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Abstract

THE redistribution of atmospheric, oceanic and hydrological masses on the Earth’s surface
varies in time and this in turn loads and deforms the surface of the solid Earth. Analyzing

such environmental loading signal and modeling its induced elastic displacements are of great
importance for explaining geophysical phenomena. Based on the well-established loading the-
ory, this thesis makes use of two different space-borne measurements, i.e. GPS and GRACE,
along with other environmental loading data to investigate three different aspects of environ-
mental loading and its induced elastic deformations:

Firstly, an increasing concern is observed recently over time variable seasonal signals in
geodesy. Several model based approaches were applied to extract amplitude and phase mod-
ulated annual and semiannual signals. In view of this phenomenon, this thesis introduces an
alternative approach, namely, singular spectrum analysis (SSA). With respect to these model-
dependent approaches, the advantage of SSA lies in data-driven and model-independence.
Several aspects regarding the application of SSA, e.g. optimal choice of window size, are
investigated before showing its abilities. Through applying SSA to the lake level time series of
Lake Urmia (Iran) and the basin averaged equivalent water height time series of the Congo
basin, the capabilities of SSA in separating time varying seasonal signals are demonstrated.
In addition, we find that SSA is also able to extract the non-linear trend as well as long-term
oscillations from geodetic time series.

Secondly, we look into the comparison between GPS and GRACE with an emphasis on GRACE

data filtering. Three types of deterministic filters and two types of stochastic filters are studied
and compared over GPS sites from two regions, i.e. the Europe area and the Amazon area. The
comparisons indicate that no single filtering scheme could provide consistently better perfor-
mance over other considered filters. However, we find that the stochastic filters generally show
better performance than the deterministic filters. The DDK 1 filter outperforms other filters in
the Europe area and the regularization filter of parameter λ = 4, which follows the concept
of the DDK filters, shows optimal performance in the Amazon area. The combination of the
isotropic Gaussian filter of a low smoothing radius, e.g. around 300 km with the destriping
filter is proved to be optimal filter choice if only the deterministic filters are considered.

Thirdly, based on an overview of displacements modeling at various spatial scales, we evaluate
three methods, i.e. two types of half-space approaches and the classic Green function approach,
by using a high spatial resolution local load data along the lower Mississippi river when a se-
vere flood happened in 2011. The equivalence between the two half-space approaches, i.e. point
load approach and surface load approach, are demonstrated with the local load data. However,
the point load approach is recommended for practical use in terms of computational efficiency.
In addition, within such a limited spatial extent, we investigate the differences between the
half-space approach and the Green function approach. It is shown that the half-space approach
predicts larger displacements than the Green function approach and agrees better with the
observed deformations at 11 considered GPS sites. Meanwhile, strong global environmental
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loading effects are found via two global hydrological models, i.e. GLDAS and MERRA. Thus,
a reduction of these far-field loading effects beforehand is suggested before probing the local
crustal structure using the half-space approach.

Last but not least, based on the local load data, the effects of site-dependent Green functions are
studied with two types of site-dependent Green functions, which were generated by modifying
the local crustal structure of the REF Earth model using the CRUST 1.0 and CRUST 2.0 models.
A relative RMS of differences of more than 5 % in vertical component and 25 % in horizontal
components are found with respect to the PREM Earth model based Green functions. It indicates
that the Green functions could contribute more uncertainties in loading induced displacements
modeling than reported in the literature.
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Zusammenfassung

DIE Massenumverteilungen zwischen Atmosphäre, Ozeanen und Hydrologie der Erdober-
fläche variieren stetig und führen im Gegenzug zu Auflasten und Deformationen der

festen Erde. Die Untersuchung dieser Auflastsignale und die Modellierung der induzierten
elastischen Verformungen sind von enormer Bedeutung für die Erklärungen geophysikalis-
cher Phänomene. Basierend auf gängigen Theorien werden in dieser Dissertation die beiden
Satellitenverfahren GPS und GRACE zusammen mit anderen Auflastdaten genutzt, um drei As-
pekte von Auflasten und die von diesen verursachte elastischen Deformationen näher zu un-
tersuchen:

Zunächst lässt sich in der Geodäsie eine wachsende Tendenz erkennen, auch zeitlich variable,
saisonale Signale besser zu untersuchen. Zahlreiche, auf Modellen basierende Verfahren wer-
den angewendet, um Amplituden und Phasen aus jährlichen und halbjährlichen Signalen zu
erfassen. Für diese Aufgabe wird in dieser Arbeit die „singular spectrum analysis“ (SSA) als
alternative Methode dargestellt. Im Gegensatz zu den üblichen modellbasierten Verfahren ar-
beitet die SSA modellunabhängig nur auf Grundlage der Daten. Verschiedene Freiheitsgrade in
der SSA, wie zum Beispiel die Wahl der optimalen Fenstergröße, werden vor der Verwendung
untersucht. Die Fähigkeit der SSA, saisonale Signale zu trennen, wird sowohl an der Bestim-
mung des Wasserstandes für den Urmia-See (Iran) als auch anhand der Zeitreihe der über dem
Kongo-Becken gemittelten Massenänderungen demonstriert. Zusätzlich können mit SSA auch
nichtlineare Trends und langfristige Oszillationen aus geodätischen Zeitreihen extrahiert wer-
den.

Zweitens werden die Daten von GPS und GRACE unter besonderer Berücksichtigung der Fil-
terung von GRACE-Daten verglichen. Drei Arten deterministischer Filter sowie zwei Arten
stochastischer Filter werden untersucht und für die GPS-Stationen von zwei ausgewählten Re-
gionen in Mitteleuropa und dem Amazonasgebiet gegenübergestellt. Der Vergleich bestätigt,
dass keiner der Filter grundsätzlich den Anderen überlegen ist. Jedoch kann gezeigt werden,
dass die stochastischen Filter im Allgemeinen besser abschneiden als die deterministischen
Ansätze. Der DDK 1 Filter führt in Europa zu den besten Ergebnissen, während ein „Regu-
larisierungsfilter“, der dem Konzept der DDK Filter nachempfunden ist, mit einem Regular-
isierungsparameter λ = 4 die besten Ergebnisse in für das Amazonasbecken liefert. Die Kom-
bination aus einem isotropen Gaußfilter mit kleinem Glättungsradius, z. B. 300 km, und einem
„De-striping“-Filter konnte als optimaler Filter bestätigt werden, solange nur deterministische
Filter verwendet werden

Drittens werden nach einer Zusammenfassung der Deformationsmodelle auf verschiede-
nen räumlichen Skalen drei Methoden – zwei Arten von „half-space“-Ansätzen und die
klassische Methode der Greenfunktionen – auf die räumlich hochauflösenden Daten der
Überflutungen im Mississippi-Becken (2011) angewendet. Die Gleichwertigkeit der beiden
„half-space“-Ansätze, einerseits der „point load approach“ und andererseits der „surface load
approach“ werden für lokale Auflastdaten bestätigt. Aus Gründen der numerischen Effizienz
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ist jedoch der „point load approach“ zu bevorzugen. Außerdem werden innerhalb des räum-
lich begrenzten Gebietes auch die Unterschiede zwischen den „half-space“-Ansätzen und
die Methode der Greenfunktionen gegenübergestellt. Es wird gezeigt, dass die „half-space“-
Ansätze größere Deformationen vorhersagen als die Greenfunktionen, wobei die Ergebnisse
besser zu den Beobachtungen der 11 GPS-Stationen passen. Inzwischen können auch größere
globale Auflasteffekte in den globalen hydrologischen Modellen, wie z. B. GLDAS und MERRA,
gefunden werden. Daher wird eine vorherige Reduktion der Fernwirkung von Auflasteffekten
empfohlen, ehe man eine lokale Krustenstruktur mit den „half-space“-Ansätzen erforscht.

Nicht zuletzt werden auch die Effekte der ortsabhängigen Greenfunktionen für die lokalen
Auflastdaten studiert, wobei die beiden ortsabhängen Varianten der Greenfunktionen aus der
lokalen Krustenstruktrur des REF Erdmodells mit den Modellen CRUST 1.0 bzw. CRUST 2.0
erzeugt werden. Im Vergleich zu den Greenfunktionen aus dem PERM Erdmodell wird ein
relativer RMS der Differenzen von mehr als 5 % in der Vertikalkomponente und 25 % in der
Horizonalkomponente beobachtet. Daraus kann man ablesen, dass die Greenfunktionen deut-
lich mehr Unsicherheiten zu den auflastinduzierten Deformationen beitragen, als dies bisher
in der Literatur wahrgenommen wird.
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Chapter 1

Introduction

1.1 Earth’s elastic surface loading

THE Earth system with its atmosphere, ocean, continental hydrology, ice caps and its interior
is subject to a multitude of dynamic processes. Mass variations and mass transports within

the Earth system are happening at a broad variety of spatial and temporal scales and are driven
by extensive interior and exterior forces. Fig. 1.1 displays all themes in terms of their field of
Earth science. These geophysical processes cover from instantaneous to diurnal and to secular
in terms of temporal scales, and from local, regional up to global in terms of spatial scales.
They interact with each other and produce a series of consequences, e.g. crust deformation.
To the interest of this thesis, we focus on mass variations from three geophysical processes,
i.e. hydrology, atmosphere and ocean, which represent most significant mass changes in terms
of the spatial and temporal scales shown clearly in Fig. 1.1.

Comparing to other surface mass loading like ice caps on secular time scales, these three sur-
face mass loading sources present mostly on time scales ranging from monthly to annual and
inter-annual. The resultant surface crust deformation accordingly behaves elastically with the
same temporal resolutions. Thus, these three environmental surface loading components are
called Earth’s elastic surface loading here in this thesis. What’s more, these three environmental
loading components also contribute most signals in various satellite observations, for example,
deformation observations from GPS (Global Positioning System) introduced in Section 1.2 and
time-variable gravity measurements from GRACE (Gravity Recovery And Climate Experiment)
presented in Section 1.3. The following will give a brief description of these three elastic surface
loading components.

Hydrological water loading The water distribution within the global water cycle is a com-
plex system and is the main driving force for life on the land masses. The whole hydrological
cycle is composed of a series of water mass variations, which include evaporation from wa-
ter surfaces and bare soil, evapotranspiration from vegetated land, transport of water vapour
in the atmosphere, cloud droplet formation and cloud dynamics, the mechanisms leading to
liquid and solid precipitation, the movement of water and change in soil moisture in the unsat-
urated soil including surface and river run-off, ground water flow (Rast et al., 2014). Owing to
such a complex hydrological cycle system, water plays a fundamental role in shaping weather
and climate.

Moreover, the hydrological cycle drives continental water to redistribute over the Earth’s sur-
face and it gives rise to a series of geophysical phenomena. One significant phenomenon due
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Figure 1.1: Spatial and temporal scales of geophysical processes within the Earth system (courtesy: Sneeuw et al.
(2005))

to hydrological loading is crust deformation as discussed by van Dam et al. (2001). The pre-
dicted vertical displacements computed from hydrological models can reach up to 30 mm (van
Dam et al., 2001) and show high correlation with observed displacements from GPS. Since then,
the hydrological loading signals began to gain our interests in the spaceborne measurements.
With the advent of satellite gravimetry, e.g. GRACE, hydrological loading signals could be re-
trieved at continental scales with unprecedented precision (Tapley et al., 2004) and studies of
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the hydrological loading induced displacements multiplied using both GPS and GRACE tech-
niques. Several studies have demonstrated the high agreement on the hydrological loading
induced deformations between these two techniques (see Davis et al., 2004; van Dam et al.,
2007; Tregoning et al., 2009; Tesmer et al., 2011; Fu et al., 2012, etc.).

Apart from the spaceborne measurements, several institutes provide operational hydrological
models which are widely applied in hydrological loading related studies for mutual valida-
tion. Commonly used hydrological models are GLDAS (Global Land Data Assimilation Sys-
tem) (Rodell et al., 2004) , WGHM (WaterGAP Global Hydrology Model) (Döll et al., 2003) and
MERRA (Modern-Era Retrospective Analysis for Research and Applications) land surface hy-
drology (Reichle et al., 2011). Hydrological products offered by these institutes are of different
spatial and temporal resolutions, for example, 3-hourly and monthly products with both spa-
tial resolutions of 0.25◦ × 0.25◦ and 1◦ × 1◦ from GLDAS. However, since they are models in
essence, they are not consistent everywhere and suffer from large uncertainties. In addition, it
has been demonstrated that no models is superior to others and performances of these models
are region or basin dependent (Sneeuw et al., 2014; Lorenz et al., 2014).

Atmospheric mass loading Atmospheric mass loading, both tidal and non-tidal, has already
been studied extensively since last century (see Spratt, 1982, etc.). Mass variations in the atmo-
sphere affect both crust deformation and gravity changes at the Earth’s surface (van Dam and
Wahr, 1987; van Dam et al., 1994). Normally, effects due to the atmospheric mass loading are
expected to be removed during the satellite data processing (Dach et al., 2011). For example,
during the GPS data processing, the tidal atmospheric loading effects are well modeled and
removed at the observation level by models recommended by IERS (International Earth Rota-
tion Service) (Petit and Luzum, 2010). Likewise, in the GRACE data processing, an atmosphere
dealiasing procedure, which expects to remove both tidal and non-tidal atmospheric loading
effects, is required to better retrieve the hydrological information (e.g., Han et al., 2004).

However, for the non-tidal atmospheric loading effects, no operational models at the obser-
vational level are available yet for GPS data processing and this effect is normally removed
by climate models after data processing. Several climate models are commonly used to pre-
dict the deformation, e.g. WGHM and NCEP (National Centers for Environmental Prediction)
(Kalnay et al., 1996). As the atmosphere interacts closely with the ocean, an ocean response
correction is required (van Dam et al., 2010). It is worth noting that care should be taken in the
comparison of GPS and GRACE due to their unequal handling of the atmospheric mass loading
effects and this point is also valid for oceanic mass loading. Specifically, it is emphasized in
Section 4.3.

Oceanic mass loading Like the atmospheric mass loading, oceanic mass loading comprises
tidal and non-tidal loading as well. Tidal oceanic loading effects are also well modeled using
the ocean tide models, for example, FES2004 (Finite Element Solutions) model (Lyard et al.,
2006) suggested by IERS. Thus, tidal oceanic loading effects could be eliminated at the obser-
vation level during the raw data processing. For the non-tidal oceanic loading effects, they
are generally computed and removed by making use of ocean bottom pressure (OBP) prod-
ucts from the oceanic models, e.g. ECCO (Estimating the Circulation & Climate of the Ocean)
(Williams and Penna, 2011; van Dam et al., 2012). Alternatively, displacement products due to
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the above-mentioned non-tidal atmospheric and oceanic loading effects are publicly available
from several organizations, e.g. the Global Geophysical Fluids Center (GGFC)1.

In reality, the Earth’s surface experiences the superposition of all loading effects. The elastic
response of the solid Earth to surface load variations shows non-linear motions in different
time scales ranging from long (inter-annual) to short (seasonal) and very short (daily, sub-daily)
scale. These variations are detectable in geodetic observables, e.g. displacements observed by
GPS (see Section 1.2) or derived from gravity spherical coefficients by GRACE (see Section 1.3).

1.2 The GPS technology and its applications

GPS has its root as a successor to military satellite positioning systems developed by the
Department of Defense, USA, in 1960s (Evans et al., 2002). The GPS project was initial-

ized in 1973 to overcome the limitations of those previous satellite positioning and navigation
systems, e.g. needs for more accurate navigation in military and civilian sectors. The whole
GPS system was designed based on the success of the Doppler technique by introducing the
measurement of a biased range to the satellite, which remarkably improved the positioning
precision in the meter level. By 1994, with the completion of a full constellation of 24 satellites,
GPS became fully operational ensuring that users could see sufficient satellites (at least four)
at any time, any where in the world. These 24 satellites are scattered in six evenly distributed
orbital planes at an inclination angle of 55◦. Thus, each orbital plane nominally contains four
satellites. GPS signals are transmitted to an user’s receiver at frequencies L1 = 1575.42 MHz,
and L1 = 1227.60 MHz, which are encoded with the navigation message, e.g. orbit parameters.
Via the navigation message, the receiver can obtain the satellite’s coordinates (Xs, Ys, Zs) in the
geocentric Cartesian coordinate system, i.e. WGS84 (World Geodetic System 84).

The basic principle of GPS positioning is trilateration, which requires minimally three ranges
to three known points. In the case of GPS, the known points are the positions of the available
satellites in the sky and the observed ranges are the distances between the GPS satellites and an
user’s GPS receiver, e.g. a fixed GPS site. GPS has two basic observables. One is code pseudo-
range, which measures the difference in time between the receiver’s local clock and an atomic
clock on board a satellite and multiplied by the speed of light to get the range, can readily
provide us with a positioning precision of meters. The simplified observation equation to com-
pute a GPS receiver’s position (Xr, Yr, Zr) using pseudorange measurements is given by (see
e.g. Kleusberg, 2009)

P = ρ + c(dtr − dts) + dI + dT + ϵ , (1.1)

with
ρ =

√
(Xr − Xs)2 + (Yr − Ys)2 + (Zr − Zs)2 , (1.2)

where P denotes the pseudorange observable from one GPS satellite and c is the light speed;
dtr and dts represent the receiver clock error and the satellite clock error, respectively; dI is the
ionospheric effect and dT denotes the tropospheric effect; ϵ stands for remaining observation
errors. Since the satellite clock error, the ionospheric and tropospheric effects are normally well
modeled, the remaining unknown parameters are the receiver’s position (Xr, Yr, Zr) and the
receiver’s clock error dtr. Thus, a minimum of four satellites are required to constitute four
equations like Eq. (1.1) to resolve the unknown parameters.

1http://geophy.uni.lu/

http://geophy.uni.lu/
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The other observable is carrier phase observation (ϕ), which measures the difference between
the phase of the incoming carrier wave and the phase of a signal internally generated by the
receiver. The corresponding observation equation is formed by (see e.g. Kleusberg, 2009)

ϕ = ρ + c(dtr − dts)− dI + dT + λN + ϵ , (1.3)

where N is an integer phase ambiguity and λ denotes the wave length of the carrier. Measuring
carrier phase is practically to measure the fractional phase (ϕ) and to keep tracking numbers
(N) of the full carrier wave. Therefore, ambiguity resolution is essential to obtain the highest
possible precision for geodetic applications using carrier phase observables. The fractional car-
rier phase (ϕ) can be observed by electronics with precision better than 1 % of the wavelength
(19.0 mm for L1 and 24.4 mm for L2), which corresponds to the accuracy of a few millimeter
level (Blewitt, 1989).

With the development of GPS, in 1994, the official organization – the International GPS Ser-
vice (IGS, now renamed as International GNSS Service) was established (Beutler et al., 1994b).
Since then, GPS had its fast development in 1990s toward high precision, which includes fur-
ther refinement of tropospheric modeling (Davis et al., 1993), improved orbit models (Beutler
et al., 1994a) and reference system conventions (McCarthy, 1996). In addition, data reprocess-
ing of global GPS datasets began in earnest since the foundation of IGS and all levels GPS prod-
ucts, from raw observations to coordinate time series, are made publicly available by IGS since
that.

With the further advancement of ambiguity resolution algorithms and background models,
e.g. ionospheric and tropospheric delay models, station coordinate time series provided by the
first IGS data reprocessing campaign, which contributed to ITRF2008 (International Terrestrial
Reference Frame) (Altamimi et al., 2011), can reach a median repeatability of 4.7 mm in the ver-
tical and 1.5 mm in the horizontal coordinates (Collilieux et al., 2011). Currently, the second
IGS data reprocessing campaign contributing to the forthcoming ITRF2014 is under develop-
ment. Additionally, the success of GPS has led to the development of similar systems and four
positioning systems currently exist. Such multiple systems are generally referred to as GNSS

(Global Navigation Satellite System).

Apart from IGS, other organizations or institutes, e.g. JPL (Jet Propulsion Laboratory) and NGL

(Nevada Geodetic Laboratory) from America, also provide global continuous coordinate time
series for public using state-of-the-art processing techniques. Furthermore, several regional
GPS networks with dense coverage of stations, e.g. SIRGAS (Geodetic Reference System for the
Americans) and EPN (EUREF Permanent Network), are operating their processing and combi-
nation centers to provide precise products for regional applications.

Thanks to those organizations or institutes, for more than two decades, a global network of
GPS stations (see Fig. 1.2) has been providing us with continuous measurements of surface dis-
placements. These coordinate time series have allowed us to monitor a variety of geophysical
phenomena, such as tectonics, geodynamics, post-glacial rebound, post-seismic deformations
(Herring, 1999). In addition, one more significant feature of the GPS time series is to help study-
ing the surface mass loading phenomenon at global (e.g., van Dam and Wahr, 1987; van Dam
et al., 2001), regional (e.g., Heki, 2001) and local scales (e.g., Bevis et al., 2004).
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Figure 1.2: A global network of GPS sites (courtesy: IGS).

GPS for geophysics GPS contributes to geophysics through comparing the observed and mod-
elled movement of the Earth’s surface (Blewitt, 2007). The observed surface displacements
represent the combination of a variety of geophysical phenomena with different temporal and
spatial scales, which requires geophysics to be modelled as a whole. However, most geophys-
ical phenomena are modelled separately in practice, such as ocean tidal models. GPS time
series with different time length and resolution are required to explore different geophysical
processes in terms of time resolution of the geophysical phenomena.

Short but high-sampling rate GPS data, for example 1 Hz GPS data, are utilized to study co-
seismic displacements (e.g., Larson et al., 2003), seismic waves (e.g., Nikolaidis et al., 2001),
volcanism (e.g., Larson et al., 2001), which last from few seconds to few minutes. To inves-
tigate the tsunami loading, storm-surge loading and tidal loading effects, high-sampling rate
GPS products with longer time span are processed and analyzed. Deformations due to the
above-mentioned elastic surface mass loading, which normally have a seasonal signature, re-
quire low time resolution (daily or weekly) but relatively long GPS time series. For this type of
GPS data with even longer time length, for example, more than 10 years, are used in long-time
viscoelastic deformation studies, such ice sheet loading studies (e.g., Wahr et al., 2001). In addi-
tion, GPS time series with different time scales ranging from seconds to decades are appropriate
for studying all phases of the earthquake cycle (e.g., Hammond, 2005).

In terms of signal composition buried in the GPS time series, e.g. linear trend and periodic
seasonal signals, these components are normally of separate interests. For many applications, a
mathematical model like Eq. (1.4) (Nikolaidis, 2002), is conventionally deployed to fit a discrete
time series of the station’s position.

y(ti) = y0 + vti +
q

∑
k=1

ak sin(2π fkti) + bk cos(2π fkti) +
ng

∑
j=1

gjH(ti − Tgj) + ϵ(ti) , (1.4)

where ti is the epoch of observation i in decimal year, y0 is a constant initial offset, v is a constant
velocity, ak and bk are the coefficients of periodic terms, fk are the frequencies. The whole term
∑

ng
j=1 gjH(ti − Tgj) corrects for any number (ng) of offsets with magnitudes gj at epochs Tgj, and

H denotes Heaviside step function. The last term ϵ(ti) is the noise term, i.e. unmodelled signal
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Figure 1.3: Original height time series of station WIS1 and the LS fit.

in Fig. 1.3. Most frequently a linear trend together with annual ( f1 = 1 cpy) and semi-annual
( f2 = 2 cpy) signals are resolved using the model of Eq. (1.4) (e.g., Zhang et al., 1997; Mao et al.,
1999). It is worth noting that offsets due to equipment changes or earthquakes have significant
effects on velocity estimation (Williams, 2003b). Detecting and removing offsets beforehand to
obtain clean GPS time series is always an important procedure before further GPS time series
analysis (Gazeaux et al., 2013). A typical detrended displacement time series recorded by GPS

is shown in Fig. 1.3 with seasonal signals estimated using Eq. (1.4).

For those interested in plate-tectonic studies (e.g., Larson et al., 1997), the linear trend, i.e. es-
timation of station velocity v, is of key importance. While if the geophysical signals under
investigation are seasonal in nature (Davis et al., 2012), then certainly the harmonic amplitudes
(ak and bk) are interesting in their own right, and velocity term may be considered a nuisance
parameter. For some applications it might be also valuable to investigate the post-fit residuals,
i.e. ϵ(ti), to study the environmental noise (e.g., Mao et al., 1999; Langbein, 2004), and this is in
turn to better estimate the velocity term (Williams, 2003a).

GPS for hydrology Since the establishment of the GPS technology, it has been used to study
the water vapor which is taken as unknown parameters during the GPS raw data processing
(e.g., Tralli and Lichten, 1990). More recently, the GPS technology has also been applied to
investigate other compartments of the hydrological cycle. For example, GPS signals are also
used to measure surface soil moisture (e.g., Larson et al., 2008), snow depth (e.g., Larson and
Small, 2013), as well as detecting hydrological loading information (e.g., van Dam et al., 2001;
Davis et al., 2004; Tregoning et al., 2009). The hydrological loading information embedded in
the displacement time series are in turn validated by the above-mentioned hydrological models
(van Dam et al., 2001; Dill and Dobslaw, 2013) or GRACE observations at both global (van Dam
et al., 2007; Tesmer et al., 2011) and regional scales (Fu et al., 2012). Apart from frequently used
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vertical displacements, horizontal displacements are advantageous in locating the hydrological
loading sources (Wahr et al., 2013; Fu et al., 2013).

More recently, the established fact that GPS time series contain hydrological information is
heard around. GPS observations have also been applied as an independent tool to estimate
terrestrial water storage variations at the global (e.g., Rietbroek et al., 2012, 2014), regional
(e.g., Argus et al., 2014; Fu et al., 2014) or basin scales (e.g., Wang et al., 2013), based on the
well-known loading theory (see Chapter 2 for more details). Furthermore, by comparing with
climate indices, derived deformation from GPS has been regarded as an hydrological indicator
of extreme hydrological events, e.g. droughts (Borsa et al., 2014; Chew and Small, 2014).

1.3 The GRACE mission and its applications

THE GRACE mission is a joint scientific satellite mission between the National Aeronautics
and Space Administration (NASA) and Deutsches Zentrum für Luft and Raumfahrt (DLR)

that has been measuring time-variation of the Earth’s gravitational field since its launch on
2002 March 17 (Tapley et al., 2004). GRACE comprises two coplanar satellites (GRACE A and B,
see Fig. 1.4) in a low, near circular, near polar orbit with an inclination of 89◦, at an altitude
of around 500 km, separated from each other by a distance of roughly 220 km. The mission
measures variations of the Earth’s gravity by tracking the inter-satellite range and range-rate
between both satellites via a K-band ranging (KBR) system, which observes the distance be-
tween the twin satellites at micron meter level accuracy using carrier phase measurements at
the K (26 GHz) and Ka (32 GHz) frequencies. In addition, both satellites are equipped with Su-
perSTAR accelerometers, GPS receivers, star cameras, and laser retro reflectors to complement
the scientific sensor package.

From the so-called Level-1 data collected by these scientific instruments, monthly gravity fields
are estimated in the form of corrections to a well-defined a priori background gravity model
(e.g., Tapley et al., 2005). The monthly sampling rate has been selected in order to accumulate
enough observations to provide a spatial resolution of about 400 km. Practically a trade-off
in choosing the temporal sampling interval is made due to the fact that accumulating data
over long time intervals improves spatial resolution, while decreasing temporal resolution
(Cazenave and Chen, 2010).

The GRACE data are officially processed and provided by three science data centers, i.e. the
GeoForschungsZentrum (GFZ) in Germany, the Center for Space Research (CSR) and the afore-
mentioned JPL which are both located in USA. These products are presented in the form of
spherical harmonics coefficients. Differences exist in the products among these three centers
due to their different data processing strategies, which includes the background models used,
the period over which orbits are integrated, weighting of the data, the maximum degree of the
estimated gravity harmonics (see Bettadpur, 2012; Dahle et al., 2012; Watkins and Yuan, 2012).
The latest version of products, i.e. RL05, has been released and providing since 2012, and the
data from GFZ RL05 (Dahle et al., 2014) are used in the thesis, see data availability calendar
in Fig. 1.5. Blank months indicate missing data, i.e. gaps. In addition, other groups provide
the GRACE solutions at alternative sampling rates based on alternative approaches, for exam-
ple, 10-day sampling rate products from GRGS (the Group de Recherche de Geodesie Spatiale)
(Lemoine et al., 2007) and daily gravity field snapshot (Kurtenbach et al., 2009) from the In-
stitute of Theoretical Geodesy (ITG) at the University of Bonn. It might be worth mentioning
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Figure 1.4: GRACE satellites (courtesy: NASA)

that all the aforementioned GRACE products are publicly available from ICGEM (International
Centre for Global Earth Models) 2.

On the basis of these gravity products from the GRACE mission, GRACE has provided unique
and valuable information on large-scale mass redistribution within the Earth system since its
launch (Tapley et al., 2004). This has led to improved understanding of various mass fluxes
like the hydrological cycle, mass balance of polar ice sheets, mountain glacier mass balance,
sea level change and solid Earth processes. Among the applications of GRACE, it is particu-
larly instrumental in closing the water budget because it offers us a homogeneous, global data
source for total terrestrial water storage (TWS) changes (e.g., Lorenz et al., 2014). The theoretical
background to infer TWS as well as deformation from GRACE is presented in Chapter 2. Note
that, in addition to the spherical harmonic solutions, an alternative approach which was origi-
nally developed to study the gravity field of the moon, point masses or regional uniform mass
concentrations, is adopted to derive regional mass anomalies directly from the Level-1 range
rate data and it is commonly called the "mascon" approach (e.g., Rowlands et al., 2005).

