUENCE (A;B): event A has occurred before event B
e OR (A|B): event A or event B has occurred

e WHENEVER ($A): whenever allows multiple independent evaluations. For each occur-
rence of A, a new environment is created and the variables are instantiated accordingly,
e.g., enters(x);leaves(x) would only be true if the same person had entered and later left

the room.

The presented application has been realized specifically for the Active Badge system. It is tar-
geted at a building-sized environment with a centralized location service and the expressiveness

of the composition operators is limited.
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The CALAIS system was implemented by Giles J. Nelson and presented in his PhD thesis
[Nelson 1998]. The system is based on a location service with an in-memory location database
and different location sensors, e.g., active badges or active bats, that transmit readings to the
location service. The service supports standing queries for monitoring a given region, but does
not provide support for more complex spatial events involving multiple mobile objects. The

location service is a centralized system that does not scale to larger environments.

The Active Bat system [Harter et al. 1999] allows the efficient monitoring of spatial events.
The application can register callbacks with a spatial monitor. The spatial monitor checks for
the overlap and containment of areas. Both locations of mobile objects and stationary locations
e.g., rooms or the space in front of a computer, are modeled as areas. By modeling locations
of mobile objects as areas, the limited accuracy of the sensor information can be taken into
account. All possible overlap and containment events are constantly observed. This scales to
building scenarios, but not to larger areas. The events that can be registered are limited to areas

that already exist within the system. Arbitrary areas are not supported.

QoSDream/FLAME [Naguib and Coulouris 2001] is a middleware for distributed multimedia
applications. Position information from different sensor systems are aggregated and provided
in a uniform format. Similar to the original active bat system, locations of mobile objects and
stationary locations are modeled as areas. The spatial relations manager observes all overlaps
of regions. Filters provide higher-level events for which applications can registers. Again, the

scalability beyond the size of buildings is questionable.

Overall it can be said that support for simple spatial events in centralized location services
exists. The problem is the limited scalability and the limitations of the event specification

languages that make the approaches unsuitable for our purposes.

3.8 Summary

The related work does not provide any approach that would allow us to observe complex real-
world events through a distributed model. Active databases are not suitable for the distributed
case, publish-subscribe services do not support distributed observation, continuous queries are
focused on standard database queries, approaches for evaluating global predicates based on
causality cannot be applied and existing systems that support spatial events do not scale beyond

building-sized scenarios.



Event Specification

In this chapter we describe how high-level events can be specified by the user taking the quality

of observation into account.

The requirements that are partially addressed here are the following:

e Requirement 1: The observation of high-level events has to be supported.
e Requirement 2: The event semantics has to be clear to the user.

e Requirement 4: It must be possible to specify the quality of observation in a generic way,

independent of the concrete realization.

Requirement 1 addresses the kinds of events the user is interested in. They have to be on the
right abstraction level, utilizing concepts the user is familiar with in his daily life. Require-
ment 2 states that the user has to know exactly what the specified event means, otherwise the
results will not match his expectations and the user will not use the offered service. Finally,
Requirement 4 addresses the problem that the quality of observation is on the one hand re-
stricted by the limited sensor accuracy and the distribution, on the other hand, the user should
not have to be familiar with the details of these aspects. Therefore, there has to be a generic,
high-level approach to specifying the quality of observation that keeps the concrete properties

of the underlying system transparent to the user.

As the first step, we look at the specification of events in the ideal case, then we take the

limitations of the system into account.
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4.1 Specification with Ideal Data Accuracy

To be able to observe physical world events with a technical system, the vague natural language

concepts that people typically use for describing physical world events are not sufficient.

However, it should be relatively natural to the user to specify an event in form of a predicate.
For the user a predicate is a parameterized statement about the world that is true after an event
has occurred. So the occurrence of an event is equivalent to the predicate becoming true,
i.e., the predicate evaluated to false in the previous state and to true in the current state. We
have proposed to use predicates for the specification of events in [Bauer 2000] and [Bauer and
Rothermel 2002].

Predicates are defined over variables, which in our case represent the physical world model
state.

Definition 8 (Predicate) If P is a k-ary predicate symbol defined for variables vi,...,v; of
types z1, ...,z respectively, P(vy,...,v) is a predicate.

For example, if variable x stores the current temperature at location X and y the temperature
at location Y, and there is a predicate Py (vi,v2) := (vi > v2), then Py (x,y) describes the event

when the temperature at location X becomes greater than the temperature at location Y.

We do not restrict the complexity of the predicates here, which means that all events observable

on the model can be described in form of predicates.

To specify events, the end user can choose from a set of predicate templates. The availability
of predicate templates depends on the availability of the respective evaluation logic within the

system.

Definition 9 (Predicate Template) Predicate templates are predicates that have free variables

as parameters.

The user sets the parameters of a predicate template and gets a predicate that can be regis-
tered with the event service. For example onEnterArea(< Person >,< Area >) is a predi-
cate template. Setting Person to ’Fritz’ and Area to ’Trafalgar Square’ yields the predicate

onEnterArea(Fritz, TrafalgarSquare), referring to the event that Fritz enters Trafalgar Square.

How the observation of events specified by predicates (or better: instantiated predicate tem-
plates) is realized is discussed in Chapter 5 and Chapter 6.

If we had exact data, the user (or application programmer) would just have to specify the
predicate and based on that data the predicate should be evaluated. Since exact data cannot be

assumed, we have to deal with limited accuracy.
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4.2 Specification with Limited Data Accuracy

The system behavior the user would like to have for the observation of physical world events is
that

e an event notification message is sent if and only if the corresponding physical world event

has occurred and that

e an event notification message is available immediately

However, as we just mentioned, it is impossible to achieve this if we are observing physical
world events through a distributed world model due to the limited accuracy of the data that is
available. Also there are processing and network delays in a computer network, so the user

may experience some delay.

For the observation of events, dealing with inaccuracy means having to deal with a certain
potential error. As the error itself is given by the model and cannot be influenced, the user can

only specify how the error influences the observation.

In principle, the way to deal with inaccuracies could be explicitly encoded in the specification
of the event. For example, for the event that two people meet it could be specified by how much
two areas around the position of the people have to overlap, possibly also taking into account
the respective accuracy of the position data. In this case, the user may have to set a number
of parameters that require him to know some details about the observation of the event that
would not be required in the exact case. In our example a simple distance would be sufficient in
the exact case. This is a contradiction to the requirement that the specification should be clear
to the user, i.e., easily understandable. This means we need a generic approach which treats

different events in a uniform way.

Since we cannot achieve that an event notification message is sent if and only if the correspond-
ing event in the physical world has occurred, we could “weaken” the approach by replacing the

equivalence relation (if and only if) with the implication:

e If an event in the physical world has occurred, an event notification message is sent.

o If an event notification message is sent, an event in the physical world has occurred.

In the first case, there is an event notification message for every physical world event, but there

may also be notifications when no event has occurred. This means there could be false positives.

Definition 10 (False positive) We have a false positive if an event notification message was

sent, even though no physical world event has occurred.
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In the second case, for every event notification message an event has occurred in the physical
world, but there may also be events for which no event notification message was sent. This

means there could be false negatives.

Definition 11 (False negative) We have a false negative if a physical world event has oc-

curred, but no event notification message was sent as a result.

Both approaches are generic with respect to the handling of accuracy issues, but are somewhat
extreme and may not be what the user would like to have. We therefore propose an approach
that allows the user to specify a threshold probability that decides if an event is considered to
have occurred. If, based on the available data, the probability that an event has occurred is
higher than the specified threshold probability, an event notification message is sent. Setting
the threshold probability to 100% yields the approach where we have no false positives, but
possibly a large number of false negatives. Setting the threshold probability close to 0% (an
occurrence probability of 0% does not make sense since this would be true for all values)
yields the approach where we get no false negatives, but possibly a large number of false
positives. So the threshold probability should determine the ratio between false negatives and
false positives. Given that we can calculate the probability that an event has occurred, we have

a generic approach.

Definition 12 (Event specification) An event is specified as a pair (P,TP) where P is a pred-
icate and TP a threshold probability. For an exact value, the predicate P becomes true if and
only if the event has occurred. The threshold probability TP specifies the probability with
which the occurrence of the event must at least be detected so that the event is considered to

have occurred.

The choice of the threshold probability depends on the usage scenario and the quality of the
model, i.e., the accuracy of its values. The accuracy first of all depends on the accuracy of the
sensor data, which can be taken from the fact sheet of the sensors, but in the end, as will be
discussed in Section 5.2, on the accuracy guaranteed by the update protocol that provides the

data to the observer of the event.

The threshold probability directly influences the ratio of false negatives to false positives. Given
a concrete scenario, the user has to decide what the relative costs of false negatives and false
positives are. For example, if the application is important for the safety of the user, e.g., like a
navigation system for visually impaired people, it may be better to have more warnings (false
positives) than a missed warning (false negative), so the threshold probability should be set to a
lower value, whereas for an application that is mostly for the convenience of the user, a higher
threshold probability might be selected. The influence of the threshold probability on the ratio
of false negatives and false positives, as well as how to set the threshold probability will be
investigated further in Chapter 7.
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4.3 Summary

In this chapter we have presented our approach of specifying high-level events as predicates.
The user typically chooses a suitable predicate template from the set of predicate templates
available in the system. He instantiates it with the desired parameters yielding the predicate

that describes the event of interest.

This approach is very generic with respect to the specification of the events — without detailing
yet how the evaluation of the predicate template will be implemented, which is the topic of the
following chapters. Therefore, Requirement 1, which states that the observation of high-level

events has to be supported, is fulfilled.

Giving a threshold probability that determines the probability above which an event is consid-
ered to have occurred allows the user to specify how to deal with the limited accuracy in a

generic way, which addresses Requirement 4.

Choosing the appropriate predicate template, for which a natural language description should
be provided, together with the specification of the threshold probability helps to fulfill Require-

ment 2 that demands that the event semantics should be clear to the user.
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Generic Event Observation

In the last chapter we have presented our approach for specifying an event as a combination
of a predicate and a threshold probability. So, for observing an event, we need to be able to
calculate the probability that the event has occurred based on the predicate and the relevant
parameters. This probability is then compared to the threshold probability to determine if the

event is considered to have occurred.

In this chapter we look at the parameters that influence the quality of observation and show
how the occurrence probability of an event can be calculated. Most of the content presented in
this chapter was first published in [Bauer and Rothermel 2004].

5.1 Observer View of the Physical World Model

We now introduce the observer view of the physical world model as depicted in the system
model in Figure 2.3. In this section, we present it in its parameters. The update protocols,
which we present in Section 5.2, and the system properties then set these parameters, yielding
the concrete observer view on which the event is observed. In principle the same parameters

also apply to local models, but on a smaller scale.

5.1.1 Accuracy

The state of the physical world model as defined in Chapter 2 in its simplest form could be de-
scribed as a set of (variable,value) pairs. In the following we extend the definition of value by
providing the accuracy for a given value that needs to be taken into account for the observation.
The limited accuracy of the value is introduced through both the limited sensor accuracy and

the update protocol as we will see in the next section.
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In principle, values can be multi-dimensional and complex. Here we begin with simple, one-
dimensional values, but, as we will see, the concepts can easily be extended to the multi-

dimensional case.

In the most general case, a value v; can be specified in form of a probability density function

v;.Q over an accuracy interval [v;.acCpin, Vi.ACCmay] (see Figure 5.1).

probability
density V.0

>

T 1 4
v.acc,, v.acc value

max

Figure 5.1: Probability density function of value v;

Definition 13 (Probability density function of value v;) For a value v; a probability density
function v;.0 over the accuracy interval [v;.accmin,V;i.aCCmax] can be given as v;.Q[vi.accmin,
Vi.ACCpay] With fvv,’aac";c”’zz* vi.d(v)dv = 1.

So we use a probability density function for modeling a value at a certain point in time. This
provides the most accurate representation of the modeled aspect — with respect to the state of the
physical world at that point in time — that is available in the observer view of the physical world
model. In practice, we can simplify the calculations for determining if an event has occurred,
by using a discrete modeling based on a probability mass function, losing some accuracy. In
the following, we stick to the continuous modeling as this is the most general case and come
back to discrete modeling when we look at the observation of concrete spatial events in the next
chapter.

We have a special case if the probability for all the values in the interval is equal, i.e., we have
a uniform distribution and it is sufficient to give the accuracy interval [v;.accmin, Vi-acCmayx]. If
we do not have any given probability density function, we may also have to assume a uniform

distribution, a normal distribution or something else.

The case of an exact value v; is a further specialization where the accuracy interval becomes a

single point with a probability of 100%.
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If we go to n-dimensional values, e.g., a two- or three-dimensional spatial coordinate, the value
is given as an n-dimensional value; instead of an accuracy interval, we have an n-dimensional
body and the probability density function is an n-dimensional probability density function over

the given body.

For example, if we have a positioning system, the likelihood that the actual position is in the
center of the accuracy area may be higher than at its edges, e.g., for GPS see [GPS 1995], which
can be modeled by a probability density function.

5.1.2 Occurrence intervals

The update of model state cannot be attributed to a fixed point in time, but only to a given
time interval [v;.t_accmin, vi.t-accmay|, €.g., because of clock synchronization issues [Liebig er
al. 1999]. So the updated value is associated with this time interval. The time interval is based
on the time stamp, which can already be given as an interval (e.g., from the sensor), and the
maximum clock skew. This also means that for the interval in which the new value has become
valid, the new and the old value coexist with the probability of the old value decreasing and the
probability of the new value increasing over the time interval. This has to be taken into account

for the observation.

Again, as the distribution of the time may not be equal over the time interval, a probability

density function v;.8 over the time interval can be given as v;.8[v;.t_accmin, Vi-t _aCCpay] With
[rid-acemay,. §(1)dt = 1.

Vil _acCpin

In most cases, the occurrence intervals will be short compared to the time in which there are
no external changes to the observer view of the physical world model, as otherwise communi-
cation will become the bottleneck. However, as we see in the next subsection, the probability

distribution of a variable may change internally over time.

5.1.3 Change of value over time

For the observation of events, the observer view has to provide a view of the physical world
model state over time. If the maximum change of a value over time is known, a “worst-case”
estimation for a point in time for which no current value is available (yet) can be given. For
example, a pedestrian may move at a maximum speed of about 10 km/h, so the current location
can be estimated as the location of the last update plus the product of the time that has passed
since then and the maximum speed. This means that the accuracy interval or body and the
probability density function can also change over time, which has to be taken into account for
the observation. In the extreme case, the probability of the event having occurred can cross the
threshold probability simply through the change over time.
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For the observation, it not only has to be checked, if the predicate evaluates to true for the
current state, but also for the previous state, as we are interested in the predicate becoming true,
which signifies the occurrence of the event. In some cases not only the current change, but
changes over a longer time interval have to be available for the evaluation of the predicate, so
a history of the model state has to be provided. An example for such an event would be that a
value has increased for the tenth time within 5 minutes. Over what period of time the history

needs to be provided depends on the event.

5.1.4 Resulting observer view

30
Probability
Density

Figure 5.2: Probability density function of a variable over time

Figure 5.2 shows the view of the physical world model for a given variable over time. At any
point in time the variable has a value that is given in form of a probability density function. If
there is a new update, the time density function defines how the distribution before the update
is “faded over” to the new distribution. In Figure 5.2 an update takes place with an occurrence
interval between Time 5 and Time 10, which modifies the probability density function over

time.

As a next step we look at update protocols that can be used to provide an observer view of the
physical world model with data.

5.2 Update Protocols

Update protocols are used to propagate the data from the physical world model server to the ob-

server view. The update protocols define the data available in the observer view of the physical
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world model at a given time. So the update protocols determine the accuracy of the observer

view, thereby defining its quality.

We can classify update protocols according to who initiates the check, if an update is necessary,
and how the check is triggered (also see [Leonhardi and Rothermel 2001a, Leonhardi 2003]).

As far as initiating the check is concerned, there are two principle options, either the receiver
queries the source, which corresponds to pull-based communication, or the source sends an
update when necessary, which corresponds to push-based communication and was already in-
troduced in Section 3.1. As in our case the observation has to be triggered from within the
system, a push-based approach is appropriate; therefore we will not consider query-based ap-
proaches here.

There are two general classes of push-based update protocols, depending on how the update
is triggered: value-based protocols and time-based protocols. Value-based update protocols
send update notifications based on a change in value and time-based protocols send update

notifications in regular time intervals.

An important aspect is, whether the update protocol is proactive, i.e., the update protocol up-
dates in such a way that the value is at all times within specified boundaries, or whether it is

reactive, i.e., the value is updated after a boundary has been crossed.

In the proactive case, it has to be guaranteed that the value in the updated model is within the
accuracy distribution at any point in time. Then it is possible to do evaluations in real-time, but
it also requires that certain information about how values can change over time is available and
that the underlying computer network provides the necessary “quality of service” as described

for the event domain.

In the reactive case, it is sufficient to have accurate information for the evaluation at a later,
but known point in time. Thus, the evaluation can only take place after a certain delay from
receiving the last update notification. This is to make sure that all updates reporting changes
that may have happened before the received update notification are available.

5.2.1 Value-based protocol

Value-based protocols send an update notification message whenever the value of a variable
has changed in such a way that an update criterion is fulfilled. This update criterion can also
be defined as a predicate that becomes true whenever such a change in the value occurs. This
means, an update event has occurred and an update message is sent, so that the variable in
the observer view can be updated by the new value. A typical predicate might specify that a
distance between two values is larger than a given threshold, taking into account the accuracy

information.
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Figure 5.3: Observer view for a single value resulting from a value-based update protocol given
that the maximum possible change of the variable over time is known

Figure 5.3 shows the observer view for a single one-dimensional variable over time that results

from a value-based update protocol, i.e., we have the sequence of values vy, v, v» and v3.

When using value-based update protocols, we assume that the maximum accuracy interval for
each value is known: [v;.accmin, vi-accmax] (shown for vp). If we want to have a certain accuracy
for the observer view of the physical world model — which of course cannot be more accurate
than what is available on the physical world model server it comes from — we have to specify

this accuracy in the predicate, i.e., as a threshold.

We also assume that we do not know anything about the probability distribution within this
accuracy interval, i.e., we do not have a probability density function v;.¢ over this accuracy

interval. Hence we assume a uniform distribution.

Due to the clock synchronization issues identified in Section 5.1.2, the time of the update can
only be given as a time interval. In Figure 5.3 the time intervals 71, f, and #3 are shown during

which the changes in the value of the variable have occurred that led to the respective updates.

Therefore, during this time interval we have an overlap of the old and the new value with a
decreasing probability for the old value and an increasing probability for the new value, which

has to be taken into account when determining whether an event has occurred.

In Figure 5.3 we also assume that the update message provides the value with the accuracy
available at the physical world model server of the information, and that the maximum possible

change of the value over time is known.

If the maximum possible change of the value over time is not known or not avaiable, or if

the more exact value of the physical world model server is not provided, e.g., due to privacy
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restrictions, we get a simplified observer view as shown in Figure 5.4. So for each value at any
point in time, we only know that the true value must be within the given accuracy interval. For
the remainder of this thesis we assume that value-based update protocols will provide only this

simplified observer view.
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V,-acc, .
R
V1 ’V3 __Vu.accmin 777777777777777777777777777777777777777777777777777777777777777777777777
¥ e S M —
— — — —»
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Figure 5.4: Simplified observer view for a single value resulting from a value-based update

protocol without any information about the maximum possible change over time

Overall, value-based protocols lead to a model with a relatively regular distribution in the value
dimension (see Figure 5.4 and values vy (= v;[to] — value v; at time 7)) to v3), as there is a new
update value with the granularity of the accuracy interval, but there is no regular distribution in

the time dimension (¢; to #3).

As mentioned above, there is a difference between reactive protocols that only update the in-
formation after the source has detected that the accuracy requirement has been violated, as we
have just seen, and proactive protocols that guarantee that a value on the receiver side has a

certain accuracy at any point in time.

In order to realize the latter case, additional information is needed. First, the source must have
a certain guaranteed accuracy that is more accurate than the accuracy to be guaranteed at the
receiver side. Then, the source also has to know the maximum delay between itself and the
receiver(s) and information about how the value may change over time in the worst case, which
depends on the characteristics of the information and the maximum delay, which is the sum of
all processing and network delays from the sensor to the receiver. The idea is that the source
has to be able to determine, whether the next update it has to send can wait until it receives a

new update without violating the guaranteed accuracy.

In this case, the receiver does not have to wait for the maximum delay with the evaluation, since

all relevant values are guaranteed to be within their accuracy intervals at any point in time.
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In the reactive case, the predicate can only be evaluated for any given update after the maximum
delay has passed that update messages can experience in the event domain. Otherwise we
cannot be sure that we have a consistent observer view. Only after the maximum delay it is
clear that no other update messages that have experienced a longer delay could influence the
evaluation of a predicate for the time in which the update took place. In case of a proactive
protocol with guaranteed accuracies this is not necessary, as we can always assume to have the

guaranteed accuracy level.

One problem of value-based update protocols is that faults of sources or the network may not
be detected by the receivers. If no message is received, it will just be assumed that the value is
still accurate enough, not that nodes or the network may be down. Of course this problem can

be addressed by introducing additional availability monitoring.

5.2.2 Time-based Update Protocols

A
Value

-
Time

Figure 5.5: Observer view for a single value resulting from a time-based update protocol with

regular time distribution

Time-based update protocols are triggered by the system clock. An event notification message
is sent in regular intervals as specified. Time-based protocols alone cannot guarantee any accu-
racy of the value. Since this is necessary for the observation, we assume that an initial accuracy
interval or probability distribution is available; in addition we need a function that models the
(maximal) change of the value of a variable over time. With this information, we have a value

for any point in time.

With the change function being known to the receiver, this leads to a model, in which the
accuracy interval [v;.accpin, vi.accmay] changes over time (see Figure 5.5). Again, we do not

automatically have any information about the probability distribution (v;.¢). If we want the
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distribution in our model, we would need additional information, i.e. the probability density
function for the updated value, e.g., based on the sensor characteristics, and how this function
changes over time to reflect the expected change in value over time. In Figure 5.5 a probability
distribution is indicated through the shading. If we want the most accurate information for the
evaluation of the predicate, we may have to wait for the maximum delay to be sure that the
best possible value for this particular point in time is available. There can also be an immediate

evaluation on possibly less accurate values.

Unlike for the value-based protocol, faults of sources or the network can be detected by the
receivers. If no message is received after the specified time interval plus the maximum delay, it

means that there is a fault in either the source or the network.

5.2.3 Other Protocols

Other variations of the protocols are possible, e.g., there could be a combination of value-based
and time-based protocols, which would solve the problem of detecting faults. In addition,
if the change of a value over time can be predicted, a dead reckoning protocol can be used,
where both sides use the same prediction function and an actual update is only sent when
the difference between the real value and the predicted value crosses a given threshold. For a
broader discussion of different types of update protocols taking the example of location updates,
see [Leonhardi and Rothermel 2001a, Leonhardi 2003].

