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Figure 1. Improved salt resistance of progeny from parents exposed to hyperosmotic stress. (A) Diagram of the
experimental design. Plants were grown on control or hyperosmotic medium (25 mM and 75 mM NaCl) for five
consecutive generations. From each generation, progeny in P1 and P2 were grown in the absence of stress. Pools
of 10 plants from generations 1, 3 and 5, and of their respective P1 and P2 progeny were used for bisulfite

sequencing (solid-lined small boxes). (B) Salt tolerance assay of P1 and P2 progeny of control and G1, G3 and G5
Figure 1 continued on next page
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Figure 1 continued

salt-treated plants. Seeds were germinated on MS with or without NaCl; images are 2 weeks after sowing. Color
code as in (A). (C) Survival of P1 and P2 seedlings grown on medium with 150 mM NaCl. At least 300 seedlings
tested per triplicate in two independent experiments. Asterisks indicate a significant difference between the
control group of the same generation (unpaired Student's t-test; * p<0.05, ** p<0.01, ns p>0.05). Horizontal bar
corresponds to median, whiskers indicate entire 95th percentile. (D) Survival of wild-type (wt) and RdDM and DNA
methylation mutant P1 and P2 seedlings on medium with 150 mM NaCl (unpaired Student'’s t-test; * p<0.05, ns
p>0.05). Error bars indicate standard deviation.

DOI: https://doi.org/10.7554/eLife.13546.003

Wibowo et al. eLife 2016;5:e13546. DOI: https://doi.org/10.7554/eLife.13546 3of 27


https://doi.org/10.7554/eLife.13546.003
https://doi.org/10.7554/eLife.13546

e LI F E Research Article

Computational and systems biology | Genetics and Genomics

Germination rate (%)

Chlorophyll content (ug/ul)

100

Sodium content
(mg/g dry weight
n B [} @
o O o o

o

80

60-

40+

20+

-
o
o

o]
o

D
o

I
i

n
o

Control 25 mM NaCl

.
Elv
¥ .
-

P1

75 mM NaCl

g TFs . ges
12345 12345 12345
Generation
Control 25 mM NaCl 75 mM NaCl
P1 -
=
=] =5 .
> - e <
= =
12345 12345 12345
Generation
Growth condition in progenitor PO:
£ Control & 25 mM NaCl £ 75 mM NaCl
P1
1 2 3 4 5

Generation

Control 25 mM NaCl 75 mM NaCl
1004 P2
80+ s %
60| 5., .5 &8 20
ER | TSt ~-B7
401 = e
20+
0,
12 3 45 12 3 45 12 3 45
Generation
Control 25 mM NaCl 75 mM NaCl
100, P2
80
60+ - - Ils » ns nj NS ns ﬂj ns
= = . : *x i o B
Spg—+ 09p2a =9=84
40 = —= +
20
0,
12 3 45 12 3 45 12 345
Generation
100+ P2
80
60 ns ns ns ng ns ns ns Ns
T ns ns T T
40 5
20
0
1 2 3 4 5
Generation

Figure 1—figure supplement 1. High-salinity tolerance assays. (A) Germination rates of P1 and P2 seeds on
control medium or medium supplemented with 200 mM NaCl. For each sample and treatment 300 seeds were
analysed in two triplicates. (B) Chlorophyll content of P1 and P2 plants grown for 5 weeks on control medium or
medium supplemented with 100 mM NaCl (6 individuals). (C) Sodium content of P1 and P2 plants grown for 5
weeks on control medium or medium supplemented with 100 mM NaCl (10 individuals). Asterisks indicate a
significant difference to the control of the same generation (unpaired Student’s t-test; * p<0.05, ** p<0.01, ns

p>0.05).