Besides the complicated background theory, practical handling the GRACE data is also chal-
lenging. Two types of error sources exist requiring to be dealt with for its further applications
(Wahr et al., 2006; Schmidt et al., 2008a). One type of errors is introduced during data process-
ing either resulting from the GRACE measurements themselves or from the applied de-aliasing
models. This type of errors is the so-called "noise" embedded in the delivered GRACE products,
for example, the north-south stripes due to the orbit geometry of the GRACE mission (Swenson
and Wahr, 2006). Several approaches have been developed to reduce the effects of noise in
the GRACE data. One strategy is to convert the global spherical harmonics into local TWS time

2http://icgem.gfz-potsdam.de/ICGEM/

http://icgem.gfz-potsdam.de/ICGEM/
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series and then average them over a large, pre-defined region, such as a basin. If the area is
sufficiently large (larger than the spatial decorrelation scale of the noise), the noise will tend to
cancel out and this concept was formulated into a basin averaging approach by Swenson and
Wahr (2002), which is a common way of analyzing the GRACE data, especially in hydrological
studies. Another commonly applied strategy to decrease the noise in the GRACE observations is
filtering/smoothing the data, which could be implemented in both the spectral and the spatial
domain. Descriptions of the most frequently applied filters, including deterministic filters and
stochastic filters, are presented in Chapter 4.

Unfortunately, these two strategies aiming to reduce the first type of errors lead to the second
type of errors, i.e. post-processing errors. Any type of filtering which reduces the first category
of the GRACE noise will also reduce local signal amplitude (e.g., Chen et al., 2007a; Swenson
and Wahr, 2011). In addition to the signal attenuation, both strategies will give rise to another
problem, namely leakage effect, in a way that signal in neighboring areas will spill into the de-
sired region, while part of the signal of interest will spread outside the desired region. Leakage
is particularly severe in regions of high spatial variability in surface water storage patterns as
well as coastlines where smoothing with ocean’s signal significantly attenuates the apparent
hydrological signal (Wouters et al., 2014). Several studies have been performed to account for
the second type of errors (e.g., Wahr et al., 2007; Klees et al., 2007; Baur et al., 2009; Longuev-
ergne et al., 2010; Landerer and Swenson, 2012) and the rescaling approach proposed by Wahr
et al. (2007) appears to be the most common technique to remedy the signal loss.

After shortly introducing the mission design, the GRACE data and its practical handling, the fol-
lowing paragraphs aim to provide a brief literature overview of the applications of the GRACE

mission.

GRACE for hydrology The GRACE mission was motivated to a large popularity in hydrology.
Precise measurement of the Earth’s time-varying gravitational field from the GRACE mission
allow unprecedented tracking of the transport of mass across and underneath the surface of the
Earth and give insight into secular, seasonal, and sub-seasonal variations in the global water
supply. It is worth noting that GRACE measures vertically-integrated terrestrial water storage
change and cannot separate contributions from individual stores, i.e. ground water (GW), near-
surface and deep soil moisture (SM), surface water (SW), snow-water equivalent (SWE) and ice,
and water in biomass (BIO), see Eq. (1.5), without other independent data.

∆TWS = ∆GW + ∆SM + ∆SW + ∆SWE + ∆BIO . (1.5)

∆TWS derived from GRACE with respect to the mean field is particularly valuable in combina-
tion with in situ measurements for some of the terms on the right-hand side of Eq. (1.5). For
example, several studies have demonstrated the abilities of GRACE for monitoring groundwa-
ter resources (e.g., Rodell et al., 2007, 2009). Alternatively, considering the causes of changes in
TWS in a given area or basin, TWS change (dTWS) in unit time (dt) could be related to accumu-
lated precipitation (P), evapotranspiration (E), and runoff (R):

dTWS
dt

= P − E − R . (1.6)

As Eq. (1.6) describes the water mass balance within a certain region, it is normally used to close
the water budget at basin scales and it is accordingly called the water mass balance equation
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(Alsdorf et al., 2007; Cazenave and Chen, 2010; Riegger et al., 2012). On the one hand, based
on Eq. (1.6), uncertainties of the GRACE data are able to be quantified since the right-hand side
term P − E − R could be estimated using the corresponding hydrological models and in situ
measurements (e.g., Riegger et al., 2012). On the other hand, GRACE in turn could be the input
measurements to infer some terms on right-hand side of Eq. (1.6), for example, estimating run-
off R over gauged or ungauged basins (e.g., Syed et al., 2005; Sneeuw et al., 2014).

Certainly, the GRACE mission is remarkably beneficial to hydrologists who use TWS derived
from GRACE for validating hydrological models or assimilating GRACE TWS into the hydrologi-
cal models (e.g., Güntner, 2008; Eicker et al., 2014). Global or basin scale seasonal cycles in TWS

from GRACE have been mostly investigated and compared with global hydrological models,
and good agreements with models were demonstrated (e.g., Tapley et al., 2004; Schmidt et al.,
2008b). Fig. 1.5 displays strong seasonal behavior in regions like the Amazon river basin with
flooding normally starting in February or March and receding in June.

Likewise, these investigations using GRACE have been extended to infer climate variability,
e.g. floods (e.g., Seitz et al., 2008; Chen et al., 2010; Creutzfeldt et al., 2012) and droughts
(e.g., Long et al., 2013; Thomas et al., 2014), or even climate indices (e.g., Phillips et al., 2012;
de Linage et al., 2013; Zhang et al., 2015).

GRACE for cryosphere The mass balance of the cryosphere is of considerable importance in
the context of global warming and present-day sea level rise. Quantification of polar ice sheet
and mountain glacier mass balance and their contribution to global sea level rise has long been
a challenge due to the lack of in situ observations. Remote sensing data, for example elevation
changes from satellite altimeters, have been applied to explore polar ice sheet mass balance.
GRACE is providing the opportunity to study mass variations of the cyrosphere from a new
perspective.

Since all right-hand terms except ∆SWE in Eq. (1.5) do not contribute to ∆TWS significantly
with respect to ∆SWE in cryospheric regions, GRACE is able to offer us direct measurement
of cryospheric mass changes, which has been demonstrated by a number of studies since its
launch. These studies confirmed the continuous mass loss from Greenland (e.g., Velicogna
and Wahr, 2006a; Baur et al., 2009; Harig and Simons, 2012) and Antarctica (e.g., Velicogna
and Wahr, 2006b; Chen et al., 2009). Polar ice mass loss is also visible by carefully inspecting
Fig. 1.5, which shows a clear mass loss during the GRACE era. Fig. 1.5 does not give a quan-
titative analysis which requires to further account for the above-mentioned GRACE errors, for
example, errors due to choice of filters and leakage, as well as the GIA (glacial isostatic adjust-
ment) effects. These errors and effects are the main causes of the significant variations among
published results (e.g., Horwath and Dietrich, 2009).

Besides monitoring polar ice sheets, GRACE is able to provide unique estimates of mass rates of
mountain glaciers in case that the signal is large enough (e.g., Tamisiea et al., 2005; Chen et al.,
2006; Matsuo and Heki, 2010). For example, a number of studies demonstrated the mass loss of
the Himalaya glaciers (e.g., Matsuo and Heki, 2010) and the Alaskan glaciers (e.g., Chen et al.,
2006).
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GRACE for ocean and sea level rise Water flux into and out of ocean causes its mass change,
which could be detected by the GRACE twin satellites flying over the vast ocean. GRACE, since
its launch, allows us for the first time to directly observe the global mass variation and its
contribution to sea level change (e.g., Chambers et al., 2004).

GRACE contributes to the oceanic studies from both its time-mean and time-variable compo-
nents (Wouters et al., 2014). The combination of the mean mass change from GRACE with sea
surface height from satellite altimetry determines the dynamic ocean topography (e.g., Cham-
bers et al., 2004; Lombard et al., 2007). GRACE also helps to study the global mean sea level
(GMSL) which consists of the mass component and the thermosteric component, and to close
the sea level budget (e.g., Willis et al., 2008). The time-variable mass component observed by
GRACE contributes to quantify certain aspects of regional ocean dynamics, e.g. low-frequency
variations in ocean bottom pressure (OBP) (e.g., Chambers and Willis, 2008, 2009), which are
particularly troublesome to measure or model (Wouters et al., 2014).

GRACE for solid Earth The afore-mentioned extraordinary contributions of GRACE focus on
the hydrosphere, cryosphere as well as ocean, which represent the mass redistribution of water
within a thin layer at the Earth’s surface. Besides these applications, GRACE also opens us a
window for probing into the Earth’s interior where the mean density is about five times as
large as that of water, and therefore GRACE is particularly sensitive to mass flux inside the
Earth. Studies of this aspect mainly go to investigate GIA effects, coseismic and postseismic
deformation.

GIA follows the melting of past ice loads and leads to secular deformation of the Earth’s surface
as well as secular gravity field changes, which are measured by GRACE. The spatial GIA pattern
was firstly analyzed in the GRACE dataset for 2002 to 2005 by (Tamisiea et al., 2007), followed
by (Paulson et al., 2007) who first applied GRACE to refine GIA modeling and constrain upper
and lower mantle viscosity. In line with them, several studies take advantage of GRACE for GIA

modeling and in turn apply GIA corrections to better quantify ice mass loss over the cryospheric
region (e.g., van der Wal, 2009; Steffen et al., 2010).

Moreover, GRACE is also applied in combination with the aforementioned GPS to estimate the
short-term solid Earth deformations caused by variations in global and local hydrological load-
ing (e.g., Davis et al., 2004; van Dam et al., 2007). These loading induced deformations normally
represent strong seasonal behavior and the high agreement between GPS and GRACE has been
validated (e.g., Tregoning et al., 2009; Tesmer et al., 2011; Fu et al., 2012). This thesis also stud-
ies the comparison between GPS and GRACE but with a focus on the effects of GRACE data
filtering.

In addition to the long-term trend signal and seasonal signals in GRACE, abrupt jumps in the
gravity field due to earthquakes could be recorded by GRACE as well. For example, Han et al.
(2006) utilized raw Level-1 GRACE satellite range and range-rate observations to determine the
gravity change due to the earthquake. Several other studies followed in this direction and
demonstrated the unique value of GRACE in exploring both coseismic and postseismic defor-
mation from major earthquakes (e.g., Chen et al., 2007b; De Viron et al., 2008; Han et al., 2010,
2011).

As described above, GRACE has remarkably improved our understanding of mass fluxes within
Earth’s near-surface fluid envelopes since its launch. Unfortunately, GRACE will end its mis-
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Figure 1.6: The relationship between the Earth’s surface elastic loading, the GPS technology and the GRACE mis-
sion (see also Blewitt, 2003). Geophysical phenomena are represented in ellipses and observation types are
illustrated in rectangles. Theoretical relationships and physical principles are connected by arrows. The arrows
indicate the direction leading toward the computation of measurement models.

sion soon. However, as its successor, the GRACE follow-on mission (Flechtner et al., 2014b) is
scheduled to be launched in 2017 to continue the mission of GRACE.

1.4 Motivation

THE above three sections describe the Earth’s surface elastic loading, the GPS technology
and the GRACE mission. Strong relationships exist among one another and Fig. 1.6 rep-

resents the derivation from the Earth’s elastic surface loading leading to measurements. Cer-
tainly inverse derivation from measurements to surface loading is possible. Regarding the two
measurement types used in this thesis, GRACE satellites directly sense the gravitational effect
of surface loading changes, whereas GPS observations are linked to surface loading changes
through surface deformation. Nevertheless, both techniques could be connected theoretically
by the well-known loading theory. Numerous studies focus on the forward and backward re-
lationships in Fig. 1.6 so as to investigate one or another, e.g. the aforementioned application



1.5 Outline 15

of GRACE for hydrology. Following the relationships in Fig. 1.6, the thesis aims to advance the
relevant studies involving surface loading, GPS and GRACE from the following three aspects.

1. The first aspect involves the seasonality characteristics of the elastic surface loadings
and their corresponding records from spaceborne techniques, e.g. GPS and GRACE. Sea-
sonal signals are conventionally retrieved based on models with constant amplitudes and
phases. However, in reality, true seasonal signals are not constant from year to year. Few
studies made endeavors to solve the problem with model based approaches (e.g., Davis
et al., 2012). This thesis tries to attack this problem with an alternative approach named
singular spectrum analysis (SSA) which is a non-parametric approach and independent
of models.

2. Secondly, as presented in Fig. 1.6, GPS and GRACE are theoretically related and several
studies focused on comparing the common surface loading signals, especially hydrolog-
ical signals, recorded by both techniques (e.g., Davis et al., 2004; van Dam et al., 2007).
However, these studies neglect the importance of GRACE data filtering and they seem to
randomly choose the Gaussian filter with a smoothing radii around 500 km. King et al.
(2006) investigated the effects of the Gaussian filter using different smoothing radii when
comparing GPS and GRACE. However, except the Gaussian filter, other filters like both
deterministic filters and stochastic filters exist and play important roles in GRACE data
filtering for different purposes. This thesis contributes to this aspect by comparing GPS

and GRACE with a special focus on the effects of different filters. Both deterministic filters
and stochastic filters are applied and compared in this thesis.

3. Last but not least, inferring deformation from global surface loads is based on the loading
theory, i.e. the Green functions , which depend on the Earth model. The current com-
monly used Earth model in the Green function approach is the Preliminary Reference
Earth Model (PREM) (Dziewonski and Anderson, 1981), which is laterally homogeneous
and isotropic over the globe. The computed deformation depends solely on the spher-
ical distance between the load and the computation point. However, it is reasonable to
expect that the Earth’s crust responds to its surface load varying inhomogeneously and
anisotropically. Bevis et al. (2012) pointed out that it is probably inappropriate to use
elastic-loading Green functions based on PREM, or any other radially symmetric, whole-
earth model. By using a local high spatial resolution load dataset, we investigate the
effects of different location-dependent, e.g. site dependent Green functions, with respect
to the isotropic Green functions. In addition, we compare the two approaches in mod-
eling deformation in a local area, i.e. comparison of the global Green function approach
and the half-space approach.

1.5 Outline

IN line with these three aspects, the thesis is organized as follows. Chapter 2 presents in detail
the theoretical relationships shown in Fig. 1.6, e.g. the loading theory as well as the refer-

ence frame theory, which lays a solid theoretical foundation for the coming chapters. Chapter
3 firstly provides the methodology of SSA and several aspects relating to its application. This
is followed by three examples which demonstrate the capabilities of SSA for extracting time-
variable signals from geodetic time series. Chapter 4 targets to investigate the effects of dif-
ferent filters on the comparison of GPS and GRACE. Commonly used deterministic filters and
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stochastic filters are introduced in this chapter. Comparisons over two study areas are pre-
sented. Chapter 5 provides a detailed investigation of site and area dependent Green function
approach. In addition, two approaches to modeling deformation in the local area are presented
and compared with respect to the Green function approach. Lastly in this chapter, an empirical
Green function approach is discussed as well. Finally, conclusions and outlook are given in
Chapter 6.
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Chapter 2

Gravity and loading theory

THE geographical distribution of atmospheric, oceanic and hydrological masses varies in
time and this in turn changes the external gravity field and the geometrical shape of the

Earth. The mass variations, gravity changes and displacements on the Earth’s surface are there-
fore intrinsically connected to each other and they also become measurable with modern space
and terrestrial geodetic techniques at global, regional as well as local scales.

This chapter is dedicated to present the theoretical relationships between surface mass varia-
tions, gravity changes and the associated displacements, which lays a solid foundation for the
practical analysis and comparison of different types of observations in the following chapters.
It should be mentioned that the notation used in this chapter follows mostly Farrell (1972) and
Sneeuw (2006). It might be worth noting that the term "the Green function" is used in this thesis
instead of the commonly used "the Green’s function" due to the English grammatical issue, see
the example about Stokes in geodesy (Featherstone and Vaníek, 1996).

2.1 From geopotential to surface mass variation

A point mass m at x′ within the whole Earth system, including the atmosphere and the
oceans, generates a gravitational acceleration at x:

g(x) = −Gm(x − x′)
|x − x′|3 , (2.1)

where G is the gravitational constant. For a continuous mass density ρ(x′), integrating over x′

obtains:

g(x) = −
∫

Ω

Gρ(x′)(x − x′)
|x − x′|3 d3x′ , (2.2)

where Ω consists of volume mass elements dx′ inside the Earth system. The gravitational po-
tential is then defined as

∇ϕ(x) = g(x) . (2.3)

Accordingly, the scalar field ϕ(x) has the form

ϕ(x) =
∫

Ω

Gρ(x′)
|x − x′|d

3x′ . (2.4)
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Eq. (2.4) represents the gravitational potential both inside and outside of the Earth’s surface.
For all the mass beyond the Earth’s surface, e.g. the hydrosphere, the gravitational potential
satisfies the Laplace equation:

∇2ϕ(x) = 0 . (2.5)

Solving Eq. (2.5) using spherical coordinates r (radial distance), λ (spherical longitude) and θ
(spherical co-latitude), the analytical solution can be expressed in terms of spherical harmonic
expansions (Heiskanen and Moritz, 1967; Sneeuw, 2006):

ϕ(r, θ, λ) =
GM

R

∞

∑
n=0

(
R
r

)n+1 n

∑
m=0

Pnm(cos θ)(Cnm cos mλ + Snm sin mλ) , (2.6)

where R denotes the mean radius of the Earth and M is the total mass of the Earth. The dimen-
sionless coefficients Cnm and Snm describe the gravitational potential field of the exterior Earth
in terms of the spectral degree n and order m. Pnm represents the associated Legendre functions
of the 1st kind. In practice, Eq. (2.6) is assumed to be band-limited, so the upper limit (infinity)
is accordingly replaced by an upper-bound Nmax.

For the purpose of handling Eq. (2.6) conveniently in numerical sense (Lambeck, 1988), Pnm,
Cnm and Snm are conventionally fully normalized, e.g. GRACE gravity spherical harmonic coef-
ficients, which makes

P̄nm = NnmPnm , (2.7a)

C̄nm =
Cnm

Nnm
, (2.7b)

S̄nm =
Snm

Nnm
, (2.7c)

with the normalization factor

Nnm =

√
(2 − δm,0)(2n + 1)

(n − m)!
(n + m)!

, (2.8)

where δm,0 is called Kronecker delta, which is 1 if m = 0 and 0 otherwise. In the normalization
and band-limited case Eq. (2.6) can be also written as

ϕ(r, θ, λ) =
GM

R

Nmax

∑
n=0

(
R
r

)n+1 n

∑
m=0

P̄nm(cos θ)(C̄nm cos mλ + S̄nm sin mλ) . (2.9)

In addition to the gravitational potential, the rotation of the Earth with an angular speed ω will
give rise to another potential, i.e. a centrifugal potential ϕc written in spherical coordinates

ϕc(r, θ, λ) =
1
2

ω2r2 sin2 θ . (2.10)

The combination of the gravitational potential and the centrifugal potential obtains the gravity
potential W, which is

W = ϕ + ϕc . (2.11)

It is imperative to note that the gravity potential W can also be expressed in terms of a nor-
mal potential term U and a disturbing potential term T. The normal potential is an ellipsoidal
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approximation, e.g. GRS80 (Geodetic Reference System 80), to the real gravity potential. Be-
sides, the normal potential is defined following several properties (Heiskanen and Moritz, 1967;
Sneeuw, 2006) and therefore time-invariant. The disturbing potential is defined as T = W −U.
In the light of Bruns’s equation (Heiskanen and Moritz, 1967), one may relate the geoid N to
the disturbing potential T

N =
T
γ

, (2.12)

where γ is the associated normal gravity acceleration. The geoid is an equipotential surface
coinciding with the mean ocean surface of the Earth if the oceans and atmosphere were in
equilibrium, and extending through the continents.

With the advent of the new era of gravity satellite missions, spherical harmonic coefficients
C̄nm and S̄nm can be retrieved with temporal resolution of one month or below and spatial res-
olution of up to Nmax = 120 (Kusche, 2010). Nevertheless, it is still impossible to uniquely
determine the mass distribution within the Earth system as an infinite number of mass distri-
butions generate the same external gravity potential field. This leaves us to make physically
plausible assumptions to link the gravity to mass distribution. A common assumption is to
concentrate the mass distribution in a thin layer of thickness H at the Earth’s surface with
(n + 2)H/R ≪ 1 for n ≪ Nmax (Wahr et al., 1998), see Fig. 2.1. In other words, under the
assumption, we are aiming at the mass distribution, especially mass variations, around the
geoid N. In addition, this thin layer must be thick enough to include those portions of the at-
mosphere, oceans, ice caps, and below-ground water storage with significant mass fluxes and
the thin layer is of the order of 10-15 km (Wahr et al., 1998).

R

H ≈ 10 − 15 km

Solid
Earth

∆σ(θ, λ)

Atmosphere

Oceans

Ice caps

Terrestrial water

Figure 2.1: A simple sketch of the spherical think layer around the Earth’s geoid.

The mass redistribution within the thin spherical layer causes correspondingly the gravity
changes as well as the geoid changes ∆N. Note that the contribution to the geoid changes
originates from not only the direct gravitational attraction of the surface mass variation but
also the additional part due to the deformation of the solid Earth caused by the loading ef-
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fects of the surface mass. To put it another way, the light blue part in Fig. 2.1 which loads and
deforms the solid Earth will induce the additional part to the changes of the geoid.

Practically, e.g. for the GRACE satellite mission, instead of removing the normal potential U
from the full potential W, a long-term (multi-year) mean gravity potential field W̃ is adopted
to obtain the time variable part of the disturbing potential ∆T. Note that W̃ comprises both
the normal potential and the mean disturbing potential. Therefore, ∆T indicates also the time-
variable part of the full gravity field in the form of

∆T(r, θ, λ) =
GM

R

Nmax

∑
n=0

(
R
r

)n+1 n

∑
m=0

P̄nm(cos θ)(∆C̄nm cos mλ + ∆S̄nm sin mλ) , (2.13)

where ∆C̄nm and ∆S̄nm are spherical harmonic coefficients with respect to their long-term mean.
With the spherical approximation γ = GM

R2 at the surface, the geoid changes can be represented
as

∆N(θ, λ) =
∆T
γ

= R
Nmax

∑
n=0

n

∑
m=0

P̄nm(cos θ)(∆C̄nm cos mλ + ∆S̄nm sin mλ) . (2.14)

Eq. (2.14) describes the geoid variations in terms of the changes of the gravity potential. How-
ever, the ultimate goal is to further establish the relationship with the surface mass variations.
To fulfill the goal, it is also necessary to expand the surface mass variation in spherical harmon-
ics manner. Within the thin spherical shell, instead of using the volume mass density ρ, surface
mass density σ (see Fig. 2.1), which is defined as mass/area (kg/m2), is conventionally utilized.
Therefore, the surface mass density changes can be represented as (Wahr et al., 1998)

∆σ(θ, λ) = Rρw

∞

∑
n=0

n

∑
m=0

P̄nm(cos θ)(∆C̄σ
nm cos mλ + ∆S̄σ

nm sin mλ) , (2.15)

where ρw denotes the density of water, and ∆C̄σ
nm and ∆S̄σ

nm are fully normalized dimension-
less spherical harmonic coefficients representing surface mass density. To distinguish from the
above-mentioned gravity spherical harmonic coefficients ∆C̄nm and ∆S̄nm, a superscript σ is
marked in ∆C̄σ

nm and ∆S̄σ
nm. According to Wahr et al. (1998), the relationship between them is

formulated as {
∆C̄σ

nm
∆S̄σ

nm

}
=

ρe

3ρw

2n + 1
1 + k′n

{
∆C̄nm
∆S̄nm

}
, (2.16)

where ρe is the average density of the Earth and k′n describes the loading Love numbers which
will be explained in detail in Section 2.2.1. Substituting Eq. (2.16) in Eq. (2.15) gives

∆σ(θ, λ) =
Rρe

3

Nmax

∑
n=0

2n + 1
1 + k′n

n

∑
m=0

P̄nm(cos θ)(∆C̄nm cos mλ + ∆S̄nm sin mλ) . (2.17)

Eq. (2.17) allows us to retrieve the surface mass density changes by means of the changes in
gravity, i.e. ∆C̄nm and ∆S̄nm. Note that the surface mass density changes are usually further ex-
pressed in equivalent water height ∆h via dividing by ρw, i.e. ∆h = ∆σ/ρw. Appendix A gives
the practical procedure to compute the equivalent water height from the GRACE products.

The above procedure which synthesizes the spherical harmonic basis functions with the gravity
spherical coefficients to obtain certain quantities, e.g. the surface mass densities here, is called
global spherical harmonic synthesis (GSHS). Conversely, if the surface density changes are
given, the derivation shown above can also be implemented reversely. Starting from Eq. (2.15),
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the spherical harmonic coefficients ∆C̄σ
nm and ∆S̄σ

nm are obtained by a so-called global spherical
harmonic analysis (GSHA) formulation (Sneeuw, 1994){

∆C̄σ
nm

∆S̄σ
nm

}
=

1
4πRρw

∫∫
∆σ(θ, λ)P̄nm

{
cos(mλ)
sin(mλ)

}
dΩ . (2.18)

Applying Eq. (2.16) inversely together with Eq. (2.18) yields the gravity spherical harmonic
coefficients and other quantities, like the potential field and the geoid changes are consequently
retrieved.

In this section, the relationship between the surface mass variations and the gravity changes
has been established. Since the Earth is not rigid, the surface mass loaded on the surface of
the solid Earth causes deformations elastically or visco-elastically. The elastic deformations
are induced primarily by the fast changing loads, e.g. the redistribution of hydrological, at-
mospheric and oceanic masses, while the visco-elastic deformations are caused by the slow
changing loads, e.g. glacier mass variations. This thesis will focus on the former deformations
and the relationship between the gravity changes and the elastic displacements will further be
formulated in the next section.

2.2 Elastic response to the Earth’s surface loads

2.2.1 Elastic loading Love numbers and Green functions

SEVERAL types of Love numbers exist in practice. The Love h and k, and Shida l numbers
were firstly introduced by Love (1909) and Shida and Matsuyama (1912), respectively.

They were used to characterize the Earth’s response to the potential or force without load-
ing the surface of the Earth, such as the external tidal potential. For describing the response to
the surface load, e.g. terrestrial water load, another type of Love numbers distinguished by a
superscript prime, i.e. h′, l′ and k′, were adopted (Munk and MacDonald, 1960), which are nor-
mally called loading Love numbers (Farrell, 1972). A further category of Love numbers, shear
Love numbers, denoted by h′′, l′′ and k′′, were also defined to represent the deformations aris-
ing from horizontal frictional forces exerted on the Earth’s surface by winds or ocean currents
(Lambeck, 1988). Different types of Love and Shida numbers are summarized in Table 2.1. In
the case of the loading Love numbers, elastic loading Love numbers and viscoelastic loading
Love numbers are used in the literature to depict the reaction of the Earth’s interior to the fast
changing and slow changing surface loading processes, respectively. In this thesis, the primary
concentration lies on the elastic loading Love numbers since the fast changing loading process
will be investigated here.

The elastic loading Love numbers is computed by integrating the equations of motion, the
stress-strain relationship and Poisson equation inside the Earth, from the center to the surface
using a spherical Earth model, e.g. the Preliminary Reference Earth Model (PREM) (Dziewonski
and Anderson, 1981). The equations of motion (Eq. (2.19a)) as well as the Poisson equation
(Eq. (2.19b)) are linearized and formulated as (Farrell, 1972)

∇ · τ −∇(ρgs · er)− ρ∇ϕ + g∇ · (ρser) = 0 , (2.19a)

∇2ϕ =− 4πG∇ · (ρs) , (2.19b)



22 Chapter 2 Gravity and loading theory

Table 2.1: Three different types of Love and Shida numbers.

Type of Love numbers Notation Cause Reference

Tidal Love and
Shida numbers

h, k, l forces without loading
the Earth, e.g. tide

(Love, 1909)
(Shida and Matsuyama, 1912)

Load Love numbers h′, l′, k′ direct load on Earth’s
surface, e.g. water load

(Munk and MacDonald, 1960)

Shear Love numbers h′′, l′′, k′′ horizontal frictional forces,
e.g. winds or ocean currents

(Lambeck, 1988)

where τ is the incremental stress tensor, ρ and g are the unperturbed density and gravitational
acceleration, s is the displacement vector, ϕ is the perturbed gravitational potential, er denotes
the unit vector of the vertical component. In Eq. (2.19a), the first term describes the contribution
of the stresses, the second term refers to the change in density, the third term represents self-
gravitation, implying the change in gravity and the last term stands for the advection of the
hydrostatic pre-stress. It should be noted that the last term in Eq. (27) in (Farrell, 1972) is
missing here since we are dealing with the elastic loading process (Kusche, 2010).