5.3 Event Observation

Now that we have defined the observer view on the physical world model and shown how it can
be realized using update protocols, it remains to be shown how events can be observed based
on this view. In order to do that, the probability with which an event has occurred has to be
calculated and compared to the specified threshold probability.

To decide whether an event has occurred, it has to be checked, whether there was a change in
the physical world model state that leads to the predicate evaluating to true. In other words,
evaluating the predicate describing the event returns false before the state change and true
afterwards. In case the values of the relevant variables and/or the point in time when the change
has occurred can only be determined as intervals with a probability density function — as in
the model we have defined in Section 5.1 — it may not be possible to determine for certain
that such a change in the evaluation of a predicate has occurred. For those cases, we want to
calculate the probability with which the predicate evaluates to true. This probability can then be
compared with a predefined threshold probability to decide, whether the event is considered to

have occurred or not. In the following we discuss how to calculate this probability. As this gets
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rather complicated for the general case, we start out with a number of constraining assumptions

that we relax step by step to arrive at the general case in the end.

We also make a general assumption about the observer view: Values in the observer view can
only change when there is an explicit update, i.e., we assume that there are no automatic model-
internal changes of values over time. This means that predicates only need to be evaluated when

there is an explicit update.

5.3.1 Update in the Exact Case

We start the formalization with the case in which we have an update with an exact value at an
exact point in time. This means we have to evaluate the predicate for the point before the value

was updated as well as for the new value.

Let P be a predicate that is defined over the variables vy,...,v; given as exact
numbers. The variable v is updated at the point in time #;. fy is the point in
time just before the update, so 7y is defined to be ¢; — € for € — 0. Then the event
specified by P has occurred if the following holds:

P(vilto],...,vj[to]) = false and
P(vi[ti],...,vj[t1]) = true (5.1)

In the following, we interpret the predicates as functions that return O, if the original predicate

evaluates to false, and 1, if the original predicate evaluates to true.

Figure 5.6 shows an example of an event observation in the exact case. The three dimensional
diagram on the top left-hand corner shows the values of the two variables x; and x, over time.
As the values as well as the update times are exact, the probability for a variable having a

certain value is always 100%.

The predicate describing the event is given in the top right-hand corner of Figure 5.6. At ¢, the

value of x; changes, so the predicate has to be evaluated.

The diagrams in the lower part of Figure 5.6 show slices of the three dimensional diagram for
the points in time #p and ¢#;. It can easily be seen that the predicate x; > x; evaluates to false for

to and to true for 7, so the predicate becomes true at #;, which means that an event has occurred.
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Figure 5.6: Simple example for observation in the exact case
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5.3.2 Update with the Value Given as an Accuracy Interval

For the following we no longer deal with exact values, but accuracy intervals. We assume that
for each point in an interval, it is equally likely that the point is the actual value, which means
we have a uniform distribution over the interval. (Other distributions are considered in the next

subsection.)

So the value of each variable is now given as an interval with a uniform distribution. Thus each

point in the interval has the same probability of being the true value for this particular variable.

In general this means that we have to evaluate the predicate for all possible combinations of
values that each variable can have and weigh the result according to the probability for this
combination. Since we do not have discrete points, but continuous intervals, we have to cal-
culate the definite integral over the intervals, interpreting the predicate as a function over the
values. For a definite integral to be defined, the bounded function over which we we integrate
may only have a limited number of points of discontinuity [Bronstein et al. 1993], p. 278.
The functions we get based on the predicates have points of discontinuity wherever the value
changes between 0 and 1. The assumption that the number of these points of discontinuity is
limited seems to be reasonable for any of the predicates considered in this thesis and also for

any predicate describing a physical world event of practical relevance.

In the case of a uniform distribution all combinations have the same probability, so we simply
integrate over the intervals and normalize the result by dividing it by the lengths of the respec-
tive intervals. The result is a value between O and 1 that can be interpreted as the probability
that the predicate holds.

Let P be a predicate that is defined as above over the variables vy,...,v; given as
accuracy intervals, i.e., v; stands for the interval [v;.accmin, vi.accmayx|. The absolute
value |v;| is then defined as |v;.accmay — vi-accpin|. Again, the variable v is updated
at the point in time #;. The threshold probability TP is given as a value between 0
and 1. Then the event specified by P is considered to have occurred if the following
holds:

1 1 1 g
el Tl ] vl (fvz[ro] (
(fvj[to] P(vy,v2,. ..,vj)dvj) ...dvz)dvl) <TP

and
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Figure 5.7: Simple example for observation with a uniform distribution
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(5.2)

Figure 5.7 shows an example of an event observation where the value is given as an interval

with a uniform distribution. The three dimensional diagram on the top left-hand corner shows

the values of the variable x over time. For each point in time we have a uniform distribution

and the update time is exact.

The predicate describing the event is given in the top right-hand corner of Figure 5.7. At #

the value of x changes, so the predicate has to be evaluated. The diagrams in the lower part of

Figure 5.7 shows slices of the three dimensional diagram for the points in time 7y and #;. It can

easily be seen that the predicate x > 85 is only true with a probability of 25% at #(, but is true
with a probability of 75% at ;. With a threshold probability of 70%, the event is considered to

have occurred.
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Figure 5.8: Example for observation with two variables, each with a uniform distribution

Figure 5.8 shows an example of an event observation with two variables. The values of the two
variables are again given as intervals with a uniform distribution. On the left side, the values
for #p are shown, on the right side the values for #;. The value of v; changes at 7; from [3,5] to
[1,3]. The predicate to evaluate is P(v;,v2) := v; < vy. The threshold probability 7P is again
set to 70%.

In the following, the Equation 5.2 is shown adapted to the two variables of this example:

1 1
il aloll fvl[to] (fvz[to] P(thz)d\’z)d\/l) <TP
and
L. _L_r [, 1 P(vi,v2)dvy )dvy ) > TP (5.3)
ila]] " o[l Jviln] \ Jva[n] AT V2)ER2 JAVL | =

So for #9, we get the following, where the integral to be calculated is depicted as an area in the

lower left corner of Figure 5.8.

% ) % fV5| =3 (fv52:2P(v1>V2)dV2)dVl)
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_ 1.1 _ 1

For 1, we get the following, where the integral to be calculated is depicted as an area in the

lower right corner of Figure 5.8.

1

2

W=

f35 <f25 P(vl,vz)dvz>dv1>

1.1 1 11

As can be seen, the calculated probability at ¢ is below the threshold probability of 70%, but the
probability at #; is above this threshold probability, so the event is considered to have occurred.

5.3.3 Update with the Value Given as a Probability Density Function

Instead of a uniform distribution, we can have any probability distribution given through the
respective probability density function over the specified accuracy interval. This can, for ex-
ample, be derived from the characteristics of a sensor, e.g., for a GPS sensor the average dis-
tribution can be approximated by a normal distribution (see [u-blox ag 2002]). Given such
probability distributions, we have to integrate over the probability density functions multiplied
by the predicate interpreted as a function. In the case of the uniform distribution, the fractions
that normalize the result could be taken out of the integrals, because they are not dependent on
the value over which we integrate, i.e., the same value applies for the whole interval. This is
not the case for general probability density functions, so they have to be part of the integral.
Again, the result of the calculation is a value between 0 and 1 that can be interpreted as the

probability that the predicate holds over the interval.

Let P be a predicate defined over the variables vy,...,v; for which probability den-
sity functions () over the accuracy interval are given. Again, the variable vy is
updated at the point in time #;. In this case, the value is given as a probability den-
sity function. Then the event that is specified by P is considered to have occurred
if the following holds:

Join] (¢1 [to] ... <fv,-[z0] d;t0]-
P(vl,...,vj)dvj> ...a’v1> <TP

and
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Figure 5.9: Simple example for observation with a distribution given as a probability density

function

Figure 5.9 shows an example of an event observation where the value of the variable is given

as a probability density function over an interval. The three dimensional diagram on the top

left-hand corner shows the values of the variable x over time. For each point in time we have

the distribution specified by the probability density function and the update time is exact.

The predicate describing the event is given in the top right-hand corner of Figure 5.9. At #

the value of x changes, so the predicate has to be evaluated. The diagrams in the lower part

of Figure 5.9 shows slices of the three dimensional diagram for the points in time fp and #;. It
can easily be seen that the predicate x > 85 is only true with a low probability at ¢y, but is true
with a probability of 100% at #;. With a threshold probability of 75%, the event is considered

to have occurred.
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Figure 5.10 gives an example of an event observation with two variables whose value is graph-
ically shown as a probability density function over an interval. On the left side, the values for
to are shown, on the right side the values for #;. The value of v; changes at 1, the threshold

probability is set to 70%.
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Figure 5.10: Example for observation with two variables, each with a distribution given as a

probability density function

As can be seen, in comparison to Figure 5.8, the probability of the values is not equally dis-
tributed here, which has to be taken into account when calculating the probability of the event
occurrence. The weight with which the respective value combinations go into the calculation

of the probability is indicated through the shading in the lower part of Figure 5.10.

Taking symmetries into account, it can easily be seen that the resulting probability on the left
side must be below the threshold probability of 70%, whereas the probability on the right must
be above it. The actual calculation of the probabilities is rather complicated as it requires the
integration over probability distribution functions, which typically cannot be done in a closed
form and has to be approximated. Thus, we leave it at the graphical representation here. How

to calculate approximations for real cases will be discussed in detail in Chapter 6.
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5.3.4 Update over a Time Interval without any Interleaving Updates of Other Rel-
evant Variables

So far, we have looked at the case for which it is known that the update has occurred at an
exact point in time. As this assumption is not very realistic in a computer network, we now
look at the case, in which it is only known that the update has taken place within a certain time
interval. Not all points in the time interval may have the same probability, so again, we have
to take a probability density function into account. As a result, we know for each point in the
time interval with what probability the change has already taken place. In order to focus on the
time dimension, we assume exact values, before integrating all aspects in the general case at
the end.

If there are no value changes of other variables during the time interval of interest, it is sufficient
to evaluate the predicate for the begin of the interval, when the update has not yet taken place,
and the end of the interval, when we know for sure that the change has taken place, to determine
if an event has occurred. So Equation 5.6 is basically the same as Equation 5.1 only that fg

marks the beginning of the occurrence interval and #; the end.

P(vl[tl],...,vj[tl]) = (5.6)

Figure 5.11 shows an example of an event observation for the case in which the values are
exact, but the time of the update can only be given as an interval with a probability distribution
with respect to the actual occurrence time. The three dimensional diagram on the top left-hand
corner shows the values of the two variables x; and x, over time. The values are always exact,

but their probabilities depend on the probability distribution of the occurrence interval.

The predicate describing the event is given in the top right-hand corner of Figure 5.14. Between
top and #; the value of x| changes, so the predicate has to be evaluated. During that interval the
value of x; does not change, so it is sufficient to evaluate the predicate for the begin of the

interval 7y and the end of the interval #;.

The diagrams in the lower part of Figure 5.14 show slices of the three dimensional diagram for
the points in time 79 and #;. As we can see the probability of the predicate being true is 0% at fg
and 100% at ¢1, so with a threshold probability of 70% the event is considered to have occurred.
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Figure 5.11: Simple example for observation with occurrence intervals
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5.3.5 Update over a Time Interval with Interleaving Updates of Other Relevant
Variables

If the values of other variables that are needed for the evaluation of the predicate can also
change during the time interval in which the update has taken place, it is no longer sufficient
to check at the end of the occurrence interval. The predicate may have become true during the
interval (with a certain probability), but due to other changes, this is no longer the case at the
end of the interval. So, when checking for a given point in time, it is possible that an old and a
new value for the same variable have to be taken into account with the respective probabilities
with which they are valid at that point. Overall, we have to find the point in the time interval
where the predicate is true with the maximum probability. In this subsection we do not consider

multiple updates of a variable with overlapping update intervals.

Let P be a predicate that is defined over the variables vy,...,v; given as exact

numbers. The variable v, is updated in the time interval m between #y and ¢,.

4, is the probability density function over the time interval m. It specifies the prob-
ability when the update has taken place during the time interval. The probability
density function depends on the synchronization of the clocks of the computer sys-
tems involved, i.e., the expected clock skew. Figure 5.12 gives an example for a

probability density function J,, over the interval m.

probability
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oﬁg
~—

—_

=
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D

Figure 5.12: Probability density function over interval J,,

pb(vi,x,t) is the probability that variable v; has the value x at time ¢. In case there

are no overlapping updates for a single variable, it can be calculated for the update
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of variable v; as follows, where x; is the value before the update and x, the update

value, #; is a point in time within the occurrence interval:

1
pb(vi,x2,t,) = /kSm(f)dt
]

pb(viaxlatk) =1 _pb(vi7x27tk)

Figure 5.13 gives an example of how the changes of two variables can overlap.
v; is the variable for which the predicate is evaluated and the change takes place
within the interval [fo,#;]. The upper curve in Figure 5.13 shows the probability
with which the change has already taken place at time #. The change interval of v;
overlaps with the change interval of v, so the respective values x; and x, have to be
taken into account with the respective probabilities pb(v,,x;,t) and pb(va,x2,1),
whose curves are shown in the lower part of Figure 5.13.
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Figure 5.13: Overlapping changes of two variables

S(v,1) is the set of values xj,...,x; of variable v at time ¢ for which pb(v,x,t) > 0.

In the case of no overlapping update intervals of v, S(v,7) has at most two values.



60 5. GENERIC EVENT OBSERVATION

max(f(..)) | ;1) is the function that returns the maximum of function f within the

interval (1y...t1].

Then the event that is specified by P has occurred, if the following holds:

ZS(V27Z()) (pb(Verg?tO) Tee 'ZS(VJ'J()) (pb(vja-x/hto)'
P(vl[to],...,vj))) <TP

and

max(pb(vl ,)Cz,t) ZS(VQ.,I) (pb(v27xg7t) T
1
> TP (5.7)

=1y

Y5,y (PO (V) xp,t) - P(vi,... ,vj-))))

As we want to evaluate if the update of variable v; with value x; leads to the detection of an
event occurrence, we only have to check for value x, and the probability that it is already valid
at time #. The old value x; does not have to be considered for this purpose, so there is no term

Y.s(v ) in Equation 5.7.

Figure 5.14 shows an example of an event observation for the case in which the values are
exact, but the time of the update can only be given as an interval with a probability distribution
with respect to the actual occurrence time. The three dimensional diagram on the top left-hand
corner shows the values of the two variables x; and x; over time. The values are always exact,

but their probabilities depend on the probability distribution of the occurrence interval.

The predicate describing the event is given in the top right-hand corner of Figure 5.14. Between
to and #; the value of x| changes, so the predicate has to be evaluated. During that interval the

value of x, also changes, so there are overlapping occurrence intervals.

The diagrams in the lower part of Figure 5.14 show slices of the three dimensional diagram for
the points in time #p, #; and ;. As we can see the probability of the predicate being true is 0% at
to and 30% at 11, so the event would not be considered to have occurred. However, if we look at
time #; during the occurrence interval, the probability of the predicate being true is 45%, which
is higher than the threshold probability of 40%, which means that the event is considered to
have occurred. This example shows that it is important to check for the whole update interval

in the case of overlapping occurrence intervals.

We face an additional problem, if the intervals for updates of the same variable can overlap.

Now, a given variable can have more than two different values at the same time, each with a
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Figure 5.14: Example for observation with overlapping occurrence intervals
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certain probability. This is not only the case during the occurrence intervals themselves, as after
an update it can only be determined with a given probability which update actually came first.
As a result, the probability of a given value for a variable only becomes 0 after a completed
update of the same variable whose occurrence interval did not overlap with the occurrence

interval for the given value.

Assuming that all updates of the same variable come from the same local model, we can deter-

mine the sequence of updates and in that case the described problem does not arise.

5.3.6 General Case

Integrating the cases for values given as probability density functions and updates over poten-
tially overlapping time intervals yields the general case that allows the evaluation of predicates
over the general observer view of the physical world model as defined in Section 5.1. In order
to get the general case, we have to replace the predicate (function) in Equation 5.7 by Equa-

tion 5.5, which yields Equation 5.8.

Y5000 (Pb(vzaxgato) e Xs(vi0) (Pb(vj,xh,to)‘
S I R T}
P(vl,...,vj)dvj) ...dvl))) <TP

and

max(pb(vl,xz,t) Y52 (pb(vz,xg,t) -
Ys(via) (Pb(vﬁxhal) “Joi (¢1 [1]... (fv,[z] ;[t]-
P(vl,...,vj)dvj>...dv1>)> )

> TP (5.8)

=ty

Figure 5.15 shows an example of an event observation where both the value and update time
are given as intervals with a probability density function. The three dimensional diagram on
the left-hand side shows the values of the variable x over time. For each point in time we have a
probability distribution for the value that adapts over time according to the probability density

function of the occurrence interval.

The predicate describing the event is given on the right-hand side of Figure 5.15. Within the
interval between fy and ¢, the value of x changes, so the predicate has to be evaluated. From the
diagram we can easily see that the predicate x < 110 is true with a probability of 0% at #(, but
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Figure 5.15: Simple example for observation in the general case

reaches its maximum probability of being true with 50% at #;. With a threshold probability of

40%, the event is considered to have occurred.

In this section we have shown how events can be observed through the observer view of the
physical world model. The observation takes into account all the parameters that have been
identified as relevant. We have shown how to calculate the probability that an event has oc-
curred based on these parameters. By comparing this probability to the specified threshold

probability, it can be decided, if an event is considered to have occurred.

5.4 Overview of Measures for Making the Observation of Events
More Efficient

As can be seen in Equation 5.8 the calculations in the general case can become rather compli-
cated. So, for efficiency reasons, it may be necessary to only calculate an approximation of the
actual result. The best approach may depend on the actual event and the desired semantics. The

following aspects should be considered when choosing a heuristic for the approximation:

e The complexity of the predicates: The more detailed the specification of the event has to
be, the more complex the predicates are and the more complex the calculation. Some-
times a slightly less accurately described event can be observed much more efficiently.
If the number of cases in which the event actually occurs is low compared to the number
of cases in which the predicate has to be evaluated, it may be worth to have a test in

two steps. The first test just checks a predicate describing a rough approximation of the
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event, which can be done efficiently, and only if this evaluates to true, the actual predi-
cate is evaluated. The requirement for such a test is that it does not miss any actual event

occurrence, i.e., there may be false positives, but no false negatives.

e The probability distribution of the values: It may be sufficient to assume a uniform distri-
bution instead of a complex probability distribution. Depending on the update protocol,

this may be all we have anyway.

e The accuracy interval of the values: It may be possible to simplify the calculation by
evaluating the predicate for a few (weighted) representative values instead of the whole
accuracy interval. So, as a simplification, we get the discrete case with a probability mass
function, instead of the more general continuous case with a probability density function.

e The time interval and probability distribution: If there are no overlapping occurrence
intervals, the calculation is the same as in the case where we have exact time points. If
occurrence intervals do overlap, it may be sufficient to check for a few values to deter-

mine, if any event may have occurred, and only do an exact check, if this is the case.

As we can see, the calculations that have to be done in the general case can be simplified for
given specific cases. However, what is reasonable in a given case depends on the actual event
and the desired semantics. Therefore, in Chapter 6 we will look at the observation of some
concrete spatial events. To make the observation as efficient as possible, we show how some of

the measures presented in this section can be applied in concrete cases.

5.5 Strategies for Placing the Observation

Requirement 4 states that it must be possible to specify the quality of observation in a generic

way, independent of the concrete realization.

In the previous section, we have shown how events can be observed through a distributed world
model and what the relevant parameters are that determine the quality of the model. The event
semantics depends directly on the quality of the model. Therefore, it is important to observe an
event at the location with the best possible observer view of the physical world model, so the

placement of the observer in the network is crucial.

Figure 5.16 shows two observers. One is connected to the physical world model servers through
a fast local area network, whereas the other is connected through a slow modem. The observer
views on top show the accuracy of a certain value over time as it is available in the respective
model. Whereas on the left side, the accuracy interval is very small for each point in time and

the time when the value changes is relatively accurately defined, this is not the case on the right
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side, where the interval in which the value may have changed is relatively long (see Figure 5.2

for a larger picture of the model).

Fast LAN Slow Modem

Figure 5.16: Different observer placements

With respect to the optimization criteria, the different parties involved have different goals. The
user of the service wants the best possible event semantics, i.e., maximal observation accuracy
and minimum delay, the operator of the service is interested in overall performance, scalability
and a stable operation of the system without oscillating server loads. This requires balancing

the server load and minimizing the network load.

As some of the goals are potentially in conflict, e.g., balanced server load vs. maximal ob-
servation accuracy, there have to be trade-offs, and the strategies for placing the observation
can become rather complex. The goal for this thesis was to investigate the general foundations
of event observation, put a basic system in place and analyze the resulting quality and perfor-
mance. The detailed investigation of observer placement strategies is an optimization that, due
to its additional complexity, is beyond the scope of this dissertation, but could be an interesting

area of future work. Some further considerations can be found in the outlook in Chapter 8

For the purpose of this dissertation, we have used an optimization strategy that optimizes ac-
cording to delay. This means the following for the observation of a high-level event: Given the
physical world model servers that provide the necessary information, the event domain with
the minimal maximum delay is selected. Within this domain, an observation node is randomly

selected for the observation of the event.
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Concepts for the Observation of
Spatial Events

In the previous chapter we have presented a generic concept for observing events based on a
distributed physical world model. In this chapter, we show that the general concept is applicable

to observing events, taking spatial events as concrete examples.

A general definition for spatial events is given in Definition 14.

Definition 14 (Spatial Events) A spatial event occurs when a certain spatial relation between

objects is reached.

Typical examples for spatial events are that two (or more) mobile objects come within a cer-
tain distance of each other (OnMeeting event) or that a mobile object comes within a certain
distance of a stationary object (OnCloseTo event). The description of these events sounds very
similar, but, as we will see, there are significant differences with respect to the way they can be

efficiently observed and the observation complexity.

As a first step for implementing the actual observation of events, we present the architecture of
the underlying event service in the next section. Then we present characteristics according to
which events can be classified. We introduce a number of concrete spatial events and classify
them accordingly. This will serve as a basis for selecting interesting example events for further

investigation that cover a wide range of different characteristics.

Following the same structure as in the discussion of the generic case in the previous chapter,
we then discuss the concrete observer view on the physical world model, the update protocol

that is implemented in form of update events and the observation of high-level spatial events.
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6.1 Event Service Architecture

In this section we describe an event service architecture that provides a foundation for fulfilling
Requirement 3 — the realization details have to be transparent to the user — and Requirement 5
— the resulting system must be scalable. The event service architecture was first published
in [Bauer and Rothermel 2005].