DOV https://doi.org/10.7554/eLife.13546.004
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Figure 2. Hyperosmotic stress-induced differentially methylated regions (DMRs) in the absence of stress stimulus. (A) Annotation of cytosines in MRs
and DMRs between PO control and PO hyperosmotic treated samples in different generations (see Figure 1A). (B) Methylation frequencies by sequence
context in DMRs identified between control (PO of G5), stress-treated (PO of G5), and the derived P1 and P2 plants (unpaired two-tailed Student's t-test;
***5<0.001, ns p>0.05). Horizontal bar corresponds to median, whiskers indicate entire 95th percentile. (C) Complete linkage clustering of samples from
different generations based on DMR methylation frequencies. Methylation frequency of cytosines contained in each DMR were averaged, and only
DMRs covered in all samples were considered. Numbers in red indicate approximately unbiased (AU) p-values (x100), calculated with pvclust. (D)
Overlap (including 500 bp flanking windows) of DMRs between PO control and stress-treated samples from G1, G3 and G5. Overlap with DMRs from a
previous analysis of mutation accumulation (MA) lines (Hagmann et al., 2015) is also shown. (E) Clustering of DMRs between PO control and stress-
treated samples in G5 according to overlap with MA-DMRs. C, control, 25, 25 mM NaCl and 75, 75 mM NaCl.
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Figure 2—figure supplement 1. DNA methylation variation after multigenerational hyperosmotic stress. (A) Principal component (PC) analysis of
methylation frequencies at DMPs in each generation, with full information across all samples of that generation. Numbers in brackets indicate the

Figure 2—figure supplement 1 continued on next page
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Figure 2—figure supplement 1 continued

percentage of variation explained by the respective PC. (B) Complete linkage clustering of pairwise correlation of DMP methylation frequencies,
separated by generation. (C) Fraction of hyper- and hypo-methylated DMPs after salt-treatment of PO samples. (D and E) Analyses based on data
published by Jiang et al. (2014). G1: generation 1. G10: plants after 10 generations of either control of NaCl treatment. (D) Reanalysis of published
hyperosmotic stress data (Jiang et al., 2014). PC analysis of methylation frequencies at DMPs (left panel). Bi-hierarchical clustering of pairwise
correlation of methylation frequency at DMPs identified in all pairwise comparisons, with full information across all samples (right panel). (E) Reanalysis
of previously published hyperosmotic stress data (Jiang et al., 2014). Complete linkage clustering based on DMR methylation frequencies, divided by
sequence context. The methylation frequency of each DMR per sample was calculated as the average methylation frequency of cytosines in that DMR.
Only DMRs covered in each sample were considered. G1, untreated generation 1; G10, generation 10; C, control; S, salt-treated.

DOI: https://doi.org/10.7554/eLife.13546.006
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Figure 2—figure supplement 2. Effect of hyperosmotic-stress on global methylation. Methylation frequencies in MRs of plants from different
generations, divided by sequence context. 25, 25 mM NaCl; 75, 75 mM NaCl; C, control.

DOV https://doi.org/10.7554/eLife.13546.007
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Figure 2—figure supplement 3. Hyperosmotic-stress induced methylation changes in DMRs. Methylation frequencies in MRs of plants from different
generations, divided by sequence context (unpaired Student'’s t-test; * p<0.05, ** p<0.01, *** p<0.001, ns p>0.05). C, control; 25, 25 mM NaCl; 75, 75
mM NaCl.
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Figure 2—figure supplement 4. Overlap of HS-DMRs with MA-DMRs. (A-B) Clustering of DMRs between PO control and salt-treated samples in
generations 1 and 3, separated according to overlap with DMRs in MA lines (Hagmann et al., 2015).
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Figure 2—figure supplement 5. Gene Ontology analysis of genes associated to HS-DMRs. Heatmaps of significantly enriched GO categories among

hypo-/hypermethylated salt-stress induced DMRs that overlap or do not overlap with DMRs identified in MA lines (Hagmann et al., 2015) (p-

value<0.05).

DOI: https://doi.org/10.7554/eLife.13546.010
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Figure 3. Dynamics of methylation frequency changes in DMRs. (A) DMRs that are hypo- (darker colours) or hyper-methylated (lighter colours) in stress-
treated PO and their P1 and P2 progeny compared to the average of all control samples. Methylation states were determined by subtracting the
methylation frequency of a DMR in the respective sample from the combined controls (PO, P1 and P2) of that generation (G1, G3, or G5); positive
differences were considered as hyper-, negative differences as hypo-methylation events. Line plots indicate the absolute net methylation frequency
change (in% ) across all DMRs. (B) One-directional clustering of DMRs in G3 by methylation frequency difference, separated by sequence context.
Differences for each DMR were calculated by subtracting the methylation frequency of the DMR in a sample from the average in the combined PO, P1
and P2 control samples (see also Figure 1a). Blue colour indicates hyper-, red colour indicates hypomethylation. 25, 25 mM NaCl; 75, 75 mM NaCl; C,
control. (C) Annotation of DMRs. (D) Classes of TEs next to DMRs. (E) Distance of DMRs to the nearest transposable element (TE) or 24 nt-siRNA locus
(Fahlgren et al., 2010) (unpaired Student's t-test; *p<0.05). Horizontal bar corresponds to median, whiskers indicate entire 95th percentile; outliers are
not shown.
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Figure 3—figure supplement 1. Methylation dynamics of HS-DMRs across three generations. One-directional clustering of DMRs in generations 1 and
5 by methylation frequency difference, divided by sequence context. Methylation frequency differences were calculated by subtracting the methylation
frequency for each DMR in the respective sample from the average methylation frequency in the combined PO, P1 and P2 control samples. Blue colour