Supposing a spherically symmetric Earth model with certain boundary conditions at the sur-
face, the solutions of Eq. (2.19a) and Eq. (2.19b) can be transformed and expressed as

s =
∞

∑
n=0

(
Un(r)Pn(cos ψ)er + Vn(r)

∂Pn(cos ψ)

∂ψ
ev

)
, (2.20a)

ϕ =
∞

∑
n=0

Φn(r)Pn(cos ψ) , (2.20b)

where Un, Vn and Φn are transformed variables indicating vertical displacements, tangential
displacements and potential, respectively. ev denotes the unit vector of the horizontal compo-
nent. Note that we use ψ here instead of θ which was used by Farrell (1972) to indicate the
spherical distance.

With further simplifications applied, the transformed variables can be further related to the
elastic loading Love numbers (see details in (Farrell, 1972))Un(r)

Vn(r)
Φn(r)

 = W(r)

h′n(r)/g
l′n(r)/g
k′n(r)

 , (2.21)

where W(r) stands for the potential induced by the point mass. Since we evaluate the loading-
induced displacements at the Earth’s surface, r = R is accordingly applied in Eq. (2.21) which
makes

W(r = R) =
gR
M

. (2.22)

Eq. (2.21) defines the loading Love numbers and clearly tells that h′n, l′n and k′n describe vertical
and horizontal displacements and potential, respectively. Solving and integrating Eq. (2.21)
from the inner Earth to the surface gives the set of loading Love numbers which are based on
the given Earth model. A practical numerical computation guide of the loading Love numbers
is shown in (Gegout et al., 2010).
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The elastic loading Love numbers are exemplarily shown in Fig. 2.2. When considering the
loading Love numbers, special attention should be paid to the degree-0 and degree-1 terms.
The degree-0 term is usually not given, e.g. Table A2 in (Farrell, 1972). This is due to the fact
that degree-0 load does not exist and the total mass is conserved within the Earth system. The
degree-0 term is also absent in Fig. 2.2. The degree-1 term is intrinsically linked to geocenter
motion and the reference frame (Blewitt, 2003), which can be seen from Fig. 2.2 and will be
explained in more detail in Section 2.3.

Derivation of the loading Love numbers is the first step to estimate the Earth’s response to
the surface load. Furthermore, Longman (1962) introduced the elastic Green functions which
represent the loading Love numbers in the spatial domain and essentially reflect the impulse
response of the Earth to its elastic surface loading. As this thesis focuses only on the displace-
ments, the derivation of the vertical and horizontal displacements are therefore only given here.
Other Green functions, e.g. for gravity, are detailed in (Longman, 1963) and (Farrell, 1972).
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Figure 2.2: Five different sets of elastic loading Love Numbers come from five different Earth models: 1)
Gutenberg-Bullen (Farrell, 1972); 2) PREM (Dziewonski and Anderson, 1981); 3) a modified PREM with crustal
structures adapting from CRUST 2.0 model (Wang et al., 2012) 4) REF (Kustowski et al., 2008) 5) REF model
with a site-dependent setting (Gegout, 2013). The elastic loading Love numbers for G-B model are obtained
from (Farrell, 1972) and these for PREM, PREM+CRUST 2.0 (soft) are obtained from (Wang et al., 2012). The
REF and its site-dependent Love numbers are provided by Gegout (2013) [personal communication]. It is worth
mentioning that the first three sets of loading Love numbers differ from the last two sets also in the reference
frame issues which are noticeable in the degree-1 term.
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Substituting Eq. (2.21) and Eq. (2.22) into Eq. (2.20a), one can obtain the elastic Green functions
for the vertical (u) and horizontal (v)displacements evaluated at the Earth’s surface

Gu(ψ) =
R
M

∞

∑
n=0

h′nPn(cos ψ) , (2.23a)

Gv(ψ) =
R
M

∞

∑
n=1

l′n
∂Pn(cos ψ)

∂ψ
. (2.23b)

The procedure of deriving the elastic Green functions starts by summing Eq. (2.23a) and
Eq. (2.23b) from 0 to infinity. However, in practice, the elastic loading Love numbers are given
only up to a limited degree, for instance up to degree 10 000 in (Farrell, 1972). As shown in
Fig. 2.2, h′n, nl′n and nk′n illustrate an asymptotic behavior with degree n becoming large and
Eq. (2.24) was consequently defined by Farrell (1972)

lim
n→∞

 h′n
nl′n
nk′n

 =

h′∞
l′∞
k′∞

 . (2.24)

Several tricks have been investigated to accelerate the convergence of Eq. (2.23a) and Eq. (2.23b)
(e.g., Farrell, 1972; Francis and Dehant, 1987; Guo et al., 2004; Wang and Wang, 2007). Among
those tricks, the so-called Kummer transformation was mostly applied to make use of Eq. (2.24).
Accordingly, Eq. (2.23a) and Eq. (2.23b) can be transformed to

Gu(ψ) =
Rh′∞
M

∞

∑
n=0

Pn(cos ψ) +
R
M

∞

∑
n=0

(h′n − h′∞)Pn(cos ψ) , (2.25a)

Gv(ψ) =
Rl′∞
M

∞

∑
n=1

1
n

∂Pn(cos ψ)

∂ψ
+

R
M

∞

∑
n=1

(nl′n − l′∞)
n

∂Pn(cos ψ)

∂ψ
. (2.25b)

Using the asymptotic values for h′n and nl′n, the term h′n − h′∞ and nl′n − l′∞ turn zero above
a certain high degree Nmax. The first terms in both Eq. (2.25a) and Eq. (2.25b) are evaluated
exactly with the help of expressions from Singh and Ben-Menahem (1968), see Eq. (2.26)

∞

∑
n=0

Pn(cos ψ) =
1

sin(ψ/2)
, (2.26a)

∞

∑
n=1

1
n

∂Pn(cos ψ)

∂ψ
= −cos(ψ/2) [1 + 2 sin(ψ/2)]

sin(ψ/2) [1 + sin(ψ/2)]
. (2.26b)

Substituting Eq. (2.26) into Eq. (2.25a) and Eq. (2.25b) yields

Gu(ψ) =
Rh′∞

2M sin(ψ/2)
+

R
M

Nmax

∑
n=0

(h′n − h′∞)Pn(cos ψ) , (2.27a)

Gv(ψ) = −Rl′∞
2M

cos(ψ/2) [1 + 2 sin(ψ/2)]
sin(ψ/2) [1 + sin(ψ/2)]

+
R
M

Nmax

∑
n=1

(nl′n − l′∞)
n

∂Pn(cos ψ)

∂ψ
. (2.27b)
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Eq. (2.27a) and Eq. (2.27b) represent the expressions to derive the vertical and horizontal elastic
Green functions out of the elastic loading Love numbers. The derived elastic loading Green
function coefficients are displayed in Fig. 2.3. As clearly illustrated in the Fig. 2.3, one signifi-
cant characteristic of the Green functions is that the relative influence of a load falls off with the
increasing spherical distance ψ. To be more precise, the load affects strongly in the near field,
i.e. ψ < 0.1◦, and less in the far field beyond.
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Figure 2.3: Corresponding elastic Green functions to the loading Love numbers shown in Fig. 2.2.

Meanwhile, it is worth noting that Eq. (2.27a) and Eq. (2.27b) represent the class of the elastic
Green functions for a spherically symmetric, non-rotating, elastic and isotropic (SNREI) model
of the Earth which depends on the spherical distance (ψ) only. This class of the elastic Green
functions is particularly popular among the current loading-related studies due to the simplifi-
cations of the given Earth model, especially the Green functions based on the PREM (van Dam
and Wahr, 1987; van Dam et al., 2001, 2010). However, in reality, the solid Earth is neither
spherically symmetric nor purely elastic or isotropic. What is more, it also rotates in space.
Even though these effects are generally thought to produce negligible uncertainties under cur-
rent understanding of the Earth (Métivier et al., 2005), issues such as anisotropy, lateral hetero-
geneities or visco-elasticity give rise to increasing concern over recent years. For instance, van
Dam et al. (2003) pointed out the importance of both the Earth models and the theoretical part
for dealing with issues like lateral heterogeneities in future studies. Other studies, e.g. Laty-
chev et al. (2005), have already made attempts to include lateral heterogeneities in the Earth
model for the viscoelastic loading case.

One more issue to be emphasized here is that differences in the mechanical properties,
e.g. lithospheric properties, of the Earth model would result in differences in the estimated
displacements due to the same amount of the surface loads. Plag et al. (1996) found that
differences in the lithospheric properties of the PREM model and the PEMC (parametric
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Earth model, continental; Dziewonski et al. (1975)) model caused differences in the vertical
displacement of up to 20 % and in the horizontal displacement of up to 40 % in the near field
of the load but identical responses for the far field. In addition, insufficiencies of the popular
PREM model which has a globally averaged crust and its potential effects are pointed out lately
(e.g., van Dam et al., 2003; Bevis et al., 2012). Adaption of the relatively high resolution crust
model, e.g. CRUST 1.0 (Laske et al., 2013), into the PREM or other Earth models to account for
the inhomogeneous crust structure is under investigation (Wang et al., 2012; Gegout, 2013; Dill
et al., 2015). The effects in the displacement field due to the inhomogeneous crust structures
will be studied in detail in Chapter 5 at the local scale using a local load dataset.

2.2.2 Convolution in the spatial domain

THE elastic Green functions describe the impulse response of the Earth to a point load at a
certain spherical distance ψ. To compute the loading-induced displacements due to sur-

face loads spreading over a vast area, a spatial convolution is required. Supposing we evaluate
the deformations at any point P with colatitude θP and longitude λP due to the surface mass
load at point Q with colatitude θQ and longitude λQ which can be represented by Eq. (2.15),
convolving the load mass and the elastic Green functions leads to

du(θP, λP) = R2
∫∫

Ω
Gu(ψPQ)∆σ(θQ, λQ)dΩ , (2.28a)

dv(θP, λP) = R2
∫∫

Ω
Gv(ψPQ)∆σ(θQ, λQ)dΩ , (2.28b)

where dΩ = sin θQdθQdλQ and R2dΩ gives the surface area of the corresponding surface
load.

Decomposing the horizontal displacement into the north and east component using the az-
imuth α of the direction from the loading point Q to the computation point P, i.e. vector

−→
QP in

Fig. 2.4, yields

dn(θP, λP) = −R2 cos α
∫∫

Ω
∆σ(θQ, λQ)Gv(ψPQ)dΩ , (2.29a)

de(θP, λP) = −R2 sin α
∫∫

Ω
∆σ(θQ, λQ)Gv(ψPQ)dΩ . (2.29b)

Eq. (2.28a), Eq. (2.29a) and Eq. (2.29b) describe convolution in the spatial domain and we nor-
mally refer to this approach as the Green function approach. Although the equations above are
shown in a continuous manner at a global scale, the numerical computation is conducted in
a discrete way and these equations are also suitable for a regional or local area (e.g., Elósegui
et al., 2003). This is a significant advantage of the Green function approach over the spherical
harmonic approach (see Section 2.2.3) if we are interested in geographically restricted loads.

A comparison of vertical deformations determined for 4 different sets of Green functions (one
set based on the Gutenburg-Bullen A Earth model (Farrell, 1972), three other sets based on
PREM but computed by different groups) was performed by van Dam et al. (2003). Differences
resulting from the two Earth models were always less than 0.04 mm and it was concluded that
the choice of the elastic loading Love numbers (as long as they are for a SNREI model) will not
have a significant influence on the estimated loading effects.
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Figure 2.4: Sketch of decomposing the horizontal displacement into the north and east component.

2.2.3 Convolution in the spectral domain

AS described in Section 2.1, at the global scale, the surface mass changes can be represented
in terms of spherical harmonics, which makes it possible to implement the convolution

procedure of Eq. (2.28a), Eq. (2.29a) and Eq. (2.29b) in the spectral domain. Computation in the
spectral domain is especially convenient for the case of the GRACE products which are delivered
in the form of the normalized gravity spherical harmonic coefficients. This subsection deals
with the detailed derivation from the Green function approach to the spectral approach.

The derivation starts firstly with the vertical direction. Applying the addition theorem

Pn(cos ψPQ) =
1

2n + 1

n

∑
m=0

P̄nm(cos θP)P̄nm(cos θQ) cos m(λP − λQ) , (2.30)

to Eq. (2.23a) gets

Gu(ψPQ) =
R
M

∞

∑
n=0

h′n
2n + 1

n

∑
m=0

P̄nm(cos θP)P̄nm(cos θQ) cos m(λP − λQ) , (2.31)

which is now inserted in Eq. (2.28a) together with Eq. (2.15) and Eq. (2.18), which obtains

du(θP, λP) =
R3

M

∫∫
∆σ(θQ, λQ)

∞

∑
n=0

h′n
2n + 1

n

∑
m=0

(P̄nm(cos θP)P̄nm(cos θQ) cos mλP cos mλQ

+ P̄nm(cos θP)P̄nm(cos θQ) sin mλP sin mλQ)dΩ
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=
R3

M

∞

∑
n=0

h′n
2n + 1

n

∑
m=0

∫∫
∆σ(θQ, λQ)(P̄nm(cos θP)P̄nm(cos θQ) cos mλP cos mλQ

+ P̄nm(cos θP)P̄nm(cos θQ) sin mλP sin mλQ)dΩ

=
R3

M

∞

∑
n=0

4πRρw
h′n

2n + 1

n

∑
m=0

(P̄nm(cos θP) cos mλP∆C̄σ
nm

+ P̄nm(cos θP) sin mλP∆S̄σ
nm)

=
3Rρw

ρe

∞

∑
n=0

h′n
2n + 1

n

∑
m=0

(P̄nm(cos θP) cos mλP∆C̄σ
nm

+ P̄nm(cos θP) sin mλP∆S̄σ
nm) . (2.32)

Applying the relationship (Eq. (2.16)) between the surface density spherical harmonic coeffi-
cients and the gravity spherical harmonic coefficients to the above derivation yields the vertical
displacement due to surface mass changes

du(θP, λP) = R
∞

∑
n=1

h′n
1 + k′n

n

∑
m=0

P̄nm(cos θP)(∆C̄nm cos mλP + ∆S̄nm sin mλP) . (2.33)

Expressions for the horizontal components can be obtained by the similar derivation as the
vertical component. The detailed derivations for the north and east components are presented
in Appendix B and we simply show the resultant formulas here, see Eq. (2.34a) and Eq. (2.34b),

dn(θP, λP) = −R
∞

∑
n=1

l′n
1 + k′n

n

∑
m=0

∂P̄nm(cos θP)

∂θP
(∆C̄nm cos mλP + ∆S̄nm sin mλP) , (2.34a)

de(θP, λP) =
R

sin θ

∞

∑
n=1

l′n
1 + k′n

n

∑
m=0

P̄nm(cos θP)m(−∆C̄nm sin mλP + ∆S̄nm cos mλP) . (2.34b)

Eq. (2.34a), Eq. (2.34b) together with Eq. (2.33) represent the convolution in the spectral do-
main in terms of gravity spherical harmonic coefficients, especially convolving with the GRACE

products (e.g., Davis et al., 2004; van Dam et al., 2007). This approach is accordingly called the
spherical harmonic approach. It might be interesting to mention that if the surface displace-
ments are also expanded into the spherical harmonics in terms of the vertical and horizontal
directions, one-to-one correspondence between these deformation spherical harmonics and the
gravity spherical harmonics could also be established (Blewitt, 2003; Kusche, 2010). Summariz-
ing Eq. (2.16), Eq. (2.32) and Eq. (2.33), we can easily obtain the spectral relationship between
vertical displacements (∆C̄u

nm, ∆S̄u
nm), surface mass density changes (∆C̄σ

nm, ∆S̄σ
nm) and gravity

changes (∆C̄nm, ∆S̄nm)

Similar relationship can be obtained for the horizontal component (∆C̄v
nm, ∆S̄v

nm) if we derive
the north and east component as a whole. The only difference from the vertical component is to
replace Love number h′n with l′n (Blewitt, 2003; Kusche, 2010; Rietbroek, 2014) and we therefore
do not repeat here.

As demonstrated above, the Green function spatial approach and the spherical harmonic spec-
tral approach are mathematically equivalent when the degree n goes to infinity. Nevertheless,
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Figure 2.5: Spectral relationship between vertical displacements, surface mass density changes and gravity
changes.

in practice, the spherical harmonics approach truncates at, e.g. degree 90 for the GRACE prod-
ucts RL05 from GFZ, whereas the Green function approach develops till degree 10000 when we
compute the Green function coefficients (see Eq. (2.27a) and Eq. (2.27b)). These truncations will
therefore cause differences between the two manners practically and these differences will be
quantified below with real data.

Fig. 2.6 compares between the two approaches using the GRACE RL05 products from GFZ (Dahle
et al., 2014). The loading Love numbers are settled in the CF reference frame (see Section 2.3 for
details). The three-dimensional displacements over 914 GPS stations with both approaches are
evaluated. In the Green function approach, loads on a 0.5◦ × 0.5◦ grid over the globe are com-
puted following the procedure described in Appendix A (we receive almost the same results if
we use smaller grids).

The root mean square (RMS) of the differences between the two approaches in each compo-
nent are shown in Fig. 2.6. The average RMS of the differences over 914 GPS stations for the
north, east and up component is 0.04 mm, 0.04 mm and 0.05 mm, respectively. The comparison
indicates that the differences are quite small in the practical application over the globe. With
respect to the GPS noise level, these differences can be neglected and either approach produces
satisfactory results.

In addition, from the computational efficiency point of view, the spherical harmonic approach
is more efficient than the Green function approach if we deal with the data in the form of
spherical harmonics. Therefore, the spherical harmonic approach will be applied in Chapter 4
when we compare GPS and GRACE. However, when we face the regional or local load data or
the data not in spherical harmonics, the Green function approach is recommended rather than
the spherical harmonic approach. For example, the Green function approach will be deployed
in Chapter 5 to handle the local load data.



30 Chapter 2 Gravity and loading theory

−180˚ −120˚ −60˚ 0˚ 60˚ 120˚ 180˚

−60˚

0˚

60˚

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
RMS difference

mm

U

E 

N

Figure 2.6: The RMS of difference between the Green function approach and the spherical harmonic approach over
914 GPS sites.
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2.3 Reference frame theory

IN terms of the loading theory described in the last section, surface displacements caused by
the mass redistribution are a vector field (see Eq. (2.20a)), which depends on both physical

deformation and the corresponding reference frames. Interpretation of the surface displace-
ments requires a terrestrial reference frame defined consistently with the dynamics of loading,
namely, a clear description of the dynamic relationship between the Earth’s surface and the
frame origin at some defined center of the Earth. In particular, in the era of a variety of satel-
lite missions, a proper definition of reference frames is of great significance when handling the
spaceborne measurements together with the ground-fixed observations.

To this end, Blewitt (2003) proposed the concept of the so-called "isomorphic frames" which
indicates a class of reference frames with dynamically consistent kinematic interpretations of
the Earth’s deformation field. This set of reference frames consist of current most used refer-
ence frames in geodesy, which are distinguished by the definition of the origin of the reference
frames. These frequently used isomorphic frames are the Center of Mass of the Solid Earth
(CE) frame, the Center of Mass of the Earth System (CM) frame, and the Center of Surface Fig-
ure (CF) frame. One exaggerated illustration of these frames is shown in Fig. 2.7. Specifically,
the Center of the Network (CN) frame is shown in the figure to demonstrate that the CF frame is
the expansion of the CN frame to covering the whole globe. It should be mentioned that other
isomorphic reference frames, for example the Center of Surface Lateral Figure (CL) frame and
the Center of Surface Height Figure (CH) frame, are also used in the literature but not in this
thesis.

The driving force of introducing the concept of isomorphic frames is intimately related to the
degree-1 load. Therefore one important feature of the isomorphic frames is that the transfor-
mation between them can be accordingly linked to the loading theory and can be easily im-
plemented by altering only the degree-1 loading Love numbers. Higher degree loading Love
numbers will remain unchanged.

This section will give a brief description of the CE, CM and CF frames and their mutual trans-
formations. Detailed explanation of these reference frames and the derivation of their mutual
relationships can be found in the literature (e.g., Trupin et al., 1992; Greff-Lefftz and Legros,
1997; Dong et al., 1997; Blewitt, 2003; Wu et al., 2012; Rietbroek, 2014).

Center of Mass of the Solid Earth (CE) As illustrated in Fig. 2.7 (a), the CE frame indicates
the frame whose origin is assigned to the center of the solid Earth. Its origin will be altered
whenever the barycenter of the surface load changes. The CE frame is also a natural frame for
calculating the dynamics of solid Earth deformation and to compute the loading Love num-
bers. Most of the published loading Love numbers are given in the CE frame, for instance the
loading Love numbers given by Farrell (1972). As specified by Blewitt (2003), one major draw-
back of the CE frame is that its coordinate origin can not be measured directly. This feature
prevents its further practical application. In the literature the relative motion between CE and
CM is commonly referred to as geocenter vector (Dong et al., 1997). Nevertheless, practically,
CE is replaced by CF in the determination of the geocenter motion since the CF frame closely
approximates the CE frame, see Fig. 2.7 (d). According to Blewitt (2003), the trajectories of CE

and CF coincide to within 2% of their magnitudes, i.e. relative difference between k′CE
1 and k′CF

1 ,
for the Gutenberg-Bullen Earth model and 3% for PREM (Rietbroek, 2014).
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Figure 2.7: The clockwise sketches illustrate the different geodetic reference frames used in satellite geodesy. Sub-
figure (a) shows the Center of the solid Earth (CE) and subfigure (b) illustrates the Center of the Earth system
(CM), which includes the solid Earth and its surface mass. Subfigure (c) and (d) display the Center of Network
(CN) and the Center of Figure (CF), respectively. In essence, CF is the one extreme example of CN with a glob-
ally and uniformly distributed tracking stations. Subfigure (d) also presents the vector pointing from the origin
of CF to the origin of CM and the time evolution of this vector is called geocenter motion.

Center of Mass fo the Earth System (CM) Different from the CE frame, the origin of the CM

frame is defined as the center of mass of the entire Earth system, including the solid Earth
and its fluid envelope, see Fig. 2.7 (b). According to Petit and Luzum (2010), CM is used to
describe Earth’s motion in inertial space and is therefore referred to as the geocenter. CM also
serves as the orbital center for all Earth satellites and it is a natural choice of the reference frame
for spaceborne measurements. In addition, the coordinate origin of the International Terrestrial
Reference System (ITRS) is theoretically defined at the long-term mean of CM (Petit and Luzum,
2010).
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The coordinate of CM in a chosen coordinate system, e.g. CE, can also be represented directly
by the degree-1 gravity spherical harmonics as

XCE
CM =

√
3R

C̄11
S̄11
C̄10


CE

, (2.35)

where the degree-1 spherical harmonic coefficients are generated in the chosen coordinate sys-
tem, e.g. CE here.

As satellites fly around CM and can not sense the motion of CM, the degree-1 gravity spherical
harmonics in the spaceborne products are normally zero or missing. For example, the degree-1
coefficients in the GRACE gravity spherical harmonics do not exist. This phenomenon accord-
ingly indicates that the GRACE products are generated in the CM frame.

Center of Surface Figure (CF) Following the definition of Trupin et al. (1992), Dong et al.
(1997) and Blewitt (2003), CF is defined geometrically as the geometric center of an infinite
series of points which distribute uniformly over the surface of the Earth. The CF frame can
be realized by a sufficiently dense global coverage of geodetic stations and it is consequently
a natural reference frame choice for ground-fixed measurements, e.g. GPS station coordinate
time series.

Theoretically, the origin of the CF frame is defined such that the integral of the surface defor-
mation field over the entire globe is zero (Blewitt, 2003). It is also interpreted in another way
that the position of CF located in the CE frame can be computed by integrating the deformation
field s over the whole surface of the Earth (Wu et al., 2012; Rietbroek, 2014), which implies

XCE
CF =

1
4π

∫∫
Ω

s(θ, λ) sin θdθdλ . (2.36)

According to Eq. (2.36), the origin of the CF frame can further be related to the vertical and
horizontal spherical harmonics (see Eq.(2.41) in (Rietbroek, 2014)) as well as possibly to the
surface density spherical harmonics.

Several definitions of the geocenter vector exist in the literature (e.g., Trupin et al., 1992; Dong
et al., 1997; Blewitt, 2003; Wu et al., 2012). Following the definition of the geocenter vector in
the IERS convention (Petit and Luzum, 2010), translation of CM with respect to CF is referred
as the geocenter vector XCF

CM (Wu et al., 2012), which is approximately here XCE
CM − XCE

CF as CE

closely coincides with CF, see Fig. 2.7 (d). In this case, the geocenter vector tightly corresponds
to the above-mentioned degree-1 gravity spherical harmonic coefficients. In practice, if one
wants to interpret a result, which is produced in the CF frame, in the CM frame, the geocenter
vector should be removed. One should be cautious that the description here is opposite to that
in Blewitt (2003) where geocenter vector is defined in a reverse way.

Practically, the geocenter motion time series is provided either in the form of the Cartesian
coordinates XCF

CM (Cheng et al., 2013) or in terms of the degree-1 spherical harmonics (Swenson
et al., 2008). They can be readily translated to each other by Eq. (2.35).
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Transformation between the isomorphic reference frames Several reference frames exist in
use in geodesy and it is of central importance to confirm that the datasets at hand are in the
same reference frame. Reference frame consistency is the first step to compare different types of
observations or derived results. Taking station displacements for instance, the station deforma-
tion computed in the CM frame can be easily transformed and interpreted to be in the CF frame
by adding the geocenter vector. Instead, this procedure can be done by calculating the station
deformation directly in the CF frame, which consequently corresponds to the transformation
of the reference frame before computation. Since the cause of the isomorphic reference frames
is due to the degree-1 load, the transformation of the reference frames is accordingly trans-
ferred to a transformation of the degree-1 loading Love numbers between different isomorphic
reference frames (Blewitt, 2003).

Following the work done by Trupin et al. (1992) and Dong et al. (1997), Blewitt (2003) listed
the transformation of the degree-1 loading Love numbers from the CE frame to other isomor-
phic reference frames. Further, Rietbroek (2014) presented the mutual transformations of the
isomorphic reference frames, e.g. transformation from the reference frame A to B, which are of
the form as follows

h′B1 = h′A1 − αA→B , (2.37a)

l′B1 = l′A1 − αA→B , (2.37b)

1 + k′B1 = 1 + k′A1 − αA→B , (2.37c)

with

αA→CM = 1 + k′A1 , (2.38a)

αA→CF =
h′A1 + 2l′A1

3
, (2.38b)

αA→CE = k′A1 . (2.38c)

The transformation of the degree-1 loading Love numbers starts normally from the CE frame
in which the loading Love numbers are normally produced. Given the degree-1 loading Love
numbers listed in Farrell (1972), transferring to the CF frame will be

h′CF
1 = h′CE

1 −
h′CE

1 + 2l′CE
1

3
= −0.290 − −0.290 + 2 × 0.113

3
= −0.268 , (2.39a)

l′CF
1 = l′CE

1 −
h′CE

1 + 2l′CE
1

3
= 0.113 − −0.290 + 2 × 0.113

3
= 0.134 , (2.39b)

1 + k′CF
1 = 1 + k′CE

1 −
h′CE

1 + 2l′CE
1

3
= 1.021 . (2.39c)

After transformation of the degree-1 loading Love numbers, the convolution in either the spa-
tial domain (see Section 2.2.2) or the spectral domain (see Section 2.2.3) can be implemented in
the respective reference frame.