6.1.1 Conceptual Architecture

Figure 6.1 shows the conceptual architecture of the event service. It consists of two logical
parts, the observation service that is responsible for the observation of events on the physical
world model data, corresponding to the central part of the system model in Figure 2.3, and
the notification service that is responsible for both delivering event notification messages to
interested clients and delivering (update) event notification messages to the observation service.

The physical world model servers provide the data that is the basis for the observation.

Client Client

2

\ 4

Qotific oy :
registe SUbsor Kation Event Service
\ 4 e

notificatior
Observation | Notification
Service Service

A

| update

notification

register

Physical World
Model Server

Physical World
Model Server

Figure 6.1: Event service — conceptual architecture

The reason for the division into observation service and notification service is mainly that of a
separation of concerns and follows the Design Framework for Internet-Scale Event Observa-
tion and Notification as proposed by Rosenblum and Wolf in [Rosenblum and Wolf 1997].
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The notification service is basically a distributed publish-subscribe service for which quality of
service information is or can be made available. This means that the topology of the overlay
network and the communication within that network has to be known (cf. event domains,
Section 2.3.3).

If a client wants to be notified about certain events, it first has to register the event with the
event service. This requires two steps. First, the registration step that results in the observation
being set up in the observation service. This includes the registration of update events with
the physical world model servers providing the data relevant for the observation. Second, the
subscription step that results in the setting up of the communication path along which the event
notification messages are delivered to the client.

In the next two sections we look at the internal architecture of the notification service and the

observation service.

6.1.2 Notification Service Architecture

Since issues regarding the notification service have been the focus of related work, we will only
give a short overview of the relevant aspects of our notification service. It was developed as

part of a diploma thesis [Till 2002], so details can be found there.

Figure 6.2 shows the general notification service architecture. The notification service consists
of notification nodes that communicate with each other on a peer-to-peer basis. Internally, they
need an advertisement register and a subscription register.

For our purposes it is sufficient to have an ID-based notification service. The observation of

events has to be initiated explicitly. As a result, an ID can be returned.

ID-based in this context means that event notification messages are distributed based on their

ID. The ID is set by the source. There can be multiple sources for events with the same ID.

Sources, i.e., physical world model servers and observation service components, and clients
typically communicate with a local notification node. Local in this context means on the same

node or within close communication range.

A notification client contacts a notification node to subscribe to event notification messages
with a certain ID. In the first step, the notification node has to determine which sources for
notifications with the given ID are available. It does so, by querying the advertisement register
which therefore has to be shared among the notification nodes. For scalability reasons, a dis-
tributed implementation of the advertisement register is necessary. The advertisement register
returns a list of notification nodes that have local sources for event notification messages with
the given ID. It also subscribes the notification node to notify it when new sources for event

notification messages with the given ID become available.



70 6. CONCEPTS FOR THE OBSERVATION OF SPATIAL EVENTS

Client

A

.

Notification Source
Node

Subscription

Register
Notification
Node
Subscription Subsclription
Register Register
Notification
Node
. Notification Service
]
Source

Figure 6.2: Notification service architecture

In the second step, the notification node contacts all the returned notification nodes and sub-
scribes for event notification messages with the given ID. This information is stored in the
subscription register, which is local to each notification node. Locally, the notification node

registers the client as a subscriber for event notification messages with the given ID.

If a source publishes an event notification message, the notification node passes it on to all
notification nodes that have subscribed to it and to all local clients. The other notification nodes
pass it on to their local clients. So the communication in the notification step goes through a
direct connection between the peers. This is important for us, because then the communication
stays within the event domain. The event domain information in turn is needed to have the
required system characteristics for the event observation. There are a number of peer-to-peer
based notification services, for which this would not be the case, e.g., Scribe [Rowstron et al.
2001].

6.1.3 Observation Service Architecture

In this section we first discuss the relevant requirements for the observation service. We show

what follows from them for the observation service architecture and then derive a solution.

Requirement 5 states that the event service has to be scalable. The scalability refers to the
number of physical world model servers that can be served, the number of clients and the
number of events that can be observed. A prerequisite to achieve this kind of scalability is

a distribution of the components, i.e., there must be multiple servers on which events can be
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observed, because a single, server will be limited to a certain number of events that it can

observe at any time.

The servers with the different components are connected by a network that has a limited band-
width. Therefore, to allow the observation of a reasonable number of events per server and
to give a fair share to different events, it must be possible to limit the number of update event
notification messages per event. This can be achieved by implementing policies that — based on
the number of predicted update event notification messages — are enforced at registration time.

Of course this also limits the accuracy of data that is available for the event observation.

Requirement 3 states that the realization aspects have to be transparent to the user. This es-
pecially refers to distribution aspects. Thus, there must be a single logical access point that

provides access to the event service.

As discussed in Section 5.5, examples for general optimization goals are to optimize the delay
of the observation or the accuracy of the observer view in the value and time dimension in order
to optimize the overall quality of observation. Most important in this respect are characteristics
of the computer network. For a given event domain, these characteristics are fixed and cannot
be changed, so optimizing according to different optimization goals is equivalent to finding
the location in the computer network with those characteristics that provide the best trade-off

between the individual goals.

There are two points that follow from this discussion:

e There need to be components where the actual observation takes place. For these, infor-
mation about the system characteristics have to be available, e.g., through event domains.

We call these components observation nodes.

e There need to be components that provide access points to the system for the clients.
During the registration, they have to place the observation on the observation node that
provides the best observer view of the physical world model. We call these components

observation management nodes.

The resulting detailed architecture of the event service is shown in Figure 6.3. It consists of ob-
servation nodes, observation management nodes and notification nodes (which were described

in the previous section).

Apart from the initial placement of the observation, the observation management is responsible
for the management of the event observation over its whole “lifetime”. Events are registered
only for a fixed registration interval, which has to be renewed regularly; otherwise the events
are implicitly deregistered. This soft state approach prevents orphaned event observations from

wasting resources.
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Figure 6.3: Detailed event service architecture
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In case the physical world model data moves to a different server, e.g., because a mobile object
moves, a possible optimization would be for the observation management to check whether
the observation node chosen for the observation is still optimal with respect to the chosen
optimization goal. If this is no longer the case, the observation may have to be handed over to

a different observation node.

The actual observation is realized through observation modules. Observation modules imple-
ment the observation of a particular event type. They correspond to the implementation of the

predicates specified by the user in the registration message.

Requirement 1 states that complex high-level events have to be supported. Simple standard
operators, e.g., like those used in composite event systems, are not sufficient for this purpose,
especially as the accuracy issues have to be taken into account. Therefore, the observation
of complex events is realized with observation modules written in a standard programming
language. Due to the generality of the approach, typical composition operators can of course
also be realized as observation modules.

For each predicate template an implemented observer module has to exist. New observer mod-
ules can be added at runtime, e.g., by putting them on a web server, so that the observer node
can download them from there. End users will usually not implement their own observer mod-
ules. They have to utilize what is already provided by the event service. Application program-
mers writing a new application may add new observer modules. As new observation modules
can be computationally expensive and may pose a security threat, event service providers may
implement policies for adding new modules and may charge for the service according to com-

putational costs. However, these policies are beyond the scope of this work.

When a new event is registered, a new observation module instance is created and initialized
with the parameters for the event to be observed. If the observation module is not available

locally, it can be loaded from a remote server as described above.

The internal structure of observation modules will be discussed in Section 6.6.

6.1.4 Event Registration and Observation

In the following we describe the steps necessary for the registration and observation of events

in more detail.

The registration has two phases, the actual registration phase in which the observation of an
event is prepared and the initialization phase in which the observation is actually started. The
reason for having two phases is that some (update) events may occur with the start of the
observation and in this case, the respective clients have to be ready, i.e., must have subscribed

for the event notification message.
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First the client has to register the event with the observation management. Based on the in-
formation provided in the registration message, the observation management determines the
model data necessary for the observation of the event and the model servers that currently store
the data. For this purpose different registers providing the information which servers currently
store the respective model data may be used. Then, the observation management registers

update events for the relevant model data.

Next, the observation node on which the event is to be observed has to be found. Taking the
servers providing the physical world model data, suitable event domains have to be found that
include all of the given servers. This information is provided by an event domain register.
Whether such an event domain always exists, depends on the overall modeling of the event
domains. For example, we may assume that event domains are organized in a hierarchy. Then
the “parent” event domain would cover all “child” domains. On top of the hierarchy we would
a “worst-case” event domain that covers all possible servers. Another alternative would be to

allow the ad hoc creation of event domains, e.g., based on measurements, if available.

Given the information about possible event domains, a suitable observation node within one of
the event domains has to be chosen, e.g., the one for which the processing delay is optimal, and
the event has to be registered. On the observation node an observation module for the given

event type is loaded and instantiated with the information from the registration message.

To conclude the registration phase, the event identifier is returned to the event client allowing
it to subscribe for the respective event notifications messages with the notification service.
Figure 6.4 shows the communication between the main components during the registration

phase.

Observation
Management RelEEWEel) Notification  Physical World

Node Model Server

Client

\-\-\*

register

— register
Y
I
Event ID —
__.__-—'—_'___ .
| e advertise
register

Event ID
advertise

Event ID

| S

Figure 6.4: Registration phase

Whereas the registration of an event proceeds bottom-up, the initialization proceeds in a top-

down fashion to guarantee that the observation modules on the observation nodes are ready to
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receive notifications for the update events.

With the initialization of the observation module on the observation node, it subscribes for the

update event notifications it needs and changes its internal state to observing.

Figure 6.5 shows the communication between the main components during the initialization

phase.
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Figure 6.5: Initialization phase

From the point at which the observation of update events is initialized update event notification
messages are handed over to the notification service for distribution to the observation nodes.
On receiving an update event notification message the observation node puts it into the input
queue of the observation module. Depending on the event, the observation module may have to
wait for potentially delayed update event notification messages referring to prior changes. After
that, the observation module updates its internal state and checks if an event has occurred. In
this case, an event notification is handed over to the notification service for distribution to the

subscribing clients.
Figure 6.6 shows the communication between the main components during event observation.

The presented architecture and protocols allow the registration, initialization and observation

of physical world events in a highly distributed system.

6.2 Event Classification

In this section we introduce a number of aspects that allow the classification of events. These
will be used to classify the spatial events presented in the next section. The purpose of the

classification is to identify aspects that have an influence on the observation of the event. Based
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on that, interesting example events can be selected that differ with respect to these aspects
for further investigation. This allows us to cover a broad spectrum of spatial events. We first

proposed this classification of events in [Bauer 2004].

Event Triggers: We have defined an event as a change in the state of the physical world model.
The change of the model or the observer view of the model can be triggered either by an explicit
change in data, i.e., through an update from a lower level, or through a time-induced change.
So we can distinguish between data-triggered and time-triggered events. Data-triggered events
can further be classified into value update events that change the attribute of an object, e.g., its
location, and management events that register or deregister objects. Time-triggered events are

triggered by a timer.

Number of Dynamic Parameters: Events can further be classified according to the number of
parameters of the predicates describing them whose values change dynamically. Each change
in the value of a dynamic parameter can potentially lead to the occurrence of an event. The
number of dynamic parameters and especially the frequency of changes to their values thus

influences how costly the observation is.

For example, a spatial event that occurs when a mobile object enters a specified area (On-
EnterArea event) has one dynamic parameter, the position of the mobile object. Whenever the
available position information changes, i.e., when the mobile object has moved by more than
the specified distance, it has to be checked whether an event has occurred. An OnMeeting event
has at least two dynamic parameters. Both objects can move and potentially the movement of

each object could lead to the occurrence of the event.

Specific and Description-based Parameters: A parameter can further be classified according
to how specific it is, i.e., if it specifies exactly one object (or object attribute) or if it specifies a

set of objects that could each potentially be involved in an event occurrence. In the first case we
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call the parameter specific, in the second case description-based. A description-based param-
eter can be implemented in form of an object selector that selects the objects that currently fit
the description. For example an OnEnterArea event could be specified for John Doe, a specific

person, or for an object selector, e.g., a professor.

Events vs. Update Events

Events vs. Update Events: Typically, the notion of event implies that we are mostly interested
in the fact that something has changed in a certain way, with the new state described by the
updated values being of secondary importance. However, in order to create an observer view of
the physical world model, we are primarily interested in the changes of these values. We have
therefore called the events used to realize the different update protocols update events. These
update events can also be interpreted as continuous queries. They correspond to the type of

continuous queries where the value itself changes (see Section 3.5).

Place of Observation: We can also classify events according to where they can be observed
— based on physical world model data that is available locally, i.e., on a single physical world
model server, or through an observer view of the world model that consists of data that was

originally distributed over different servers.

To be precise, this classification does not depend on the event itself, but rather on how the phys-
ical world model is distributed. The physical world events that we discuss in this dissertation
typically have a relatively strong locality — however the physical world model data through
which this location is modeled may still be widely distributed. Only given a certain distribution
of the physical world model data, we can determine, if the event is observable locally or not.

6.3 Spatial Events and Their Classification

In this subsection we present examples of spatial events and classify them according to the
aspects presented in the previous section. The next three subsections present update events,
locally observable spatial events and general spatial events respectively. This is followed by a

summary.

The decision, if an event can be observed locally or not, depends on how the physical world

model data is distributed over the different physical world model servers.

If each physical world model server that holds the position information of mobile objects has
a fixed geographical service area, the spatial events that can be observed locally are those
that depend on the position of mobile objects and a fixed position or area, i.e., the parameter

representing the location has to be specific.
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If each physical world model server that holds the position information of mobile objects is
responsible for holding the position information of a fixed set of mobile objects, the events that
can be observed locally are those that only depend on the position of objects that are available

locally.

In the following, we assume the former, so all physical world model servers have a service area.

There may be multiple servers with the same or overlapping service areas.

As a result, events whose occurrence depends on a given specific location can be observed
locally by all those servers that have the current position information for any mobile object that
fits the specification. Only those servers have to observe the event whose mobile objects may
actually trigger the occurrence of the event and whose geographical service areas overlap with
the given location. To be more precise, the overlap has to take into account a certain buffer
around the given position or area for which the event has to be observed. A buffer is an area
around the original position or area that increases the size of the area in each dimension by a
specified value. In our case, the size of this buffer should depend on the expected inaccuracy of

the position information.

6.3.1 Update Events

In this section we will present the update events that are relevant for the observation of higher-
level spatial events. These update events provide the position information for mobile objects.
The listed update events provide a basis for observing any kind of higher-level spatial events.
Additional, more specialized update events are possible. For example, the position information
could be updated when the aggregate change of position for all mobile objects in the specified
area is larger than are certain value, however this would only be useful in a small number of

highly specialized cases.

The main distinction for these update events is between value-triggered and time-triggered
events. Value-triggered events can be used to implement value-based update protocols (see
Section 5.2.1), whereas time-triggered events can be used to implement time-based update

protocols (see Section 5.2.2).

The described update events either refer to the position of a single mobile object or the position
of objects in a fixed geographic area. Given the assumptions above, the update events can be
observed locally by the physical world model servers that have the position of the specified

mobile object, or by the physical world model servers that cover the specified area.
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DistPosUpdate Events

A DistPosUpdate event occurs when the specified mobile object has moved more than a given
distance. It can be described in form of a predicate that takes a mobile object and a distance
in meters as its parameters: DistPosU pdate(< mobile object >,< distance >). Whenever
the mobile object has moved by a distance that is longer than the given distance since the last

update, an update message with the current position of the mobile object is sent.

ContPosUpdate Events

A ContPosUpdate event occurs when the specified time has passed, providing the current posi-
tion of the specified mobile object. It can be described in form of a predicate that takes a mobile
object and a time interval in seconds as its parameters: ContPosU pdate(< mobile ob ject >,

< time interval >). Whenever the time interval has passed, an update message with the current

position of the mobile object is sent.

ContAreaUpdate Events

A ContAreaUpdate event occurs when the specified time has passed, providing the current po-
sition of all mobile objects in the specified area. It can be described in form of a predicate that
takes an area and a time interval in seconds as its parameters: ContAreaU pdate(< area >,

< time interval >). Whenever the time interval has passed, an update message with the posi-

tions of all mobile objects that are currently within the specified area is sent.

6.3.2 Locally Observable Spatial Events

In the following, we describe two example events that fall into the category of locally ob-
servable events under the assumptions given above. These are the OnEnterArea event and the
OnLeaveArea event. Other locally observable spatial events exist, e.g., the event that an object

has moved from area A to area B.

OnEnterArea Events

An OnEnterArea event occurs when a mobile object enters a specified area. It can be described
in form of a predicate that takes an area and a mobile object as its parameters: OnEnterArea(

< area >,< mobile object >). The area parameter has to be specific, whereas the mobile ob-
jects can be description-based. Whenever the position of a mobile object that fits the specified
parameter is updated so that the previous position was outside and the new position inside the

specified area, an event notification message is sent.
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OnLeaveArea Events

An OnLeaveArea event occurs when a mobile object leaves a specified area. It can be described
in form of a predicate that takes an area and a mobile object as its parameters: OnLeaveArea(

< area >,< mobile ob ject >). The area parameter has to be specific, whereas the mobile ob-
jects can be description-based. Whenever the position of a mobile object that fits the specified
parameter is updated so that the previous position was inside and the new position outside the

specified area, an event notification message is sent.

6.3.3 General Spatial Events

In this section we look at examples of spatial events that, in the general case, cannot be observed
locally if the physical world model is geographically distributed and possibly also distributed
according to the type of model data.

OnMeeting Events

An OnMeeting event occurs when two (or more) mobile objects meet. It can be described
in form of a predicate that takes at least two mobile objects and a meeting distance as its
parameters: OnMeeting(< mobile object 1 >, ..., < mobile object n >, < meeting distance >
). In order to allow the efficient observation of the event, at least one of the mobile objects has
to be specific, the others can be description-based, e.g., it is not possible in a large scale system
to efficiently observe the event that two (arbitrary) students meet. Whenever the positions
of all mobile objects are within the given meeting distance of each other, an event notification
message is sent. In the following, we will focus on the simplest configuration of the OnMeeting

event, i.e., with two specific mobile objects as parameters.

The OnMeeting event cannot in general be observed locally, because it may be the case that the
position information of the mobile objects is stored on two physical world model servers with

adjacent service areas, but the two mobile objects are still within meeting distance.

OnCloseTo Events

An OnCloseTo event occurs when a mobile objects comes within the specified distance of a sta-
tionary object. It can be described in form of a predicate that takes a mobile object, a stationary
object and a distance as parameters: OnCloseTo(< mobile object >, < stationary ob ject >,

< distance >). In this case, the mobile object has to be specific, whereas the stationary object
is description-based, e.g., only the type of object is given. An event notification message is

sent, when the mobile objects come within the given distance of a stationary object that fits



6.3. SPATIAL EVENTS AND THEIR CLASSIFICATION 81

the specification. If the stationary object was specific, we could map the event to a simple

OnEnterArea event with a buffer of the given distance around the area of the stationary object.

The OnCloseTo event cannot in general be observed locally, because the position information
of the mobile object and the stationary objects may be stored on different physical world model

SErvers.

6.3.4 Classification of Spatial Events

Table 6.1 shows a classification of the presented events according to the aspects discussed in
Section 6.2.

Table 6.1: Classification of spatial events

event name trigger | dynamic specific/description observation
parameters parameters

DistPosUpdate value | 1 (position) | specific (mobile object) local, update

ContPosUpdate | time 1 (time) specific (mobile object) local, update

ContAreaUpdate | time 1 (time) specific (area) local, update

OnEnterArea value 1 (position) specific (area) local

description (mobile object)
OnLeaveArea value | 1 (position) | specific (area) local
description (mobile object)

OnMeeting value | 2+ (position) | specific (first mob. obj.) distributed
description (other mob. obj.)
OnCloseTo value 1 (position) specific (mobile object) distributed

description (stationary object)

All update events have one specific parameter that defines the position information to be up-
dated, they have one dynamic parameter that triggers the update, and they can all be locally

observed, given the assumptions from the beginning of this section.

The locally observable spatial events have a geographic location as a specific parameter and the
position of mobile objects as description-based parameter, which is also the dynamic parameter
triggering the observation. It is the fixed geographic location that allows the local observation.

The general spatial events have a mobile object as a specific parameter and another mobile
or stationary object as a description-based parameter. As the physical world model server
managing the position information may change over time due to the movement of the object
and the other object is description-based and may be handled by other physical world model

servers, it is generally not possible to observe these events locally.
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6.4 Observer View of the Physical World Model

In Section 5.4 we presented a number of measures with which the observation of events can be
made more efficient. In the following we show how these can be applied for the observation
of spatial events. We also take the aspects identified in the classification into account, showing

how events from the different classes can be observed efficiently.

We first look at the observer view of the physical world model for discrete probability dis-
tribution functions. Then we present the implementation of the update protocol through the
DistPosUpdate event. Finally, the focus will be on the efficient observation of a number of

concrete spatial events.

In the discrete case, a value is represented as probability mass function instead of a probability
density function. Figure 6.7 shows the probability mass function v;.8 between v;.acc,,;; and

Vi.accmay for a certain granularity Avg.

V,.0
,|||IIH M““l >
L] Ll

v;.acc v,.acc, value

max

A
probability

min

Figure 6.7: Probability mass function of value v;

Definition 15 (Probability mass function of value v;) For a value v; a probability mass func-
tion v;.8 over the accuracy interval [v;.acCpin, vi.ACCmay] with granularity Avg can be given as

Vi.8[Vi.aCCmin, Vi.acCmax] with Y- e v;.8(v) = 1.

The discretization also applies to the time dimension. Figure 6.8 shows the continuous prob-
ability density function for a value over time and a corresponding approximation in form of a

discrete probability mass function over time.

In many cases, a discretization is necessary, as no closed form for the integral exists. The
interesting question is how the granularity of approximation influences the event observation,
i.e., how fine-grained or coarse-grained the discrete probability mass function should be. This

question will be investigated as part of the evaluation in Chapter 7.



6.4. OBSERVER VIEW OF THE PHYSICAL WORLD MODEL 83

180
160
140
120

100
Value

50
40

30
Probability 20

80
10

190
170
40 160

50

30
Probability 5 Value

§ g

10 94
12
Time 13 14 45 © 1o
17
18

Figure 6.8: Comparison of variables specified as continuous probability density functions and
discrete probability mass functions that change over time
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6.5 Update Protocols

In Section 5.2 we presented general classes of update protocols. Concrete instances of these
can be implemented based on the update events presented in Section 6.3.1. The value-based
update protocol for updating the position information of mobile objects can be implemented
based on the DistPosUpdate event. The time-based update protocol for updating the position
information can be implemented based on the ContPosUpdate event.

The DistPosUpdate event implements a value-based update protocol that notifies the subscriber
after the value has changed by more than the given threshold, i.e., in this case, after the mobile
object has moved by more than the specified distance. The accuracy of the position information
is taken into account, which means that the update message is sent, if the probability that the
mobile object has moved by more than the given distance is above the specified threshold

probability.