indicates hyper-, red colour indicates hypo-methylation. C, control; 25, 25 mM NaCl; 75, 5 mM NaCl.
DOI: https://doi.org/10.7554/elife.13546.012
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Figure 3—figure supplement 2. Methylation at hyperosmosis-induced DMRs in drm1drm2 double mutants. Methylation frequency difference in the P1
progeny of salt-stressed Col-0 wild-type and drm1 drm2 plants, separated by sequence context. Methylation frequency differences were calculated by
subtracting the methylation frequency for each DMR in the respective sample from its average methylation frequency in the combined PO, P1 and P2
Col-0 control samples. Blue colour indicates hyper-, red colour indicates hypomethylation.
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Figure 4. Parent-of-origin effects on stress-induced epimutations. (A) Survival of F; seedlings derived from reciprocal crosses between Col-0 wild type
or dme-6 mutants that had been exposed to hyperosmotic stress for two generations and untreated wild-type (wt), or progeny of dme-6/+ selfed plants
(unpaired Student'’s t-test; *p<0.05, **p<0.01, ***p<0.001, ns p>0.05). (B) Absolute methylation frequency differences in DMRs in different tissues from
control and stress-treated plants (unpaired, two-sided Student’s t-test; ***p<0.001, ns p>0.05). C, control; 25, 25 mM NaCl; 75, 75 mM NaCl. (C)
Genome-wide methylation levels in leaves and pollen derived from control and salt-stressed PO plants (generation G1). Methylation frequency was
calculated as the average methylation frequency of cytosines in a 250 kb window. Chr, chromosome. (D) Overlap of DMRs from the comparison of
vegetative nuclei and sperm cells with DMRs identified in leaf tissue after salt treatment in G1, G3, G5. (E) Annotation of MRs and DMRs in vegetative

nuclei and sperm cells.
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Figure 4—figure supplement 1. Isolation of sperm cells and vegetative nuclei by fluorescent-activated-cell-sorting. (A) Confocal microscopy image
(25x) of pollen from the A. thaliana pMGH3::MGH3-eGFP/pACT11::H2B marker line. pMGH3::MGH3-eGFP expression marks the sperm cell nuclei
(green); pACT11p::H2B-mRFP expression labels vegetative cell nuclei (red). (B) Isolation of sperm and vegetative cells by Fluorescence-Activated-Cell-
Sorting (FACS) of sperm cell and vegetative nuclei were isolated based on their GFP and RFP signal, respectively, as well as on their intra-cellular

complexity (side scatter, SSC) and particle size (forward scatter, FSC).
DOV https://doi.org/10.7554/eLife.13546.016
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Figure 4—figure supplement 2. Methylation at hyperosmotic stress-induced DMRs in the dme-6 mutants.
Methylation frequency difference in sperm cells (SC) and vegetative nuclei (VN); original sequencing data was
taken from Ibarra et al. (2012). Differences were calculated by subtracting the methylation frequency of each
DMR from its methylation frequency in the Col-0 wild-type control samples. Blue colour indicates hyper-, red
colour indicates hypomethylation
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Figure 5. Expression of two genes adjacent to hyperosmotic stress-induced DMRs. (A) Methylation near MYB20
and CNI1. Black boxes on top represent genes, red boxes TEs. Methylation on the top and bottom strands at
individual cytosines is shown as vertical bars below. (B—C) MYB20 and CNIT expression (arbitrary units) in the P1
and P2 progeny of control ('naive’) and salt-treated (‘primed’) wild-type and mutant plants. Leaves of 2-week-old
plants grown on MS medium were analysed (unpaired Student’s t-test; *p<0.05, **p<0.01, ns p>0.05). Error bars
indicate standard deviation. C, control; 125, 125 mM NaCl.
DOI: https://doi.org/10.7554/eLife.13546.018
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Figure 5—figure supplement 1. Hyperosmotic stress response of genes next to HS-DMRs. Heatmap showing
expression changes of genes adjacent to HS-DMRs after exposure to hyperosmotic stress (0.5 to 24 hr) in shoots
and roots (Zeller et al., 2009). Blue indicates downregulated genes (log, <-10) and yellow indicates upregulated
(log>>10) genes. Gene identifiers are listed on the right hand side of the heatmap. Blue indicates down-regulation