Considering the datasets used in this thesis, the mutual relationship between the data and the
corresponding reference frames could be summarized in Fig. 2.8. The GRACE and GPS data
are provided in the CM and the CF reference frames, respectively, and the difference between
them is the geocenter vector. According to Fig. 2.8, two ways exist to keep the reference frame
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Figure 2.8: Mutual relationships between CE, CM and CF, with connection to the Earth models, the GRACE and
GPS datasets, respectively.

consistent before comparing and analyzing the GRACE and GPS data. One way is that adding
the degree-1 gravity spherical harmonic coefficients to the GRACE products and subsequently
being convolved in the spectral domain with the loading Love numbers from the CF frame will
result in the displacements in the CF frame. This procedure is most frequently applied in the
literature (see Davis et al., 2004; Tregoning et al., 2009; Fu et al., 2012, etc.). Conversely, the other
way is to remove the geocenter motion time series from the GPS data which will correspond to
a result in the CM frame. This manner is also used in the literature (see van Dam et al., 2007;
Tesmer et al., 2011).
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Chapter 3

Singular spectrum analysis for modeling
geodetic time series

3.1 Motivation

OVER the last two decades, investigation of surface mass loading via space-geodetic tech-
niques has shown that many of the mass fluxes display a seasonal behavior, especially a

composition of annual plus semiannual signals (Blewitt et al., 2001; van Dam et al., 2001; Dong
et al., 2002). Much attention has been given to separate these periodic signals from other sig-
nals in the geodetic time series, e.g. linear or nonlinear trends. Conventionally, these seasonal
signals are modeled by sums of sinusoids with annual plus semiannual cycles using the clas-
sical least squares estimation approach. However, only constant amplitudes and phases can
be obtained in this parametric approach. In reality, true seasonal signals are not constant from
year to year. For example, water storage changes show strong peaks due to floods or droughts.
Recently, several studies have endeavored to determine the time-varying periodic variations
using non-parametric approaches (e.g. Freymueller, 2009; Tesmer et al., 2009; Chen et al., 2013)
or model based approaches (e.g. Davis et al., 2006; Bennett, 2008; Davis et al., 2012). Among
them, Chen et al. (2013) successfully applied singular spectrum analysis (SSA) to time-variable
seasonal signals modeling for GPS time series. Comparing to the least squares as well as the
Kalman filtering approach (Davis et al., 2012), SSA shows both its advantages and disadvan-
tages (Chen et al., 2013, 2015)

In geodesy, data-driven methods, such as Empirical Orthogonal Function (EOF)/Principal
Component Analysis (PCA) and Independent Component Analysis (ICA), are of significant
interests because of their parameter free and straightforward implementation characteristics.
These approaches are normally used to smooth or model multivariate geodetic time series,
e.g. multivariate GPS time series (Dong et al., 2006) and GRACE gravity spherical harmonic
coefficients (e.g., Rangelova et al., 2007; Frappart et al., 2011; Forootan and Kusche, 2012;
Rangelova et al., 2012). To be more precise in those applications, Dong et al. (2006) applied
PCA to remove the common mode errors from regional spatial GPS time series and Rangelova
et al. (2007, 2012) used PCA and M-SSA (multi-channel singular spectrum analysis) respectively
to investigate the main time-variable mass variations from GRACE data. In comparison to
these approaches, SSA, as a special case of M-SSA, is designed to analyze univariate time
series. This feature facilitates its application to univariate geodetic time series, for example,
single-coordinate GPS time series (Chen et al., 2013), basin averaged equivalent water height
time series from GRACE (Swenson and Wahr, 2002) or even water level variations from Satellite
Altimetry (Tourian et al., 2015).
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As an extension of (Chen et al., 2013), this chapter is dedicated to extend the application of
SSA to other univariate geodetic time series. In addition to extracting seasonal signals, other
features of SSA, e.g. non-linear trend extraction, will also be investigated. Few aspects related
to the application of SSA will be discussed as well.

3.2 Methodology

SSA has the same origin as PCA which are both based on the Karhunen-Loève theory of ran-
dom fields and of stationary random processes (Ghil et al., 2002). The key idea in both

approaches is to identify the main patterns of the variability included in the data, along with
decreasing order of the associated variance. The idea is implemented by diagonalizing the
corresponding covariance matrix.

SSA is designed for univariate time series and it can be extended to multivariate time series,
resulting in multi-channel SSA (M-SSA). As a natural extension of SSA, M-SSA allows in the
same way as SSA to decompose the given time series into its spectral components. However,
in contrast to SSA, M-SSA has advantages of extracting common information from any given
multivariate time series. For instance, application of M-SSA to GRACE gravity spherical har-
monic coefficients takes both spatial and temporal correlations embedded inside the data into
account (Rangelova et al., 2012). PCA is actually a special case of the M-SSA when no time lags
are introduced.

SSA therefore is a data-driven method that uses univariate data to extract information from
short and noisy time series without prior knowledge of the dynamics affecting the time se-
ries. An important feature of SSA is that obtained trends are not necessary linear and extracted
oscillations can be amplitude and phase modulated. A number of authors have given thor-
ough descriptions of this technique (e.g., Broomhead and King, 1986; Vautard and Ghil, 1989;
Vautard et al., 1992; Plaut and Vautard, 1994; Allen and Robertson, 1996; Ghil et al., 2002). In
the following, we briefly summarize their contributions and outline the main steps of the SSA

algorithm.

The starting point of SSA is to embed a time series (xi, 1 ≤ t ≤ N) into a trajectory matrix
D by sliding a M-point window. The dimension of the trajectory matrix is N′ × M, where
N′ = N − M + 1. The trajectory matrix D has the form

D =



x1 x2 x3 · · · · xM
x2 x3 x4 · · · · ·
x3 x4 x5 · · · · ·
· x5 x6 x7 · · · ·
...

...
...

...
...

...
· · · · · xN−1

xN′ · · · xN−1 xN


. (3.1)

The covariance matrix is then formed by

CBK =
1

N′ D
TD . (3.2)
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As this way of constructing the covariance matrix was originally proposed by Broomhead and
King (1986), known for BK algorithm, we call the covariance matrix as CBK. An alternative
way to computing the covariance matrix C is called VG algorithm (proposed by Vautard and
Ghil (1989)), which is based on the lagged-covariance matrix of the process xi. The average of
xi is removed and the series is normalized by its standard deviation. With a maximum lag (or
window size) M, the matrix CVG has a Toeplitz structure, i.e., constant diagonals corresponding
to equal lags:

CVG =



c0 c1 c2 · · · · cM−1
c1 c0 c1 · · · · ·
c2 c1 c0 · · · · ·
· c2 c1 c0 · · · ·
...

...
...

...
...

...
· · · · · c1

cM−1 · · · c1 c0


, (3.3)

where entries cj, 0 ≤ j ≤ M − 1, is the covariance of x at lag j. Its unbiased estimates are:

cj =
1

N − j

N−j

∑
i=1

xixi+j, 0 ≤ j ≤ M − 1 . (3.4)

The similarities and differences between BK algorithm and VG algorithm in computing the
covariance matrix have been discussed by Allen and Smith (1996) and Ghil and Taricco (1997).
Both algorithms lead to a symmetric covariance matrix C. However, the VG approach has
the advantage of better noise reduction when applied to short time series with respect to the
BK approach (Ghil et al., 2002). In this chapter, we apply the VG approach to compute the
covariance matrix C.

The second step is eigenvalue decomposition of C yielding eigenvalues λk and eigenvectors
(also called EOFs) Ek

j of this matrix, which are sorted in descending order of λk, where indices j
and k vary from 1 to M. The kth principal component is

ak
i =

M

∑
j=1

xi+jEk
j , 0 ≤ i ≤ N − M . (3.5)

Finally, each component of the original time series identified by SSA can be reconstructed, with
the kth reconstructed component (RC) series given by Vautard et al. (1992)

xk
i =



1
i

i
∑

j=1
ak

i−jE
k
j 1 ≤ i ≤ M − 1

1
M

M
∑

j=1
ak

i−jE
k
j M ≤ i ≤ N − M + 1

1
N−i+1

M
∑

j=i−N+M
ak

i−jE
k
j N − M + 2 ≤ i ≤ N .

(3.6)

SSA typically decomposes a time series into RCs that are nearly periodic with periods less than
M and one or two RCs containing variations in the time series with periods greater than M.
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According to Plaut and Vautard (1994), harmonic oscillations can be identified in terms of the
three fundamental properties of SSA: (1) two consecutive eigenvalues are nearly equal; (2)
the two corresponding time sequences described by EOFs are nearly periodic, with the same
period and in quadrature, namely, EOFs of the same frequency but with phase shift by 90◦; (3)
the associated PCs are in quadrature.

3.3 Aspects of application of SSA

Choice of lag-window size M Implementing the SSA technique, a key procedure is the proper
choice of lag-window size M, which defines the spectral resolution of the algorithm, i.e., the
ability to distinguish between two spectral peaks. There is no universal rule for the selection
of the window size M. Nevertheless, due to the symmetry of the covariance matrix, one needs
always to make M ≤ N/2.

In addition to this basic rule, a number of empirical suggestions from other studies are given
as follows. For example, according to Vautard et al. (1992), M can not be either too large or
too small. If M is too small, the coarse resolution may cause several neighboring peaks in
the spectrum of signal to coalesce. On the contrary, large M values will split the peak into
several components with neighboring frequencies and weaken the capability of isolating peaks
at frequencies lower than the resolution 1/M, i.e., periods larger than M. Vautard et al. (1992)
therefore suggested SSA succeeds in distinguishing oscillations with periods between M/5 and
M. Moreover, when choosing the lag-window size, Ghil et al. (2002) proposed to balance two
considerations: quantity of information extracted versus the degree of statistical confidence in
that information. The former requires as wide a window as possible, i.e. a large M, while the
latter requires as many repetitions of the features of interest as possible, i.e., as large a ratio
N′/M as possible. Golyandina and Zhigljavsky (2013) also recommended to select a window
size that makes M/T an integer if we have a good knowledge of the period T of the signals.
In other words, it is advantageous to choose M to be an integer multiple of the period T. This
is particularly useful for geodetic time series in which seasonal signals are always of much
significance.

In the geodetic field, Rangelova et al. (2012) applied a three-year window (156 weeks) to re-
trieve long-term changes together with seasonal variations from weekly GRACE solutions. For
the case of weekly GPS time series, annual and semi-annual signals are currently of most in-
terests and Chen et al. (2013) confirmed window sizes of two or three years to be suitable for
most of GPS time series. Nevertheless, depending on the composition of signals, window sizes
of four years or even five years are also possible for few cases (Chen et al., 2015).

Recently, a mathematical way of selecting window length, which statistically test the conver-
gence of the autocovariance function, is proposed by Khan and Poskitt (2012). However, in
the geodetic field, our main interests focus on extracting annual and semi-annual signals and
we therefore only follow the empirical rules rather than try the newly proposed mathematic
method to determine the window length. Generally, trial and error experience is recommended
in order to select the optimal window size.
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Separability of signals Golyandina et al. (2001) introduced the concept of separability of
components of time series using SSA when the composition of signals are complicated with
several approximate frequencies. The so-called w-correlation between the RCs are computed
so as to define whether a weak separability or strong separability exists. Strong separability or
even exact separability is desirable in practice although this does not always occur. In reality,
an approximate separability can be more frequently obtained (Golyandina and Zhigljavsky,
2013).

According to Golyandina and Zhigljavsky (2013), the w-correlation between two RCs is math-
ematically defined as

ρw(RC1, RC2)
def
=

(RC1, RC2)w

∥RC1∥w∥RC2∥w
, (3.7)

with

(RC1, RC2)w
def
=

N

∑
i=1

wix1
i x2

i . (3.8)

RC1 and RC2 is called w-orthogonal if (RC1, RC2)w = 0. The weight wi in Eq. (3.8) denotes the
frequency of the element xi from the original time series appearing in the trajectory matrix D
in Eq. (3.1) and wi is defined as

wi =


i for 1 ≤ i < min(M, N′)

min(M, N′) for min(M, N′) ≤ i < max(M, N′)

N − i + 1 for N − M + 2 ≤ i ≤ N .

(3.9)

Two RCs are approximately separable if ρw(RC1, RC2) ≃ 0. Fig. 3.1 presents the w-correlation of
RCs from the water level time series in Section 3.4.1 which clearly shows different separabilities
using the respective window sizes. The separabilities are weaker using the 3-year window size
than with the other two window sizes, especially in the first ten RC modes. Comparing to the
top and the middle row, the strong separabilities in the first six RCs using the 5-year window
size are desirable and these six modes are proved to be important signals in Section 3.4.1. As
strong or exact separabilities are preferable in practice, the w-correlation analysis can help us
to determine the optimal window size and categorize the component groups in a way.

Unevenly sampled time series Two situations exist in the case of unevenly sampled time
series. One is the case of irregular sampling, e.g. water level time series from satellite altimetry
(e.g., Tourian et al., 2015) while the other is the evenly sampling but with missing data, e.g. daily
or weekly GPS time series (Dow et al., 2009). In order to apply SSA, the former case requires
to resample the data into regular sampling. For the latter case, one solution is to fill the gaps
using interpolation techniques and apply SSA afterwards. An alternative approach is suggested
by Schoellhamer (2001). He used a modified singular spectrum analysis algorithm to obtain
spectral estimates from records with a large fraction of missing data and the modified algorithm
is implemented as follows. An over-bar in the following notation indicates that the series either
contains missing data or is calculated from a series that contains missing data. First, the lagged
autocorrelation is computed by ignoring any pair of data points with a missing value.

c̄j =
1
Nl

∑
l≤N−j

x̄l x̄l+j, 0 ≤ j ≤ M − 1 , (3.10)
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Figure 3.1: w-correlation analysis of the water level time series using a 3-year window size (M = 108, top row),
a 4-year window size (M = 144, middle row) and a 5-year window size (M = 180, bottom row). The first ten
RCs for each window size which are indicated by the red boxes are shown on the right column.
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where Nl are pairs with no missing data. The lagged covariance matrix CVG is then formed in
the same way as Eq. (3.3) using c̄j. Eigenvalue decomposition is applied to CVG and eigenvec-
tors are obtained subsequently. Note that the eigenvectors contain no missing data. Computa-
tion of the kth principal component ignores missing data points

āk
i =

M
Nl

∑
l≤M

x̄i+l Ēk
l , 0 ≤ i ≤ N − M . (3.11)

If Nl ≤ f M, where f ∈ [0, 1] is introduced that represents a specified fraction of allowable
missing data points within a given window size M, then āk

i is given a missing value. The final
reconstruction step is implemented in the same manner as SSA and if any PC value in the sum
is missing, then the RC value will accordingly be missing.

This technique has been applied successfully in GPS time series with missing data (Chen et al.,
2013). In the case of monthly GRACE derived total water storage time series, Schoellhamer’s
approach will also be applied instead of interpolation.

Centering the time series Centering the time series, i.e. subtracting the mean, is one simple
but non-trivial step in the course of operating SSA. This step is also important for other spectral
decomposition methods, e.g. PCA (Rangelova et al., 2007), which ensures the first principal
component describing the direction of maximum variance. This simple preliminary process of
the data is justified by Miranda et al. (2008) who demonstrated the necessity of a zero mean
to find a basis minimizing the mean square error of the approximation of the data. Thus the
mean of the time series is always removed before the SSA analysis is performed in the following
section.

3.4 Application of SSA to geodetic time series

SSA has been demonstrated to be useful in various fields, e.g. climate science, meteorology
and geophysics (Golyandina and Zhigljavsky, 2013). Basic SSA can be used for several

purposes, e.g. non-linear trend extraction, separating amplitude-modulated periodicities and
smoothing. Extension of SSA are possible for time series gap-filling (Kondrashov and Ghil,
2006), forecasting (Marques et al., 2006) as well as other applications (Golyandina and Zhigl-
javsky, 2013).

In geodesy, the application of SSA is relatively new. Rangelova et al. (2012) investigated the ca-
pabilities of M-SSA for extracting the main periodic and non-periodic variabilities from weekly
GRACE data which demonstrated the potentialities of SSA. A further application of SSA is pro-
vided by Chen et al. (2013) who applied SSA successfully to GPS time series for modeling the
time-variable seasonal signals. As an extension of these contributions, this section endeavors to
investigate the potential application of SSA to other geodetic time series, e.g. lake level time se-
ries from satellite altimetry (Section 3.4.1) and basin aggregated total water storage time series
from GRACE (Section 3.4.2).
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3.4.1 Lake level time series

THE lake level time series used in this subsection comes from Tourian et al. (2015) which
was derived for monitoring the desiccation of Lake Urmia. Lake Urmia is a dischargeless

salt lake located in northwestern Iran between the two Iranian provinces of East and West
Azerbaijan. Over the past decade, it is suffering from severe decline of lake surface area as
well as water level (Tourian et al., 2015). Nowadays, various space-borne techniques, such as
satellite altimetry, are employed to observe its changes.
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Figure 3.2: The observed water level time series of Lake Urmia (Tourian et al., 2015) and the interpolated time
series.

The water level data used here spanning from 2002.4 to 2013.9 was derived from three differ-
ent satellite altimetry orbit configurations launched by European Space Agency (ESA), namely,
ENVISAT (ENVIromental SATellite), EVISAT extended and CryoSat-2. Each satellite orbit con-
figuration has its own sampling rate, for example, a 35-day repeat period for ENVISAT and a
30-day repeat cycle for ENVISAT extended. In addition, both descending and ascending tracks
were used to derive lake level changes. All these factors make the whole dataset into an irregu-
larly sampled time series (Tourian et al., 2015). Thus, it is necessary to resample the data and it
is accordingly interpolated with the piecewise cubic spline interpolation into time series with
a 10-day sampling interval. The original water level time series and the interpolated one are
shown in Fig. 3.2 which display a very clear non-linear trend together with different periodic-
ities and noise. The following analysis will show capabilities of SSA to capture the non-linear
trend and separate the oscillations.

Based on the experiences from Chen et al. (2013) as well as the w-correlation analysis shown in
Fig. 3.1, a 5-year window size (M = 180) is selected and applied. In terms of the methodology
presented in Section 3.2, the corresponding plots of eigenvalues and eigenvalue spectrum are
firstly shown in Fig. 3.3. It is shown in Fig. 3.3 that the long term trend signal appears in the
first four modes which dominate the whole data and correspond to up to 92.5 % of the total
variance. Annual signals appear in the fifth and sixth modes corresponding only up to 1.85 %
energy and no significant semi-annual signals occur in the time series.
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Figure 3.3: (a) Eigenvalues from eigenvalue decomposition of the covariance matrix; (b) eigenvalues versus the
dominant frequency associated with their corresponding EOFs.
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Figure 3.4: The first 10 EOFs and PCs are grouped in terms of the eigenspectrum.
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According to the eigenspectrum shown in Fig. 3.3 as well as suggestions by Plaut and Vautard
(1994), corresponding EOFs (E matrix in Eq. (3.5)) and PCs (a matrix in Eq. (3.5)) are grouped
and shown in Fig. 3.4. The first four modes clearly illustrate the long-term trends with different
frequencies and the fifth and sixth modes correspond to the annual signals. The latter four
modes correspond to other irregular oscillations with no origins to our knowledge which might
be due to colored noise (Allen and Smith, 1996).
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Figure 3.5: The first six reconstructed components.

In terms of variance contributions, the first six modes contribute up to 94.35 % of the total
variance and therefore these first six modes are reconstructed and displayed in Fig. 3.5. The
first two RCs clearly display the long-term trend while the third and fourth RCs seem to show
two long-term oscillations with a period around 4 years which deserve a further investigation
of their origin. However, this further investigation is out of the scope of this section. The
amplitude modulated annual signals are obviously represented with decreasing amplitudes
which might be caused by the desiccation of Lake Urmia (Tourian et al., 2015).

Fig. 3.6 shows the summation of the first six RCs with respect to the original time series. The
blue curve in Fig. 3.6 fits the original time series very well capturing both the non-linear trend
as well as the periodic signals. Furthermore, it is also found that the red curve representing the
long-linear trend follows the whole time series closely, which demonstrates the ability of SSA

to separate the long-term trend from the periodic variabilities and noise.
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Figure 3.6: Comparison of RCs with respect to the original time series. Plots with magenta and red curves are
shifted for plotting purposes.

SSA is not compared with other mode-based techniques, e.g. the classical least squares method
and the Kalman filter approach (Davis et al., 2012; Chen et al., 2013), due to the existence of the
non-linear trend which is hard to be represented by a simple mathematic model. Nevertheless,
future work will focus on this aspect to compare SSA with other potential techniques or to
examine the significance of those captured signals using, for example, Monto-Carlo SSA (Allen
and Smith, 1996).

3.4.2 Basin averaged equivalent water height time series

WITH the advent of the GRACE mission, equivalent water height (EWH) time series, espe-
cially area or basin averaged ones, are of remarkable interest for geodesists to study hy-

drological loading processes (Tapley et al., 2004). These time series normally display a strong
seasonal signal together with a linear or non-linear trend depending on location (e.g., Baur,
2012; Rangelova et al., 2012). It is always of central importance to separate these components
so as to facilitate the understanding of their origins (see Rangelova et al., 2007; Schmidt et al.,
2008b; Frappart et al., 2011; Davis et al., 2012; Baur, 2012; Rangelova et al., 2012). In particular,
Rangelova et al. (2012) demonstrated the usage of M-SSA combined with a 700 km Gaussian
filter on the weekly GRACE gravity spherical harmonic coefficients to derive basin averaged
seasonal total water storages. This subsection aims to show an alternative procedure which ap-
plies SSA to extract non-linear and seasonal signals from the basin averaged total water storage
time series.

It is worth mentioning that, before performing SSA, we firstly follow the steps described in
Appendix A to estimate the equivalent water height and then compute the basin averages using
the approach given by Swenson and Wahr (2002) to obtain the basin scale equivalent water
height time series. The Congo basin which is located in west equatorial Africa with a basin
size of 3693 × 103 km2 is adopted here as an example. To be more detailed in the procedure
of deriving the equivalent water height time series, the combination of the destriping filter



48 Chapter 3 Singular spectrum analysis for modeling geodetic time series

2003 2005 2007 2009 2011 2013
−10

−5

0

5

10

Time/yr

E
W

H
/c

m

Figure 3.7: The derived equivalent water height time series of the Congo Basin.

(Swenson and Wahr, 2006) and a 500 km Gaussian filter (Jekeli, 1981) is applied to the monthly
GFZ RL 05a spherical harmonic coefficients (Dahle et al., 2014). The months with regularized
solutions, e.g. June to November in 2005, are removed so that a few gaps exist in the time series,
see Fig. 3.7.

As mentioned before, Schoellhamer (2001)’s approach is used here for dealing with gaps in the
course of the SSA analysis. Via the w-correlation analysis, a window size of 5-year is deployed
here in this example and the corresponding eigenvalue spectrum and the w-correlation plots
are shown in Fig. 3.8. It is evident from Fig. 3.8 that both the w-correlation and the eigenspec-
trum indicate five pairs of oscillations from the first ten modes. The corresponding EOFs and
PCs displayed in Fig. 3.9 further support the analysis.
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Figure 3.8: Left: the w-correlation; Right: the eigenspectrum indicating the eigenvalues versus the dominant
frequency associated with their corresponding EOFs.
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Figure 3.9: The first 10 EOFs and PCs are grouped in terms of the eigenspectrum.

Clearly shown in Fig. 3.9, long-term trends appear in the first two modes and strong annual
signal patterns (see also, Crowley et al., 2006) occur in the third and fourth components. From
the eigenspectrum in Fig. 3.8, these four modes dominate the whole time series contributing up
to 71.8 % in terms of variance. Inter-annual patterns (a 3-year cycle) which were also seen by
Schmidt et al. (2008b) and Rangelova et al. (2012) are observed in the fifth and sixth modes with
a contribution of 8.4 % variance. The same finding as Schmidt et al. (2008b) for the Congo basin
here is that semi-annual signals do not play a significant role contributing only 4.0 % variance.
An approximate 1.5-year oscillation pattern also appears in the ninth and tenth modes which
requires further investigation of its origin.

Fig. 3.10 shows the corresponding reconstructed components with a more clear view of the
long-term trend and the different periodicities. The comparison of the reconstructed compo-
nents with respect to the derived equivalent water height is displayed in Fig. 3.11. The blue
curve consists of the first eight RCs with a contribution of 84.2 % ot the total variance and it fits
the original time series closely with a correlation of 0.9. The red curve indicating the non-linear
trend also sees the minimum and the peak which were also shown in Rangelova et al. (2012).
By a careful visual inspection, the pattern shown in Fig. 3.11 has significant similarities with
the Figure 9 (b) shown in Rangelova et al. (2012), which in a way verifies the analysis presented
here.

The above analysis confirms that gaps are not a problem in the SSA analysis and the modi-
fied SSA algorithm proposed by Schoellhamer (2001) could adequately handle time series with
missing data. Nevertheless, it is worth pointing out that SSA fails to capture few peaks of the
equivalent water height time series in Congo. This might be a potential weakness of SSA.
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Figure 3.10: The first ten reconstructed components of the equivalent water height time series from the Congo
basin.
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Figure 3.11: Comparison of RCs with respect to the original time series in the Congo basin. Plots with magenta
and red curves are shifted for plotting purposes.
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3.5 Discussion and summary

THIS chapter discusses the methodology as well as the application of SSA in the lake level
time series and the basin averaged equivalent water height time series. A clear long-term

trend together with other periodic variabilities, e.g. annual variations, exist in both exemplary
time series. By applying SSA to both time series, it is demonstrated that SSA has the ability to
extract both long-term variations as well as the periodic oscillations.

As mentioned before, the window size is a key parameter in SSA. With the help of the w-
correlation analysis, a 5-year window size which is found to be the optimal window size, is
applied in both examples. It should be mentioned that the same window size in time does not
necessarily correspond to the same M in samples because the number of M depends on the
sampling rate as well. For instance, in the case of the water level time series, M = 180 (out
of 421 samples) is adopted while M = 60 (out of 131 samples) is used in the second exam-
ple. Large window sizes used here support the description stated in (Golyandina and Zhigl-
javsky, 2013) that separating long-term trend from oscillations requires large window sizes.
The choices of window size here also follow the recommendation by Golyandina and Zhigl-
javsky (2013) to make M/T an integer since we know that annual signals are always significant
in geodetic time series.

SSA is not compared to the model-based approaches here because the comparison has been
done in Chen et al. (2013). The conclusions presented there certainly apply here. For instance,
comparing to the Kalman filtering approach, SSA can avoid the complication of assuming the
noise processes that affect the time series. Model-independence and data-driven are the most
significant features of SSA.

However, its merits also lead to its drawbacks that the whole SSA analysis in this chapter does
not include any uncertainty estimation or statistical significance test. This means that we can-
not obtain a quantitative evaluation of the analysis. A significance test is required after the
analysis, especially in the presence of colored noise. Performing Monte-Carlo significance test
in the course of implementing SSA in the future might possibly help us to assess the signifi-
cance of the detected periods, for example, the 1.5-year cycle detected in the second example.
In a way, Monte-Carlo SSA can serve as a potential detector of unknown periods against the
correlated errors (Allen and Robertson, 1996; Schmidt et al., 2008b).
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Chapter 4

Hydrological loading induced vertical
displacements from GPS and GRACE

4.1 Motivation

OVER the last decade, the gravity field satellite mission GRACE has been proved successful
in monitoring surface mass variations (e.g., Tapley et al., 2004). GRACE-derived spheri-

cal harmonic coefficients can be converted to several other physical quantities for geophysical
studies, e.g. equivalent water height and deformation (e.g., Wahr et al., 1998; Davis et al., 2004).
However, the absence of a truth dataset for the GRACE results poses challenges in the valida-
tion process. Measurements from other satellite techniques or from Earth models are therefore
employed to validate or complement GRACE. The GNSS technique, which directly measure the
crust deformation, is strongly connected to the GRACE mission.

Through the past few years, both GPS and GRACE have been employed together to study
changes of the Earth’s shape due to surface mass loading, especially hydrological loading
(e.g., Davis et al., 2004; van Dam et al., 2007; Tregoning et al., 2009). With the advancement of
background models in both GPS and GRACE data processing, the agreement between GPS and
GRACE signals were significantly improved (e.g., Tregoning et al., 2009; Tesmer et al., 2011).
Nevertheless, remaining error sources still affect the consistency between the two techniques.
GRACE data filtering is among one of them (Tesmer et al., 2011), which can remarkably affect
the derived surface displacements with respect to their noisiness, as well as regional systematic
patterns.

In the GRACE community, several filters were designed to reduce the systematic noise of the
GRACE data and enhance the signal-to-noise ratio. Various filtering schemes were investigated
and compared for different purposes (King et al., 2006; Werth et al., 2009; van der Wal, 2009;
Steffen et al., 2010; Scheller, 2012; Belda et al., 2015). For example, Werth et al. (2009) evaluated
the performances of six types of filters from a hydrological perspective and Scheller (2012) con-
ducted another detailed comparison of several types of filters for a regional freshwater fluxes
system study using GRACE in Siberia. In addition, van der Wal (2009) and Steffen et al. (2010)
compared different types of filters when applying GRACE to investigate the glacial isostatic
adjustment. These filtering comparisons in the literature indicate the central importance of fil-
tering and it is also concluded that no single filter produces consistent good performances for
all studies.

In comparison to GPS observed deformation, the commonly used way of filtering GRACE grav-
ity models in previous studies is mostly making use of the isotropic Gaussian filter of a given
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half-width (Jekeli, 1981). For instance, King et al. (2006) investigated the choice of optimal
Gaussian smoothing radii for temporal GRACE gravity solutions and validated with vertical
displacements measured using a global GPS network of 63 sites. They concluded that optimum
smoothing radii were ∼500 km for continental sites in terms of correlations between GPS ob-
served and GRACE-derived vertical displacements. At the global scale, van Dam et al. (2007)
applied the isotropic Gaussian filter with a radius of 500 km while Tesmer et al. (2011) de-
creased the radius to 400 km to balance between minimizing the GRACE errors and avoiding
the signal loss for better interpretation. In comparison with GPS at the regional scale, Khan et al.
(2010) utilized the isotropic Gaussian filter with a smoothing radius of 250 km for the GRACE

products from CSR over Greenland while Fu et al. (2013) applied the isotropic Gaussian filter
with a radius of 350 km in the Amazon region. It seems that the optimal smoothing radius
of the isotropic Gaussian filter is not fixed. How will the different smoothing radii affect the
GRACE-derived vertical displacements? This question will be answered in this chapter?

Besides the isotropic Gaussian filter, anisotropic Gaussian filter (Han et al., 2005), destriping
filter (Swenson and Wahr, 2006), and stochastic filters (e.g., Kusche, 2007) are designed to min-
imize systematic errors in GRACE. Those filters are immensely used in GRACE filtering for
hydrological purposes while they are hardly applied in the case of comparison with GPS. In
this sense, the choice of optimum Gaussian smoothing radii or even choice of optimum filters
is not settled yet.