The fact that the update message is only sent after the value has changed means that the ac-
curacy cannot be guaranteed for a predicate evaluation in real-time. Thus the DistPosUpdate
event implements a reactive update protocol. Instead, the evaluation of a predicate for a certain
point in time can only take place after all update messages have been received that may have
an influence on the state of the physical world model view for this point in time. This is the
case after the maximum delay that such event notification messages may experience has passed.

This maximum delay is specified as part of the information for the respective event domain.

The ContPosUpdate event implements a time-based update protocol that notifies the subscriber

of the new position of a mobile object after an update interval of the specified length has passed.

The position information can be guaranteed to be within an area given by the original position
accuracy plus the distance the mobile object may have moved within the sum of the specified
time interval and the maximum delay the update message may experience. This means we
need to know the maximum speed of the mobile object. If, for example, the mobile object is
guaranteed to be a pedestrian, the accuracy for the same update interval is much higher than for

a car or a train.

Both, the OnMeeting and the OnCloseTo events are implemented based on the DistPosUpdate
event. This guarantees a certain position accuracy independent of the actual speed of the object.
While the mobile object is not moving or just moving within a circular area given by the posi-
tion provided by the last update as a center and the update distance, no update event notification

messages have to be sent, which saves valuable resources.
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6.6 Observation of Concrete Spatial Events

In the following we first look at the main aspects that are relevant with respect to the implemen-
tation of the observation of concrete spatial events. At the end of this section, we describe the

algorithms for two concrete classes of spatial events, OnMeeting events and OnCloseTo events.

6.6.1 General Equation for the Discrete Case

As discussed in Section 5.4, the calculations necessary for the observation of an event can
become quite complex. In a large number of cases, a compact integration is not even possible,
e.g., the integration of a probability density function for a normal distribution can only be
approximated. Therefore, we now look at how we can approximate the general case using
discrete functions. In Chapter 7 we will investigate the trade-off between quality of observation
and performance that we get by adapting the granularity of the discretization. Equation 6.1

corresponds to Equation 5.8 adapted to the discrete case.

In the value dimension we have sums instead of integrals. Instead of integrating over contin-
uous probability density functions (¢;) defined over the accuracy intervals, we have discrete
probability mass functions (J;). These probability mass functions are defined for certain dis-
crete values between the minimum and the maximum of the accuracy interval in steps of the
(absolute) value granularity (Avg). We have chosen the notation step to indicate that the base
for the sum are the values between v;.min and v;.max with steps of Avg. The probabilities re-
turned by the probability mass functions (3) correspond to the probability that we get when
integrating the probability density function (¢) over the interval of size (Avg) assigned to the
discrete value at the center of the interval.

For the discrete values, the predicate is evaluated and the result (0 or 1) is multiplied with the
probabilities of the respective probability mass functions.
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The maximum over the occurrence interval is also only calculated over discrete values. Their
granularity is specified by an (absolute) time granularity Arg. This also means that we do not
get the absolute maximum over the interval, but the maximum of the representative values.

However, in most cases this maximum will be close to the absolute maximum.

As we need a language with which we can express the algorithms for the event observation,
simple event algebras are not sufficient, as they are typically restricted to regular expressions
or propositional logic (see Section 3.4). Therefore, the observation of events is realized as
observation modules written in a high-level language. In the following sections we describe
how these observation modules can be efficiently accessed when the value of a relevant param-
eter has changed, give an overview of their general structure and show how the algorithms for
observing OnMeeting and OnCloseTo events fit into this structure.

6.6.2 Efficient Access to Relevant Observation Modules

The efficient observation of events is especially important in cases where one event can cause
multiple events on a higher abstraction level. To increase efficiency, it should be possible to
check only for the occurrence of those events that can possibly have occurred. The better this

pre-selection works, the more efficient the service will be.

For this purpose, the event observation can be attached to a given parameter. Aftached in this
context means that this parameter will be used for accessing the observation module, i.e., there
has to be an index that is based on that parameter. This works well, if the respective parameter

to which the events are attached is specific, but not, if the parameter is description-based.

For example, an OnMeeting event can be efficiently observed, if both parameters are specific,
e.g., if both mobile objects are explicitly specified, e.g., John Doe and Anne Smith. If the
OnMeeting event is attached to both John Doe and Anne Smith respectively, for every position
update for either John Doe or Anne Smith, the event to be checked can be found efficiently. For

position updates of other mobile objects, the event does not have to be checked.

For an OnMeeting event with one specific parameter, an efficient observation can also be
achieved, e.g., based on a temporary OnEnterArea event around the current position of the

explicitly specified object.

However, with two description-based parameters, this may be impossible, e.g., an OnMeeting
event that any two professors or any two students meet would be very expensive to observe,

i.e., the observation would have to be attached to all respective mobile objects.
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The specific parameter does not have to refer to the same object or area as the dynamic param-
eter, i.e., the dynamic parameter can be description-based. This means that it does not have
to refer to a fixed object or area, but to any object or area that fits the description. For an On-
EnterArea event, the area parameter can be specific and the object parameter description-based,
i.e. the location of the object is the one that is dynamically changing. With a two-dimensional
index structure, e.g., a quad tree, the events that have to be checked for a position update with
a given position can be found efficiently. Thus, the observation of the OnEnterArea event is

attached to the respective area.

6.6.3 Observation Module Structure

To simplify the following discussion, we define the predicate evaluating to true as the probabil-
ity of the predicate evaluating to true to be higher than the threshold probability and predicate
evaluating to false as the probability of the predicate evaluating to true to be lower than the
threshold probability.

The internal structure of an observation module is as follows:

e [nitial check for available model state — check, if necessary model state is available, if

not, this may be a special case that has to be treated separately.

e Approximation check — computationally cheap evaluation of a rough approximation of
the actual predicate that has to be true in all the cases in which the actual predicate is
true, but possibly also in many other cases

o Check predicate for previous state — if the predicate was already true in the previous state,
the event cannot have occurred as the result of a change of a single value, so no further

checks are necessary
o Check predicate for occurrence interval — check, if the predicate becomes true during the

occurrence interval, which, according to our definition, means that an event has occurred.

We now look at the different steps in more detail.

Availability of All Relevant Model State

It is possible that not all the relevant model state for the evaluation of the predicate is available.
This may especially be the case at the beginning of the observation, but can also occur later,
depending on the discard policy. The discard policy determines when historic state is removed

from the observer view of the model.
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If the predicate can still be evaluated for the current state, but not for a previous state, we have a
special case that has to be handled differently from the normal case, because the complete state

may only be available after the update is complete, i.e., at the end of the occurrence interval.

Approximation Check

For the approximation check, there should be an approximation predicate that can be easily
checked, ideally based on a small number of comparisons. The predicate has to evaluate to true
whenever the real predicate also evaluates to true. At the same time, the number of cases in
which it evaluates to true and the real predicate evaluates to false should be kept to a minimum.
So, only if the approximation predicate evaluates to true for the new state, the full calculation for
the real predicate is actually necessary. Evaluating the approximation check for the previous
state does not make sense, because even if the approximation check returns true, we do not
know, if the event had actually occurred for the previous state, so we would have to check

anyway.

The approximation check is especially important, since an event may rarely occur, i.e., its
predicate rarely becomes true, but the underlying state may still change frequently. This would
lead to a huge unnecessary overhead. In general, the approximation check may not be one
single check, but a series of checks, each coming “closer” to the real check and becoming more

complex.

Finding an appropriate approximation is very predicate-dependent. We will present two exam-
ples in Section 6.6.4 and Section 6.6.5 respectively.

Check for Occurrence in Previous State

In this step, it is checked, if the predicate evaluates to true for the previous state, i.e., the state
before the occurrence interval. If the predicate evaluates to true for this state, the event has
already occurred in the previous or some preceding state. This implies that the event cannot
occur with the current state change, because an event occurs when the predicates evaluates to
false in the previous state and to true in the current state. This can only be the case, if the
predicate evaluated to false at some point in between. Thus, if the predicate evaluates to true
for the previous state, we are done, otherwise we have to do the final, and computationally most

expensive step.

Instead of re-evaluating the predicate for the previous world model state, the observer can
keep internal state that the event has already occurred previously. However, in this case, it is

necessary to check if the predicate evaluates to false again, so that further event occurrences
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can also be detected. Since this check is not any simpler than the check for the previous state,

we wanted to stick to the solution without internal state.

In the course of our evaluation, we ran into the following problem for the OnMeeting event: As
already stated, our general expectation is that with increasing threshold probability the number
of false positives decreases, whereas the number of false negatives increases. However, for high
threshold probabilities, the number of false positives increased again (see Section 7.7.3). The
reason for this behavior is that there are actually two kinds of false positives and so far, we had
only taken the first into consideration. Figure 6.9 illustrates the two kinds of false positives for

the OnMeeting event.

= meeting distance

< meeting distance

Figure 6.9: Two kinds of false positives

The solid lines show the actual movement of the people, whereas the fuzzy areas show the
position information that is available. In the first case, the two mobile objects never come
within meeting distance, but due to the limited accuracy, the probability may become larger
than the threshold probability. In the second case, the objects in the physical world always stay
within meeting distance. However, due to the limited accuracy, it may appear that the distance
becomes larger than the meeting distance and then smaller again, leading to the detection of an
event occurrence which has not taken place in the physical world.

We call the second kind of false positives repeated positives. They occur whenever small
fluctuations of the value that are due to changing accuracies of sensor values may lead to small

changes in the occurrence probability.

To avoid the repeated positives, there are two possible solutions: In the first case, the obser-
vation of an event is stopped for a certain period of time after an event occurrence. We call
this period blocking interval. The length of the blocking interval depends on the characteris-
tics of the underlying data, i.e., how fast it is changing in what way, and the requirements of
the application. It was already introduced for the local observation of events in [Dudkowski
2002]. In the second case, the observation is stopped until a certain distance, which is greater

than the meeting distance, is reached again. We call this distance reactivation distance. So, we
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can either have a time-based or a value-based criterion when to continue the observation of an

event.

For the OnMeeting event, we have decided to implement the second variant, because it seems
to be more suitable in the case of two people being on the same street, within a distance close
to the meeting distance and moving in the same direction, which is a realistic case in the city

scenario.

The value-based criterion corresponds to having a second predicate that has to be evaluated.
When this predicate evaluates to true, the original observation continues. The second predi-
cate typically is the negation of the first with different values. Their combination prevents the
oscillation of the evaluation result of the main predicate for oscillating input that we may get
because of inaccuracies in the sensor values and — as a result — in the physical world model.
The two predicates thus create a deadband. This is also a well-known approach in control
theory [Control Systems 2006].

Check for Occurrence during the Occurrence Interval

In this step, it is checked, if the predicate evaluates to true within the occurrence interval.
As already discussed, occurrence intervals of updates can overlap, so the occurrence of an
event may be detected for some point within the occurrence interval, but not at the end. The
granularity of the points in time for which the predicate is evaluated is specified by the time
granularity as shown in Equation 6.1. If the predicate evaluates to true in this step, an event
notification message is created and passed on to the notification node for delivery to interested

clients.

Check for Occurrence in Special Cases

We have a special case if the complete state is available at the end of the occurrence interval,
but not at the beginning. This is typically the case, if there is one or more variable for which
only the first update message has been received. Then it is not possible to check the predicate
for a previous state or during the occurrence interval, but only for the state at the end of the
occurrence interval. We can still consider the event to have occurred, if the predicate evaluates
to true in that state. Under these circumstances, we could talk about the event occurring on

registration. If this makes sense or not depends on the desired event semantics.

6.6.4 Observation of OnMeeting Event

In this subsection we present the different steps of the event observation for the OnMeeting

event.
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Availability of All Relevant Model State for the OnMeeting Event

When observing the OnMeeting event for a particular position update, the position information
of all mobile objects involved has to be known both at the beginning and the end of the oc-
currence interval. We have a special case, if the information is only available at the end of the
occurrence interval. This is the case after the first position update has been received. If there
is some mobile object for which no position update has been received, the observation cannot
take place, so no event is considered to have occurred.

Approximation Check for the OnMeeting Event

The approximation check for the OnMeeting event consists of calculating the distance between
the center of the position areas of each pair of mobile objects. The position area is the area in
which the actual position of the mobile object has to be. If the calculated distance is larger than
the meeting distance plus the accuracy radius of the mobile objects whose position is being
updated plus twice the accuracy radius of the other mobile object — to account for an update of

the position of this object during the update interval — the event cannot have occurred.

This is sufficient, because in the worst case, the actual position of the mobile objects is on
the accuracy radius on the straight line between the two centers. If the distance between those
points is larger than the meeting distance, the mobile objects cannot be within meeting distance,
so the OnMeeting event cannot have occurred. Figure 6.10 visualizes the situation for two
mobile objects.

mobile object 1 mobile object 2
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Figure 6.10: Approximation check for OnMeeting event

If there are more than two mobile objects, it is sufficient if one of the approximation checks

fails to decide that the event cannot have occurred.
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Check for Occurrence at a Point in Time for the OnMeeting Event

Figure 6.11 visualizes the occurrence check for the OnMeeting event for two mobile objects.
The position area of both mobile objects is divided up into squares according to the value
granularity. For all the combinations of pairs of squares between the different position areas,
the predicate is evaluated for the centers of the squares. In the figure, the combinations for one

square of the first mobile object with all the squares of the second mobile object are shown.

The predicate determines if the distance between the two points is smaller than or equal to the
meeting distance. The result (0 or 1) is returned and multiplied with the probability for both
squares that the actual position of the respective mobile object is within the square. The total

probability is the sum of all these probabilities.

Equation 6.2 shows the calculation of the probability (probiningistance(V1,V2,distance)) with
which the positions for two mobile object positions at a certain point in time (¢) are within the

given distance.

prObwithindislance(Vl7V27dl.SIanceyt) = Z:iﬂf}lm (61 (Vl)[t] ’ (Z\‘jzfv[;]l[t] (SQ(VZ)[I]‘

withindistance(vy,v,,d istance)) ) ) (6.2)

The v;.i and v;.j are the centers of the granularity squares. & (v¢) returns the probability that
the location of mobile object k is within the square and the withindistance function returns 1,

if position v is within the specified distance of v,, 0 otherwise.
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Figure 6.11: Observation of OnMeeting event

Equation 6.3 shows the calculations for the complete occurrence check. If the probability of
a position area being valid at the point in time of the evaluation is less than 100%, i.e., there
is an update going on that is not guaranteed to be complete, so that a previous position of the
mobile object may still be valid. If multiple occurrence intervals can overlap, there may be

more than two positions being potentially valid at the same time. In this case, the calculation
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shown in Equation 6.2 has to be done for all the possible positions. The different values that are
potentially valid at time  are given as (x, € S(v2,¢)). The overall result is the sum of the partial
results, weighted with the probability with which each position is valid at the given point in

time (pb(v2,x,,1)).

If no event has already occurred, i.e., if the occurrence flag is set to false, the calculations have
to be carried out for the whole occurrence interval in steps of the time granularity (given as
t1.1...11.5). If the probability for any point in time is greater than the threshold probability, the
event is considered to have occurred and an event notification is sent. Also, the occurrence flag

18 set to true.
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If the event has already occurred in a previous state, it is checked, if the distance between the
mobile objects has already become larger than the reactivation distance, i.e., if withindistance(vy,
va, reactivation distance) evaluates to true for the respective centers of the position areas. If
this is the case, the occurrence flag is set to false and the real observation will be continued in

the following state.

In principle we could also calculate the probability that the reactivation distance has been
reached and compare it to a threshold probability here, but since this has more the charac-

teristics of an approximation, we consider a simple check to be sufficient.

Check for Occurrence in Special Cases for the OnMeeting Event

In the special case that for the position update for which the occurrence is checked, no previous
position update is available, the check described above can only be carried out for the end of
the occurrence interval. This corresponds to observing the event directly after registration. The
resulting semantics is that the user may be notified of the meeting right after registering the

event.
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6.6.5 Observation of OnCloseTo Event

Availability of All Relevant Model State for the OnCloseTo Event

An OnCloseTo event occurs if a specific mobile object comes within the specified distance
of a stationary object that fits the given criteria. For its observation, we need the current and
previous position of the specified mobile object and the stationary objects that fit the criteria.
In order to limit the number of stationary objects for which we need to check if they are within
the specified distance for each position update of the mobile object, we define a neighborhood
area around the mobile object for which we keep the information about the stationary objects.
As long as the mobile object is within a core of the neighborhood area, which we call safe
area, we only need to check for the stationary objects within the neighborhood area. When the
mobile object leaves the safe area, a new neighborhood area will be created. Figure 6.12 shows
both a neighborhood area and a safe area. In the following, we look in more detail at how the

neighborhood area is kept up-to-date.

The stationary objects are first queried when the observation of the event is initialized. The
query has to be repeated, when the mobile object leaves the safe area. At that point, a new
neighborhood area is created. For determining when the mobile object leaves the safe area,
a temporary OnLeaveArea event is registered for the mobile object and the safe area. When
the mobile object leaves the safe area, the OnCloseTo observation module receives an event
notification message and as a result initiates a new query for stationary objects in the new
neighborhood area around the most recent position of the mobile object. As it is not clear in the
general case, in which direction the mobile object may eventually be moving, it makes sense to
have a circular safe area and neighborhood area respectively.

The choice of the neighborhood area’s size depends on the specified distance and how often
the stationary objects should have to be queried in the worst case. The worst case is when the

mobile object is moving at its maximum speed.

The size of the safe area then has to be chosen in such a way that there is enough time before the
mobile object leaves the area for which the potentially relevant stationary objects are available
so that the following steps have been completed: the OnLeaveArea event has been detected,
the resulting event notification message has been delivered, and the following query for the
stationary objects in the new neighborhood area has been answered. In the following, we look
at how the radius of the safe area and the neighborhood area can be calculated based on infor-
mation about the mobile object (maximum speed), event domain information (message delay),
a worst-case estimate for the processing time, and the distance specified for the OnCloseTo
event. As already stated, the event domain typically does not provide a strict upper bound,
but rather a “statistical guarantee”. This also means that the observation cannot be absolutely

guaranteed to work in all cases, but it will work in the vast majority of cases.
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Figure 6.12: Safe area and neighborhood areas for OnCloseTo event

The radius for the safe area is calculated as shown in Equation 6.4. r,. is the accuracy radius
for the mobile object, #uery_min 1 the minimum time interval between two queries. vy, i8 the
maximum speed with which the mobile object is moving.

I'safe_area = Vacc + tquer}unin * Vinax (64)

The radius of the neighborhood area is then given by Equation 6.5.

T'neighborhood _area = Vsafe_area + tmux,pr()cess * Vinax + d (65)

Here tax_process 15 the maximum time between leaving the safe area, querying for the stationary
objects in the new neighborhood area and having processed the results. This value can be
estimated based on the maximum message delay from the event domain information plus the
worst-case estimate for the processing time. v, is again the maximum speed of the mobile
object. d is the specified distance. The idea here is that, after leaving the safe area, it still has

to be possible to observe the event until the stationary objects for the new neighborhood area
are available.

The candidate stationary objects for which the occurrence of the events has to be checked are
always those in the current neighborhood area.
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Approximation Check for the OnCloseTo Event

The approximation check for the OnCloseTo event and one of the candidate stationary objects
consists of calculating whether the center of the position area of the mobile object is contained
in the buffer around the area of the stationary object. As shown in Figure 6.13, the buffer
is constructed by taking the bounding segment of the object area following the maximum and
minimum latitude and longitude respectively. On each side the specified distance plus twice the
accuracy radius around the center of the mobile object is taken. If the center is not contained in

the resulting segment, the event cannot have occurred, so no further checks are necessary.

mobile object

stationary object

accuracy accuracy  distance
radius  radius

bounding segment

extended bounding box?

extended bounding segment

Figure 6.13: Approximation check for OnCloseTo event

Check for Occurrence at a Point in Time for the OnCloseTo Event

Figure 6.14 visualizes the occurrence check for the OnCloseTo event for a certain point in time
and one of the candidate stationary objects. Again the position area of the mobile object is
divided up into squares according to the value granularity. For all squares, the predicate is
evaluated for the centers of the squares. The result (0 or 1) is returned and multiplied with
the probability that the actual position of the mobile object is within the square. The total
probability is the sum of all these probabilities. Equation 6.6 shows the calculation of the
probability (prob) for the occurrence of an OnCloseTo event for a mobile object and a stationary

object at a certain point in time (fy).
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Probyishindistance (V1, Stationary ob ject  distance,t) :=
Z::ﬁg}vl[t] (81(V1)[t] -withindistance(vy, stationary 0bject,distance)> (6.6)
The v;.i are the centers of the granularity squares. 8;(v;) returns the probability that the mobile
object’s location is within the square and the withindistance function returns 1, if position vy is

within the specified distance of the stationary object, 0 otherwise.
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Figure 6.14: Observation of OnCloseTo event

As the OnCloseTo event involves only one dynamic variable — the position of the mobile object
— it is sufficient to observe the event for the state before the change, i.e., at the beginning of the
occurrence interval and at the end of the occurrence interval when we know that the update is

complete. This is shown in Equation 6.7.

DProbyishindistance(V1, Stationary ob ject, distance,ty) < TP

and

Probyishindistance (V1, Stationary ob ject  distance,t;) > TP

6.7)

The distance calculation is more complicated than in the case of the OnMeeting event, because
not the distance between two points has to be calculated, but the distance between a point and

an area has to be calculated.

If probihindgistance 18 already greater than or equal to TP for time #g, the event cannot have

occurred with this update and we are done. Otherwise, the second part of the equation has to
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decide on the event occurrence. If the calculated probability for ¢, is greater than T P, the event

is considered to have occurred and an event notification is sent.

Again, we can get repeated positives due to the limited accuracy. A possible solution is again
to introduce a reactivation distance and keep state about previous event occurrences. However,
in this case, the state has to be kept per stationary object, as the event can occur for multiple

stationary objects.

Check for Occurrence in Special Cases for the OnCloseTo Event

In the special case that for the position update for which the occurrence is checked, no previous
position update is available, the check described above can only be carried out at the end of
the occurrence interval. This corresponds to observing the event directly after registration.
The resulting semantics is that the user may be notified of the OnCloseTo event right after

registering the event.

6.7 Summary

In this chapter we have shown how the generic concept presented in Chapter 5 can be applied
to concrete spatial events. We have presented an event service architecture that allows the
observation of high-level events. We then provided an event classification according to different
aspects that are relevant for the observation of the event. On this basis we classified a number
of typical spatial events. We presented a process with different steps that allows the efficient
observation of events. Finally, we described the identified steps for the observation of two

representative spatial events.



Evaluation

The overall goal of the evaluation is to show the feasibility of observing physical world events
through a physical world model using the methods, algorithms and architecture presented in
the previous chapters. This includes validating the concepts and assumptions that are the basis

of the proposed architecture.

Regarding the evaluation, there are two main questions that need to be answered:

1. Can the proposed approach provide the necessary performance?

2. Can the proposed approach provide the necessary quality?

Question 1 refers to the efficiency and scalability of the components and the event service
architecture as a whole, as expressed by Requirement 5 in Chapter 2. For the efficiency of the
components, the achievable throughput and the experienced delay are the measures of interest.
They provide the basis for estimating the capacity of a system configuration. In order to show
the scalability of the approach, we have to show two things: First, that adding more resources
to the system leads to the expected increase in capacity, and second, that a large scale scenario

of interest can be supported with appropriate resources.

Question 2 pertains to the quality of observation. The quality of observation refers to how
well the observed events correspond to the physical world events that have actually occurred
in the physical world. This can be measured with respect to the number of false positives (as
defined in Definition 10: events that are observed through the model but have not occurred in
the physical world) and false negatives (as defined in Definition 11: events that have occurred
in the physical world, but are not observed through the model). Ultimately, the quality of
the observation depends on the quality, i.e., the accuracy, of the available data, which, as we

have seen in Chapter 5, in turn depends on the sensor accuracy, the properties of the computer

99
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network, the update protocols used and their parameterization. So we want to investigate what
quality can be achieved with realistic data accuracies and if the threshold probability influences

the ratio of false negatives to false positives as expected.

As we have already seen in the previous chapters, the number of parameters influencing the
performance and the quality of observation is high. Therefore, we have to make a number of
assumptions for the evaluation that we think are realistic for the envisioned scenarios. So given
these assumptions, the evaluation provides a good idea of what performance and quality of
observation to expect in the general case. It can, however, not provide an “optimal” setting.
This is especially the case, since such a setting depends heavily on the underlying data and
the requirements of the particular scenario. In Section 7.8 and Section 7.9 we show how to
dimension the system and find suitable parameter values for the given scenarios.

In the following section we discuss evaluation methodologies and the choice of emulation as
the basis for our evaluation. Then we give a short overview of our prototype implementation
(Section 7.2), the emulation environment (Section 7.3), the integration of our work into the
prototype of the Nexus platform (Section 7.4), and the generation of mobility traces to simulate
the movement of people, serving as sensor input for the system (Section 7.5). Altogether, this
provides the basis for the main focus of this chapter, the evaluation concerning the performance
(Section 7.6) and the quality of observation (Section 7.7). A configuration for a complete
scenario is discussed in Section 7.8. The chapter closes with a discussion of the evaluation

results (Section 7.9).

7.1 Methodology

Common methodologies for evaluating computing systems are analysis, simulation and emu-
lation. The suitability of the methodology for an evaluation depends on its goal, the values of

interest and the characteristics of the system to be evaluated.

As stated in the previous section, our evaluation goals are to show the performance of the
event service and the quality of observation that can be achieved. So the values of interest are
throughput and delay to determine the performance and false negatives, false positives or their
ratio for the quality of observation.

The relevant parameters fall into two classes: the characteristics of the underlying computer
network, i.e., network delay, bandwidth, and clock synchronization; and the characteristics of
the event service itself, e.g., the processing costs for executing the observation algorithms and

the processing of notification messages.
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Analysis

An analysis can be used to quantify certain aspects, e.g., the number of messages that need
to be sent. It is especially useful for a relative comparison of different approaches, e.g., with
Approach B 50% less messages need to be sent than with Approach A, but in most cases no

absolute performance measures can be given.

Simulation

Good simulators for all aspects of computer networks are available, e.g., ns-2 [Fall and Varad-
han 2006], but the processing performance that is essential for the overall performance cannot
easily be integrated, especially since it is influenced by a large number of parameters, e.g., the
performance of internal data structures, complex calculations for the predicate evaluation etc.
These may interact in complex ways and it is a priori unclear which parameters are relevant,

which can be disregarded and where the resulting bottlenecks are.

Emulation

Emulation allows running a real implementation of the software on real hardware, emulating a
typical network topology and simulating only certain input data, if necessary. The advantage of
emulation is that all relevant aspects of the software under test are considered and parameters
that turn out to be important cannot be forgotten, ignored or neglected. The disadvantage is that
a full implementation of the software has to be provided with all the potential shortcomings of

a prototype implementation.

Decision

Since we can neither, a priori, estimate the relevance of all parameters that may influence the
performance of the event service, nor provide a reliable estimation for certain parameters, e.g.,
different processing times, we have decided to implement a complete prototype of the event

service and run experiments in an emulation environment to determine its performance.

We will now present the prototype implementation and our emulation environment.

7.2 Prototype Implementation

The prototype implementation of the event service consists of about 40,000 lines of Java 1.4

code. The Java SDK and runtime environment used for the evaluation was JAVA 2 SDK
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1.4.2_06 and the code was executed in a Linux environment, which will be described in more

detail in Section 7.3.

The communication between the components is realized using interfaces with automatically
generated stub/skeleton pairs. This allows the use of different communication protocols. For
the evaluation presented here, an implementation based on the Java implementation of TCP
sockets is used. The messages interchanged between the components are serialized as their
XML String representation, conforming to the Nexus conventions. An alternative SOAP com-
munication based on JaxRPC 1.1 was also developed in conformance with the Nexus conven-

tions, but not used for the evaluation, as first experiments showed a lower performance.

The prototype implementation consists of the following main components: Observation man-
agement nodes, observation nodes and notification nodes. The general functionality and inter-
action between the components was already described in Section 6.1, so the following subsec-
tions focus only on the internal architecture and implementation aspects of the components. As
physical world model servers, context servers developed as part of the Nexus project are used
that also provide basic events, e.g., DistPosUpdate events. These servers will be described in

more detail in Section 7.4 on the Nexus project.

7.2.1 Observation Management Node

Figure 7.1 shows the internal structure of an observation management node. As already pre-
sented in Section 6.1.3, observation management nodes provide the access to the system for the
clients. They manage the whole lifecycle of event observation from the registration, during the
lifetime of the observation, to the final deregistration. The definition of the external interfaces

of the observation management node can be found in [Bauer et al. 2004a].

In the following we present the internal components of the observation management node:

o /O module: The 1/0 module provides the interface to the client. Clients register, initial-

ize, refresh or deregister event observations through this interface.

o Observation management: The observation management is responsible for registering
and initializing an observation. During the observation phase, the client can refresh the
observation, i.e., renew the registration for a new registration interval. At the request of
the client or at the end of the registration interval, the event observation is stopped and

the corresponding management information is removed from the system.

For registering an event observation, the observation management needs information
about the structure of the event observation, e.g., the sub-events that need to be registered
and the relevant parameters, which play an important role in placing the observation. This

information is provided through registration modules.
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Figure 7.1: Internal structure of an observation management node

e Registration module loader: The registration module loader loads the registration mod-
ules. The registration module loader first checks, whether a registration module is avail-
able locally. If not, it has to be downloaded from a web server, i.e., by a Java class loader
over HTTP. Of course there are security issues related to downloaded code. Therefore,
the download could be restricted to trusted servers and only signed observation modules

could be accepted.

e Registration module: The registration module is initialized with the registration message
and the registerSubEvents method is called that registers the necessary sub-events by
calling the relevant observation management methods. The information about the regis-
tered sub-events is then returned to the observation management, providing a basis for

placing the event observation of the high-level event.

7.2.2 Observation Node

The original observation node was designed and implemented by Andreas Boronas in his
diploma thesis [Boronas 2003]. It was later modified to fit new requirements and ensure the
proper integration into the event service as a whole. Figure 7.2 shows the internal structure of
an observation node. The definition of the external interfaces of the observation node can be
found in [Bauer ef al. 2004a].

In the following we present the internal components of the observation node:
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Figure 7.2: Internal structure of an observation node
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e Registration component: The registration component provides the interface for the obser-
vation management node, or the client, if the client should directly contact an observation
node. The registration message contains the information that is necessary for initiating

the observation, i.e., the observation module and its parameters.

e Observation module manager: When a new event is registered, it delegates the loading of
the respective observation module to the observation module loader and then initializes
the returned observation module. During the lifetime of the observation, it is responsible
for the management of the observation modules and their deregistration; we employ a
soft state approach, so the registration has to be renewed regularly.

e Observation module loader: The observation module loader loads the observation mod-
ules. The observation module loader first checks, if an observation module is available
locally. If not, it has to be downloaded from a web server, i.e., by a Java class loader
over HTTP. Of course there are security issues related to downloaded code. Therefore,
the download could be restricted to trusted servers and only signed observation modules

could be accepted.

e Observation module: An observation module implements the evaluation of a predicate
that describes an event. At startup, it is initiated with the event parameters provided
by the registration message. During the event observation, it receives event notification
messages that are stored in notification queues by an internal notification queue manager,
which will be described in more detail in Subsection 7.2.3. The information from the
notification queues is then used to update the internal state of the observation module. It
is checked, if the resulting state change makes the predicate become true. If additional
information is needed, an observation module can also query a physical world model

SEIver.

e [nput modules: Input modules provide an infrastructure for the observation modules.
This means that observation modules do not have to implement their communication

themselves. Instead they only communicate with a single component, the dispatcher.

— Dispatcher: Observation modules hand over registrations for sub-events, queries
etc. to the dispatcher that passes it on to the correct input module, so the observation

module does not need to know about the input modules themselves.

— Event notification input module: The event notification input module is used by the
observation modules to register events and receive event notification messages. The
module passes on event registration messages from the observation modules to the
observation management nodes and passes the event notification messages from the

notification node on to the observation modules.

— Query input module: The input module sends queries to physical world model

servers and returns the results to the requesting observation modules.
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— Timer input module: The timer input module registers timer events and passes on

event notifications when a timer event has occurred.

e Notification module: When the occurrence of an event is detected, the observation mod-
ule passes on an event notification message to the notification module, which hands it

over to the notification service to deliver it to all the clients interested in the event.

7.2.3 Components for Implementing Observation Modules

To efficiently implement observation modules, common and reusable components are needed.
In the following we look at two such helper components, the notification queue manager and
the implementation of the probability distributions. Both are needed for the implementation of
observation modules. We show how these components are used in the implementation of the

OnMeeting observation module.

Notification Queue Manager

In order to access the observer view of the physical world model efficiently, we need to provide
suitable internal data structures for the physical world model data. As the data is supplied in
form of update messages, we have implemented a notification queue manager that provides
access methods through which the observation modules can access the model data they need.
Each observation module has an internal notification queue manager with a notification queue
for each update event for which it receives event notification messages. When an update mes-
sage is received, it is mapped to the respective notification queue and added to this queue.
The notification queue is sorted in order of the end of the occurrence interval of the respective

update event.

The notification queue provides the following interface for accessing the event notification

messages:
e isQueueEmpty — returns frue if there are no event notification messages in the queue,
false otherwise

e addNotification — when a new event notification is received, it is added to the notifi-

cation queue, ordered by the end of the occurrence interval

e getFirstElements (n) — the first n (i.e., the oldest) event notification messages from

the notification queue are returned

e removeFirstElements (n) — the first n event notification messages are removed from

the notification queue and returned
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e getLastElements (n) —the last n (i.e., the newest) event notification messages from the

notification queue are returned

e removelastElements (n) — the last n event notification messages are removed from the

notification queue and returned

e getValidElements (time) — the event notification messages containing values that are

valid with more than 0% probability at the given time are returned.

Figure 7.3 shows which elements would have to be returned by the getvalidElements method

for the end of the occurrence interval of v1.2 for variable 1.
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Figure 7.3: Elements returned for getValidElements method

Notification messages do not have to be kept indefinitely, but it depends on the type of event
how much of a history it needs. Therefore, there are a number of discard policies that are

supported:

o Time-based discard policy: an event notification message will be discarded from the

notification queue after a specified time.

e [Instance-based discard policy: an event notification message will be discarded from the
notification queue after a specified number of new event notification messages have been

received.

e Combined discard policy: an event notification message will be discarded from the no-
tification queue after a specified time, but only if the specified number of new event

notification messages remain in the notification queue.
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The choice of the discard policy depends on the type of event and the update protocol. If the
time interval between new update event notification messages is long, a time-based discard
policy may lead to the case that the physical world model data needed for the evaluation is no
longer available. If the time intervals between update event notification messages are small and
the occurrence intervals are overlapping, the number of instances should not be too small, so

that the probability of different values being valid at a certain time can be determined correctly.

Probability Distributions

Depending on the characteristics of sensors and update protocols different probability distribu-
tions have to be supported. Here, we focus on normal distributions and uniform distributions.
The probability distributions are represented as continuous probability density functions, but
we have to work with discrete approximations of a certain granularity. We have implemented
classes that provide us with the discrete values and their associated probabilities in the desired

granularity.

For the time dimension we need one-dimensional distributions, whereas for the location we

need two-dimensional or possibly three-dimensional distributions.

In Java, we have used long for storing the time in milliseconds and 2DCoordinate for storing

coordinates with a double each, representing the latitude and longitude in degrees respectively.
The interface of the probability distribution classes looks as follows:
e Constructor ProbabilityDistribution (Vector parameters). The parameters for
the respective data types (long, double, 2DCoordinate, ...) are:

— Uniform distribution: mean, accuracy interval
— Normal distribution: mean, standard deviation, [accuracy interval]
e Vector getValues (double granularity): Generates discrete values based on its
distribution and the given (relative) granularity and returns a Vector of Probability-

Value consisting of the discrete value of the correct data type and the probability as
double.

e Object getRandom(): Generates a random value of the correct data type based on the

probability distribution.

7.2.4 Implementation of the OnMeeting Observation Module

In the following we present pseudo code for the implementation of an observation module. We

have chosen the OnMeeting observation module as an example. The OnCloseTo observation
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module has a similar structure. The pseudo code follows the Java syntax. We show how the

notification queue manager and the probability distributions are used.

The structure of the implementation follows the algorithm for the observation of the OnMeeting
event presented in Section 6.6.4. The pseudo code gives only the version that takes into account
the reactivation distance. The initial version did not have the first step, but an additional step
between the third and fourth step that checked the probability of the predicate evaluating to
true for the time before the occurrence interval. The current implementation supports both
versions, depending on a reactivation flag. We mention this here, because the observed quality

of observation of the two versions will be compared in Section 7.7.

The core of the check for the occurrence of an event is implemented by the evaluate method of
the observation module that is presented in the following:

boolean evaluate (EventNotification updateNotification, int queue) {
// update notification is for object associated with

// given queue

First, it has to be checked, if the event has already occurred previously. In this case, it has to be
checked, if the observation can be reactivated after the reactivation distance has been reached
(not shown here).

if (eventAlreadyOccurred) {
checkReactivationDistance (updateNotification, queue);

return false;

Second, it has to be checked, if the necessary model state is available.

[

otherQueue = (queue + 1) % 2;
if (queueManager.isQueueEmpty (otherQueue) {

return false;

Third, the approximation check determines, if the real check has to be executed, or if the event

cannot possibly have occurred.

// retrieve last value for other object valid before
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// occurrence interval

otherObjectBeforeBeginInterval = queueManager.
getValidElements (updateNotification.getBeginInterval()-1);
lastUpdateOtherObject = otherObjectBeforeBeginInterval.getLast ();

meanPositionUpdatedObject = updateNotification.getCoordinate();
meanPositionOtherObject = lastUpdateOtherObject.getCoordinate();
accuracyUpdatedObject = updateNotification.getAccuracy();

accuracyOtherObject = updateNotification.getAccuracy();

if (meanPositionUpdatedObject.distance2DTo (meanPositionOtherObject)
> (this.meetingDistance + accuracyUpdatedObject +
accuracyOtherObject)) {

return false;

Fourth, it is checked, if there is some point in the occurrence interval for which the probability
that the predicate evaluates to true for the state before the update is greater than the threshold
probability. If this is the case, the event is considered to have occurred. The check for the event

occurrence is done for the whole occurrence interval in steps of the time granularity.

// calculate parameters for time distribution

accuracy = (endInterval - beginInterval) / 2;

meanTime = beginInterval + accuracy;
timeDistribution.setParameters (new Long(meanTime),
new Long(accuracy));

timesForChecking = timeDistribution.getValues (timeGranularity);

// get discrete value distribution for the updated value
// (value dimension)
probValuesUpdatedObject = getProbabilityDistribution (updateNotification,

valueGranularity);
for (int 1 = 0; 1 < timesForChecking.size(); i++) {
// get all the values that are potentially valid at the point in time

// for which the predicate is to be checked

otherObjectValues = queueManager.
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getValidElements (otherQueue, timesForChecking[i]);

// get the probability distribution for each value (value dimension)
probValuesOtherObject =
getProbabilityDistributions (otherObjectValues,

valueGranularity);

// get the probability with which the different values are
// valid at the given point in time (time dimension)
probValuesUpdatedObjectValid =

getProbValuesValid(updateNotification, timesForChecking[i]);
probValuesOtherObjectValid =

getProbValuesValid(otherObjectValues, timesForCheckingl[i]);

// do the actual calculation as in Equation (5.2) for all

// possible combinations of object positions

probability =

calculatePredicateProbabilityForPointInTime (

probValuesUpdatedObject,
probValuesUpdatedObjectValid,
probValuesOtherObject,
probValuesOtherObjectValid)

if (probability >= this.thresholdProbability) {
// event occurred

return true;

7.2.5 Notification Node

The notification node was implemented by Alexander Till as part of his diploma thesis [Till
2002]. The definition of the external interfaces of the notification node can be found in [Bauer
et al. 2004a].

As presented in Section 6.1.2, notification nodes deliver event notification messages from
sources to all interested clients. They have an internal subscription register that has a map-
ping from event notification message ID to both local clients and notification nodes that have

local clients subscribed for this event notification message ID.
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In order to find all sources for a given event notification message ID, notification nodes use an
advertisement register that has a mapping from event notification message ID to all sources for
event notification messages with this ID. For the advertisement register, there is a distributed
implementation based on Pastry [Rowstron and Druschel 2001]. Pastry is a peer-to-peer system
that allows the efficient routing to the node that has an ID that is closest to a given ID. The
explanation of how Pastry is used for implementing the advertisement register can be found
in [Till 2002]. Additionally, there is a centralized version of the advertisement register. Due
to problems of setting up Pastry in the emulation environment, but also as our focus was not
on setting up the communication, but rather on using it, we used the centralized version for the

experiments described in this chapter.

7.3 Emulation Environment

After looking at the actual implementation of the components, we now present the emulation

environment, in which these components are evaluated.

As emulation environment we used the PC cluster of the NET (Network Emulation Testbed)
project [Herrscher and Rothermel 2002, Herrscher and Maier 2004] in our department. The
cluster consists of 64 PC nodes, each with a Pentium IV running at 2.4 GHz and equipped with
500 MB of RAM. The PCs are connected by both a 1 GBit LAN emulation network and a
100 MBit management network (see Figure 7.4, taken from [Herrscher and Maier 2004]).

The emulation network allows the emulation of network topologies using Virtual Local Area
Networks (VLANSs) to emulate the connectivity of an actual network and NETShapers [Herr-
scher et al. 2002] to emulate the behavior of individual network links, i.e., with respect to
delay, bandwidth and packet loss. The management network is used for the setup so that it
does not interfere with measurements. The clocks of the cluster nodes were synchronized to

within 1 ms.

For our evaluation, we used a maximum of 17 PC nodes connected by the 100 MBit network.
Setting up a more complex network topology with emulated network connections would have
been nice, but would also have added more parameters and hence more complexity to the eval-
uation. We have decided not to do additional experiments with different network characteristics
due to the given time constraints for using the cluster and because the results of changing the
parameters network bandwidth and network delay are relatively predictable. They limit the
maximum throughput and add to the overall delay respectively, which have to be taken into

account when setting up the event domains.

The prototype implementations of the event service components were mapped to the cluster

nodes, so there was a complete event service configuration running on the cluster.
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Figure 7.4: NET Cluster

As it is not feasible to have real sensor data as input to the system, e.g., having real people
equipped with GPS receivers walking around, and also because such experiments are not re-

peatable under the same conditions, the input data for the event observation has to be simulated.

As input for our experiments we used mobility traces that were generated based on mobility
models. The characteristics of these mobility models will be described in more detail in Sec-
tion 7.5. Since the mobility traces provide exact position data, the position data has to be ad-
justed to reflect the realistic sensor accuracy, e.g., that of a GPS sensor (see Section 2.3.1, [GPS
1995, u-blox ag 2002]).

As basis for the event observation on a distributed model, we need physical world model servers
that provide the physical world model data, e.g., the position information of mobile users as
just discussed. These were provided by the Nexus project, which is described in more detail in

the following section.

7.4 Nexus

Even though the results of this work are independent of their use within a particular project, its
development was closely integrated with the Nexus project at Universitidt Stuttgart that started
in 1998 [Hohl et al. 1999] and has been a DFG Sonderforschungsbereich (Center of Excel-
lence) since 2003 [Rothermel et al. 2003b, Rothermel et al. 2003d]. Therefore, we give a short
introduction to show how the results apply to the Nexus project, but also how the Nexus project

provides an evaluation environment for the presented event service.

The overall goal of the Nexus project is to investigate the use and management of large-scale

spatial world models as a means to provide context information to context-aware applications
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[Rothermel et al. 2003a, Rothermel et al. 2003c]. The spatial world models correspond to the
physical world models as we defined them in Chapter 2 except for the fact that in addition to
objects of the physical world, they may also provide virtual objects, e.g., virtual post-its, that
may be placed at a certain location. As the main goal of the spatial world models is to provide
context information, we also often refer to them as context models. In order to efficiently
access context information, efficient access structures are needed [Grossmann et al. 2005]. For
efficiently accessing context information according to location, an underlying location model
is needed [Bauer et al. 2001, Bauer et al. 2002].

Navigation ,Smart Factory™ Reminder Service City Guide Applications

P G R T e e T Al G e
Federation
Data from
World Models
Billions of
Sensors

= Information Spaces
Digital
WWW Libraries

Figure 7.5: Nexus vision

Figure 7.5 shows the vision of the Nexus project. The general idea is that in the near future
there will be a large number of context-aware applications that need context information, e.g.,
location-based information systems [Leonhardi and Bauer 2000,Becker et al. 2002], city guides
[Davies et al. 2002], reminder services [Dey and Abowd 2000, Marmasse and Schmandt 2000],
navigation systems [Baus et al. 2002] or smart factories [Bauer et al. 2003b, Bauer et al.
2004b]. The more sophisticated the application, the more detailed and complex the model

needs to be.

For example, a simple car navigation application may only need the road network, whereas an
indoor navigation application for visually handicapped people may need a much more detailed
model, including dynamic information gathered by sensors. Building such large context models
is expensive, so it makes sense to share them between different applications. However, it is
unrealistic to assume that there will be one single detailed context model from a single provider.