In addition, as time elapses, the procedure to generate the gravity spherical harmonic coeffi-
cients is improved and the latest GRACE products, e.g. Release 05 (RL05), have been released
by different data processing agencies in 2012. The new releases are less contaminated by noise
than previous solutions due to the improvement of raw data processing. Therefore the associ-
ated filter choices might be changed accordingly comparing to other studies who used the old
releases (van Dam et al., 2007). To investigate the impact of filtering on the GRACE-derived ver-
tical displacements, the GPS observations from Europe and South America are selected for two
reasons: 1) both regions have relatively dense GPS station coverage; 2) Europe represents an
area where the hydrological signal is low while South America stands for an area where strong
mass variation happens. Using the latest GRACE RL05 data from GFZ (Dahle et al., 2014) and
the improved GPS time series from IGS (Collilieux et al., 2011) and the SIRGAS network (Sánchez
et al., 2013), we revisit the idea of King et al. (2006) by including more filters in addition to the
isotropic Gaussian filter.

4.2 GRACE data filtering

IN general, the filters used in the GRACE community can be categorized into two types: de-
terministic filters and stochastic filters. In deterministic filter design the impulse response

of the filter function is pre-defined, which implicitly means that the frequencies that possess
signal and the frequencies that are dominated by noise are pre-defined. This further implies
that one must have a certain idea about the signal and noise content of the frequencies. Jekeli
(1981) presents some of the most commonly used filters in gravity field determination, and of
those filters the Gaussian averaging function is the one chosen here. In addition, this study also
uses the anisotropic Gaussian filter of Han et al. (2005) and the destriping filter of Swenson and
Wahr (2006).
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Stochastic filtering, unlike deterministic filtering, utilizes the behavior of signal and noise de-
scribed by their respective covariances to filter out noise. The stochastic filters that this study
has used for processing the GRACE are the DDK filter described in Kusche (2007) and the reg-
ularization filter (Lorenz, 2009; Devaraju et al., 2012) which follows the basic principle of the
DDK filter. However, the regularization filter differs from the DDK filter in two aspects, which
are the ways of constructing the noise and signal covariances. Section 4.2.2 details the DDK

filter approach as well as the the regularization filter approach and their differences.

4.2.1 Deterministic filters

Isotropic Gaussian filter Smoothing the gravity field on the sphere using the isotropic Gaus-
sian filter was first formulated by Jekeli (1981) in physical geodesy. The isotropic Gaussian
filter smooths a signal by attenuating the power of high-frequencies which are represented as
high degree and order spherical harmonic coefficients in the gravity field. In terms of Jekeli
(1981), the Gaussian window function between two points P(θ, λ) and P′(θ′, λ′) on the sphere
follows

WG(ψ) = e−b(1−cos ψ), b > 0 and 0 ≤ ψ ≤ π, (4.1)

where b is a dimensionless parameter characterizing the smoothing process and ψ is the spher-
ical distance between P and P′ on the sphere. Applying Eq. (4.1) over the whole sphere, the
smoothing kernel in the spatial domain becomes

WG(ψ) =
e−b(1−cos ψ)

1 − e−2b , (4.2)

with

b =
ln(2)

1 − cos( r
R )

, (4.3)

where r = Rψ denotes the half-width radius parameter i.e. the distance on the Earth’s surface
at which W(ψ) has dropped to half its value at ψ = 0. The parameter r is commonly used to
indicate the level of the Gaussian smoothing.

In the spectral domain, Wahr et al. (1998) presented the recursive form of computing the
smoothing coefficients Wl :

WG
0 = 1 ,

WG
1 = 1+e−2b

1−e−2b − 1
b ,

WG
l+1 = − 2l+1

b WG
l + WG

l−1 , l ≥ 1 .

(4.4)

According to Eq. (4.2) and Eq. (4.4), an important feature of the above Gaussian filter is isotropy,
i.e. the weighting structure of the smoothing kernel is directional invariant. The smooth-
ing coefficients in the spectral domain are only degree-dependent and are therefore location-
independent in the spatial domain.
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Anisotropic Gaussian filter (Han Filter) Due to the fact that noise, existing in the GRACE

spherical harmonic coefficients, varies with both degree and order, Han et al. (2005) proposed
a Gaussian-based anisotropic averaging approach. The smoothing kernel is constructed as

WH
lm = WG

l (r 1
2
(m)) ,

with r 1
2
(m) = r1−r0

m1
m + r0 ,

(4.5)

where r0 and r1 are the averaging radii, respectively, applied for zonal harmonics (m = 0)
and for order m1 harmonics (m = m1). In the case of r0 = r1, Eq. (4.5) becomes the isotropic
Gaussian smoothing operator with the smoothing radius of r1.

The merit of the Han filter lies in its anisotropic characteristic i.e. the weighting structure of the
smoothing kernel is directional variant, which behaves both degree and order dependent in
the spectral domain (WH

lm). In the spatial domain, the averaging resolution depends on r0 in
latitude direction and r1 and m1 in longitude direction. Normally, r1 is fixed to be twice of
r0, which produces a better resolution in latitude direction than the isotropic Gaussian filter
(Lorenz, 2009).

Within the anisotropic filter group, it might be interesting to mention that another non-isotropic
filter called Fan filter (Zhang et al., 2009) was also used by researchers (Belda et al., 2015). The
Fan filter is a 2-D double filter consisting of a low-pass along the degree l (the same as the
conventional isotropic filter) simultaneously with a low-pass along the order m, whose contour
projection onto the (l, m)-plane is fan-shaped.

Destriping filter Swenson and Wahr (2006) observed the presence of long, linear, north-south
striped phenomena in the unsmoothed GRACE data, which correspond to a correlation in the
spectral domain between even and odd degrees for spherical harmonic coefficients of a partic-
ular order. To remove the correlated errors, Swenson and Wahr (2006) proposed a destriping
filter (or decorrelation filter) by fitting and removing a low order polynomial in a moving win-
dow of half-width w centered on the degree l for a particular order m:

Cds
lm =

p

∑
i=0

Qi
lmli, (4.6)

where Cds
lm is the destriped spherical harmonic coefficients; Qi

lm is the degree i coefficient of the
polynomial fit; p is the order of the polynomial. Note that Eq. (4.6) for Clm is also valid for Slm.
The polynomial coefficients are obtained by least-squares according to

Qi
lm =

p

∑
j=0

l+w/2

∑
n=l−w/2

n: even or odd

L−1
ij njCnm , (4.7)

with

Lij =
l+w/2

∑
n=l−w/2

n: even or odd

ninj . (4.8)

The summation process over degree n in Eq. (4.7) is done separately for odd and even degrees;
that is, if l is odd, then only odd degrees n are summed, and likewise when l is even. It is worth
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mentioning that a much more detailed implementation of the algorithm, which is written in
algebraic form, can be found in Devaraju (2015).

Variations in the implementation of the destriping filter exist for different purposes. The cut-
off degree l, the degree p of polynomial fit and the window size w can be varied based on the
order and on the error pattern (Duan et al., 2009). For example, Chen et al. (2007b) applied the
destriping filter with a setting of the cut-off degree l = 6 and the polynomial degree p = 3,
which was denoted as P3M6, for investigating the ability of GRACE to detect coseismic and
postseismic deformation from the Sumatra-Andaman earthquake. Whereas Chambers (2006)
used the cut-off degree l = 8 and the polynomial degree p = 7 for evaluation of GRACE RL02
products over the ocean. Based on the previous studies, Duan et al. (2009) proposed to deter-
mine the cut-off degree l and the window size w in terms of the error patterns provided by the
processing centers. Very recently, Belda et al. (2015) updated the configuration of the destriping
parameters for the global application for GRACE RL05 monthly solutions.

4.2.2 Stochastic filters

UNLIKE the deterministic filters, the stochastic filters are designed to filter the GRACE gravity
spherical harmonic coefficients using the a prior information about the unfiltered coeffi-

cients. For instance, Sasgen et al. (2006) presented a filter using the idea behind the Wiener
filter, which tries to minimize the difference between the filtered signal and a desired output
signal. Implementation of this filter requires prior knowledge about the desired signal which,
however, does not exist in the case of GRACE signals, and Sasgen et al. (2006) utilized the char-
acteristics of the GRACE spherical harmonic coefficients to approximate the signal variance.
Tracking back to the least-squares estimation of the GRACE spherical harmonic coefficients,
Kusche (2007) proposed to smooth and constrain the noisy GRACE signal within the concept
of a Bayesian type regularization (Koch and Kusche, 2002). Kusche et al. (2009) simplified the
approach of Kusche (2007) by applying a block diagonal instead of a full synthetic error co-
variance matrix which was mapped from the GRACE twin-satellite orbital pattern and resulted
in the so-called DDK filter. Note that in (Kusche, 2007) and (Kusche et al., 2009), the signal
variance used is derived from geophysical models and the synthetic error covariance matrix
obtained based on the GRACE orbit of August 2003 is the same for the entire time series.

In a variation of the approach of Kusche (2007) and Kusche et al. (2009) but unlike them, Lorenz
(2009) implemented an approach using different strategies to deal with the error covariance and
the signal covariance, which was further extended by Devaraju et al. (2012). Here we denote
the stochastic filter developed by Lorenz (2009) and Devaraju et al. (2012) as the Regularization
filter. The details about the DDK filter and the Regularization filter are introduced below.

DDK filter In matrix notation, the DDK filter can be written as:

x′ = Wx , (4.9)

with the filter matrix W:
W = (N−1 + αS−1)−1N−1 , (4.10)

where vectors x′ and x denote the filtered and unfiltered Stokes coefficients, respectively, and N
is the approximate block-diagonal GRACE error covariance matrix and S is a diagonal degree
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dependent signal covariance estimated from geophysical models. The degree of smoothing
is controlled by the regularization parameter α. The strongest smoothing corresponds to the
parameter α = 1014, denoted as DDK 1, while the parameter α = 1011, which is called DDK 5,
produces the weakest smoothing. According to Börgens and Eicker (2014), it is impossible to
find the one-to-one correspondence between the Gaussian smoothing radii and the different
DDK filters, but only in terms of different characteristics, such as attenuation. In this thesis, the
DDK filtered datasets are downloaded directly from the ICGEM website.

Regularization filter Within the concept of regularizing the GRACE normal equation pro-
posed by Kusche (2007), Lorenz (2009) implemented the stochastic filtering in a similar way
but differing from that by

1. instead of using the invariant error covariance matrix, Lorenz (2009) simulated a full error
covariance matrix for each month according to the energy balance approach (see Eq. 4.2.1
in Lorenz (2009));

2. instead of constraining the smoothing using the same power-law signal covariance model
derived from the geophysical models, Lorenz (2009) utilized a Kaula-type rule estimated
from the monthly GRACE coefficients as the stochastic constraint.

Note that though we use different notations here, Lorenz (2009) fundamentally follows Kusche
(2007) closely. Likewise, in algebraic form, the regularization filter can be formulated as:

x′ = (Pi
G + λPK)

−1PGx , (4.11)

where Pi
G is the inverse of the simulated error covariance matrix for the month i and PK denotes

the inverse of the signal variance matrix derived from the Kaula-type rule of the GRACE coef-
ficients; λ determines the degree of smoothing. Unlike from the parameter α used by Kusche
(2007), the regularization parameter λ ranges in theory from 0 to ∞. Higher values indicate
stronger smoothing.

In more details, PK is computed according to Eq. (4.12)

PK = Q−1
K =

(
KC 0
0 KS

)−1

, (4.12)

with

Klm =
σ2

l
2l + 1

, l = m, m + 1, ..., L, m = 0, 1, ..., L , (4.13)

where σ2
l denotes the signal degree variances estimated by fitting a power law to the pure signal

degree variances of the monthly GRACE coefficients (see more details in Section 4.1 in (Lorenz,
2009)). Thus, Klm represents the signal variance per coefficient. Specifically, the weight matrix
PK is invariant for the entire period.

Devaraju et al. (2012) and Sneeuw et al. (2014) further developed the regularization filter by
introducing the characteristics of cyclo-stationarity, buried in the monthly GRACE products,
into the regularization process. As a consequence, the weight matrix PK varies for each calendar
month. It is worth mentioning that the regularization parameter λ was optimally computed
using variance component estimation in (Lorenz, 2009) while in (Devaraju et al., 2012) and
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(Sneeuw et al., 2014), λ can be adapted based on trial and error, behaving similarly as the
different DDK filters.

Table 4.1 summarizes the differences between different stochastic filters. i indicates the sam-
pling month of the GRACE solutions and j indicates the calendar month ranging from 1 to 12.

Table 4.1: Different settings for stochastic filters

Method Filter

Wiener filter
S

S + N

DDK filter
N−1

N−1 + αS−1

Regularization filter
Pi

G

Pi
G + λPj

K

Other than the filters which are introduced above in detail, other filters which are designed
for specific purposes or for specific regions exist in the literature. For example, the Empiri-
cal Orthogonal Function (EOF) approach is applied to extract the principle components from
the GRACE monthly solutions which can serve as a filtering tool (e.g., Schrama et al., 2007;
Rangelova et al., 2007), and Klees et al. (2008) introduced an anisotropic, non-symmetric (ANS)
filter which they claimed to be the optimal filter for the GRACE signals. The ANS filter makes
use of the noise and the full signal variance-covariance matrix to tailor the filter to the error
characteristics of a particular monthly solution and it can be considered as an extended ver-
sion of Kusche (2007). Davis et al. (2008) presented a statistical filtering approach utilizing a
parameterized model for the temporal evolution of the GRACE coefficients.

Table 4.2: Settings of five categories of filters we used. In the destriping filter, l and m refer to the starting degree
and order.

Filter type Variable parameter Reference

Isotropic Gaussian filter
rg = 200, 250, 300, 350, 400, 450,
500, 600, 800 ,1000 km

(Jekeli, 1981)

Anisotropic Gaussian filter r0 = rg, r1 = 2 × r0 (Han et al., 2005)
Destriping filter p = 2, l = m = 8 (Swenson and Wahr, 2006)
DDK filter α = 1014, 1013, 1012, 5 × 1011, 1011 (Kusche, 2007)
Regularization filter λ = 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (Kusche, 2007; Lorenz,

2009; Devaraju et al., 2012)

Certainly, several other filters are not listed here and a thorough evaluation of all possible filters
is not straightforward. Thus the filters which are commonly used are selected in this chapter for
comparison and they are presented in Table 4.2. Throughout this chapter, the following abbre-
viations are used for the deterministic filters in the tables and figures: IG (isotropic Gaussian
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filter), AG (anisotropic Gaussian filter), IGD (isotropic Gaussian filter combined with the de-
striping filter), AGD (anisotropic Gaussian filter combined with the destriping filter). It should
be noted that the combination of the destriping filter with the isotropic or anisotropic Gaussian
filter is conducted by applying the destriping first.

4.3 Datasets and their inconsistencies

4.3.1 GPS time series

THE weekly GPS height time series from Collilieux et al. (2011), which preserves crustal de-
formation information in the position time series, especially at the seasonal timescale, are

utilized and the same sites in Europe as used in (van Dam et al., 2007) are selected for the com-
parison over this area. A total of 40 sites are chosen for the comparison, see Fig. 4.1, and 13
exemplary GPS height time series are shown in Fig. 4.2. It is evident that GPS height time se-
ries from this area present similar seasonal behavior except MORP, which does not show clear
annual and semi-annual signals. In addition, GPS sites from Eastern Europe show relatively
stronger seasonal signals than GPS sites from the west, for example, POLV, located in Poltava,
Ukraine. This phenomenon is also seen in the forthcoming analysis from GRACE. As both so-
lutions from Europe and the SIRGAS GPS network described below are weekly solutions, they
are therefore averaged into monthly time series to be consistent with the GRACE monthly solu-
tions.
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Figure 4.1: Distribution of the selected 40 GPS sites from Europe.
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Figure 4.2: Exemplary GPS height time series from Europe. In the figure, except NYAL, GPS height time series of
the rest stations are shifted for plotting purposes. Shaded areas are error bounds of each original weekly time
series.

For the comparison over the Amazon area, the GPS time series from SIRGAS GPS network, which
is processed by DGFI (German Geodetic Research Institute), are used. The whole SIRGAS GPS

network, see Fig. 4.3, comprises 58 IGS global stations and other SIRGAS-CON regional stations,
which makes up to around 300 stations in total up to now. The time series utilized in this
comparison are the latest multi-year solution SIR11P01 (Sánchez and Seitz, 2011; Sánchez et al.,
2013) and the detailed computation procedure is described in (Sánchez and Seitz, 2011). The
final residual time series out of this multi-year solution are cleaned and detrended weekly
solutions spanning from 2000 to 2011.29 when the IGS08 reference frame was introduced.
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Figure 4.3: Map of the SIRGAS GPS network (courtesy: www.sirgas.org) and distribution of the selected 46
GPS sites from this regional GPS network.

To compare with GRACE in this area, GPS stations with time series which overlap with the
GRACE time frame more than three years are selected. As this study focuses on hydrological
signals, the stations which are not located inside or around the Amazon basin and its nearby
basins are ruled out. Eventually 46 stations out of 228 stations are used in the comparison, see
Fig. 4.3. A few time series are shown in Fig. 4.4 as examples. Since the SIRGAS GPS network is
under development, time series length from SIRGAS varies among the GPS sites.

Relative to GPS height time series from Europe, seasonal signals are much stronger in the SIR-
GAS network because significant water mass variations are happening in and around the Ama-
zon area. For example, NAUS (located in Manaus, Brazil) displays a peak-to-peak 40 mm annual
oscillation with an exception in 2009 when a severe flood happened (Chen et al., 2010). In ad-
dition to seasonal behavior, stations like BOGA (located in Bogota, Columbia) also show a clear
non-linear trend signal.

4.3.2 GRACE products

THE GRACE GSM RL05a product from GFZ (Dahle et al., 2014) is used for the following rea-
sons. Firstly, as reported by Tesmer et al. (2011), the GRACE datasets from GFZ, CSR and

JPL did not show significant systematic differences. Secondly, compared to the GRACE related

www.sirgas.org
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Figure 4.4: Exemplary time series from SIRGAS. In the figure, except BOGA, GPS height time series of the rest
stations are shifted for plotting purposes.

products from CSR and JPL, GFZ provides better metadata, e.g. the calibrated standard devia-
tions of the Stokes coefficients, which are used in the regularization filtering.

Before deriving displacements from the GRACE data, the C20 term is replaced in the GRACE GSM

data using the product from Cheng et al. (2011). The resultant monthly GRACE GSM Stokes co-
efficients are then filtered using the deterministic filters and the regularization filter tabulated
in Table 4.2. The DDK filtered datasets are downloaded directly from the ICGEM website. Note
that the C20 term in the DDK filtered datasets are replaced as well before deriving the displace-
ments for comparison.
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4.3.3 Inconsistencies between GPS and GRACE

AS discussed in the previous chapters, GPS and GRACE observe two fundamentally different
quantities and they both experience totally different data processing procedures. Several

issues exist in reality affecting the agreement between GPS and GRACE. For example, van Dam
et al. (2007) and Tesmer et al. (2011) mentioned possible error sources in both GPS and GRACE

which could probably influence the consistencies. To be more precise, van Dam et al. (2007)
pointed out possible error sources from the GPS part, e.g. atmospheric mismodelling, bedrock
thermal expansion, monument thermal expansion, phase center modeling and common orbital
errors. Tesmer et al. (2011) also attributed disagreements in part to GRACE, e.g. external C20
term used in GRACE, GRACE data filtering and atmospheric and oceanic dealiasing models.
Apart from these possible errors, however, two fundamental issues should be resolved before
comparing GPS and GRACE: 1) the reference frame issue; 2) the atmospheric loading and non-
tidal oceanic loading issue. These two issues are not dealt consistently in GPS and GRACE

products and they should be corrected in those solutions before comparison.

Reference frame issue Several reference frames exist in use in geodesy and they have been
discussed in Section 2.3. From there we know that the resultant GPS data stay in the CF reference
frame while GRACE GSM products lie in the CM frame. Besides, translation of the reference
frame from one to another is essentially linked to the translation of the degree-1 terms. As
GRACE does not sense the geocenter motion, the degree-1 terms in the GRACE GSM gravity
monthly solutions are set to zero. To keep GPS and GRACE consistent in the reference frame,
several ways were adopted in the literature. However, in essence, the rule is to change from
one into the other, that is to say, we either change GPS from the CF frame into the CM frame or
the other way around.

Davis et al. (2004) firstly started to compare the displacements observed by GPS and derived
from GRACE. They added the l = 1 contribution to the deformation inferred from GRACE,
which was followed by Nahmani et al. (2012). Whilst van Dam et al. (2007) corrected the ref-
erence frame issues by removing the displacements due to the degree-1 effects from GPS (see
Fig. 2.8) and this approach was also applied by Tesmer et al. (2011). It should be noted that
the displacements computed by van Dam et al. (2007) and Tesmer et al. (2011) were simply an
average of the X, Y, Z components from a global GPS network. Apparently, this way is not suit-
able for a regional GPS network study, e.g. the GPS network in Europe and the SIRGAS network
used in this chapter. Alternatively, Tregoning et al. (2009) directly restored the degree-1 Stokes
coefficients from Munekane (2007). Fu et al. (2012) followed Tregoning et al. (2009) but with
the degree-1 Stokes coefficients obtained from Swenson et al. (2008). In theory, all the above-
mentioned approaches should be able to maintain the consistency in the reference frame issues.
However, different approaches using different datasets will certainly cause differences.

Here we conduct one experiment regarding the frame issue. Two geocenter motion datasets,
which are provided in coordinates sensed by Satellite Laser Ranging (SLR) (Cheng et al., 2013)
and in the degree-1 Stokes coefficients delivered by Swenson et al. (2008), are applied. One is
to follow van Dam et al. (2007) but using the degree-1 displacements computed from Cheng
et al. (2013) and the other way is to follow Fu et al. (2012). We find that the latter way provides
slightly better but negligible consistencies than the former way in both two study areas. Thus,
the degree-1 coefficients from Swenson et al. (2008) are restored back to the GRACE GSM data
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to be consistent with the GPS time series in the CF reference frame in the forthcoming compar-
isons.

Non-tidal atmospheric and oceanic loading effects Since a key geoscience application of GPS

time series is to monitor non-tidal loading effects, those effects are accordingly fully retained in
the GPS products. However, during the GRACE data processing, the non-tidal variabilities in the
atmosphere and oceans are removed using the background atmospheric and oceanic models.
For example, de-aliasing product AOD1B RL05, delivered by GFZ, is derived in a combination of
the ECMWF (European Centre for Medium-Range Weather Forecasts) operational atmospheric
fields and the baroclinic ocean model OMCT (Ocean Model for Circulation and Tides) driven
with the same atmospheric fields. Therefore, displacements derived from GRACE GSM gravity
coefficients are not accordant with the GPS time series if the non-tidal atmospheric and oceanic
effects are not resolved.

In the literature, several scenarios were adopted to restore consistency. For example, van Dam
et al. (2007) reduced the non-tidal atmospheric and oceanic effects from the GPS data using
the displacements computed from the AOD1B products while other studies, e.g. Tesmer et al.
(2011) and Fu et al. (2012), they added the AOD1B products back to the GRACE GSM gravity
fields. Essentially, consistency is kept in either cases.

It is worth noting that S1/S2 atmospheric pressure tidal loading are normally not resolved
either during the GPS data processing, for example, the multi-year solution SIR11P01 used later.
According to Flechtner et al. (2014a), signals from atmospheric tides are also fully retained in
the AOD1B products. By adding back the AOD1B products, both tidal and non-tidal atmospheric
loading effects are consistent in the GPS and GRACE datasets. In addition, the AOD1B products
require no additional filtering process when using with the GSM monthly gravity products
which is recommended by Flechtner et al. (2014a).

4.4 Metrics for performance evaluation

TO evaluate the comparison between the GPS observed displacements and the GRACE de-
rived deformations, especially the performances of different filtering schemes, correlation

coefficient, WRMS reduction (van Dam et al., 2007; Tregoning et al., 2009) along with Nash-
Sutcliffe efficiency (Nash and Sutcliffe, 1970) are adopted here for evaluation.

Correlation coefficient It measures the similarity of two time series by

r =

n
∑

i=1
(hGPS

i − h̄GPS
i )(hGRACE

i − h̄GRACE)√
n
∑

i=1
(hGPS

i − h̄GPS)2

√
n
∑

i=1
(hGRACE

i − h̄GRACE)2

. (4.14)

As it is well known, the correlation coefficient is sensitive to phases of two time series but
insensitive to their amplitude differences. This characteristic normally leads us to apply other
evaluation criteria along with the correlation coefficient.
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WRMS reduction This metric is applied frequently in the comparison of GPS and GRACE

(e.g., van Dam et al., 2007; Tregoning et al., 2009; Tesmer et al., 2011). It evaluates the agree-
ment between GPS and GRACE by comparing the WRMS of the GPS displacements before and
after removing the GRACE predicted deformations. The WRMS reduction is given by Eq. (4.15).
Comparing to the correlation coefficient, WRMS reduction takes both phase and amplitude in-
formation into account. Note that the weight in computation of the WRMS reduction is adopted
from the formal error information from GPS (e.g., van Dam et al., 2007; Tesmer et al., 2011). As
such, it does not take the error information from GRACE into account. From an error propa-
gation point of view, it is improper. However, this is the common way applied in statistical
analysis when comparing GPS and GRACE and we therefore follow this manner here as well.

reduction =
WRMS

[
hGPS

i

]
− WRMS

[
hGPS

i − hGRACE
i

]
WRMS

[
hGPS

i

] . (4.15)

Several studies have emphasized the strong agreement between the GPS-observed and the
GRACE-derived height deformations at the seasonal frequency, especially annual signals (e.g.,
Davis et al., 2004; van Dam et al., 2007; Tesmer et al., 2011). To evaluate the impact of the
GRACE filtering on the seasonal signals, a WRMS reduction ratio at the seasonal frequency level
is defined according to Eq. (4.16) (e.g., Fu et al., 2012).

ratioreduction =
WRMS

[
hGPS

i

]
− WRMS

[
hGPS

i − hGRACE
fit,i

]
WRMS

[
hGPS

i

]
− WRMS

[
hGPS

i − hGPS
fit,i

] , (4.16)

where hGRACE
fit,i and hGPS

fit,i are derived annual and semi-annual variations from GRACE and GPS,
respectively. In theory, a value of 1 indicates perfect agreement between the GPS observed and
GRACE-derived seasonal displacements.

It is worth mentioning that annual and semi-annual variations entering into Eq.(4.16) in the
following two case studies are derived simply using the least squares estimation rather than
the SSA approach. The reasons are twofold: one is simply because the least squares approach is
more straightforward than SSA in the case of computing statistic metrics; the other is to be easy
for cross-comparison with other studies.

Nash-Sutcliffe efficiency (NSE) NSE coefficient is a statistical indicator widely used in the
field of hydrology to evaluate the performace of simulated time series against observations,
which is calculated by

NSE = 1 −

n
∑

i=1
(hGPS

i − hGRACE
i )2

n
∑

i=1
(hGPS

i − h̄GPS)2
. (4.17)

Adapting NSE to the evaluation here, the simulated time series is replaced by the derived dis-
placements from the filtered GRACE data. NSE is a conservative quantity and it is highly sen-
sitive to the information including phase, amplitude and mean. The value of NSE ranges from
−∞ to 1, where a value of 1 indicates a perfect match between the observed GPS displacement
and the derived displacement from GRACE.
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Notes on the interpretation of figures To better display the performances of all filtering
schemes in a very condensed way, the figure styles from Lorenz et al. (2014) are adopted here,
cf. Figs. 4.6, 4.8, 4.10, 4.15, 4.17 and 4.19. These figures are interpreted in the following way:
the upper part of these figures collects the values of the performance metrics into a matrix,
where each cell indicates the individual performance of a single station under one specific fil-
tering scheme. To put it another way, each row of the matrix represents an overview of the
performance of different filtering schemes over one single station while each column depicts
the behavior of one single filtering scheme over all the considered stations. The grey scales dis-
played in these figures have been designed in such a manner that darker grey values illustrate
better performance and lighter grey values accordingly describe poorer performance.

The lower part, i.e. the histograms, summarizes each column of the matrix by sorting the per-
formance metric values into the predefined intervals. The length of each grey scale interval in
the histograms indicates the number of GPS sites categorized into that specific interval.

The color legends in these figures describe different types of filters. The green color and purple
color group denote the deterministic filters and the color from light to dark indicates different
smoothing radii tabulated in Table 4.2 from 200 km to 1000 km. The red color group indicates
the DDK filter and the color from light to dark indicates the DDK filter from DDK 1 to DDK 5,
which means from strong smoothing to weak smoothing. The blue color group correspond-
ingly denotes the regularization filter and the color from light to dark indicates the parameter
λ from 0.5 to 10, which inversely means from weak smoothing to strong smoothing.

Along with the statistic charts and histograms, mean statistics are computed and presented in
Figs. 4.7, 4.9 and 4.11 for the Europe area, and Figs. 4.16, 4.18 and 4.20 for the Amazon area. For
comparison, we use two x-axes and two y-axes to evaluate each mean performance metric for
all filters in one figure: one axis in black indicates the deterministic filter group and the axes in
blue displays the stochastic filter group. Note that mean statistics of the DDK filter are plotted
in a way using the regularization parameter λ = 1, 2, 3, 4, 5 from the regularization filter to
indicate the corresponding DDK filter indexes.

4.5 Case study I: the Europe area

WE commence the comparison in the Europe area, where a relatively dense GPS network
exists. Relatively weak mass variations are seen in this area and the resultant displace-

ments are accordingly low. Fig. 4.5, which presents the estimated annual vertical amplitudes
from the GRACE GSM dataset using different filtering schemes as well as the corresponding cor-
relations with observed displacements from GPS. Each row represents one specific type of filter
and columns from left to right indicate smoothing from weak to strong of each filter. Inspec-
tion of the figure shows that the maximum annual amplitude are less than 6 mm for all filtering
schemes and various spatial patterns are also obviously displayed. These patterns distinctly
show that stronger surface mass variations happen in the eastern Europe where less GPS sta-
tions exist. This phenomenon is observed as well by the correlation metric shown in Fig. 4.5. In
Europe, the GPS sites mostly scatter in the western or central part, where the correlations show
mostly between 0.6 and 0.8.

Examination of the figure tells evidently that weak smoothing preserves more detailed fea-
tures than strong smoothing comparing the subplots in the left column with that in the right



68 Chapter 4 Hydrological loading induced vertical displacements from GPS and GRACE

300 km
Is

o
tr

o
p

ic
 G

au
ss

ia
n

500 km 1000 km

300 km

Is
o

tr
o

p
ic

 G
au

ss
ia

n
p

lu
s 

d
es

tr
ip

in
g

500 km 1000 km

300 km

A
n

is
o

tr
o

p
ic

 G
au

ss
ia

n 500 km 1000 km

5

D
D

K
 f

ilt
er

3 1

30

45

60

75

0 15 30 45

0.5

R
eg

u
la

ri
za

ti
o

n
 f

ilt
er

4 10

0 2 4 6
Annual amplitude of displacements

mm

0.2

0.4

0.6

0.8

1.0

C
o

rr
el

at
io

n

Figure 4.5: Annual amplitudes of the computed vertical displacements from the GRACE GSM dataset using differ-
ent filtering schemes. Colored dots indicate correlations between observed displacements from GPS and GRACE-
derived deformations using corresponding filter schemes in Europe.
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Figure 4.6: Correlation coefficients for the 40 stations located in Europe between the displacements observed by
GPS and derived from GRACE using different filtering schemes. A description on reading the figure is given in
Section 4.4 .
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Figure 4.7: Mean correlations over 40 stations for different filtering schemes. Axis with black color indicates
the deterministic filter with different smoothing radii and axis with blue color denotes the stochastic filters.
Specifically, DDK filters in short black curve are plotted with indexes from 1 to 5 using the regularization
parameter λ from the regularization filter.
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column in Fig. 4.5. Using the destriping filter in a combination with the Gaussian filter re-
moves more details comparing the first and the second row. Furthermore, it is clear that the
effects of the destriping filter becomes weak when the smoothing radius of the Gaussian filter
becomes large. Careful inspection of the second and the third row, it is interesting to find that
the anisotropic filter acts similarly as the destriping filter with an additional Gaussian filter of
the same smoothing radius.

Comparing the stochastic filters (the fourth and the fifth row) with the deterministic filters,
different spatial patterns are visible in Fig. 4.5. Clearly, the stochastic filters provide more so-
phisticated spatial patterns and more details are kept. An elaborate look at the subplots of the
stochastic filters, especially DDK 3, DDK 5 and the regularization filter of 0.5, spatial patterns in
these subplots follow quite well the coastlines. This might be due to the external regularization
information. For example, geophysical models are involved in the regularization process of
the DDK filter (Kusche, 2007; Kusche et al., 2009). According to Kusche et al. (2009), DDK 1 and
DDK 3 correspond to Gaussian filters with smoothing radii of 530 km and 240 km, respectively.
However, in terms of the visual inspection of the subplots, DDK 1 seems to retain finer scale
features than the Gaussian filter with a smoothing radius of 500 km and this point is also held
for DDK 3.

As the regularization filter follows the same principle of the DDK filters, the last two rows
present quite similar spatial distributions, for example, DDK 3 and the regularization filter of
0.5 (the comparability between them will be demonstrated later). According to Lorenz et al.
(2014)[personal communication], the parameter λ around 4 in the regularization filter group
generally provides the best performance from a global hydrological view.

All three performance metrics are shown in matrix charts, histograms and curve plots from
Fig. 4.6 to Fig. 4.11. The performance metric shown in Fig. 4.6 provides an overview of the
correlation between all derived displacements from GRACE under different filtering schemes
and the observed displacements from GPS. Correlations higher than 0.6 are observed for most
of stations in the upper part of Fig. 4.6 and the phenomena are also witnessed in the lower
part of the figure. In particular, four stations (POLV, GLSV, SOFI, BOR1) which are located closer
to western Europe present correlations higher than 0.8, see also Fig. 4.5. These high correla-
tions indicate the strong correlations in hydrological loading signals observed by both GPS and
GRACE.

In contrast to correlation, the WRMS reduction matrix shown in Fig. 4.8 displays relatively low
values which are probably due to the low surface mass variations in Europe. Nevertheless,
it might be worth mentioning that, as compared to van Dam et al. (2007) which showed only
10 out of 51 sites got positive WRMS reduction, all 40 sites used in this study have received a
positive WRMS reduction, see Fig. 4.8. The result shown in this study is also slightly better than
that found in (Tregoning et al., 2009) which showed the WRMS in 32 out of 36 sites to decrease.
The improvement in WRMS reduction is likely to be a consequence of improved GPS and GRACE

data processing strategies.

NSE, as a metric similar to WRMS reduction, shows quite a similar pattern in Fig. 4.10. All 40
stations in Europe can reach positive NSE values and it accordingly means the derived displace-
ments from GRACE are at least better than the mean values estimated from GPS. Depending on
the particular filter around half the number of stations can obtain NSE values bigger than 0.5
and only one station, POLV, receives a NSE value higher than 0.75.
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Figure 4.8: The same as Fig. 4.6 but for WRMS reduction.
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Figure 4.9: The same comparison as Fig. 4.7 but for WRMS reduction.
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Figure 4.10: The same as Fig. 4.6 but for NSE.
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Figure 4.11: The same comparison as Fig. 4.7 but for NSE.
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Inspection of all three metrics shown in Fig. 4.6, Fig. 4.8 and Fig. 4.10, no single filter is found
to demonstrate consistent better results than all other filters over all stations. In the determin-
istic filter group, inspecting both Fig. 4.6 and Fig. 4.7, it is interesting to find that the isotropic
Gaussian filter demonstrates its best performance with the smoothing radius around 500 km.
The other two metrics shown later confirm this behavior and this makes us arrive at the same
conclusions as King et al. (2006) that there is no benefit using larger than 500 km smoothing
radii for the sites in Europe if only the isotropic Gaussian filtering is applied.

When combining the isotropic Gaussian filter with the destriping filter, all performance metrics,
see figures from Fig. 4.6 to Fig. 4.11, illustrate the benefit of the destriping filter, which signif-
icantly improves the statistics, especially at smoothing radii lower than 400 km. These figures
also tell us that there is no meaning in combining the destriping and the isotropic Gaussian
filter at smoothing radii higher than 600 km. The power of the isotropic Gaussian filter with
a high smoothing radius conceals the effect of the destriping filter and this is demonstrated
both in the spatial map (see Fig. 4.5) and the site-to-site comparison. In comparison with the
isotropic Gaussian filter with a smoothing radius of 400 km used by Tesmer et al. (2011) and
500 km used by van Dam et al. (2007), the isotropic Gaussian filters with low smoothing radii
associated with the destriping filter demonstrates its better performances in terms of all three
metrics.

The performance of the anisotropic Gaussian filters in association with or without the destrip-
ing filter are depicted in Fig. 4.6 and Fig. 4.7. No prominent improvements are found over
different smoothing radii. This is also in agreement with the performance metrics of WRMS

reduction and NSE shown in figures from Fig. 4.8 to Fig. 4.11. Only minor advantages of
combining the destriping filter to the anisotropic Gaussian filter are found at smoothing radii
lower than 400 km. In view of all three performance metrics, a conclusion can be drawn that it
makes no sense to combine the anisotropic Gaussian filter and the destriping filter to smooth
the GRACE data when comparing with GPS. In addition, the anisotropic Gaussian filter group
combined with or without the destriping filter do not display better results in comparison with
the isotropic Gaussian filter group combined with the destriping filter.

Summarizing the performance analysis within the deterministic group, the isotropic Gaussian
filter with low smoothing radii, e.g. 300 km, in a combination with the destriping filter is rec-
ommended for the GPS stations in Europe. This filtering option will be further compared with
the stochastic filters.

In the DDK filter group, mean value curves of all three metrics show a sharp and monotonous
decrease with increasing indexes. The DDK 1 filter, i.e. the strongest smoothing in the DDK

filter group, is superior to other DDK filters in Europe. This phenomenon is also evident in
the metrics as well as the histograms shown in Figs. 4.6, 4.8 and 4.10. In view of the annual
vertical displacements shown in Fig. 4.5, it is also found that the higher spatial resolutions in
grids estimated from the DDK 5 filter do not help to improve the metric statistics between the
GPS-observed and the GRACE-derived vertical displacements. This is due to the fact that GPS

measurements are point samples and the agreement between the GPS observed and the GRACE-
derived vertical deformations depends highly on the distribution of the GPS sites. This fact is
also supported in the other study area presented in Section 4.6.

The differences in the regularization filter group are not so prominent as in the DDK filter
group. Nevertheless, the best performance in this group appears at the regularization param-
eter around 4 (see metric charts, histograms and mean value curves) which corresponds to the
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best regularization parameter from the global hydrological view (Lorenz et al., 2014). Compar-
ing the two types of stochastic filters, the regularization filter shows slightly worse correlation,
WRMS reduction as well as NSE values than the DDK 1 and DDK 2 filters while better than the
other three DDK filters, which could be observed in all the three metrics shown from Fig. 4.6 to
Fig. 4.11. Summarizing the performance analysis within the stochastic filter group, the DDK 1
filter outperforms ohter stochastic filters in Europe.

Considering the performance of the deterministic filters versus the stochastic filters, generally
speaking, the stochastic filters outperform the deterministic filters, especially the DDK 1 filter.
This conclusion is supported by all three metrics shown in the figures from Fig. 4.6 to Fig. 4.11
as well as Table 4.3.
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Figure 4.12: The same as Fig. 4.6 but for correlation at the seasonal signal level.

Seasonal signals The agreement at the seasonal level between displacements observed by
GPS and derived from GRACE has already been demonstrated by a number of studies. As
shown in Fig. 4.2, evident seasonal signals are observed in the Europe area. We now look into
the effects of different filtering schemes on the agreement between them at the seasonal level
using the correlation and the WRMS reduction ratio. In analogy to Fig. 4.6 and Fig. 4.8, the
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correlation and WRMS reduction ratio at the seasonal level are shown in Fig. 4.12 and Fig. 4.13,
which observe significant improvements in both correlation and WRMS reduction ratio between
GPS and GRACE at the seasonal signal level utilizing all filtering schemes. The improvements
are also recorded in terms of mean values which are tabulated in Table 4.3. To get unbiased
mean values in WRMS reduction, MORP is excluded due to the insignificant seasonal signal and
it is also the only site which gets decreased in WRMS reduction ratio at the seasonal level. MORP,
located in Morpeth, United Kingdom, is close to the coast and it probably experiences less
displacements due to water mass variations than non-tidal ocean mass variations. In addition,
the non-tidal oceanic loading generally contributes insignificant at annual periods (Nordman
et al., 2009; Tesmer et al., 2011). This phenomenon is also seen in the forthcoming study area,
the Amazon area, where most stations lie along the coast.

1


10


20


30


40

N
o.

 o
f s

ta
tio

ns

IG
 IGD
 AG
 AGD
 DDK
 Regularization


NYAL

NYA1

TRO1

KIRU


METS

POLV

GLSV

ANKR

SOFI

UZHL

JOZE

LAMA

PENC

BOR1

GRAZ

MATE

NOT1

LAMP

CAGL

PADO

MEDI


GENO

GRAS

WTZR

GOPE

POTS

ONSA

PTBB


WSRT

KOSG

BRUS

ZIMM

TLSE

HERS

MORP

LROC

YEBE


VILL

SFER

BRST

−1.0 0.0 0.2 0.4 0.6 0.8 1.0

WRMS reduction wrt. GPS

Figure 4.13: The same as Fig. 4.6 but for WRMS reduction ratio at the seasonal signal level.

The improvements shown here were also found and documented in (Tesmer et al., 2011) on
usage of the mean annual signals. The high agreement on the seasonal level between GPS and
GRACE indicates the possibility of using the GRACE-derived seasonal displacements to remove
effects of the seasonal signals buried in the GPS time series on estimating the linear velocity (Fu
et al., 2012), or on the global and regional reference frame issues (Zou et al., 2013).
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Table 4.3: Mean performance measures of the selected best filtering schemes from the deterministic filter group
and the stochastic filter group on the monthly time series and the annual signals.

Filtering scheme
selection

monthly time series seasonal signals

correlation
WRMS

reduction [%]
NSE correlation

WRMS reduction
ratio [%]

IG 400 0.66 25.9 0.43 0.86 63.0
IG 500 0.66 26.4 0.44 0.86 63.0

IGD 300 0.67 27.7 0.45 0.86 63.6
AG 300 0.67 27.1 0.45 0.86 63.8
DDK 1 0.69 28.7 0.47 0.87 65.2
DDK 3 0.66 26.4 0.43 0.85 63.7
DDK 5 0.62 20.6 0.35 0.82 61.6

Regularization filter 0.5 0.66 26.2 0.43 0.85 63.8
Regularization filter 4 0.67 27.7 0.45 0.85 64.2

As shown in Table 4.3, in the deterministic filter group, the isotropic Gaussian filter of the
smoothing radius 300 km combined with the destriping filter shows somewhat the same per-
formance with the anisotropic Gaussian filter on both the monthly time series and the seasonal
signal level, which are better than the isotropic Gaussian of the smoothing radius 500 km. In
the stochastic filter group, DDK 1 filter performs best not only on the monthly time series but
also on the seasonal signals. Among the stochastic filter group, DDK 5 is the worst which has
already been demonstrated in the previous analysis. The performance of the regularization fil-
ter of the factor 4 is between that of the DDK 1 and the deterministic filters. It is further proved
that the performance of the regularization filter of the factor 0.5 is close to that of DDK 3 filter
in Europe.

4.6 Case study II: the Amazon area

THE other study area to illustrate the effects of GRACE data filtering is the Amazon area,
located in the South America. The Amazon river basin experiences the most significant

water mass variabilities in the world which are observed by GRACE (Tapley et al., 2004; Chen
et al., 2010). The severe water variations in turn result in remarkable elastic surface displace-
ments which are recorded by GPS (Davis et al., 2004; Bevis et al., 2005; Sánchez and Seitz, 2011;
Sánchez et al., 2013; Fu et al., 2013). For instance, the displacement at NAUS shown in Fig. 4.4
shows a 40 mm peak-to-peak fluctuations. Fig. 4.14 displays the derived annual amplitudes
of the vertical displacements over the Amazon basin and its nearby areas. The corresponding
correlations with observed displacements from GPS are also shown in Fig. 4.14.

Similar analysis of Fig. 4.5 regarding different filtering schemes can also be applied here in
Fig. 4.14. As opposed to Fig. 4.5, stronger displacements with an amplitude up to 22 mm are
represented due to the strong terrestrial water changes. In particular, spatial distributions with
weak filtering schemes, e.g. left column in Fig. 4.14, illustrate a center area where the most
significant displacements happen around the NAUS station, which could be observed from the
correlation metric as well. This center area is located in the city of Manaus, where the Rio
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Figure 4.14: The same as Fig. 4.5, but for the Amazon area.
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Figure 4.15: Correlation coefficients for the 46 stations located in the Amazon area between the displacements
observed by GPS and derived from GRACE using different filtering schemes. A description on reading the figure
is given in Section 4.4
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Figure 4.16: Mean correlations over 16 stations for different filtering schemes. Axis with black color indicates
the deterministic filter with different smoothing radii and axis with blue color denotes the stochastic filters.
Specifically, DDK filters in short black curve are plotted with indexes from 1 to 5.
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Negro flows into the Amazon river. Significant water changes in this center area have been
documented in other studies (Chen et al., 2010; Fu et al., 2013) as well. Strong smoothing,
especially the deterministic filtering using high smoothing radii, produces spatial maps shifting
this center area southward, which is obviously unrealistic.

Similar to the analysis in Europe, all three performance metrics are displayed in metrics charts,
histograms and curve plots from Fig. 4.15 to 4.20. In terms of the correlation statistics, 11
stations have correlations over 0.8 and these stations are mostly located far away from the
coast. Meanwhile, three stations (RECF, VALL, SAMA) which are located close to the coastline
present negative correlations. The histograms shown in the lower part of Fig. 4.15 tell that
around 35% of stations show correlations less than 0.4. Comparing the correlation statistics in
the Amazon area with that in Europe, we have more stations with high correlation but also
more stations with low correlations even negative correlations. The reason for more stations
with high correlations is probably due to the strong mass variations around the Amazon area
and the reason for more stations with low correlations is possibly because of the fact that more
stations lie close to the coast. Bad correlations at the GPS sites close to the coastline are found
in other studies which are possibly affected by non-tidal oceanic loading effects (King et al.,
2006; Nordman et al., 2009; Tesmer et al., 2011) or even spurious long-period signals due to
unmodeled short-periodic displacements (Penna et al., 2007).

The upper part in Fig. 4.17 depicts the WRMS reduction matrix presenting relatively bad re-
sults with around 20 stations in negative reduction which are shown in the histograms as well.
These stations are scattered along the coastlines. Five GPS sites (BOAV, POVE, NAUS, RIOB, ROJI)
display WRMS reductions higher than 0.5 under most of the filtering schemes. Specifically, the
grey scale legend in this figure is designed to highlight the highest reduction appears at NAUS

which presents 70% WRMS reduction using the DDK 5 filter. This is consistent with the spatial
distribution map in Fig. 4.14. Fig. 4.19 presents the NSE statistics showing similar maps with
the WRMS reduction. Depending on filters, six stations (BOAV, POVE, NAUS, MABA, RIOB, ROJI)
display NSE values larger than 0.75 whilst 19 stations out of 46 show negative NSE values.

Concerning the filter comparison over this study area, careful inspection of three performance
metric maps allows us to make the same conclusion as the Section 4.5 that no single filter-
ing scheme can provide consistent better performances than other filtering schemes. Fig. 4.16,
Fig. 4.18 together with Fig. 4.20 illustrate the mean performances in terms of correlation, WRMS

reduction and NSE separately over 16 stations. These 16 stations are chosen in order to avoid
biased statistics due to those coastal stations. The 16 stations are: BOAV, POVE, NAUS, CUIB,
BOGT, IMPZ, MABA, PERA, RIOB, ROJI, SAGA, TOGU, TOPL, TUNA, UBER and VIVI. In view of
the histograms in Figs. 4.15, 4.17 and 4.19, these stations possess good correlations (≥ 0.6),
WRMS reduction higher than 0.1 and NSE values bigger than 0.25.

In the deterministic filter group, in terms of correlation in Fig. 4.15, the isotropic Gaussian filter
displays its best performance at smoothing radius 350 km and the advantage of combining the
destriping filter is again demonstrated here at low smoothing radii, which is also proved in the
other two performance metrics. When combining the destriping filter with the isotropic Gaus-
sian filter, the same optimal smoothing radius as in Europe, i.e. 300 km, is reached here in the
Amazon area as well. Fig. 4.15 also depicts the useless of applying the isotropic Gaussian filter
with high smoothing radii. In contrast to the isotropic Gaussian filter group, the anisotropic
Gaussian filter group shows inferior correlations even at low smoothing radii in either cases
with or without associating the destriping filter. This is again accordant to the other two per-
formance metrics shown in Fig. 4.18 and Fig. 4.20.
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Figure 4.17: The same as Fig. 4.15, but for WRMS reduction in the Amazon area.
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Figure 4.18: The same comparison as Fig. 4.16 but for WRMS reduction.
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Figure 4.19: The same as Fig. 4.15, but for NSE in the Amazon area.
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Figure 4.20: The same comparison as Fig. 4.16 but for NSE.
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Fig. 4.18 shows the mean WRMS reduction curves and the isotropic Gaussian filter achieves
its best performance at smoothing radius 500 km, which is in agreement with the analysis in
Europe. The combination of the isotropic Gaussian filter using smooth radius of 300 km with
the destriping filter stands out of the isotropic Gaussian filter group again in terms of the WRMS

reduction, which is also superior to the anisotropic Gaussian filter group. The analysis is held
for the NSE metric shown in Fig. 4.20 which convey similar information.

Summarizing the comparison between the isotropic and anisotropic Gaussian filter groups in
the Amazon area, it leaves us to draw the same conclusion as in Europe that the isotropic
Gaussian filter with a smoothing radius 300 km in association with the destriping filter is the
optimal option in the deterministic group. This might indicate this option could be extended
to be applied at global scale.

In the DDK filter group, weaker smoothing (DDK 5) provides better correlations whilst they
show quite flat curves in terms of the WRMS reduction and NSE metrics. As for the regular-
ization filter, a straight horizontal line is observed in correlation while for both the WRMS re-
duction and NSE curves, they increase with the regularization parameter up to λ = 50 which
is certainly unrealistic (see subplot in Fig. 4.14). Nevertheless, as opposed to the DDK filter,
the regularization filter with the parameter around λ = 4 which is the best option from the
global hydrological view (Lorenz et al., 2014) already outperforms the DDK filters in terms of
the WRMS reduction and NSE metrics.

With respect to the deterministic filters, the DDK filters (except the DDK 1) do provide higher
correlations but they perform poor in the WRMS reduction and NSE metrics, while the regular-
ization filter (λ ≥ 4) showcases better performances in all three metrics. The regularization
parameter of 4 is selected in this filter group by a balance of the performance metrics and the
signal preservation. Less filtering is always preferable on the condition that good achievements
have been reached.

Summarizing the performance statistics of the deterministic and stochastic filters in the Ama-
zon area, the derived displacements from GRACE using the stochastic filter again could provide
better agreements with respect to the displacements observed by GPS. In particular, the regu-
larization filter with λ = 4 is opted for the best filter scenario in this area and this choice is
strongly supported by the statistics shown in the figures.

Seasonal signals The seasonal signals are investigated in the same manner as in the Europe
area. As expected, correlations and the WRMS reduction ratio at the seasonal level are im-
mensely improved. Shown in Fig. 4.21 the number of stations with correlation higher than
0.8 increases from 11 to 26. The mean correlations of the considered 16 stations are enhanced
as well, see Table 4.4. However, the three stations (RECF, SAMA, VALL) which have negative
correlations in Fig. 4.15 are still not improved.

The WRMS reduction ratio at the seasonal level shown in Fig. 4.22 displays similar behavior as
the correlation and these stations which show negative reductions in Fig. 4.17 still present neg-
atives in Fig. 4.22. Nevertheless, the considered 16 stations display significant improvements,
see Table 4.4. The number of stations with the WRMS reduction ratio bigger than 70% jump
from only 1 GPS site (NAUS) up to 20 GPS stations. This means four stations, which are not
counted for calculating the mean statistics, are also increased in terms of the seasonal WRMS
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Figure 4.21: The same as Fig. 4.15 but for correlation at the seasonal signal level.

Table 4.4: Mean performance measures of the selected best filtering schemes from the deterministic filter group and
the stochastic filter group on the monthly time series and the annual signals over the considered 16 stations.

Filtering scheme
selection

monthly time series seasonal signals

correlation
WRMS

reduction [%]
NSE correlation

WRMS reduction
ratio [%]

IG 400 0.82 43.5 0.62 0.95 76.6
IG 500 0.82 43.5 0.62 0.94 75.2

IGD 300 0.83 44.8 0.63 0.95 75.1
AG 300 0.82 42.8 0.60 0.94 75.1
DDK 1 0.81 41.9 0.59 0.93 71.8
DDK 3 0.84 42.8 0.60 0.95 74.4
DDK 5 0.84 42.4 0.60 0.96 75.6

Regularization filter 0.5 0.83 42.3 0.59 0.96 75.3
Regularization filter 4 0.83 46.3 0.64 0.95 79.7
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Figure 4.22: The same as Fig. 4.15 but for WRMS reduction ratio at the seasonal signal level.

reduction ratio. These statistics indicate the strong agreements between the GPS observed dis-
placements and the estimated deformations from GRACE at the seasonal level in the Amazon
area. However, attentions should be paid on selecting the stations properly to make use of the
seasonal displacements derived from GRACE for additional purposes, e.g. the aforementioned
regional reference frame issue (Zou et al., 2013).

In addition, statistics shown in Table 4.4 confirms the conclusion of the best filter in the Amazon
area. The regularization filter with λ = 4 outperforms other filtering schemes in both the
monthly time series and the seasonal signals.

4.7 Discussion and summary

THIS chapter investigates the hydrological loading induced displacement signal observed by
GPS and derived from GRACE, with an emphasis on the impact of GRACE data filtering.

Several types of commonly used filters were analyzed and their performances by utilising two
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GPS datasets from two study areas, i.e. the Europe area and the Amazon area. Strong correla-
tions between GPS and GRACE are obtained in both areas. In Europe, all considered 40 GPS sites
have observed positive WRMS reduction with respect to previous studies (e.g., van Dam et al.,
2007; Tregoning et al., 2009) which is a consequence of improved GPS and GRACE data. In the
Amazon area, high correlations, WRMS reductions and NSE values are observed in the GPS sites
located in the central Amazon area. While for the sites located close to the coast, poor statistics
are shown possibly in part due to the high impact of non-tidal oceanic loading effects, which
are not accounted for in the GPS time series. The non-tidal oceanic loading induced displace-
ments computed over 46 GPS sites in the Amazon area using the ECCO model show a mean RMS

value of 0.36 mm. What’s more, GRACE senses less hydrological loading information close to
the coastline that the inland, which could also be attributed to poor statistics for stations close
to the coast.

At the seasonal level, the agreements between GPS and GRACE are significant in both areas
which might indicate the potential usage of the GRACE derived displacements for correcting
hydrological loading signals buried in the GPS time series.

Concerning the effects of different filtering schemes used in this chapter, like other studies
regarding GRACE filtering comparison (e.g., Werth et al., 2009; Steffen et al., 2010), no single
filtering scheme can produce consistent good results over the two different study areas. In view
of single GPS site, different filtering schemes can produce significant differences, for example,
different DDK filters can produce a difference up to 19% at NAUS in terms of the WRMS reduction
value. The differences will be even larger when comparing among all the considered filters.
However, it is not possible to tune filtering schemes for each site separately. Considering the
mean performances, the used filters do not produce as big differences as single GPS station.
Nevertheless, the optimal filters for both areas are obtained and several common features of
filters for the two study areas are observed.

In the deterministic filter group, we arrive at the same conclusion as King et al. (2006) that a
smoothing radius around 500 km reaches best performance if only the isotropic Gaussian filter
is applied. However, this is not true when combined with the destriping filter. The advantage
of combining the destriping filter with the isotropic Gaussian filter is demonstrated in both
study areas. It is highly recommended to use the Gaussian filter with a low smoothing radius,
e.g. around 300 km, combined with the destriping filter, which produces consistent good re-
sults in both the Europe area and the Amazon area with respect to other deterministic filtering
scenarios. The performance of the anisotropic Gaussian filter decreases with increasing the
smoothing radius. Besides, the anisotropic Gaussian filter only shows its better performance
as opposed to the Gaussian filter at low smoothing radii. However, this point is not held when
they are combined with the destriping filter. In view of the performance of all deterministic
filters, the study concludes the optimal filtering scheme in this filter group is the combination
of the Gaussian filter of a low smoothing radius with the destriping filter.

In the stochastic filter group, the DDK 1 filter displays better performance in the Europe area
while the regularization filter of λ = 4 stands out in the Amazon area. These two filter schemes
outperform other filters respectively in the two study areas. It is shown that the performance
of the DDK filters depends on the study area. The DDK 1 and DDK 2 which show good per-
formances in the Europe area turn out to be inferior to other DDK filters in the Amazon area.
While in the regularization filter group, the parameter λ = 4 turns out to produce consistently
better and reliable results.
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In view of both the deterministic filters and the stochastic filters, the stochastic filter generally
demonstrates better performance in both study areas.

It is worth mentioning that the DDK 5 filter produces the highest spatial resolution deforma-
tion maps in both study areas. However, the high spatial resolution in grids does not help to
improve the consistency between the GPS-observed and the GRACE-derived vertical displace-
ments. We attribute this phenomenon to the fact that GPS measurements are point samples
while GRACE provides low spatial resolution products, which leads to the agreement between
the GPS-observed and the GRACE-derived vertical deformations depending highly on the dis-
tribution of the GPS sites.