It is more realistic to envision a large number of spatially restricted models from different
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providers. The aim of the Nexus project is to federate these different models to provide an

integrated view to the context-aware applications.

The query-based interaction with the Nexus platform as depicted in Figure 7.6 works as fol-
lows: The application queries a federation component. The federation component first has to
determine the context servers that provide the context data relevant for the query. It does this
by querying the area service register that provides the information about what servers have
context data fitting the query and cover the area of interest. The federation component then

queries those servers. The returned context data is integrated and provided to the application.

Application

Application 1 Application 2 «ox |Application m Tier

—
Context Context
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Figure 7.6: Architecture of the Nexus platform

Federation
Tier

C_Query I Result J

Decomposition Integration

ubqueries (Partial Results

Service
Tier

Context
Server 1

Each context server stores context data for a given geographic area. Since the characteristics of
the context data can vary considerably regarding the dynamics and mobility of the data, there
are different implementations of context servers [Grossmann et al. 2005]. So-called spatial
model servers (SpaSe) store large amounts of stationary data, whereas location servers store
the current position information of mobile objects. Other context servers like sensor servers
for stationary sensors or history servers providing traces of sensor data over time are currently
being developed. There can also be specialized context servers, e.g., a context server that
provides the complete information for a smart home [Lehmann et al. 2004], or a context server
realized based on an embedded system with sensors [Bauer ef al. 2003a]. The context servers

correspond to the physical world model servers in our system model.

The event-based interaction proposed in this dissertation can be seen as a complementary form
of interaction with the Nexus platform. Figure 7.7 shows how the presented event service

architecture conceptually fits into the Nexus architecture.
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Figure 7.7: Nexus architecture with event service components

7.4.1 Location Service

Regarding the event service architecture, the location servers of the Nexus Location Service
(see [Leonhardi 2003, Leonhardi and Rothermel 2002, Leonhardi and Rothermel 2001b]) act
as physical world model servers, providing the position data of mobile objects. The Nexus
Location Service has a hierarchical architecture that allows efficient range queries, position
queries and nearest-neighbor queries. Range queries return all mobile objects within the re-
quested area, position queries provide the current position for the requested mobile object and
nearest-neighbor queries provide the mobile object that is closest to a given position.

The location servers internally have efficient index structures for accessing the mobile objects
based on the identity of the object (position query) and the location (range query). As index for
the identity a hash table is used, as a 2D geographical index for the location, a quad tree [Samet
1984] is used.

7.4.2 Location Server as Physical World Model Server

As part of a student thesis [Dudkowski 2002], the Nexus Location Server was extended by an
event component that allows the observation of locally observable events. The approach was
later extended and generalized in a diploma thesis [Minder 2003]. As discussed in Section 6.3

the locally observable events can be grouped into two different categories:
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e Spatial events that can be observed locally like OnEnterArea events (see Section 6.3.2)
as the observation only depends on the current and previous location of a single mobile

object. The focus of the spatial events is on the fact that the event has occurred.

e Position update events realizing value- and time-based position update protocols (as de-
scribed in Section 6.3.1) - can also be seen as continuous queries. The focus of the update

events is on the new value.

— DistPosUpdate (as described in Section 6.3.1): updates the position of an object

after the object has moved by more than given distance.

— ContPosUpdate (as described in Section 6.3.1): updates the position of an object

every given time interval.

In another diploma thesis, the observation of Location Server events over multiple location
servers was investigated [Csallner 2003]. This included a simpler version of the OnMeeting

event that was not yet based on the general approach presented in Chapter 5 and Chapter 6.

7.4.3 Stationary Object Server

For the stationary objects needed for the OnCloseTo event (see Section 6.3.3) a special purpose
stationary object server was implemented. This was necessary because of the unavailability of
correct and complete interface classes for spatial model servers at the time of the implemen-
tation, as well as installation problems in the emulation environment, as spatial model servers
need a complete DB2 implementation, which could not be provided there. The stationary object
server provides a simple interface allowing only range queries of the following kind: Return all

objects of a certain type with certain attributes that are within the given area.

7.5 Mobility Traces

As we have already seen in Section 7.3, it is not feasible to have a large number of real people
who walk around in the physical world carrying mobile devices with GPS and wireless connec-
tion as a basis for our evaluation. It would even be very difficult to collect a sufficiently large
number of representative real world traces to directly use as a basis for the evaluation of the

event service with hundreds of mobile users.

In such cases, mobility models are often employed to generate mobility traces [Camp et al.
2002]. Typically, very simple models, most notably the random waypoint model [Broch et al.
1998,Johansson et al. 1999], are used. The random waypoint model assumes that mobile nodes

randomly select a destination point and move there along a straight line with constant speed.
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Whereas this kind of movement may be possible in a desert environment, it is not realistic in
a city scenario, as people cannot walk through walls. A graph walk mobility model uses an
underlying graph, e.g., a road network, on which mobile nodes can move. This is more realistic
for a city scenario, but does not reflect the aspect that the density of people in a main shopping

boulevard is much higher than in some remote dead-end alley.

The main question here is how much detail is necessary for our evaluation. It is not a priori
clear, how strongly the underlying mobility model influences the numbers of events being ob-
served or the quality of observation experienced. In other areas, it has been shown that the
choice of the mobility model has an influence on evaluation results [Camp et al. 2002, Nuevo
and Grégoire 2003, Tian et al. 2002]. Therefore, we have decided to use different models and
compare the results, which will be discussed in Section 7.6 and Section 7.7.

For the generation of mobility traces we have used the CANU Mobility Simulation Environ-
ment (CanuMobiSim) developed in our department [Stepanov et al. 2003, Stepanov et al.
2005, Stepanov 2005]. CanuMobiSim can generate mobility traces using a wide range of differ-
ent mobility models. Each mobility model can be seen as consisting of three conceptual parts,

a spatial model, a user trip model and a movement dynamics model.

o The spatial model reflects the spatial constraints that the environment imposes on user
movement. It can also provide the location of points of interests that can serve as possible

user destinations.

o The user trip model describes the user travel behavior. Users typically do not move
between randomly chosen points, but rather have goals requiring activity sequences that
can be achieved by visiting certain points of interest. The activity sequences can, for
example, be modeled as a non-deterministic finite automaton giving probabilities for the
user switching between different activities. The activities can then be mapped to the
locations (points of interest) where the respective activity can be performed. On this
basis, the movement path can be generated.

o Finally, the movement dynamics model describes user speed and direction changes during
his movement along the path. This model can be highly dynamic taking into account the

movement of other users along the path.

In Table 7.1 the parameter settings for the three mobility models chosen for the evaluation are

shown.

A snapshot of the moving mobile objects based on the respective mobility models can be seen
in Figure 7.8.
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Table 7.1: Parameter settings for the mobility models

name

spatial model

user trip model

movement dynamics

model

random waypoint

movement area

randomly chosen

points, movement along

constant speed

between points, chosen

straight line from range 0.56-1.39 m/s
graph walk graph of Stuttgart | randomly chosen constant speed
city center points on graph, shortest | between points, chosen
path between points from range 0.56-1.39 m/s
shopping graph of Stuttgart | main department constant speed

city center

stores, parking lots,
subway stations,
stochastic path selection

between points

between points, chosen
from range 0.56-1.39 m/s

o#93
o#7

T

o#54
o#g9

o#46

Figure 7.8: a) Random Waypoint b) Graph Walk c¢) Shopping Scenario
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Figure 7.9 shows the complete digital map of downtown Stuttgart used for creating the graph
walk and shopping mobility traces. The area is approximately 1250 m x 800 m = 1 km?. The

same area was used for generating the traces based on the random waypoint model.

Figure 7.9: Digital map of downtown Stuttgart

7.6 Performance

Regarding the performance evaluation, the main parameters of interest are throughput and de-
lay. In this section, we first look at the throughput of the main components separately, before
looking at the scalability of the overall system with respect to adding additional components

and the end-to-end delay characteristics.

7.6.1 Components

The components that are most relevant for the performance of the overall system are the
physical world model servers, especially regarding their update characteristics, the notifica-
tion nodes, as their performance determines the communication characteristics, and finally the
observation nodes with the observation modules that actually observe the events. Other com-

ponents like the observation management nodes or the event domain register are only used for



7.6. PERFORMANCE 121

management tasks, which make up only a small proportion of the overall system activities and

thus should play a less important role for the overall performance of the system.

7.6.2 Location Server

The location servers are physical world model servers that provide the position information
of mobile objects. As this is highly dynamic information, the maximum throughput of loca-
tion updates is the most important performance characteristics, as it determines for how many

mobile objects a certain position accuracy can be provided.

The throughput of the location server depends mostly on the number and kind of update events
that have to be evaluated for each position update. The additional evaluation of queries adds to

the load of the location server and further reduces the throughput of position updates.

In the following we look at how the throughput of position updates is influenced by the number
of objects registered, the overall number of events registered, the number of events registered
per object and the different types of events. For this purpose we have implemented two special
events that allow us to give bounds for two extreme cases. With the DistPosUpdate event, we

also look at the common case.

Table 7.2 gives an overview of the different parameter settings.

Table 7.2: Parameter settings for location server

parameter values
number of objects registered 100, 200, 400, 800
number of events registered 0, 100, 200, 400, 800

number of events/object (derived) | 0.25, 0.5, 1
event type AlwaysOccurring event,
NeverOccurring event,

DistPosUpdate event

The AlwaysOccurring event is a special event introduced for evaluation purposes that simply
passes on position updates as update event notification messages without any observation logic.
So there is no observation logic, i.e., we only consider the overhead of generating and passing

on event notification messages.

The NeverOccurring event is the complement of the AlwaysOccurring event as it also does
not have any observation logic, but never passes on any event notification messages. Thus it
provides an upper bound for the observation performance, as any real event will have a more

complex observation logic.
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The DistPosUpdate event was chosen, as it provides the basis for a number of higher level
events, including the OnMeeting and OnCloseTo events, at which we will look in more detail

later in this chapter.

The setup for the evaluation is shown in Figure 7.10. We chose to evaluate the performance of
a location server in a complete event service setup, i.e., including a notification node, because
in a real setup the performance will also be affected by creating event notification messages

and passing them on to notification nodes.
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Figure 7.10: Performance evaluation of location server

The controller acts as a load generator, sending as many position updates as possible to the
location server while going through the mobile objects in a round-robin fashion, so that the
position of each mobile object is updated the same number of times. As underlying mobility
trace, we chose a trace generated based on the shopping mobility model. However, this is
only relevant for the DistPosUpdate event, as the NeverOccurring event never leads to an event
notification message, whereas the AlwaysOccurring event always leads to an event notification

message.

The location server updates the position internally and evaluates all events associated with the
mobile objects. In case an event occurrence is detected an event notification message is passed

on to the notification node that delivers it to the event client.

Each experiment ran for 15 minutes and was repeated five times in order to limit the possible
influence of nondeterministic side effects — none were visible after all, the standard deviation
was between 0.2 and 16.7 updates per seconds — so that each number in the following tables

corresponds to the average of five values.
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Table 7.3, Table 7.4 and Table 7.5 show the number of position updates that a location server
can perform per second, given a number of mobile objects and a number of registered Never-
Occurring events, AlwaysOccurring events and DistPosUpdate events respectively. For the

DistPosUpdate event the reporting distance was set to 10 m.
Figure 7.11 shows a visualization, comparing the performance of the location server for the

AlwaysOccurring, NeverOccurring and DistPosUpdate events.

Table 7.3: Throughput for given number of registered objects and registered NeverOccurring

events in number of position updates per second

Number of events

Number of objects 0 100 200 400 800
100 | 1009 | 873,94 - - -
200 | 994 | 927,87 | 873,69 - -
400 | 1012 | 956,54 | 923,95 | 862,53 -
800 | 1020 | 974,71 | 971,29 | 955,04 | 938,80

As the results show, the performance does not depend very much on the total number of regis-
tered objects or the total number of registered events, but rather on the ratio of registered events
per mobile object, as the numbers in the diagonals of the tables from upper left to lower right

are almost the same. This is visualized in Figure 7.12.

Table 7.4: Throughput for given number of registered objects and registered AlwaysOccurring

events in number of position updates per second

Number of events

Number of objects 0 100 200 400 800
100 | 1009 | 206.06 - - -
200 | 994 | 404.0 | 204.44 - -
400 | 1012 | 639.26 | 402.22 | 200.63 -
800 | 1020 | 781.39 | 651.62 | 394.07 | 199.16

Since the NeverOccurring event does not have any observation logic and its evaluation never
leads to the sending of an event notification message, the experiment gives us the overhead for
only accessing the events to be observed. As can be seen, the performance is reduced by a
percentage between 8% and 14% for a ratio of one NeverOccurring event registered per mobile

object compared to the case where no events are registered for any mobile object.

This means that accessing the objects and events is efficiently supported by the location server.
For the efficient access, the location server and its event component use index structures. A hash

table is used to efficiently access the location of an object based on its ID, a spatial quad tree



124 7. EVALUATION

index structure [Samet 1984] is used to access objects within a certain area (see [Dudkowski
2002]).

Since the observation logic of the AlwaysOccurring event consists of a single method call
returning true, the overhead must be due to creating and passing on the event notification
message to the notification node for each position update of the associated object. This reduces
the performance — given a ratio of one AlwaysOccurring event registered per mobile object —

to about 20% compared to the case without any events registered.

Table 7.5: Throughput for given number of registered objects and registered DistPosUpdate

events in number of position updates per second

Number of events

Number of objects 0 100 200 400 800
100 | 1009 | 92,20 - - -
200 | 994 | 167,75 | 91,21 - -
400 | 1012 | 285,36 | 167,15 | 91,97 -
800 | 1020 | 444,08 | 288,65 | 173,11 | 99,46

The throughput for the DistPosUpdate event is less than half the throughput of the Always-
Occurring event for a ratio of one event registered per mobile object. This is the case, even
though the ratio of updates, for which an event is detected and, as a result, an event notification
message is sent is much lower for the DistPosUpdate event than for the AlwaysOccurring event.

Thus, the observation logic clearly dominates the processing time.
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Figure 7.11: Position updates per number of registered objects with one event registered per

object
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The slight improvement in the numbers between 400 and 800 mobile objects for both the Never-
Occurring event and the DistPosUpdate event (but not the AlwaysOccurring event, where the
creation of event notification messages may dominate the processing time) is probably due to
the actual implementation of the location server, as explained in the following. Similar effects
have been observed in [Dudkowski 2002].

The Nexus location server uses a quad tree index structure to efficiently access the position of
mobile objects based on location (see Section 7.4.1).

The references to the mobile objects are stored only in the leaf nodes of the quad tree and there
is a configurable maximum number of references to mobile objects that can be stored there in
a linear list. If the maximum number of references is exceeded the quad tree node is split up
into four new leaf nodes and the previous leaf node becomes an internal node. In our case, the
maximum number of references for a leaf quad tree node was set to 10, so 400 references to
mobile objects can be stored in a quad tree hierarchy that is four nodes deep (the maximum
number of references in the tree is 4/¢"¢/~1 x 10 = 640 for level = 4), whereas for 800 mobile

objects a hierarchy of depth five is necessary.

If there are less references to mobile objects stored on a leaf node as is the case after a split,
updates to the index structure are more efficient, which ultimately results in the fact that more

location updates per second can be processed.
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Figure 7.12: Position updates per number of registered events per object

Overall, assuming that we only need to observe a single DistPosUpdate event per object to
support higher level events, the location server can support about 600 mobile objects with an
accuracy that requires 0.15 update messages per second for each mobile object. For example, if

the mobile objects are pedestrians with a maximum speed of 1.5 meters per second, this allows
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an accuracy of 10 m. This seems to be a suitable basis for a wide range of location-aware

applications.

7.6.3 Notification Node

The notification service is responsible for the communication within the event service. It passes
event notification messages between notification sources, i.e., physical model servers or obser-

vation nodes, and event clients, i.e., observation nodes or client applications.

Figure 7.13 shows the notification node configuration. Again, the controller acts as a load
generator, this time publishing as many event notification messages as possible, so that the

maximum throughput can be determined.
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Figure 7.13: Notification node configuration

The values shown in Table 7.6 are again the average of five different runs with a duration of
15 minutes each. If there are 100 mobile objects, i.e., 100 different event subscriptions, at the
notification node, it can process about 204 event notification messages per second. For 1000
mobile objects or 1000 event subscriptions, we get 205 event notification messages, so the

overall throughput seems to be independent of the number of event subscriptions.

Table 7.6: Throughput for notification node

Event subscriptions Throughput

100 | 204 messages/second

1000 | 205 messages/second
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7.6.4 Observation Module Performance

As most high-level events are observed by observation modules placed on an observation node,
the performance of the observation modules and the observation node as a whole is the most
critical to the overall system. In the following we first focus on the performance of single

observation modules.

In order to evaluate the performance of an observation module, we have created a pseudo obser-
vation node as an artificial environment that implements the interface between the observation

module and the observation node. Figure 7.14 shows the setup.

Observation
Module

on00

Figure 7.14: Pseudo observation node configuration

The pseudo observation node acts as a load generator, creating incoming event notification
messages. It also provides other input and logs the relevant method calls, e.g., when an event

notification message is sent as the result of detecting an event occurrence.

Observation Module Performance: Special Observation Modules

To find out what the general overhead of processing the event notification messages is, we have
implemented two specialized modules that mark two extreme cases. Both are based on Empty
sub-events. Empty events are dummy events and the respective event notification messages do

not provide any information.

The False event never occurs, i.e., no event notification message is ever created. The True event

always occurs on receiving an Empty event notification message.

Table 7.7 shows the throughput in messages per second for 100, 1000, 10000 and 100000
consecutive event notification messages for both the False observation module and the True
observation module. Each value in the table is the average of five runs. Figure 7.15 visualizes
the results of Table 7.7.
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Table 7.7: Throughput for given number of Empty notification messages in messages per second

Number of event notification messages
Observation module 100 1000 10000 100000
FalseObsModule 582.75 | 905.80 | 1155.16 | 1220.80
TrueObsModule 440.14 | 665.16 | 780.23 | 815.13

As the results show, the average throughput increases with the number of event notification
messages sent, which suggests that there is a significant startup overhead that is clearly visible
if there are only a small number of event notification messages, but becomes negligible in the

long run.

Not surprisingly, the maximum throughput we see in Table 7.7 is achieved with the False
observation module as there is no evaluation logic and no event notification messages have to
be created. The overhead of having to create notification messages can be seen in the numbers
for the True observation module. The throughput is about 33% smaller than the throughput for
the False observation module. Based on that, we can calculate the average time for creating a

notification message as 0.41 milliseconds.
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Figure 7.15: Throughput for False and True observation modules

In the following, we will look at the performance of the OnMeeting observation module and
the OnCloseTo observation module and how the evaluation logic and the data itself influence
the throughput.
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Observation Module Performance: OnMeeting Observation Module

As we have discussed in Section 6.6.3, the general observation logic for events consists of a
number of steps. Depending on the underlying data, not all the steps need to be executed every
time. In this experiment we look at the computational costs depending on the underlying data.
For this purpose we define sequences of data with certain characteristics and determine the

respective throughput.

As the first step, a rough, but computationally cheap test determines whether the event can
potentially have occurred. Only in this case, the real observation step has to be executed. For
this reason, we expect the actual data to have a strong influence on the performance of the

observation module.

Here, we have used the original OnMeeting semantics without reactivation distance. So the
first step — the approximation check — determines, if the mobile objects can possibly be within
meeting distance. This can be achieved by a simple test. So, if the mobile objects are far apart,
the real and expensive second step never has to be executed. Since an event occurs, if the
predicate describing it has become true, the observation logic has to check, if the predicate was
already true for the previous case, in which case no event can have occurred, and no further

steps have to be taken, leading to a cheaper event observation.

Therefore, we have to consider different cases for our evaluation. Figure 7.16 shows different
position update sequences (in form of DistPosUpdate update messages) for two mobile objects

that provided the basis for our evaluation. There are three different states to consider:

1. mobile objects are far apart
2. mobile objects are within approximation, but not within meeting distance

3. mobile objects are within meeting distance

So, the different sequences in Figure 7.16 reflect the following scenarios:

A. mobile objects are always far apart (long distance)
B. mobile objects are always within approximation distance (short distance)
C. mobile objects are always within meeting distance (meeting distance)

D. mobile objects are far apart, come within meeting distance and part again (single occur-

rence)

E. mobile object’s distance constantly changes between approximation distance (multi oc-

currence) and meeting distance.
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Figure 7.16: Sequences of states for the evaluation of the OnMeeting event
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These sequences were repeated in a loop for the duration of the experiment.

As discussed before, the position of the mobile objects is given as a two-dimensional probability
density function over the accuracy area, given in form of two one-dimensional probability
density functions, one for each spatial dimension. The granularity with which the continuous
probability density function is approximated is given as a percentage, which is the same for
each spatial dimension, so the accuracy area is approximated through squares according to the

value granularity. Figure 7.17 shows an example for a value granularity of 0.1.

| ———

Figure 7.17: Discretization of 2D area with granularity 0.1

In the time dimension we have a one-dimensional probability density function over the occur-
rence interval. The granularity of the discretization is given as a percentage of the occurrence
interval, i.e., the occurrence interval is divided into slices with the width of the slice being the
given percentage of the original interval.

For the experiment we used two different settings for the discretization granularities, i.e., the
combinations 0.1/0.1 and 0.3/0.3 for the value and time dimension. The first combination
serves as an example for a fine-grained value and time granularity, the second combination for

a coarse-grained granularity.

Figure 7.18 shows the results for the different scenarios and the two different discretization
granularity settings. Each value represents the average of five runs with 1000 messages being

processed each time.

For Scenario A in which the two mobile objects are far away from each other, a simple approx-
imation is used that does not take the granularity into account, therefore the throughput is the

same here.

In the other scenarios, the throughput for the discretization granularity of 0.1/0.1 is very low,
with a minimum of only 3.64 event notification messages being processed per second for Sce-
nario B, in which the mobile objects are always within approximation distance, but not within

meeting distance.

This is due to the high computational complexity of calculating the occurrence probability.

In the value dimension, for all combinations of discrete points from the two mobile objects
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Figure 7.18: Throughput for OnMeeting observation modules

the occurrence probability has to be calculated, so the complexity grows with the square of the
number of discrete points. In the time dimension, the growth is linear with the number of points
in time over the update interval for which the occurrence probability has to be calculated. So,
overall, we have cubic growth.

The performance in Scenario C is better than the performance in Scenario B, because once the
mobile objects are within meeting distance, it only has to be checked that the predicate was true

before the update; the checks during or after the occurrence interval are not needed.

For the discretization granularity of 0.3/0.3 the throughput is between 130.46 and 153.95 event
notification messages per second, which we consider to be in the acceptable range. In Sec-

tion 7.7 we will investigate, if the resulting quality of observation is also acceptable.