In conclusion, the study in this chapter presents results and experiences regarding evaluating
different filtering schemes when comparing GPS and GRACE, which could serve as a reference
for future studies concerning GPS and GRACE comparison. In addition, the GRACE follow-
on mission, which is simply a copy of the GRACE mission, is planned to be launched in 2017
(Sheard et al., 2012; Flechtner et al., 2014b). The conclusions and experiences obtained from
the study in this chapter could be possibly applied in the products delivered by the GRACE

follow-on mission in the future.
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Chapter 5

Site dependent modeling of load induced
displacements

5.1 Motivation

AS introduced in the previous chapters, the redistribution of atmospheric, oceanic and hy-
drological masses on the Earth’s surface varies in time and this in turn loads and deforms

the surface of the solid Earth. The Earth responds to its environmental loadings elastically at
different time scales, from monthly to inter-annual (van Dam et al., 2001; Dong et al., 2002).
It also manifest spatially at global (Blewitt et al., 2001), regional (Heki, 2001) and local scales
(Bevis et al., 2004). Loading induced deformations can either be measured directly by GPS or
be theoretically derived from GRACE (Davis et al., 2004) or loading models (Farrell, 1972; van
Dam et al., 2001).

At global or regional scales, deformations estimated from mass changes are normally imple-
mented in terms of the well-known Green function approach based on the PREM model (see
Chapter 2 for more details). PREM is homogeneous and isotropic over the globe which leads
to the derived deformation depending solely on the spherical distance between the load and
the computation point. However, it is reasonable to expect that the Earth’s crust responds
to its surface load inhomogeneously and anisotropically. Bevis et al. (2012) pointed out it is
probably inappropriate to use elastic-loading Green functions based on PREM, or any other ra-
dially symmetric, whole-earth model, in order to invert the crustal displacements observed by
GNET (Greenland GPS Network) for the spatial variation of surface load changes in Greenland.
Using an Earth model with modified crust structure given by CRUST 2.0, Wang et al. (2012)
found larger deformations than three other spherically symmetric models for the very near
field (< 0.1◦). In line with them, several other studies also modified the local crust structure
in terms of the crust models and estimated the deformation with the corresponding adapted
Green functions due to ice sheet loading (Nielsen et al., 2013), ocean tidal loading (Arnoso et al.,
2013) or surface water loading (Dill et al., 2015).

In the era of various modern space geodetic observation techniques, Gross et al. (2009) puts
forward the requirement of high accuracy of the Global Geodetic Observing System (GGOS) for
the scientific and societal users, e.g. accuracy of less than 1 mm in terms of 3-D displacements.
Certainly, corresponding displacement modeling due to elastic surface loading should meet
this requirement as well. Several factors contribute to the uncertainties of modeled displace-
ments (Petrov and Boy, 2004) and uncertainty due to the Green function coefficients is one of
them (van Dam et al., 2003; Petrov and Boy, 2004). This chapter aims to investigate this aspect
using different types of the Green function coefficients.
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At the local scale, the Green function approach is also applicable. For example, Elósegui et al.
(2003) applied the Green function approach to a 2◦ × 1.5◦ area near Great Salt Lake, Utah.
Furthermore, within a limited spatial extent, other valuable tools which neglect the curvature
and the topography of the Earth were presented as an elastic half-space approach (Boussinesq,
1885; Love, 1929; Farrell, 1972). Farrell (1972) presented Green functions for both the half-space
model as well as the spherical Earth model. However, only the Green function for the spherical
Earth model is well-known and widely used while the Green function for the half-space model
based on the assumption of point load is seldom touched even in the case of a local scale, for
instance, the example of Elósegui et al. (2003). Nevertheless, a small number of studies applied
the local Green function approach practically. For example, Memin et al. (2009) utilized this
approach to model deformation owing to ice thinning in the Mont Blanc massif (Mer de Glace,
Talèfre, Leschaux) and in Svalbard (Norway) in the Arctic.

Beyond the point load assumption, Becker and Bevis (2004) developed the theory of and pro-
vided explicit expressions for the displacements generated in a semi-infinite half-space by uni-
form surface pressure (surface load) applied over a rectangular region. More generalized ex-
pressions for an arbitrary polygonal region were contributed by D’Urso and Marmo (2013).
Utilizing the elastic half-space approach, Bevis et al. (2005) obtained a fairly good fit to the
vertical displacement records at the geodetic GPS station located in the city of Manaus (Brazil).
More recently, Steckler et al. (2010) and Amosu et al. (2012) applied the explicit expressions
from (Becker and Bevis, 2004) and modeled the Earth’s crustal elastic deformations due to the
continental water loading in Bangladesh and along the Mississippi river so as to determine
Young’s modulus, respectively.

In addition to these geophysically based approaches, Seitz and Krügel (2009) proposed an em-
pirical Green function approach which substitutes the original Green functions with a simple
exponential function fitting. This approach considers the crustal inhomogeneities and behaves
like a site-dependent or region-dependent Green function approach.

As described above, several approaches regarding deformation modeling exist in the literature
for various spatial scales. This chapter targets to evaluate these approaches within a local re-
gion using a high-spatial resolution local load dataset provided by Amosu et al. (2012). Firstly,
fundamental theory about the half-space approach will be introduced. This is followed by the
comparison of the displacements modeled from the common Green function approach and two
half-space approaches. In addition, we will examine the effects of site-dependent Green func-
tion coefficients in deformation modeling. The empirical Green function approach proposed
by Seitz and Krügel (2009) will be investigated as well in this chapter.

5.2 Modeling deformation in the half-space

THE elastic half-space approach originated from Boussinesq (1885), who expressed displace-
ments and stresses at any point within the half-space as the various spatial derivatives

of elastic potential functions. Explicit expressions for the deformations and stresses due to a
specific shape and form were developed subsequently by many researchers (e.g., Boussinesq,
1885; Love, 1929; Farrell, 1972). Among them, load shapes of point load and rectangular load
are popular and applied in practice (e.g., Bevis et al., 2005; Memin et al., 2009; Steckler et al.,
2010). Farrell (1972) presented the solutions due to a point load and Love (1929) derived ex-
plicit representations for the stresses due to a vertical uniform surface pressure applied within
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a rectangular region. Becker and Bevis (2004) revisited Love’s problem (Love, 1929) and pro-
vided the corresponding analytical solutions for the displacements due to a rectangular load.
Following Becker and Bevis (2004), D’Urso and Marmo (2013) derived a more generalized so-
lution for computing the displacements within a homogeneous, elastic half-space induced by
an arbitrary polygonal load.

In the elastic half-space approach, estimated displacements depend not only on the load but
also on the geological structure of the loaded area, that is, Láme constants (λ and µ) or Young’s
modulus E and Poisson’s ratio ν instead. They have the mutual relationship

λ =
E × ν

(1 + ν)(1 − 2ν)
, (5.1a)

µ =
E

2(1 + ν)
. (5.1b)

The following subsections will briefly present the basic theory of the two half-space ap-
proaches. It should be mentioned that, in the following approaches, we will always consider
the vertical axis (z) to be directed downwards so that unloading will mainly induce a negative
vertical displacement.

5.2.1 Point load

THE loading theory presented in Section 2.2 is the solution to Boussinesq (1885) provided
by Farrell (1972) based on a realistic spherical, non-rotating, elastic and isotropic Earth

model. Meanwhile, Farrell (1972) presented the answer to Boussinesq (1885) in a homogeneous
elastic half-space. By neglecting the Earth’s curvature in a homogeneous half-space, the static
displacement vector s satisfies the elastic equilibrium equation

σ∇(∇ · s)− µ∇× (∇× s) = 0 , (5.2)

with σ = λ + 2µ. Let g0 be the norm of a unit force exerted vertically at the Earth’s surface by
the unit mass point. Farrell (1972) solved Eq. (5.2) in the cylindrical coordinate system (r, θ, z)
centered at the application point of the force (see Eq. (10) in (Farrell, 1972)). By neglecting
the topography of the Earth, i.e. z = 0, the analytical solutions of the horizontal and vertical
displacements are correspondingly written as (Memin et al., 2009; Chanard et al., 2014)

ur(R, 0) = − g0

4πRη
= − g0

2πR
(1 + ν)(1 − 2ν)

E
, (5.3a)

uz(R, 0) =
g0

4πRµ

σ

η
=

g0

πR
1 − ν2

E
, (5.3b)

where η = λ + µ and R indicates the distance between the observation point and the mass
force point. By symmetry, uθ = 0 and all components of surface displacements are indepen-
dent of θ. In practice, the same convolution process as the global Green function approach is
implemented to evaluate the displacements. To differentiate from the widely applied global
Green function approach, this approach is normally called the Green function approach for the
half-space (e.g., Pinel et al., 2007).
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Eq. (5.3) indicates that the displacements depend not only on the distance between the load
point and the computation point but also the geological structure of the loaded region. On the
one hand, providing we have the knowledge of the geological parameters beforehand, Eq. (5.3)
could be utilized to predict the deformation due to local elastic surface loading (e.g., Pinel
et al., 2007; Memin et al., 2009; Zhao et al., 2014). On the other hand, if we possess the observed
deformation of the loaded region, it is plausible to probe the geological settings underneath the
loaded area.

It is worth mentioning that, since a point load is a mathematical idealization, these studies
using the point load approach normally took the load in the shape of a disc (Pinel et al., 2007) or
a square (Memin et al., 2009; Zhao et al., 2014) as point load. In this chapter, we take the square
shape load as point load in comparison with the surface load approach described below.

5.2.2 Surface load

IN addition to the point load, Love (1929) presented the solution to Boussinesq (1885) in the
stress field due to a rectangular pressure field, but not in the displacement field. In line with

them, Becker and Bevis (2004) revisited Boussinesq’s problem and referred the solutions due to
the surface rectangular load to Love’s problem.

In the framework of Love (1929) and Becker and Bevis (2004), the rectangular region, where the
uniform pressure P is applied, is defined by −a ≤ x ≤ a, −b ≤ y ≤ b at the surface (z = 0) of a
semi-infinite solid (see Fig. 5.1), where z is positive downward so that points in the solid have
z ≥ 0. The distance between the point (x, y, z) within the solid and the point (x′, y′, 0) on the
plane boundary is denoted as r with

r2 = ∆x2 + ∆y2 + z2 , (5.4)

where ∆x = x′ − x, ∆y = y′ − y and r > 0.

The horizontal displacements ux and uy, and the vertical displacement uz generated by this
applied pressure are given by

ux = − 1
4π

(
1

λ + µ

∂χ

∂x
+

z
µ

∂V
∂x

)
, (5.5a)

uy = − 1
4π

(
1

λ + µ

∂χ

∂y
+

z
µ

∂V
∂y

)
, (5.5b)

uz =
1

4πµ

(
λ + 2µ

λ + µ
V − z

∂V
∂z

)
, (5.5c)

and

χ =
∫ a

−a

∫ b

−b
P log(z + r)dx′dy′ , (5.6)

is Boussinesq’s 3-D logarithmic potential, and

V =
∫ a

−a

∫ b

−b

P
r

dx′dy′ , (5.7)

is the Newtonian potential of a surface distribution.
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Figure 5.1: Half-space model with the uniform rectangular load applied at the surface of a semi-infinite elastic
solid.

An elaborate derivation of the solutions to Eq. (5.5) was provided by Becker and Bevis (2004).
Here we just summarize the final analytical solutions which could be implemented numeri-
cally for evaluating the horizontal and vertical displacements. The corresponding horizontal
displacements ux and uy are

ux = − P
4π

[
1

λ + µ
(J2 − J1) +

z
µ

log
(

∆x + r20

∆y + r10

)]y′=b

y′=−b
, (5.8a)

uy = − P
4π

[
1

λ + µ
(K2 − K1) +

z
µ

log
(

∆x + r02

∆y + r01

)]x′=a

x′=−a
, (5.8b)

where J1, J2, K1, K2, r01, r02, r10 and r20 are functions of x, y, z, a and b (see Becker and Bevis
(2004) for more details). The respective vertical displacement is

uz =
P

4πµ

[
λ + 2µ

λ + µ
(L1 − L2) + z

{
atan

(a − x)∆y
zr01

+ atan
(a + x)∆y

zr02

}]x′=a

x′=−a
, (5.9)

where L1 and L2 are also functions of x, y, z, a and b. Eq. (5.8) and Eq. (5.9) are implemented
numerically in this chapter using the local load data 1. In practice, the same consideration as
the point load is made here that the topography of the Earth is ignored and therefore the terms
including z vanish.

Comparing to the point load approach, the surface load approach seems to be more compli-
cated in terms of numerical computation. Nevertheless, the surface load approach has been
applied in several studies to probe the local geological structure of the Earth (e.g., Bevis et al.,
2005; Steckler et al., 2010; Amosu et al., 2012). In addition, to our knowledge, it seems no stud-
ies have discussed and compared the two manners in their studies and we will quantify the
difference between them with real data in Section 5.4, which might serve as a reference for
readers.

1Implementation is done based on Matlab code which could be available on request from Becker and Bevis (2004)
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5.3 Site-dependent and area-dependent Green function coefficients

SINCE the SNREI Earth model, e.g. PREM, has its limitations, there is an increasing concern
about modifying the SNREI models using the crust models, e.g. CRUST 2.0 (Bassin et al.,

2000) or TEA12 (Tesauro et al., 2012), to obtain site-dependent or area-dependent Green function
coefficients. Except for the PREM model, other Earth models are utilized to produce loading
Love numbers and Green function coefficients and they are: iasp91 (Kennett and Engdahl,
1991), ak135 (Kennett et al., 1995), ak135f (Montagner and Kennett, 1996) and REF (Kustowski
et al., 2008).

We list a collection of up-to-date site-dependent or area-dependent Green function coefficients
in Table 5.1. In particular, site-dependent loading Love numbers and their corresponding Green
function coefficients derived using the REF model with modified crust structure from CRUST 1.0
and CRUST 2.0 were obtained upon request from Gegout (2013). We use these Green functions
in Section 5.4.4 to investigate their effects in displacement modeling in a local area.

Table 5.1: Different types of site-dependent or grid-dependent Green function coefficients.

Coefficient type Characteristic Reference

PREM+CRUST 2.0 one set coefficient for the whole Earth
(Wang et al., 2012)iasp91+CRUST 2.0 one set coefficient for the whole Earth

ak135+CRUST 2.0 one set coefficient for the whole Earth
REF+CRUST 2.0 site-dependent

(Gegout, 2013)REF+CRUST 1.0 site-dependent
ak135f+CRUST 2.0 site-dependent
ak135f+CRUST 1.0 site-dependent

PREM+TEA12 grid-dependent (1◦ × 1◦) (Dill et al., 2015)

5.4 Case study: the lower Mississippi river

5.4.1 Study area and dataset

THE study area in this section is located along the lower Mississippi river with the region
spanning from −91.5◦ to −88.7◦ in latitude and from 35◦ to 37.5◦ in longitude, in central

USA, see Fig. 5.2. A complicated geological structure exists here with the Mississippi embay-
ment and the Reelfoot fault scarp. In addition, the famous Madrid seismic zone is also located
underneath this region (Smalley et al., 2005).

The dataset used in this section consists of the load data and displacement time series recorded
by GPS, which are provided by Amosu et al. (2012). Here a brief introduction of the datasets is
given. Both datasets were sampled daily in 2011 from day 1 to day 365. In particular, during
April and May in 2011, a severe flood happened along the Mississippi river. The daily GPS data
of eleven continuous GPS stations from the GPS array for Mid-America (GAMA) were processed
which provided results in the ITRF2008 reference frame. The daily load data were computed
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Figure 5.2: Map of the study area: lower Mississippi river region (courtesy: Adewale M. Amosu from CERI,
University of Memphis). The geological structures, such as the Mississippi embayment (heavy black line), are
shown. Wells, river gauges, and weather stations which contribute to the load, are illustrated as well. GPS sites
which document the observed displacements are denoted in red circles.

using the daily river/lake gauges, well data and atmospheric pressure data (see Fig. 5.2) fol-
lowing the same strategy as Steckler et al. (2010). By deploying the 3-arcsecond DEM (Digital
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Figure 5.3: Load water height for day 31 (no flood), day 100 (medium flood) and day 128 (peak of flood)
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Elevation Model) from the SRTM (Shuttle Radar Topography Mission) data, the load data were
resampled into a high spatial resolution of 3′′ × 3′′. The load data in equivalent water height
for day 31 (no flood), day 100 (medium) flood and day 128 (peak of flood) are shown in Fig. 5.3.
A significant load of up to 26 m is observed when the flood happened.
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Figure 5.4: Predicted vertical displacements for day 31 (no flood), day 100 (medium flood) and day 128 (peak of
flood), using the half-space approach with E = 140 GPa.

Since our aim is to evaluate different approaches in modeling the deformation within a local
region, we rely on obtained Young’s modulus E around 140 GPa. Note that the other parameter,
Poisson’s ratio, is normally set to 0.25 (Bevis et al., 2005; Steckler et al., 2010). The corresponding
predicted displacements using the half-space approach for days 31, 100 and 128, are displayed
in Fig. 5.4. Heavy load corresponds to large displacements up to 16 mm beneath the river and
its surroundings.

5.4.2 Point load versus surface load

USING the 3′′ × 3′′ resolution load dataset, we apply the point load approach and the surface
load approach to compute the displacements at 11 GPS stations. Note that the 3′′× 3′′ load

is considered as the point load and applied using Eq. (5.3a) and Eq. (5.3b). The comparison
between them is displayed with one exemplary GPS site in Fig. 5.5. Other GPS sites show a very
similar behavior.

Clearly, the two approaches produce quite close displacements with differences in the level of
10−3 mm in vertical component and 10−4 mm in horizontal component, which are negligible
in practice. In terms of computational efficiency, the point load approach is more efficient than
the surface load approach; that is, under the same computation environment (Matlab 2013a
installed in Windows 7 with the processor Inter Core i5-3740 and the RAM of 8 GB), time con-
sumption for the point load approach is around 327 seconds while the surface load approach
requires around 10772 seconds. The longer time required for the surface load approach is due
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to the complicated numerical computation using Eq. (5.8) and Eq. (5.9), which needs to evalu-
ate several subfunctions, e.g. J1 and J2. The comparison shown here indicates the advantage of
the point load approach against the surface load approach in practical use. We therefore recom-
mend to utilize the point load approach in practice for the case of the half-space deformation
modeling. This point load approach will be used in the forthcoming comparison.
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Figure 5.5: Comparison of the point load approach and the surface load approach at GPS site PTGV.

5.4.3 Global Green function approach versus half-space approach

IN addition to the half-space approach approach, using the same load data, we also apply
the classic Green function approach at these GPS sites. To complement the analysis, we

include two hydrological models into the comparison as well: MERRA-B (Reichle et al., 2011)
and GLDAS-1 (Noah 2.7) (Rodell et al., 2004), which are used to model displacements due to
the global continental water loading. The temporal resolution for the two models we used are
hourly and 3-hourly, respectively, and the corresponding spatial resolution are 1/2◦ × 2/3◦

and 0.25◦ × 0.25◦. Using the Green function approach, the displacements at the 11 GPS stations
from the two hydrological models and the local high-resolution load data are evaluated.

Here we choose the Green function based on PREM in the CF frame to keep consistency between
the estimated displacements and the observed GPS height deformations. Due to the fact that
the local load data does not include the water components of soil moisture and snow water
equivalent, the local area is not excluded in the computation of the displacements from the
hydrological models.
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Figure 5.6: The observed vertical displacements from GPS and the predicted deformations at NWCC (top), NMKM
(middle) and RLAP (bottom). Abbreviations, e.g. GF Local, stand for using the Green function approach with
respective load datasets. These abbreviations are used in Figs. 5.7, 5.8,5.9 and Table 5.2 as well.
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Figure 5.7: The observed vertical displacements from GPS and the predicted deformations at LCHS (top), HCES
(middle) and CVMS (bottom).



98 Chapter 5 Site dependent modeling of load induced displacements

2011 2011.2 2011.4 2011.6 2011.8 2012

−10

0

10

m
m

time/yr

 

 

observed
Half−space
GF Local
GF MERRA
GF GLDAS
GF Local plus MERRA
GF Local plus GLDAS

2011 2011.2 2011.4 2011.6 2011.8 2012

−20

−10

0

10

20

m
m

time/yr

 

 

observed
Half−space
GF Local
GF MERRA
GF GLDAS
GF Local plus MERRA
GF Local plus GLDAS

2011 2011.2 2011.4 2011.6 2011.8 2012
−20

−10

0

10

m
m

time/yr

 

 

observed
Half−space
GF Local
GF MERRA
GF GLDAS
GF Local plus MERRA
GF Local plus GLDAS

Figure 5.8: The observed vertical displacements from GPS and the predicted deformations at PTGV (top), MCTY
(middle) and STLE (bottom).
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Figure 5.9: The observed vertical displacements from GPS and the predicted deformations at PIGT (top) and MAIR
(bottom).

Figs. 5.6, 5.7, 5.8 and 5.9 present the comparison at all considered 11 GPS sites. With only the
local load data involved, it is interesting to find that the vertical deformations derived from
the elastic half-space approach and the Green function approach follow each other quite well.
The former predicts obviously larger displacements than the latter. It indicates that, within
a limited spatial extent, the elastic half-space approach seems to be more effective than the
Green function approach. However, the predicted vertical deformations from the two meth-
ods fail to fit the observed GPS time series very well, especially during both the flood and the
rebound periods. The modeled vertical displacements from the two hydrological models tell
us that the GPS stations are also affected by the global, i.e. far field, water loading effects (van
Dam et al., 2001). Nevertheless, the elastic half-space approach which neglects the curvature
and the topography of the Earth is unable to model the global loading effects from hydrology,
atmosphere and ocean.
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Table 5.2: The NSE values of the predicted displacements with respect to the observed GPS time series.

GPS sites HS Local GF Local
GF

MERRA

GF

GLDAS

GF Local
+ MERRA

GF Local
+ GLDAS

total period
CVMS 0.16 0.11 0.31 0.37 0.35 0.38
MAIR 0.25 0.17 0.48 0.52 0.50 0.52
MCTY 0.41 0.35 0.47 0.52 0.57 0.57

NWCC 0.38 0.32 0.51 0.57 0.65 0.68
PIGT 0.05 0.03 0.02 -0.05 0.00 -0.07

PTGV 0.37 0.29 0.47 0.44 0.36 0.28
RLAP 0.24 0.20 0.18 0.19 0.22 0.20
STLE 0.37 0.26 0.42 0.42 0.47 0.44

HCES 0.07 0.05 0.13 0.08 0.10 0.04
NMKM 0.24 0.20 0.36 0.41 0.40 0.42

LCHS 0.32 0.27 0.43 0.48 0.55 0.57
flood period

CVMS -0.08 -0.26 0.05 0.22 0.21 0.31
MAIR -0.28 -0.80 0.13 0.21 0.27 0.25
MCTY 0.03 -0.16 0.02 0.20 0.45 0.44

NWCC -0.52 -0.76 -0.46 -0.13 0.28 0.42
PIGT 0.04 0.03 -0.13 -0.32 -0.21 -0.42

PTGV 0.20 -0.04 0.30 0.21 0.25 -0.08
RLAP -0.12 -0.15 -0.01 0.04 -0.08 -0.13
STLE 0.06 -0.17 0.24 0.31 0.40 0.36

HCES 0.05 0.02 -0.14 -0.39 -0.06 -0.22
NMKM -0.16 -0.28 -0.11 0.03 0.22 0.24

LCHS -0.27 -0.43 -0.24 -0.02 0.29 0.37

Inspection of Figs. 5.6, 5.7, 5.8 and 5.9, two exceptional GPS sites are observed. One is PIGT,
which is the farthest away from the Mississippi river, showing pretty flat signal during the
flood period. Neither the local data nor the models can predict displacements fitting well to
the observed deformation at PIGT. The other is HCES which contains a big gap during the flood,
decreasing the statistical performance in Table 5.2.

A statistical analysis of the the performance of the two approaches and the two hydrological
models is implemented with NSE (see Section 4.4). NSE values can range from −∞ to 1 and an
efficiency of 1 corresponds to a perfect match of the predicted deformations to the observed
displacements in this context. In addition, NSE values larger than zero indicate statistical con-
sistency. To facilitate the comparison, we evaluate the NSE values during the total period of
2011 and the flood period (day 50 to day 150), respectively. The result is shown in Table 5.2.

The statistical result further confirms the previous analysis. At all 11 GPS stations we studied,
either during the total period or only the flood period, the predicted deformations from the
elastic half-space approach agree better with the observed GPS time series than the estimated
displacements from the Green function approach. The statistical result also demonstrates the
effects of the global water loading, which delivers even better agreements than the local load
data. On the condition of models only, the modeled displacements from GLDAS fit the obser-
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vations marginally better than those from MERRA at more than half of the stations. In the case
of combining the models with the local data, GLDAS gives also better performance with respect
to MERRA at most of the stations during the whole period and comparable performance during
the flood period. Comparing to the modeled displacements from the elastic half-space ap-
proach as well as other combinations, the combination of the local data with the GLDAS model
using the Green function approach also shows a superior performances.

Steckler et al. (2010) mentioned that, for loads beyond Bangladesh, the elastic half-space ap-
proach may not be adequate and a spherical Earth model may be necessary. To some extent, our
study confirms this assumption. Considering the quite large displacements predicted from the
global terrestrial water loading models, a pre-reduction of global water loading effects might
help to determine the geological settings, i.e. Young’s modulus, more precisely via the elastic
half-space approach.

The question remains also how large area the half-space approach can be applied. Steckler et al.
(2010) applied the half-space approach in Bangladesh of an area of 5◦× 6◦ and Bevis et al. (2005)
deployed it in the Amazon region with an even bigger extent of 10◦ × 10◦. Chanard et al. (2014)
argued the inappropriateness of the half-space approach with respect to the Green function
approach when they applied them to probe the crustal structure around the Himalaya region
with an area covering 40◦ × 60◦. On this aspect, further studies are required to investigate the
proper maximum area that the half-space approach can be utilized.

5.4.4 Isotropic Green functions versus site-dependent Green functions

TO investigate effects of elastic loading Love numbers (LLNs), we use one reference LLNs
based on the REF model and two sets of the site-dependent LLNs provided by Gegout

(2013). The site-dependent LLNs are derived from a combination of CRUST 1.0 or CRUST 2.0 with
a REF Earth model. We denote the LLNs and the GFs derived from the combination of CRUST 1.0
and CRUST 2.0 with the REF model as CRUST_1 and CRUST_2, respectively. Fig. 5.10 presents
examples of the site-dependent LLNs and their corresponding Green function coefficients at
NWCC.

In terms of LLNs, since both the PREM and REF are SNREI Earth models, the difference between
them is negligible (less than 1 %) (Gegout, 2013). While by modifying the local crustal rheology
of the REF model with the crust models, it can cause small differences at large scales around
10 % for low degree less than 100; large uncertainties around 30 % at medium scales with degree
from 100 to 1000 and significant differences at local scales for degrees over 1000. Differences
in LLNs are accordingly propagated to the site-dependent Green function coefficients, which
represent the Earth’s structure as if the local crustal characteristics extend over the whole globe
(Wang et al., 2012; Gegout, 2013; Dill et al., 2015). Compared to the GFs derived from the PREM

model and the REF model, CRUST_1 and CRUST_2 influence mainly the displacement pattern in
the very near field of the load source (ψ < 0.1◦). While in the far field, the GFs derived on the
basis of PREM seem to produce larger deformations with respect to the two site-dependent sets
of GFs.

Fig. 5.11 illustrates the predicted displacements using four sets of GFs. As expected, differ-
ences between two SNREI models are small and we do not show them here so as to focus on
comparison between PREM and the two modified models. With the local load data, the defor-
mations computed with CRUST_1 and CRUST_2 are slightly larger than those calculated with
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Figure 5.10: Loading Love Numbers from PREM, REF, REF with modified crust from CRUST 1.0 and REF with
modified crust from CRUST 2.0 and their corresponding Green function coefficients at NWCC.

REF and PREM, which makes us arrive at the same findings as Wang et al. (2012). However,
these differences are not obviously distinguishable in Fig. 5.11 as the absolute differences are
too small to be seen with the total deformations. To this end, statistical analysis of these differ-
ences in the north, east and vertical components are evaluated individually using four metrics
including maximum and minimum differences, RMS of the differences and relative RMS of the
differences with respect to PREM. The statistical results are tabulated in Tables 5.3, 5.4 and 5.5.
In the north component, the maximum absolute differences are 0.14 mm appearing at CVMS

and MAIR for CRUST_1 and 0.18 mm at NWCC for CRUST_2. In the east component, slightly
larger maximum absolute differences are observed with respect to that in the north compo-
nent, which are 0.26 mm at PTGV for CRUST_1 and 0.30 mm at LCHS for CRUST_2. The highest
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Figure 5.11: The vertical displacements computed from the local load and models with site-dependent Green func-
tion coefficients at NWCC.

maximum absolute differences for both CRUST_1 and CRUST_2 are seen in the vertical compo-
nent, 0.38 mm and 0.56 mm, respectively, at the same site PTGV. The absolute differences are
not significant and the average RMS of differences between the predicted deformations at 11
GPS stations are no bigger than 0.1 mm in all three components. This is due to the fact that
the predicted displacements using only the local load data are relatively small by the global
Green function approach. For example, based on PREM, maximum absolute displacements are
0.7 mm, 1.3 mm and 7.5 mm in the north, east and vertical components, respectively.