For an overall assessment, the probability for the different cases in a realistic scenario has to be

taken into account. Regarding the observation logic, there are four different cases:

1. objects are far apart
2. objects are within approximation distance, but not within meeting distance

3. objects are within meeting distance: the event has just occurred



7.6. PERFORMANCE 133

4. objects are within meeting distance: the event has already occurred before

In other words, the case in which the objects are within meeting distance has to be split up into

two cases, since the case in which the event has already occurred before is cheaper to compute.

Table 7.8 compares the frequency of the different cases in Scenario D and Scenario E, which
are completely synthetic traces, to the results of a more realistic experiment based on a shop-
ping scenario trace created by the CanuMobiSim simulator based on the parameter settings
described in Section 7.5, where 100 OnMeeting events were observed for 15 minutes. For
Scenario D and Scenario E a total of 1000 consecutive update messages were assumed and the

percentages were calculated on that basis.

Table 7.8: Frequency of the cases in different scenarios

Scenario D | Scenario E | Shopping scenario
Case freq. % | freq. % | freq. %
1. objects far apart 500 | 50% 0| 0% | 11501 91.5%
2. objects approx. dist. | 400 | 40% | 500 | 50% 229 1.8%
3. event occurrence 50| 5% | 250 | 25% 44 0.4%
4. event already occ. 50| 5% | 250 | 25% 792 6.3%

As it turns out, Scenario D and Scenario E can be considered as “worst-case” scenarios when
compared to the more realistic scenario, since the case in which the objects are far apart and

which is cheapest to observe is by far the most frequent there.

Observation Module Performance: OnCloseTo Observation Module

For the observation of the OnCloseTo event, the performance will be influenced by the number
of candidate stationary objects that are within the specified distance. Thus, for evaluating the
throughput of the OnCloseTo observation module, we varied the average number of stationary
objects within the specified distance between 0 and 3. However, all stationary objects used
in the respective experiment were within the neighborhood area, which is downloaded during
the initialization of the observation, to avoid the actual handling of OnLeaveArea events (see
Section 6.6.5) by the PseudoObservationNode. For the granularity in the value dimension, the
values 0.1 and 0.3 were chosen. As there is only one dynamic variable for the OnCloseTo event,
the position of the mobile object, the observation only has to take into account the beginning

and the end of the occurrence interval, so the specification of a time granularity is not necessary.

Figure 7.19 shows the resulting throughput. Again, every value in the graph is the average

taken from five runs of the experiment.
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Figure 7.19: Throughput for OnCloseTo observation modules

Without any stationary objects within the specified distance (or the approximation area), the
throughput is around 135 DistPosUpdate event notification messages per second. For the high
granularity combination the throughput degrades strongly with an increasing number of sta-
tionary objects being within the specified distance of the mobile object. With three stationary
objects within distance, the throughput is only 3.76 event notification messages per second. For
the low granularity combination, the throughput degrades much more gracefully from 102.55
event notification messages per second for 0.5 stationary objects within distance to 63.32 event

notification messages per second for 3 stationary objects within distance.

Depending on how specific the selection of the stationary objects is — e.g., the user is more
likely to specify the stationary object to be of type Chinese restaurant than of type building —

the performance should be acceptable for a large number of scenarios.

7.6.5 Observation Node Performance

In the previous subsection we looked at the performance of only the observation modules them-
selves, using a specialized pseudo observation node as the evaluation environment. In this
section we look at the performance of the observation modules in the context of the real obser-

vation node. The setting used is shown in Figure 7.20.

For the generation of event notification messages, a specialized load generator notification
node is used, the event client notification node also implements the notification node interface

and is used for logging the event notification messages passed on by the observation node.
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Figure 7.20: Observation node configuration

In the following, we look at the overall performance of the observation node based on registered
False, True and OnMeeting observation modules. Due to time restrictions regarding the use of
the emulation cluster, there is no separate evaluation of the OnCloseTo observation module.

Observation Node Performance: Special Observation Modules

Within the complete observation node setting, the False observation module allows a through-
put of 210.63 event notification messages per second as an average for sending a total of 1000
event notification messages, as compared to the 905,80 in the case of looking at the observation

module alone in the previous section.

This throughput corresponds closely to the throughput achieved for the notification node, so we
expect that the limiting factor is the creation and passing on of the event notification messages
form the load generator notification node to the observation node and has not much to do with

the performance of the observation module itself.

In the case of the True observation module, the throughput is 153,44 event notification messages
per second as compared to 665,16 event notification messages when looking at the observation
module alone. The creation of event notification messages by the observation module and
passing it on between the observation node and the event client notification node leads to a

reduced performance compared to the False observation module.

Observation Node Performance: OnMeeting Observation Module

For the evaluation of the OnMeeting observation module, we used the same scenarios as in the

previous subsection (see Figure 7.16).



136 7. EVALUATION

200,00
180,00 3.8 H Granularity 0.1 ——
160,00 B Granularity 0.3
140,00
120,00
100,00
80,00
60,00
40,00
20,00
0,00

second

Notification messages per

Scenarios

Figure 7.21: Throughput for OnMeeting observation modules

Figure 7.21 shows the results of the experiments. For the case, in which the distance between
the mobile objects is greater than the approximation distance, the processing overhead of the
realistic setting is about 23%. For the granularity combination 0.3/0.3 in the other scenarios, the
throughput is only about 50% of the throughput when looking at the OnMeeting observation
module alone. For the granularity combination 0.1/0.1 the performance drop lies between 55%
and 85% leading to a throughput as low as 1.36 event notification messages per second, which
is not acceptable in most scenarios. However, the 0.3/0.3 combination still looks acceptable,
especially since it has to be taken into consideration that, taking the shopping scenario in
Table 7.8 as an example for a realistic scenario, in 91.5% the distance between the mobile

objects is greater than the approximation distance.

7.6.6 Summary Components

In this section, we have so far looked at each component separately. The goal was to get a
general idea about the performance of the individual components as a basis for finding suitable

configurations for the following experiments.

The following list summarizes the most relevant results regarding the throughput:

e Throughput location server with registered DistPosUpdate events: about 94 position up-

dates per second
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e Throughput notification node: about 200 notification messages per second

e Throughput observation node with registered OnMeeting events: about /65 notification
messages per second (estimation based on the measurements in Figure 7.21 and the dis-

tribution of the different cases as shown in Figure 7.8)

These numbers give a rough idea about the possible performance of the system, but are not
sufficient to give an overall picture, as this depends heavily on the underlying scenario. In
the end, we want to have events observed with a certain quality. For that purpose, we need a
certain quality of data, which depends on the accuracy of the data available. The accuracy in
turn depends on the underlying data and the update rate this requires. For example, in a city,
we need a higher update rate for cars than for pedestrians, if we want to have the same absolute

accuracy, because cars can move much faster.

Hence, in the following subsections, we look at a complete configuration of the system using
the shopping scenario traces created by the CanuMobiSim simulator based on the parameter

settings described in Section 7.5, which model the movement of pedestrians in a city center.

7.6.7 Scalability with Respect to Number of Observation Nodes

In this subsection we look at the scalability with respect to the number of observation nodes.
More precisely, we look at how many OnMeeting events can be handled by configurations
with one to four observation nodes, given the mobility characteristics of the shopping mobility

model and DistPosUpdate events with a reporting distance of 10 m.

The underlying idea of the experiments is that if the load can no longer be handled by a certain
configuration, the queues for event notification messages will become full and eventually event
notification messages will be dropped. Before that happens, the average delay for processing
event notification messages will increase significantly. So we expect that the average end-to-
end delay will be fairly constant as long as the configuration can handle the load and explode,

when it can no longer handle the load.

Figure 7.22 shows the configuration for this experiment with n location servers and m ob-
servation nodes that each has a notification node running on the same cluster node. For this
experiment 7 is set to 4, whereas m is varied between 1 and 4. The number of objects registered
was varied between 200 and 1600 in steps of 200.

For each object registered, one OnMeeting event was registered with a meeting distance of
100 m. The summary of all parameters is shown in Table 7.9. The parameters that are varied in
the experiment are shown in italics. Figure 7.23 shows the event domains and their respective

settings for this experiment. The physical nodes are grouped in event domains of 2, 4 and 8
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Figure 7.22: Large cluster scenario

nodes, with different delay and clock synchronization characteristics. The delay information
will be needed in the following subsection. Traces generated from the shopping mobility model
were used for the experiment. The parameters in the square brackets show the duration for the

trace, the number of mobile objects and the id of the trace respectively.

Figure 7.24 shows the results of the experiment. As we can see, the average end-to-end delay
for all cases in which the system is not overloaded is between 1000 and 1500 ms. The configu-
ration with one single observation node can still handle 400, but not 600 registered OnMeeting
events. The configuration with two observation nodes can handle 800, but not 1000 registered
OnMeeting events. The configuration with three observation nodes can handle 1200 regis-
tered OnMeeting and barely 1400 registered OnMeeting events, but with a delay that is already
increased, suggesting that there may be problems if the experiment was run for longer dura-
tions. Finally, the configuration with four observation nodes can still handle 1600 registered

OnMeeting events.

The results of this experiments show that a single observation node can handle at least 400 On-
Meeting events (given the underlying mobility model of pedestrians in a city scenario). Adding
additional observation nodes increases the capacity of the system by at least 400 OnMeeting
events. This suggests that the system scales with the number of observation nodes. For experi-
ments with more mobile objects, additional location servers are needed, because their capacity
for processing updates while observing DistPosUpdates is reached, so we did not do any further

experiments.
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Table 7.9: Parameters for the scalability experiments with the OnMeeting event

Parameter

Value(s)

cluster configuration
observation nodes (m)
location servers (n)

number of objects

mobility trace

duration

events per object
reporting distance
meeting distance
value granularity
time granularity
threshold probability

large cluster configuration
1,23 4

4

200, 400, 600, 800,

1000, 1200, 1400, 1600
shopping [15 min, 200, 1],
shopping [15 min, 400, 1],
shopping [15 min, 600, 1],
shopping [15 min, 800, 1],
shopping [15 min, 1000, 1],
shopping [15 min, 1200, 1],
shopping [15 min, 1400, 1],
shopping [15 min, 1600, 1]
15 min

1

10 m

100 m

0.3

0.3

90%

139
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7.6.8 End-to-end Delay Characteristics

Figure 7.25 shows the end-to-end delay characteristics for the OnMeeting event based on the
measurements with four observation nodes and 1200 registered OnMeeting events as presented
in the previous subsection. The values represent the averages over the whole experiment. The

bars indicate the standard deviation.
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Figure 7.25: End-to-end Delay Characteristics

The end-to-end delay is based on the OnMeeting event and the DistPosUpdate event that lead
to the observation of the OnMeeting event. The average end-to-end delay from the position
update in the location server to the delivery of the event notification message to the event client
is about 1.2 seconds. Noticeable delays are introduced in the communication between the first
notification node and the second notification node (340 ms) and the communication between
the third notification node (same as the second notification node) and the fourth notification
node (287 ms). As the notification nodes are located on different physical nodes, the com-
munication also has to go over the network. However, most of the delay is probably due to
the processing within the notification nodes, especially the serialization and deserialization of

event notification messages.

Another visible delay is introduced between the time the observation module receives the event
notification message and the time the actual observation takes place. This is due to the fact

that for each event domain, a certain maximum communication delay is given. The observation
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module has to wait for this time before observing the event, because during the interval other
event notification messages may still arrive that have an influence on the observation. In the
given configuration, the communication delay was set to 100 ms and 200 ms, depending on the

event domain (see Figure 7.23). This is reflected by the results shown in Figure 7.25 (197 ms).

The remaining significant delays (physical world model server to notification node 1 and event
evaluation to notification node 3) are probably due to the creation of the respective event noti-

fication messages. Here we see a potential for optimization.

7.6.9 Summary

In this section, we have first looked at the throughput of all relevant components separately. As
this only gives a rough idea of the overall performance of the event service, we have then looked
at the scalability of the system with respect to the number of observation nodes available.

The performance of the system in a given scenario depends on the required accuracy, which
in turn determines the necessary number of position updates per unit of time. We have taken
this into account by using mobility traces generated based on a mobility model that aims at

reflecting the movement characteristics of pedestrians in a city center.

We have shown that an event service configuration with four observation nodes can handle up to
1600 OnMeeting events in a city scenario. The end-to-end delay is between 1 and 1.5 seconds.

These results show that the performance of the presented event service prototype is sufficient
for a number of real life scenarios. In the following section, we want to determine if the quality

of observation also fulfills the requirements of real life scenarios.

7.7 Quality of Observation

In order to evaluate the quality of event observation achieved, we need to compare the sequence
of events observed by the event service in a given scenario with the sequence of events that
would have been observed under ideal circumstances in the physical world. Matching the
two sequences, we find observed events that have actually occurred (true positives), observed
events that have not occurred (false positives) and finally events that have not been observed

even though they have occurred (false negatives).

Figure 7.26 shows an extract of such a matching. From left to right the event occurrences in
the physical world and the events observed by the event service are shown along the time axis.
For each event occurrence in the physical world, we check if there is a corresponding event

occurrence that was detected by the event service within a certain matching interval. If this is
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Figure 7.26: Matching observed events with those that actually occurred

the case, we have a true positive, if not, a false negative, and if an event was observed for which

there is no corresponding event in the physical world, it is a false positive.

We calculate the percentage of false negatives with respect to the total number of events that
have occurred in the real world, whereas the percentage of false positives is calculated with
respect to the total number of events observed by the system

In analogy to the respective definitions in the area of Information Retrieval, we define the

following terms that are used to measure the quality of the results:

In Information Retrieval, recall is defined as the percentage of all the documents relevant to a

given query that were actually found.

Definition 16 (Recall) Recall is the percentage of all real-world events to be observed that

were detected by the event service (true positives).

In Information Retrieval, precision is defined as the percentage of the documents found that are

relevant.

Definition 17 (Precision) Precision is the percentage of all events detected by the event service

that actually occurred in the real world (inverse of false positives).

So, for determining the quality of observation we need the occurrence sequence of events in
the ideal case, or at least a close approximation of it, i.e., based on a sufficiently fine-grained
discretization of the position traces. With the exact mobility trace being available as input, the
obvious approach would be to have the event service observe the events based on the position

information with limited accuracy and, in parallel, observe the events on the exact data as
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provided by the trace. In practice however, this is not feasible in real-time, even for relatively
small scenarios. Checking for the event occurrence with a granularity of 100 ms for 100 mobile
objects leads to 1000 position updates/s which can no longer be handled by a single location
server in real-time, even though the observation modules for exact data provide a much better

performance than the corresponding modules for realistic data.

Therefore, we decided to have two separate runs using the same mobility traces. The first one
in real-time observing events through the event service, the second in simulation time for the
local observation on the ideal data. This is done by having a factor with which the simulation
of the mobility trace is slowed down. Based on the respective log files, we match the starting
points of the two runs and consider the slow down factor. Thus the two traces can be matched
as described at the beginning of this section. In the following subsection, we first look at the

parameters that influence the quality of the observation before presenting the evaluation itself.

7.7.1 Parameters Influencing Quality of Observation

As we have seen in the previous chapters, there are a number of parameters that influence the
quality of observation, ranging from the quality of the original sensor data to the characteris-
tics of the update protocol and the approximations used in the observation algorithm. In the

following we present the parameter settings used for the experiments.

Quality of Data

In the value dimension, the quality of data is determined by the sensor accuracy and the update
protocol. The update protocol used for both the observation of the OnMeeting event and the
OnCloseTo event is based on the DistPosUpdate event (see Section 6.3.1) that provides the
position of objects whenever they have moved by more than the reporting distance. Most of
the time, we are not so much interested in the absolute reporting distance, but rather the ratio
to other distances of interest like the meeting distance, e.g., if the meeting distance for an
OnMeeting event is 100 m and the reporting distance is 10 m, the quality of observation should
be the same as in the case where the meeting distance is 1000 m and the reporting distance is
100 m. In the experiments we will investigate the influence of the reporting distance on the

quality of observation.

The reporting distance together with the movement characteristics of the mobile objects de-
termine the update rate necessary to provide the data quality needed for the observation. The
possible update rate in turn is limited by the available bandwidth. So depending on the network
topology, it may not be possible to provide the desired data quality.
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In the time dimension, the quality of data is determined by the synchronization of the clocks on
the computers on which the evaluation takes place. In practice clocks can be relatively closely
synchronized using standard Internet protocols like NTP [NTP 2006].

As we expect the reporting distance to have the most profound influence on the quality of
observation, we will focus on that aspect in our experiments. The available bandwidth together
with the movement characteristics simply limits the maximal reporting distance. The delay
of the network does not influence the quality of the data, but only the time when that data is
available for the observation.

Discretization in Value and Time Dimension

As we have seen in Chapter 6, the continuous probability density functions have to be approx-
imated through discrete versions. We expect that depending on how fine- or coarse-grained the

discretization is, there will be an influence on the quality of observation.

In the value dimension we have a two-dimensional probability density function over the ac-
curacy area, given in form of two one-dimensional probability density functions, one for each
spatial dimension. The granularity is again given as a percentage, which is the same for each
spatial dimension, so the accuracy area is approximated through squares according to the value

granularity. An example for a value granularity of 0.1 was shown in Figure 7.17.

In the time dimension we have a one-dimensional probability density function over the time
interval in which the update must have taken place. The granularity of the discretization is
given as a percentage of the occurrence interval, i.e., the occurrence interval is divided into

slices with the width of the slice being the given percentage of the original interval.

Threshold Probability

As discussed in Chapter 5, we expect that the threshold probability will have an influence on

the ratio of false negatives to false positives.

Mobility Traces

As explained in Section 7.5, there are a number of different mobility models, ranging from
simple random waypoint models to graph walk models and finally models that take into account
detailed movement characteristics of people. Based on these mobility models, we generated
mobility traces. A priori, it is not clear, if the kind and detail of the mobility trace has an

influence on the quality of observation, so we will conduct some experiments to find out.

In the experiments we will use mobility traces with the characteristics shown in Table 7.10.
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Table 7.10: Mobility traces

7. EVALUATION

name mobility model time | objects | traces
shopping [15 min, 100, {1, ..., 5}] shopping mobility trace | 15 min | 100 1-5
graph walk [15 min, 100, {1, ..., 5}] graph walk 15 min 100 1-5
random waypoint [15 min, random waypoint 15 min 100 1-5
100, {1, ...,5}]

7.7.2 Evaluation Scenario
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Figure 7.27: Evaluation scenario

The evaluation scenario depicted in Figure 7.27 corresponds to the minimum setup with all

event service components running on different cluster nodes. As explained above, the compu-

tational overhead for computing the occurrence of events in the exact case is high due to the

high sampling rate, so for the quality evaluation we have to restrict ourselves to a small, but

still meaningful scenario.

The main focus of the evaluation is on the OnMeeting event as this is the most complex event

we have looked at in detail, since it is dependent on the position of two mobile objects, both

given as probability density functions.

A limited number of experiments for the OnCloseTo event suggest that the results obtained for

the OnMeeting events apply to other events as well.
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7.7.3 OnMeeting Event

In this subsection we evaluate the observation of the OnMeeting events according to different

parameter settings, following the parameters presented in Section 7.7.1.

For all the experiments in this subsection we used mobility traces generated based on the shop-
ping mobility model, because we assume that it models the behavior of real users in a city
scenario more realistically than either the random waypoint or the graph walk model. The
influence of different mobility models on the evaluation of the OnMeeting event is further in-
vestigated in Section 7.7.5. For each mobility model, we generated five mobility traces. Each
experiment was run five times for a duration of 15 minutes each. So, with five mobility traces,

every value in the result tables is the average of 25 values.

Quality of Data

In the first experiment, we investigate the influence of the underlying quality of data, i.e., the
accuracy as defined by the underlying update protocol. With the DistPosUpdate event as the
basis for our observation, we have a value-based update protocol that provides an accuracy area
with the reporting distance as its radius and a uniform distribution over the area, as we only
know that unless we receive a new update, the mobile object still has to be within the accuracy

area.

Table 7.11 shows the parameter settings for the experiments. The parameters varied are again
shown in italics. We varied the reporting distance of the DistPosUpdate event using the values
10 m and 30 m for a given meeting distance of /00 m. The value 10 m was chosen as it seems
to be a reasonable value given a GPS accuracy of about 6 m and taking into account that an
update protocol can only provide less accuracy than the actual sensor itself. The value 30 m was
chosen as a value that intuitively may just be good enough to provide reasonable observation

results.

In addition to the reporting distance, the threshold probability was varied with the values 50%,

70% and 90% respectively, covering a wide range of the spectrum.

In order to show the influence of the repeated positives on the overall number of false positives,
we conducted the experiments twice. For the first part, we did not set a reactivation distance,
so the false positives include the repeated positives. For the second part, we set a reactivation
distance of /20 m, which should eliminate the repeated positives.

As the results in Table 7.12 and Table 7.13 and their respective visualizations in Figure 7.28 and

Figure 7.29 show, the reporting distance has a significant impact on the quality of the results.

The result tables first give the average number of physical world events that have occurred, i.e.,

the events that have occurred in the (simulated) real world. As described above, the occurrence
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Table 7.11: Parameters for the quality of data experiments with the OnMeeting event

Parameter Value(s)

mobility trace shopping [15 min, 100, {1,...,5}],
reporting distance 10m, 30 m

meeting distance 100 m

reactivation distance | -, 120 m

value granularity 0.1

time granularity 0.1

threshold probability | 50%, 70%, 90%

cluster configuration | small cluster configuration

number of objects 100

events per object 1

Table 7.12: Averages for the results of the quality of data experiments for the OnMeeting event

without reactivation distance
rep. distance 10 m TP50 | TP70 | TP90

physical world events | 43.2 43.2 43.2

observed events 54.8 453 46.8

true positives 90.9% | 87.5% | 78.5%
false negatives 91% | 12.5% | 21.5%
false positives 23.9% | 21.2% | 25.8%

rep. distance 30 m TP50 | TP70 | TP90
physical world events | 43.2 432 432

observed events 48.9 44.9 49.0
true positives 79.8% | 69.0% | 56.2%
false negatives 20.2% | 31.0% | 43.8%

false positives 19.7% | 24.0% | 38.2%
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of events for this ideal case is determined by observing the events directly on the exact data
from the mobility trace with a fine-grained temporal granularity of 100ms. Then the result
tables list the average number of events that have been observed by the event service for a
given threshold probability (TP). Finally, the percentages of true positives, false negatives and

false positives are listed.

The number of events for the experiments with reactivation distance is lower, because a number
of repeated event occurrences are eliminated, i.e., those in which the mobile objects were within
meeting distance then moved away from each other, staying within reactivation distance, and
then came back to within meeting distance.

Absolute number of false negatives

For the experiment without reactivation distance, the obtained values for the false negatives are
between 2.0 and 2.5 times as high with a reporting distance of 30 m compared to a reporting
distance of 10 m. Even though the overall results for the experiments with reactivation distance
are better, the ratio of the results for the different reporting distances is even worse, with factors
between 2.9 and 4.4.

Altogether, the number of false negatives in the case of a reporting distance of 10 m with a re-
activation distance should be acceptable for a large number of applications, whereas the results
for a 30 m reporting distance will most likely not be adequate, taking a threshold probability of
90% as an example, where more than 30% of the events that actually occurred in the real world

are not observed.

Absolute number of false positives

The overall numbers of false positives are generally high for the experiment without reactivation
distance, but drop significantly, when a reactivation distance is introduced. The differences in
the results for the two reporting distances are not so significant. The number of false positives

for the case with reactivation distance should be acceptable for a large number of applications.

Ratio of false negatives to false positives

As described in Chapter 4 we expect the threshold probability to influence the ratio of false
negatives to false positives. With increasing threshold probability the number of false negatives
should increase as more events that have actually occurred are no longer reported due to the
limited accuracy and the resulting lower probability. For the false positives, it should be the
other way round, since events that do not have occurred in the physical world tend to have a

lower probability. If the repeated positives are taken into account, this may not be the case.

Looking at the results of the experiment, we see that the number of false negatives increases
with increasing threshold probability as expected. This is the case for both the 10 m and 30 m

reporting distance.
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Table 7.13: Averages for the results of the quality of data experiments for the OnMeeting event

with reactivation distance
rep. distance 10 m TP50 | TP70 | TP90

physical world events | 30.0 30.0 30.0

observed events 31.7 30.3 27.9

true positives 96.3% | 94.4% | 89.1%
false negatives 37% | 5.6% | 10.9%
false positives 37% | 1.9% | 0.8%

rep. distance 30 m TP50 | TP70 | TP90O
physical world events | 30.0 30.0 30.0

observed events 30.3 26.7 24.3

true positives 83.5% | 79.6% | 68.8%

false negatives 16.4% | 20.4% | 31.2%

false positives 6.5% | 1.9% | 1.9%
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Figure 7.28: Percentage of false positives and false negatives depending on quality of data
(without reactivation distance)
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Figure 7.28 shows that for a reporting distance of 10 m and threshold probabilities 50% and
70% we see a decrease in the number of false positives, between 70% and 90%, and also
for the 30 m reporting distance, we see an increase in the number of false positives. The
assumption that this is mainly due to the repeated positives is confirmed by the results we get
with a reactivation distance of 120 m. The introduction of the reactivation distance basically
eliminates the repeated positives. Figure 7.29 shows that the number of false positives decreases
with increasing threshold probability as originally expected. This shows that the threshold
probability can effectively be used for influencing the ratio of false positives and false negatives.

—e— False negatives - Distance 10
35,00% = = False Negatives - Distance 30
—&— False Positives - Distance 10
30,00% + —— False Positives - Distance 30 =
o 25,00%
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£ 20,00% —
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0,00% T T

TP 50 TP 70 TP 90
Threshold Probability

Figure 7.29: Percentage of false positives and false negatives depending on quality of data (with

reactivation distance)

Discretization in Value and Time Dimension

Based on the results of the previous experiments, we restricted ourselves to a fixed reporting
distance of 10 m. Instead, we varied the granularity of the discretization in both the value
and time dimension, comparing the combination 0.1/0.1 to 0.3/0.3, the same combination we

looked at for the performance.

The value for the value dimension is applied to both spatial dimensions, so overall, the influence
of the granularities on the calculations is cubic. Thus, the combination 0.1/0.1 is already very
fine-grained, whereas 0.3/0.3 is relatively coarse-grained. Taking more coarse-grained values
will not make much sense, because it will limit the granularities of the probabilities that can
be calculated too much. For example, if the internal predicate is only evaluated for four dif-
ferent values and given a uniform distribution, the possible, the possible results are only 25%,
50%, 75% and 100%. For our experiments this would mean that the values for the threshold
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probabilities 50% and 70% would become the same. As for the other values, the “ideal” combi-
nation depends on the application, the available physical world model data and the underlying

computer network.

Again, we ran the experiment for threshold probabilities of 50%, 70% and 90%. Table 7.14

shows the complete set of parameter values.

Table 7.14: Parameters for the experiments with different granularity settings

Parameter Value(s)

mobility trace shopping [15 min, 100, {1, ..., 5}]
reporting distance 10 m

meeting distance 100 m

reactivation distance | 120 m

value granularity/ 0.1/0.1, 0.3/0.3
time granularity
threshold probability | 50%, 70%, 90%

cluster configuration | small cluster configuration

number of objects 100

events per object 1

Table 7.15 and Figure 7.30 show the comparison of the results for both granularity settings
with a reactivation distance of 120 m. Again, the percentage of false negatives increases with

increasing threshold probability, whereas the percentage of false positives decreases.

Table 7.15: Averages for the results with granularity settings 0.1/0.1 and 0.3/0.3

granularity 0.1 TP50 TP70 TP90
physical world events 30.0 30.0 30.0
observed events 31.7 30.3 279
true positives 96.3% | 94.43% | 89.10%
false negatives 3.70% | 5.57% | 10.90%
false positives 3.68% 1.89% | 0.77%
granularity 0.3 TP50 TP70 TP90
physical world events 30.0 30.0 30.0
observed events 30.16 28.68 26.76
true positives 96.17% | 94.55% | 89.20%
false negatives 3.83% | 5.45% | 10.80%
false positives 4.45% | 1.40% | 0.56%
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As we can see, the chosen settings for the discretization granularity only have a very limited
influence on the results, so the coarse-grained discretization is still sufficient for reasonable
results. As discussed above, significantly more coarse-grained settings will have a negative
influence on the quality, because they reduce the possible results too much.

12,00%
10,00%
o 800%
o
=
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—— Granularity 0.3 - False positives
2,00%
0,00%

TP 50 TP 70 TP 90
Threshold probability

Figure 7.30: Percentage of false positives and false negatives for granularity 0.1/0.1 and 0.3/0.3

7.7.4 OnCloseTo Event

In the following, we have a look at the OnCloseTo event to see, if the parameter settings we
found to be appropriate for the OnMeeting event also lead to reasonable results for the On-
CloseTo event. The reporting distance was set to 10 m, the granularity for the discretization
in the value dimension was set to 0.3 and the threshold probability was set to 50%, 70% and
90% respectively. As there is only a single dynamic parameter value for the OnCloseTo event,
it is sufficient to check for an event occurrence at the beginning and at the end of the occur-
rence interval. Thus there is no need setting a discretization granularity in the time dimension.
There were 100 stationary objects of four different types, each having an area of 20 m by 20 m,
randomly distributed over the area of downtown Stuttgart. The “meeting” distance was set to
60 m.

As the results in Figure 7.17 and their visualization in Figure 7.31 show, the percentage of false
negatives increases with increasing threshold probability as expected, with the actual percent-
ages being lower than their equivalents from the OnMeeting event in Table 7.12. This may be
due to the fact that in the case of the OnCloseTo event only the position information of one

mobile object has a limited accuracy and the position information of the stationary object is
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Table 7.16: Parameters for the experiments with the OnCloseTo event

Parameter

Value(s)

mobility trace
reporting distance
distance

value granularity
threshold probability

shopping [15 min, 100, {1, ..., 5}]

10 m
60 m
0.3

50%, 70%, 90%

cluster configuration
number of mobile objects

events per object

number of stationary objects

small cluster configuration

100
1

100 (20 m x 20 m, 4 types)

exact, whereas in the case of the OnMeeting event, there are two mobile objects with limited

position accuracy.

Table 7.17: Averages for the results of the experiments for the OnCloseTo event

TP50 TP70 TP90
physical world events | 170.0 170.0 170.0
observed events 162.72 153.4 146.2
true positives 94.22% | 88.68% | 84.59%
false negatives 5.78% | 11.32% | 15.41%
false positives 1.52% | 1.75% | 1.60%

The percentages of false positives are low, but there is no clear direction for increasing threshold

probabilities. This may again be due to the repeated positives that also exist for the OnCloseTo

event. Because of time restrictions, we did not implement a version with a reactivation distance.

Overall, the results obtained for the OnCloseTo event correspond closely to those of the On-

Meeting event and therefore match our expectations.

7.7.5 Influence of Different Mobility Models

As we have seen in the performance evaluation, the data itself has a strong influence on the

results. As we have already discussed in Section 7.5, there are different mobility models that

model the movement characteristics of mobile users in a city environment more or less realis-

tically.



7.7. QUALITY OF OBSERVATION 155

18,00%
16,00%
14,00%

© 12,00%

g 10,00% —=— false negatives
8 8,00% —— false positives
o

g 6,00%

4,00%
2,00%
0,00%

TP50 TP70 TP90
Threshold probability

Figure 7.31: Percentage of false positives and false negatives for OnCloseTo event

In other areas, it has been shown that the choice of the mobility model has an impact on the
simulation results [Camp et al. 2002, Nuevo and Grégoire 2003, Tian et al. 2002]. Hence, we
want to investigate the influence of mobility traces generated based on different mobility models
on the observation of events. In the following experiments we looked at traces generated based
on the three mobility models random waypoint, graph walk and shopping mobility model as
described in Section 7.5.

The parameters were set as shown in Table 7.18. Again, there were five different traces for
each of the three mobility models and for each trace, the experiment was run five times for 15
minutes each, so each value in Table 7.19 represents the average of 25 experiments. Due to

time limitations we had to restrict the experiment to a threshold probability of 90%.

As the results in Table 7.19 and their visualization in Figure 7.32 show, the number of false
negatives is lowest for the traces generated from the random waypoint model, increases for
the graph walk model and is highest for the shopping mobility model that provides additional
information regarding the movement of people in a city.

For generating the traces in our city scenario, the destinations within the city center are chosen
and then the mobile object moves there directly. This results in fewer abrupt changes of direc-
tion in the traces generated with the random waypoint model as with traces generated with the
graph-based models, because in the first case the movement is on a straight line, in the other
cases, the edges of the graph have to be followed. Typically, the false negatives will refer to
situations, where the mobile objects are just within meeting distance before one changes the di-
rection, increasing the distance again. This may explain the lower number of false negatives for
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Table 7.18: Parameters for the mobility trace experiments with the OnMeeting event

Parameter

Value(s)

mobility trace

reporting distance

shopping [15 min, 100, {1, ..., 5}],

graph walk [15 min, 100, {1, ..., 5}],
random waypoint [15 min, 100, {1, ..., 5}]
10 m

meeting distance 100 m

reactivation distance | 120 m

value granularity 0.3

time granularity 0.3

threshold probability | 90%

cluster configuration | small cluster configuration
number of objects 100

events per object 1

Table 7.19: Averages for the results of the mobility trace experiments

random waypoint | graph walk | shopping
physical world events 27.6 29.2 30.0
observed events 25.92 27.36 26.76
true positives 94.12% 92.27% 89.20%
false negatives 5.88% 7.73% 10.80%
false positives 0.18% 1.58% 0.56%
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the experiments with the traces based on the random waypoint model. Regarding the difference
in the number of false negatives between the experiments using traces based on the graph-based
model and the shopping mobility model, further investigations would be necessary, which are
beyond the scope of this work. Also, the differences regarding the number of false positives
cannot be explained so easily.
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M False Negatives

10,00% M False Positives

8,00%

6,00%

Percentage

4,00%

2,00%

0,00%

random walk graph walk shopping scenario
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Figure 7.32: Percentage of false positives and false negatives for mobility traces generated from
different mobility models

The conclusion that can be drawn from the results is that the mobility model taken as a basis for
generating mobility traces indeed has an influence on the quality of event observation. As we
assume the shopping mobility model to be the most realistic with respect to the movements of
users in a city center, we took it as the basis for our evaluation. Further research into mobility
models is necessary to be able to realistically model the behavior of mobile users in a city

center.

7.8 Scenario: Presence Service in a City Center

In this section we look at the requirements for providing a service that notifies the user of the
(physical) presence of other users, e.g., friends and colleagues. The intention here is to give
an example of how to dimension a system given application requirements for an envisioned

scenario.

The targeted service area for the presence service is a city center. The goal is to check, if the
requirements could be met by the event service prototype as described in this chapter.
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Initially, we expect to have about 1000 users of the presence service. The service allows the
user to register for notifications regarding the presence of other people based on the OnMeeting

event. We expect that each user, on average, is interested in 10 other users.

So, there will be a total of 10000 OnMeeting events registered with the event service. Based
on the performance measurements in Section 7.6.7 we know that four observation nodes can
handle 1600 OnMeeting events, so we need about twenty-five observation nodes running on

separate CPUs (based on the performance of a 2.4 GHz Pentium IV).

A location server can handle about 94 position updates per second with one DistPosUpdate
registered for each mobile object. Assuming that we need an accuracy of 5 m at the location
server level to provide a 10 m accuracy at the observation node level, and assuming that the
users move at pedestrian speeds (between 0.56 and 1.39 m/s), we need a position update for
every mobile object about every 4 s. With 1000 users, we need about three, better four location

servers to handle the position updates.

We conclude that a real life presence service can be implemented based on the presented event

service.

7.9 Discussion

In this chapter we have shown that the approach presented in this thesis is feasible with respect
to performance and quality of observation. Our Requirement 5, stating that the resulting system

must be scalable, thus can be considered as fulfilled.

The evaluation proves that it is possible to find settings that provide reasonable results for a
wide range of scenarios. Only the use in safety-critical situations is questionable. However this
is mostly due to the limited quality of the underlying data provided by the distributed world
model data and not so much the event service itself.

It can easily be seen that there is a trade-off between performance and quality of observation. If
the underlying accuracy is to be increased, this will lead to an increase in the frequency of the
update rate and thus reduce the number of events that can be observed for a given configuration.
A higher discretization granularity in the value and time dimension leads to a cubic increase in
the computational complexity, but as we could show as part of our evaluation of the OnMeeting

event, a high discretization granularity may not be needed.

In general, the available data accuracy has to be carefully chosen. It is most likely that the
providers of the data, as well as the providers of the observation infrastructure set the maximal
accuracy, because it strongly influences the service they can provide. The provider(s) of the

overall (communication) infrastructure may also want to limit the update rate so they can pro-
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vide their services to a larger number of users. It is also possible that different pricing schemes

are introduced, i.e., the higher the accuracy the higher the price.

As expected, the threshold probability influences the ratio of false positives and false negatives.
How to set the threshold probability depends on both the application and the underlying data.

Regarding the application the question is — is it better to receive more notifications about events
that have not actually occurred, but reduce the risk of missing an actual event — or reduce the
number of notifications about events that have not occurred, but increase the risk of missing an
actual event? Based on the answer to this question, the threshold probability may be (pre-)set

by the application programmer or the user himself.

Taking the presence service as an example, false positives may not be critical, since they only
mean that the other person is a bit further away, e.g., 110 m instead of 100 m, and meeting a
person may be important enough to walk that distance. In other cases, in which the service pro-
vides mainly “nice-to-have” information, false positives may be a nuisance, e.g., when walking
down a street, notifications regarding shops that are in the wrong direction or too far away may
not be helpful.

The actual physical world model data strongly influences the quality of observation that the user
will experience. This is illustrated by the following example: A user registers an OnEnterArea
event for his garden with a low threshold probability, so that he is notified whenever somebody
enters his garden. The quality he will experience depends on the accuracy of the position
information available for the users passing by and the behavior of the users. If all users walk
on the other side of the street and only those who actually want to enter the garden cross the
street, the results will be perfect, even if the accuracy of the available position information for
the users is not very high. If all users walk on the same side, close to the fence, the results will
be poor, even for relatively high position accuracy. In most cases, the actual situation will be

somewhere between those two extremes.

In order to determine suitable settings, a usage scenario may be emulated using realistic mobil-

ity traces and realistic position accuracies.

Regarding further improvements, we see a high potential for parallelization. This is the case
on different granularity levels: the observation of different events, the observation of the same
event for different updates and finally the observation of an event for a single update. Therefore,
multiple general purpose CPUs, but also specialized highly parallelized arithmetic units could
be utilized. For special purposes, like the calculation of area overlap, specialized hardware,
e.g., as found in graphics adapters, could be used.
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Conclusion and Outlook

In this dissertation we have shown that it is feasible to provide large-scale support for observing

high-level physical world events through a physical world model distributed over many servers.

We have presented a concept for specifying physical world events taking the limited accuracy
of the underlying sensor data into account. The absolute quality of observation depends on this
accuracy, but by specifying a threshold probability above which the event is considered to have
occurred we can at least influence the ratio of false positives and false negatives.

We have identified the system properties that influence the quality of the event observation
ranging from the sensor accuracy to the properties of the update protocol and the characteristics

of the computer network.

We have shown how physical world events can be observed through a distributed world model.
Due to the limited accuracy of the underlying data, the occurrence of an event can often only be
determined with a certain probability. We have shown how this probability can be calculated
based on the system characteristics. The event is then considered to have occurred, if the

calculated probability is higher than the specified threshold probability.

We have proposed an architecture that makes the observation of events an explicit part of the
event service. We have introduced an observation service that consists of observation nodes and
observation management nodes. On the observation nodes the actual event observation takes
place. The observation management nodes serve as access points for registering events to the
client applications and are responsible for placing the observation on the observation node that

is most suitable according to the placement strategy.

We have presented an evaluation based on a prototype implementation of this event service
showing the general feasibility of the approach. The focus of the evaluation was on both the

performance and the quality of the observations. In general, there is a trade-off with respect to
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these two goals, but it was shown that reasonable settings for a wide range of scenarios can be
found. As expected, the threshold probability can be used to achieve a ratio of false negatives

and false positives that is suitable for the given application.

8.1 Promising Research Directions

In this section we look at promising research directions that can be followed based on the work

presented in this dissertation.

The cube in Figure 8.1 shows the main dimensions according to which the research directions
can be structured. The first dimension is the system model, the second the observation com-
plexity and the third the placement of the observation. These dimensions will now be discussed
in detail.
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Figure 8.1: Research directions

8.1.1 Extending the System Model

For the purpose of this dissertation we have assumed that events are always observed within a
server-based infrastructure, i.e., the physical world model as well as the observation nodes are

located on servers connected by a relatively stable communication network.
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A different system model could be that the physical world model is stored on mobile nodes
connected through an ad hoc network. The placement of the observation in such a network
requires different considerations, especially since the complexity of the observation is not linear
with respect to certain parameters. For example, events that can be observed locally, i.e., all the
necessary information is within communication range, are much cheaper to observe than those
in which multi-hop communication is necessary. Quality of service aspects are also of interest,
especially as the network is continuously changing due to the movement of mobile object. As
mobile object leave the network and new mobile objects enter, the handover of all the relevant

information has to be performed.

As a third alternative, a hybrid approach can be considered, where the mobile nodes are con-
nected through an ad hoc network, but some of the nodes also have connectivity to a service
infrastructure. Here it is interesting to investigate the trade-offs of observing an event in the
ad-hoc network and in the infrastructure. This is especially the case when the number of events
to be observed increases, so that the number of messages that have to be exchanged in the ad
hoc network becomes so great that it is cheaper to update a server in the infrastructure and
observe the events there. Also the quality of service characteristics may be quite different. The

ad hoc case may have a lower delay, but is possibly less reliable than the infrastructure case.

Another direction for extending the system model is to look at fault-tolerance and event obser-
vation in safety critical systems. It should be investigated which guarantees from the underlying

computer network allow what kind of quality of service with respect to the event observation.

8.1.2 Observation Complexity

Regarding the observation complexity, we have focused on the observation of generic high-
level events that can be building blocks for a wide range of context-aware applications. As the
underlying basis, we have looked at a few update events that correspond to simple continuous

queries.

So, on the one hand, more complex kinds of continuous queries could be supported, on the
other hand, the observation complexity of the events could increase in the sense of observing
complex situation that may be application-dependent. These can be characterized by the wider
range of context data used, the use of application knowledge and the application of reasoning
methods such as rule-based reasoning or Bayesian networks. For example, if a user is standing
close to a bus stop, a bus will be arriving in the next couple of minutes and his calendar shows
an appointment at a location close to the bus line within the next half hour, it can be inferred

that, with a high probability, the user is in the situation waiting for a bus.

For the purpose of this dissertation, we have decided to allow the user to specify predicates

for which observation modules written in a programming language are available. The reason
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was that the complexity for taking into account all the relevant system aspects is rather high.
Providing a language that allows the general description of all relevant aspects, could make
the specification of events rather complicated for the user. The nature of the selected events as

general building blocks for context-aware applications supports this decision.

When investigating general continuous queries and the observation of complex situations, this
decision may have to be revised. Different approaches for such a language as well as the

translation or mapping to observation modules should be investigated.

Regarding the quality of observation, we have so far taken into account the accuracy of the
data. However, we have not considered wrong or missing information. These aspects should

be integrated into a complete quality model that has to be considered for the event observation.

8.1.3 Placement of Observation

As already discussed in Section 5.5, the observer placement strategy is important for both the
user and the operator of the event service. The user of the service wants the best possible event
semantics, i.e., maximal observation accuracy and minimum delay, the operator of the service
is interested in overall performance, stability and scalability. This requires balancing the server

load and minimizing the network load.

As some of the goals are potentially in conflict, e.g., balanced server load vs. maximal ob-
servation accuracy, there have to be trade-offs and potentially complex placement strategies.
Therefore, different placement strategies have to be investigated with respect to the different

goals, leading to a suitable compromise.

As a first step, the optimization strategies optimizing a single goal that are based on one or two

parameters could be investigated:

o System load: to optimize for system load, the load of the possible observation nodes
has to be compared. The advantage is that this is a single value; however, the load is a

dynamic parameter that can change over time.

e Delay: to optimize for delay, the delay of the communication paths between the event
sources and the observation nodes has to be optimized. As this involves at least two
values, it is not a-priori clear, if the sum or some other relation, e.g., the difference of the

values, should be optimized. This may also be dependent on the event type.

e Observation accuracy: as the observation accuracy depends on two parameters, the max-
imal notification rate allowed (affects the accuracy in the value domain) and the clock
skew (affects the accuracy in the time domain), a suitable method to combine the two

values has to be found.
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As a second step, selected multi-goal optimization strategies with multiple parameters could
be investigated. If we abstract from the concrete optimization strategies, we have to solve a
general optimization problem in which a tree of logical observation nodes has to be mapped
to a graph consisting of event sources and observation nodes and minimize “costs”, which are
defined by the parameters, e.g., delay, clock skew, 1/(notifications/s), or a combination of these

parameters.

Another issue that has to be addressed with respect to the observer placement is the dynamic re-
configuration of the observation. Mobile objects move between service areas of location servers
and handovers are performed on that level. To keep the observation optimal, the placement of

the observation has to be adapted.

So far, we have assumed that there are a number of observation nodes that exist and we optimize
based on those. However, the question for a system operator may be where to place observation

nodes in the first place. Thus, a lot of research questions remain to be solved here.
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