However, if we look at the relative RMS, big values are found for the north and east compo-
nents with averages of 25.7 % and 37.8 % for CRUST_1, 31.0 % and 52.0 % for CRUST_2. In the
vertical component, the relative RMS values are smaller with averages of 5.6 % for CRUST_1 and
6.6 % for CRUST_2. The averages of the relative RMS values are quite in agreement with that
in (Dill et al., 2015) who applied their grid-dependent Green function coefficients to predict
deformations due to the global hydrological and atmospheric loading.

Petrov and Boy (2004) analyzed the global error budget of evaluating the atmospheric pres-
sure loading induced displacements and attributed less than 2 % uncertainties to the Green
functions. However, the comparisons shown here demonstrate that the site-dependent Green
function coefficients can contribute more than 5 % uncertainties in evaluating deformations due
to environmental loading, which is also indicated by Dill et al. (2015).

Utilizing the MERRA model and the GLDAS model, the GFs derived from CRUST_1 and CRUST_2
produce less displacements than those from PREM due to being less effective in the far field.
To predict higher displacements, the combination of the site-dependent GFs with the GFs de-
rived from PREM is advisable. For instance, Nielsen et al. (2013) applied the GFs from a site-
dependent Earth model in the Jakobshavn Isbræ area in Greenland and the GFs from PREM

outside of the area.

It is worth mentioning that, in the Green function approach, the displacement is proportional
to the magnitude of the loaded pressure as well. In this section, the load data we used were
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Table 5.3: Differences of displacements predicted by the site-dependent GFs with respect to that from PREM in the
north component.

GPS sites
REF with CRUST 1.0 REF with CRUST 2.0

max
[mm]

min
[mm]

RMS

[mm]
Relative
RMS [%]

max
[mm]

min
[mm]

RMS

[mm]
Relative
RMS [%]

CVMS 0.14 0.00 0.06 24.8 0.15 0.00 0.06 25.9
MAIR 0.00 -0.14 0.07 20.9 0.00 -0.14 0.07 20.8
MCTY 0.01 -0.01 0.01 2.4 0.17 0.00 0.09 43.0

NWCC 0.03 -0.01 0.01 3.0 -0.01 -0.18 0.11 32.5
PIGT 0.00 -0.02 0.01 35.2 0.00 -0.01 0.01 62.6

PTGV 0.01 -0.09 0.04 15.9 0.01 -0.08 0.04 14.9
RLAP 0.09 0.00 0.04 31.1 0.10 0.00 0.04 33.8
STLE 0.00 -0.11 0.05 31.1 0.00 -0.12 0.05 33.8

HCES 0.10 0.00 0.05 123.0 0.12 0.00 0.05 145.8
NMKM 0.04 -0.02 0.01 4.8 -0.01 -0.17 0.10 35.0

LCHS 0.09 0.00 0.05 31.5 0.11 0.00 0.06 39.1

Table 5.4: Differences of displacements predicted by the site-dependent GFs with respect to that from PREM in the
east component.

GPS sites
REF with CRUST 1.0 REF with CRUST 2.0

max
[mm]

min
[mm]

RMS

[mm]
Relative
RMS [%]

max
[mm]

min
[mm]

RMS

[mm]
Relative
RMS [%]

CVMS -0.01 -0.22 0.10 38.8 -0.01 -0.25 0.11 43.4
MAIR 0.10 0.00 0.04 79.6 0.11 0.00 0.05 94.7
MCTY 0.06 0.00 0.03 6.4 0.01 -0.14 0.07 14.5

NWCC -0.01 -0.08 0.04 8.9 0.03 -0.01 0.02 3.8
PIGT 0.05 0.00 0.02 9.4 0.04 0.00 0.02 7.9

PTGV 0.26 0.02 0.13 31.0 0.28 0.02 0.13 33.0
RLAP -0.02 -0.18 0.10 17.1 -0.02 -0.14 0.08 14.5
STLE 0.25 0.01 0.12 31.8 0.27 0.01 0.13 34.0

HCES -0.01 -0.17 0.08 25.1 -0.01 -0.17 0.08 25.8
NMKM -0.01 -0.12 0.05 7.3 0.17 -0.02 0.10 14.4

LCHS 0.00 -0.03 0.01 2.50 0.30 -0.01 0.15 28.6

calculated only along the river which means the loaded area is quite small (see Fig. 5.3). To
test the sensitivity of the site-dependent LLNs to the magnitude of the given load, we increase
the amplitude of the load data simply by 10 times, the consequent average RMS of differences
is proportionally up to 1.1 mm. The absolute differences between the modeled deformations
can reach up to 2.6 mm at STLE during the flood period. In a sense, the site-dependent LLNs
and GFs are generated to account for such differences. It is also reasonable to imagine that the
effects of the site-dependent LLNs and GFs will be amplified with more load data involved.
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Table 5.5: Differences of displacements predicted by the site-dependent GFs with respect to that from PREM in the
vertical component.

GPS sites
REF with CRUST 1.0 REF with CRUST 2.0

max
[mm]

min
[mm]

RMS

[mm]
Relative
RMS [%]

max
[mm]

min
[mm]

RMS

[mm]
Relative
RMS [%]

CVMS -0.01 -0.27 0.12 8.6 -0.01 -0.31 0.14 9.6
MAIR -0.01 -0.24 0.11 9.0 -0.01 -0.28 0.13 10.5
MCTY 0.01 -0.01 0.04 1.3 0.17 0.00 0.03 1.0

NWCC 0.05 -0.05 0.03 0.7 0.07 -0.03 0.03 0.9
PIGT 0.00 -0.03 0.01 1.6 0.00 -0.02 0.01 1.1

PTGV -0.03 -0.38 0.19 9.2 -0.04 -0.56 0.27 13.4
RLAP -0.02 -0.31 0.15 5.7 -0.02 -0.36 0.18 6.6
STLE -0.01 -0.37 0.17 9.2 -0.01 -0.43 0.20 11.0

HCES -0.01 -0.19 0.09 6.9 -0.01 -0.22 0.10 7.9
NMKM 0.05 -0.07 0.03 1.0 0.07 -0.06 0.04 1.1

LCHS 0.01 -0.08 0.04 1.2 0.02 -0.04 0.02 0.7

5.5 An empirical Green function approach

APART from these loading theory based approaches, Seitz and Krügel (2009) proposed one
empirical Green function approach which replaces the classical Green function coefficient

curve (Eq. (2.23a)) with an exponential function

F(ψPQ) = 10−17ae−bψPQ , (5.10)

where parameter a is related to the density ρQ of the loaded grid cell and parameter b corre-
sponds to the mean density ρM of the surrounding grids, see Fig. 5.12. Different parameters a
and b allow us to account for regional discrepancies of crustal densities. In other words, differ-
ent groups of a and b correspond to different Green functions in the respective region. In a way,
this approach works as a site-dependent or region-dependent Green function approach.

By substituting Eq. (2.23a) with Eq. (5.10) in Eq. (2.28a), the vertical displacement within a
regional area could be written in a discrete way as

du(P) =
N

∑
k=1

ψPQk
<dist

10−17qQk AQk aike−bikψPQk , (5.11)

where qQk is mass surface density with unit of kg/m2 and AQk represents the area of the grid
cell k. The parameters aik and bik indicate the values of a and b for the specific loaded grid cell
k. The summation will be implemented within all cells whose distances away from the compu-
tation point P are less than the predefined distance threshold dist. dist = 10◦ was assumed in
(Seitz and Krügel, 2009).

On the basis of Eq. (5.11), the parameters aik and bik are able to be estimated using the load-
ing models and displacements from a global coverage of GPS sites in the framework of least
squares adjustment. Before starting inversion, predefining the parameters aik and bik is neces-
sary and this process has been done in consideration of crustal inhomogeneities by deploying
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Figure 5.12: Left: an exponential function fits to the classical Green function approach; Right: basic principle of
the empirical Green function approach (courtesy: Seitz and Krügel (2009))

the CRUST 2.0 model in (Seitz and Krügel, 2009). The mean crustal densities are evaluated at
each grid cell by averaging densities from crustal layers of soft and hard sediment, upper, mid-
dle and lower crust. Grid cells with the same mean crust density will share the same values for
a value. It should be mentioned that, since b is related to the mean density of the surrounding
cells, the mean density of the cells within the distance dist around a certain cell is computed
which leads to b parameters fewer than a. In (Seitz and Krügel, 2009), seven a and five b pa-
rameters were estimated for the whole Earth, see Table 1 in (Seitz and Krügel, 2009).

From the methodology of Seitz and Krügel (2009), this empirical site-dependent Green function
approach was deliberately designed for global determination of the parameters a and b based
on the crust models. However, Galván et al. (2015) might have applied this approach in an
improper manner who estimated the parameters a and b for each GPS site separately in South
America using GRACE as input load. To converge in the least squares inversion process, Galván
et al. (2015) required to apply regularization.

For validation, we implement this point-wise approach like Galván et al. (2015) for the station
NAUS in South America using GRACE and GPS described in Section 4.3. Instead of least squares
inversion, we search the parameters a and b in the potential range indicated by Seitz and Krügel
(2009) to obtain the minimal RMS value of the difference between the predicted by Eq. (5.11)
and the observed displacement by GPS. The possible combinations of a and b are shown in
Fig. 5.13. Large, curved and extended a, b parameter domain with equivalent RMS values exist.
LS-inversion for a and b is an ill-posed problem and regularization will lead to a result, but
not necessarily an appropriate result. To some extent, Fig. 5.13 implies inappropriateness of
applying this empirical Green function approach in the way of Galván et al. (2015). In the case
of global inversion like Seitz and Krügel (2009), several GPS stations will constrain the same a
or b, thereby converging at certain values.

In addition, comparing to the classical Green function approach, this approach does not de-
pend on any Earth models but only on the crust models to predefine the parameters a and
b, which could in a way account for the crust’s anisotropy. As discussed in Seitz and Krügel
(2009), one possible disadvantage of this approach might be that it does depend on the loading
models to invert the parameters a and b. Significant uncertainties exist in these models (see
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Figure 5.13: Possible combinations of the parameter a and b at NAUS

e.g., Petrov and Boy, 2004; Lorenz et al., 2014) which could accordingly result in uncertainties
in the estimated a and b. Nevertheless, this site-dependent Green function approach provides
us an alternative way to predict the displacements due to Earth’s surface loading.

5.6 Discussion and summary

ENVIRONMENTAL loading varies spatially and temporally and it in turn loads and deforms
the surface of the solid Earth. This chapter focuses on investigating the currently available

approaches which are applied to model the loading induced displacements. The half-space
approach and the classic Green function approach are studied and compared using a local high
resolution load dataset along with two hydrological models. In addition, an empirical Green
function approach is analyzed as well.

In terms of the half-space approach, the equivalence of the point load approach and the surface
load approach is demonstrated with real data. Considering the computational efficiency, we
recommend to use the point load approach in practice. Comparing the global Green function
approach with the half-space approach within a limited spatial extent, the half-space approach
provides clearly better performance. However, they both fail to fit the observed displacements
recorded at the 11 GPS sites if only the local load data is considered. This is probably due
to neglecting the global load outside of the study region. As analyzed, a pre-reduction of the



108 Chapter 5 Site dependent modeling of load induced displacements

global environmental loading effects might be helpful in precise determination of the geological
structure using the half-space approach.

Regarding the site-dependent Green functions, they do not provide significant absolute dif-
ferences due to the limited loaded extent with respect to the SNREI-derived Green functions.
However, they do produce big differences in terms of the relative RMS. These relative differ-
ences indicate that the site-dependent Green functions could contribute more uncertainties to
the estimated displacements, i.e. more than 5 %, which was less than 2 % reported by Petrov
and Boy (2004). Further comparisons using all up-to-date site-dependent or grid-dependent
Green functions will be done in future to evaluate their effects at global scales.

Lastly, the methodology of the empirical Green function proposed by Seitz and Krügel (2009)
is discussed and one improper application of this site-dependent Green function approach is
pointed out. Maybe the application by Galván et al. (2015) was improper indeed. But in the
future we will have more loading data/models and probably denser GNSS networks, so the
empirical Green function method must be investigated in future. In addition, it might be in-
teresting to compare with the grid-dependent Green functions derived by Dill et al. (2015) as
well.
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Chapter 6

Conclusions and outlook

6.1 Conclusions

THE redistribution of atmospheric, oceanic and hydrological masses on the Earth’s surface
varies in time and this in turn loads and deforms the surface of the solid Earth. Analyzing

environmental loading signal and modeling its induced elastic displacements is of ultra impor-
tance for explaining a series of geophysical phenomena. This thesis starts with introducing the
theoretical relationship between surface mass variation, gravity changes and elastic surface dis-
placements. Particularly, derivations from the spatial Green function approach to the spectral
spherical harmonic approach are presented. The two approaches are proved to be equivalent
theoretically and practically. Based on the well-established loading theory, this thesis utilizes
two different space-borne measurements, i.e. station displacements recorded by GPS and grav-
ity changes in the form of spherical harmonics from GRACE, along with other environmental
loading data to contribute to the field from the following three aspects.

Time-variable geodetic seasonal signals modeling Recently, as opposed to seasonal signals
with constant amplitudes and phases, an increasing concern regarding the time-variable sea-
sonal signals is observed. Several approaches were proposed to retrieve the time-varying an-
nual and semi-annual signals. However, most of them are model-dependent, e.g. the Kalman
filtering based approach (Davis et al., 2012). In this thesis, one data-driven approach, namely,
singular spectrum analysis (SSA), is introduced into this field. Through applying SSA to the wa-
ter level time series of Lake Urmia from satellite altimetry and the basin averaged equivalent
water height time series in the Congo basin from GRACE, SSA is demonstrated to be a viable
tool in analyzing and modeling the time-variable seasonal signals buried in various geodetic
time series.

In addition, several aspects of applying SSA are discussed in this thesis. Among them, one key
parameter in SSA, i.e. window size M, is investigated with the above-mentioned geodetic time
series. It is shown that the w-correlation analysis is helpful in determining the optimal window
size. A window size of 5-year is selected to be optimal for both two types of signals.

Apart from separating time variable seasonal signals, SSA is proved to be able to extract the
long-term trend signals as well. In the example of water level time series of Lake Urmia, a clear
long-term trend signal is observed and extracted as the first two principal components, which
follows the original time series closely.
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Optimal filtering on GRACE with respect to GPS GRACE data filtering is always of signif-
icant importance in practice. King et al. (2006) investigated the optimal filtering on GRACE

within the isotropic Gaussian filtering group in a comparison with GPS. This thesis revisits
the idea of King et al. (2006) by including more filters into comparison. In addition to the
isotropic Gaussian filter, other two deterministic filters, i.e. the anisotropic Gaussian filter and
the destriping filter, and two stochastic filters, i.e. the DDK filter and the regularization filter,
are analyzed and compared with GPS height time series from two study areas, i.e. the Europe
area and the Amazon area.

The comparisons over the two study areas indicate that no single filtering scheme can pro-
duce consistently superior performance to other filters. However, several phenomena can be
observed. In general, the stochastic filers provide better performance than the deterministic fil-
ters in both study areas. The DDK 1 filter outperforms other filters in the Europe area while the
regularization filter of parameter λ = 4 is selected as the optimal filter in the Amazon area.

In terms of the stochastic filter group, it is shown that the performance of the DDK filters depend
on the study area. The DDK 1 and DDK 2 which show good performances in the Europe area
turn out to be inferior to other DDK filters in the Amazon area. In particular, in the Amazon
area, the DDK filters do not display better performances than most of the deterministic filtering
schemes, e.g. the isotropic Gaussian filters with a low smoothing radius combined with the
destriping filter. While in the regularization filter group, the parameter λ = 4 turns out to
produce consistently better and reliable results over both two study areas. This filter choice
shows better or comparable statistics with respect to the deterministic filters in both study
areas.

In the deterministic filter group, we arrive at the same conclusion as King et al. (2006) that a
smoothing radius around 500 km reaches best performance if only the isotropic Gaussian filter
is applied. However, this is not true when combined with the destriping filter. The advantage
of combining the destriping filter with the isotropic Gaussian filter is demonstrated in both
study areas. It is highly recommended to use the Gaussian filter with a low smoothing ra-
dius, e.g. around 300 km, combined with the destriping filter, which produces consistent good
results in both the Europe area and the Amazon area with respect to other deterministic fil-
tering scenarios. The performance of the anisotropic Gaussian filter decreases with increasing
smoothing radii. Besides, the anisotropic Gaussian filter only shows its better performance as
opposed to the Gaussian filter at low smoothing radii. However, this point is not held when
they are combined with the destriping filter. In view of the performance of all deterministic fil-
ters, the study concludes that the optimal filtering scheme in this filter group is the combination
of the Gaussian filter of a low smoothing radius with the destriping filter.

Elastic loading induced displacements modeling Predicting displacements due to environ-
mental loading is based on the well-established loading theory. The classic Green function
approach can be applied at various scales. Within a limited spatial extent, the half-space ap-
proaches are applied as well in practice. To investigate the differences between different ap-
proaches, a high spatial resolution local load dataset from the lower Mississippi river area is
used.

Firstly, two half-space approaches, i.e. the point load approach and the surface load approach,
are investigated and compared. It is shown that the two half-space approaches are practically
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equivalent using the local data. However, the point load approach is recommended for practi-
cal use in view of the computational efficiency.

Using the local load dataset, the difference between the global Green function approach and
the half-space approach is analyzed. It is demonstrated that deformations estimated from the
half-space approach agrees better with the observed displacements at the considered 11 GPS

sites than these from the Green function approach. However, neither of them show satisfactory
agreements with the observed displacements if only the local load data is considered. The rea-
son for that is explained by deploying two global hydrological models, i.e. GLDAS and MERRA,
which demonstrates strong effects of the global load beyond the study region. A reduction of
the global environmental loading effects beforehand might be advantageous to probe the local
geological structure using the half-space approach.

Moreover, the impacts of site-dependent Green functions are studied using the high spatial
resolution load data . We use two types of site-dependent Green functions which were gener-
ated by modifying the local crustal structure in the REF Earth models using the CRUST 1.0 and
CRUST 2.0 models. With respect to the SNREI-based Green functions, no significant absolute
differences (less than 0.27 mm according to RMS of difference) are observed due to the limited
local load. Nevertheless, big differences in terms of relative RMS are obtained, more than 25 %
in the horizontal components and bigger than 5 % in the vertical component. In contrast to less
than 2 % uncertainties due to the Green functions reported by Petrov and Boy (2004), we show
that the site-dependent Green functions could contribute more uncertainties to the estimated
displacements. The results shown in our study agrees well with Dill et al. (2015) who applied
the grid-dependent Green functions using the global environmental loading models.

6.2 Outlook

THIS thesis has investigated and advanced three different aspects regarding the Earth’s sur-
face loading and its induced elastic displacements. Several remaining issues still exist and

they require further investigations.

Alternative approaches for time variable seasonal signals modeling SSA, introduced in this
thesis, has its own limitations in separating time variable seasonal signals, e.g. optimal choice of
embedding window size M. Recently, a new data adaptive approach named singular spectrum
decomposition (SSD), which takes its origin from SSA, was introduced by Bonizzi et al. (2014).
SSD overcomes the limitation of SSA by automatically selecting the window size, which makes
singular spectral analysis fully data-driven. The automatic analysis characteristic of SSD might
make it possible for global scale GPS time series analysis, which is time-consuming using SSA.

In addition to SSD, another data adaptive approach named EMD (Empirical Mode Decompo-
sition) is widely used in signal decomposition. Based on a sifting process, EMD decomposes
the time series into several intrinsic mode function (IMF) with different time scales. In the cli-
mate field, EMD has shown its potentialities in separating the modulated annual cycle (Wu
et al., 2008). Certainly, EMD will be a potential tool in extracting time variable geodetic seasonal
signals.
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In short, further studies on time variable season signals modeling will be continued using SSA

as well as the above-mention SSD and EMD. Comparisons between different approaches will be
interesting and each approach could serve as a validation tool for another.

Perspectives on comparing GPS and GRACE In our study, we have applied five types of
commonly used filters to evaluate their performance when comparing with GPS. Several other
filters exist and it might be worth implementing one thorough evaluation of all up-to-date
filters.

In addition, the comparison between GPS and GRACE is normally conducted point-wise. As
GRACE has its spatial resolution around 400 km, it might be interesting to apply PCA to a re-
gional GPS network to extract common spatial signals from both GPS observed displacements
and GRACE derived deformations and compare afterwards.

Perspectives on elastic displacements modeling As presented in Chapter 5, other crustal
models based Green functions exist in the literature, e.g. grid-dependent Green functions from
Dill et al. (2015). Further comparison involving different types of Green functions is required
using the local load to further evaluate uncertainties due to Green functions. Besides, the com-
parison between different Green functions could also be extended to a global study using the
environmental loading models or GRACE.

What’s more, as discussed in Chapter 5, we have not implemented the empirical Green func-
tion approach proposed by Seitz and Krügel (2009), which provides us an alternative approach
to investigate site-dependent Green functions. This work will be done in future. Likewise, eval-
uating the difference between this empirical Green function approach and the site-dependent
or grid-dependent Green function approach will be worthy of trying in future.
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Appendix A

Practical steps for computing total water storage
changes from GRACE

THIS appendix presents the practical steps to compute total water storage (TWS) changes
which are applied in this thesis.

• The GRACE level 2 products which are presented in the fully normalized gravity spheri-
cal harmonic coefficients can be downloaded from ICGEM (International Centre for Global
Earth Models, GFZ) or PODAAC (Physical Oceanography Distributed Active Archive Cen-
ter, NASA). In this thesis, the GRACE GSM RL05a solution from GFZ (Dahle et al., 2014) are
mostly used.

• The degree-1 coefficients which are provided by Swenson et al. (2008) are added back to
the GRACE GSM products. This step is especially important when EWH are further con-
volved in the spatial domain to compute the surface displacements in order to compare
with the ground-fixed measurements. The data can be downloaded from GRACE Tellus.

• The zonal degree 2 coefficients C20 are replaced by the SLR-derived solutions (Cheng et al.,
2011), which can be accessed via GRACE Tellus.

• The static gravity part should be removed so as to obtain the time variable gravity part,
which can be done by removing a long-term mean of each coefficient or other static fields.
In this thesis, a long-term mean is calculated from 2005 to 2010 based on the reasons that:
1) the GRACE data during this period is continuous; 2) the cyclostationary characteristic
of the GRACE signal requires the mean field to be calculated within integer years (Sneeuw
et al., 2014).

• Filtering GRACE data is required because higher degree coefficients are highly contami-
nated by correlated noise. The filters described in Chapter 4 are normally applied.

• The last step is to compute the TWS changes in terms of the surface mass density changes
using Eq. (2.17), which can be further represented in equivalent water height (EWH) by
dividing the water density.
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Appendix B

Convolution in the spectral domain for
horizontal components

THE detailed derivation for the vertical component has been shown in Section 2.2.3. Here we
complement Section 2.2.3 by adding the complete derivations for the horizontal compo-

nents.

In the light of Winch and Roberts (1995), the derivatives of the addition theorem with respect
to P can be formulated as Eq. (B.1a) and Eq. (B.1b)

∂P̄n(cos ψPQ)

∂ψPQ
cos α =

1
2n + 1

n

∑
m=0

∂P̄nm(cos θP)

∂θP
P̄nm(cos θQ) cos m(λP − λQ) , (B.1a)

∂P̄n(cos ψPQ)

∂ψPQ
sin α =

1
2n + 1

n

∑
m=1

m
sin θP

P̄nm(cos θP)P̄nm(cos θQ) sin m(λP − λQ) . (B.1b)

Similarly, applying Eq. (B.1b) together with Eq. (2.23b) to Eq. (2.29b), we derive step by step

de(θP, λP) = −R3

M
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1
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and apply Eq. (2.16), we eventually obtain the spherical harmonics approach for the East com-
ponent, see Eq. (B.3),

de(θP, λP) =
R

sin θ

∞

∑
n=1

l′n
1 + k′n

n

∑
m=0

P̄nm(cos θP)m(−∆C̄nm sin mλP + ∆S̄nm cos mλP) . (B.3)
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For the North component, using Eq. (B.1a) together with Eq. (2.23b) to Eq. (2.29a), we receive

dn(θP, λP) = −R3
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and apply Eq. (2.16), we finally obtain the spherical harmonics approach for the North compo-
nent, see Eq. (B.5),
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∞

∑
n=1

l′n
1 + k′n

n

∑
m=0

∂P̄nm(cos θP)

∂θP
(∆C̄nm cos mλP + ∆S̄nm sin mλP) . (B.5)



133

Acknowledgments

Time flies and now I have reached the end of my PhD study period. When I look back, it has been a
valuable and unforgettable period full of struggling, happiness and success. I could have not finished
my thesis without numerous help and assistances from many people. At this moment, I would like to
express my gratitudes to all of you.

First of all, my sincere gratitude goes to my supervisor Prof. Dr.-Ing. Nico Sneeuw who has given me his
tremendous supports and guidances throughout my PhD study. I have enjoyed every discussion with
you as well as your valuable comments on my thesis. You seem to me not only an excellent supervisor
but also a good friend. Thank you.

I am also grateful to my co-supervisor Prof. Tonie van Dam who brought me into the interesting loading
field. Three visits to your research group helped me a lot in finalizing this thesis and also opened new
doors for future research possibilities. Thank you.

I thank also all former and current colleagues from the Institute of Geodesy, University of Stuttgart, for
your help and company. In particular, thank you, Dr. Balaji Devaraju, for your assistances in GRACE
data filtering, GMT plotting and so on. Thank you, Dr. Matthias Weigelt, Dr. Mohammad J. Tourian,
Dr. Markus Antoni, Matthias Roth and Christof Lorenz for your valuable help and discussions. Special
thanks also go to Ms. Anita Vollmer for your kind help in dealing with whatever German documents.

I also greatly appreciate all the colleagues from the Geophysics Laboratory, University of Luxembourg.
Good memories from three visits to there always stay in my mind. Especially, I thank Dr. Zhao Li and
Lin Wang very much for your help and fruitful discussions over loading theory and Green’s functions.

One week stay in DGFI (German Geodetic Research Institute, Munich) enriched a lot my understanding
in my research. I appreciate all the colleagues there as well, especially Prof. Dr.-Ing. Florian Seitz for
your generous host.

Many datasets are used in this thesis and data providers are sincerely acknowledged. I appreciate Dr.
Xavier Collilieux (IGN, France) and Dr. Laura Sánchez (DGFI) for providing GPS datasets, GFZ GRACE
team for making GRACE data available, Dr. Pascal Gegout (CNRS, France) for providing site-dependent
loading Love numbers, Dr. Adewale Amosu (CERI, University of Memphis, America) for providing
local loading dataset.

Life is not easy in a foreign country and I always recall those good time with all my Chinese friends in
Stuttgart. It is hard to mention all your names here but I appreciate you very much for making my life
here enjoyable and unforgettable. Thank you. Particularly, Dr. Wei Zhao is greatly acknowledged for
helping me at the very beginning of my life here.

Financial supports from China Scholarship Council are high thanked during my PhD study. Developers
of the GMT software which helps me to produce many figures in my thesis are also appreciated here.

Most importantly, my father Zufu Chen and my mother Yeju Qin are sincerely appreciated for your
endless love and support. I am so indebted to you as I could not spend much time with you over the
past years. My special thanks also go to my dear sister Ying Chen for taking care of our parents when I
was away from home. Last but not least, I am so grateful to my wife Maojing Ye for your unconditional
understanding, encouragement and support. You are the one I will cherish forever and I promise here I
will never ever stay far away from you from now on. Be with you all the time in our future.


	Abstract
	Zusammenfassung
	Introduction
	Earth's elastic surface loading
	The GPS technology and its applications
	The GRACE mission and its applications
	Motivation
	Outline

	Gravity and loading theory
	From geopotential to surface mass variation
	Elastic response to the Earth's surface loads
	Elastic loading Love numbers and Green functions
	Convolution in the spatial domain
	Convolution in the spectral domain

	Reference frame theory

	Singular spectrum analysis for modeling geodetic time series
	Motivation
	Methodology
	Aspects of application of SSA
	Application of SSA to geodetic time series
	Lake level time series
	Basin averaged equivalent water height time series

	Discussion and summary

	Hydrological loading induced vertical displacements from GPS and GRACE
	Motivation
	GRACE data filtering
	Deterministic filters
	Stochastic filters

	Datasets and their inconsistencies
	GPS time series
	GRACE products
	Inconsistencies between GPS and GRACE

	Metrics for performance evaluation
	Case study I: the Europe area
	Case study II: the Amazon area
	Discussion and summary

	Site dependent modeling of load induced displacements
	Motivation
	Modeling deformation in the half-space
	Point load
	Surface load

	Site-dependent and area-dependent Green function coefficients
	Case study: the lower Mississippi river
	Study area and dataset
	Point load versus surface load
	Global Green function approach versus half-space approach
	Isotropic Green functions versus site-dependent Green functions

	An empirical Green function approach
	Discussion and summary

	Conclusions and outlook
	Conclusions
	Outlook

	Bibliography
	Practical steps for computing total water storage changes from GRACE
	Convolution in the spectral domain for horizontal components