and yellow indicates up-regulation by hyperosmotic stress.
DOI: https://doi.org/10.7554/eLife.13546.019
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Figure 5—figure supplement 2. Expression of genes adjacent to HS-DMRs. Expression of four genes next to HS-
DMRs in leaves of P1 and P2 progeny of PO control ('naive’) and PO salt-treated (‘primed’) plants, was analysed in
leaves of 2-week-old wild type and rdd, cmt3 and nrpdla mutants. Plants were grown on MS medium or medium
supplemented with 125 mM NaCl. For AT2G33380, two differentially spliced isoforms were analysed (unpaired
Student'’s t-test; *p<0.05, **p<0.01, ns p>0.05). Error bars indicate standard deviation. C, control; 125, 125 mM

NaCl.
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Figure 5—figure supplement 3. Expression of RADM and demethylation pathway genes in response to hyperosmotic stress. Heatmap showing
expression of genes from RADM and demethylation pathways after exposure to hyperosmotic stress (0.5 to 24 hr) in shoots and roots (Zeller et al.,
2009). Gene names are listed on the right. Blue indicates down-regulation and yellow indicates up-regulation by hyperosmotic stress.
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Figure 5—figure supplement 4. Methylation profiles of HS-DMRs in DNA methylation and demethylation Arabidopsis mutants. Heatmap of
methylation frequency differences in HS-DMRs in different methylation contexts in twelve epigenetic mutants; original data from Stroud et al. (2013).
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Figure 6. IncRNA-mediated control of CNI1 expression by a salt-induced DMR. (A) Diagram of the CNI1 locus and
key for expression experiments. Positions of insertion alleles, cni?-2 (Salk_100221) and cni1-3 (Salk_030235), are
indicated, as are the DMR (dark green) in the transposable element (AT5TE35120) downstream of CNI1, the
sequence used for the inverted repeat (IR) hairpin to induce methylation independent of the environment, and the
CRISPR/Cas? created deletion Acnil-DMR (cnil-DRM). (B, C, D) Salt-responsive CNI1 expression in wild type and
T-DNA insertion mutants, CRISPR/Cas9 deletion mutants, and IR hairpin transgenic plants. Asterisks indicate
significant differences relative to controls (unpaired Student'’s t-test; *p<0.05, **p<0.01, ***p<0.001, ns p>0.05).
Error bars indicate standard deviation. C, control; 125, 125 mM NaCl. (E) Salt-responsive IncRNA expression in
progeny of naive or salt-treated wild type and in rdd mutants. (F, G) Salt-responsive IncRNA expression in wild
type and T-DNA insertion mutants, CRISPR/Cas? mutants, and IR hairpin transgenic plants.
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Figure 6—figure supplement 1. Generation of CRISPR/Cas? deletions at the CNIT HS-DMR region. (A) Sequence
of the flanking CNI1 HS-DMR selected for targeted genome editing (methylated cytosines in lower case) and
sequence of the CNIT HS-DMR deletion line generated by CRISPR/Cas9 genome editing. (B) PCR amplicons from
genomic DNA of plants segregating for wild type sequence and AcniT HS-DMR.
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Figure 6—figure supplement 2. Methylation analysis
of hairpin lines directing RADM hypermethylation at the
CNI1 HS-DMR. (A) CHOP-PCR assay demonstrating
that the HS-DMR downstream of CNI1 remains
methylated in IR hairpin lines after exposure to
hyperosmotic stress. A flanking region not was used as
PCR control. (B) Targeted bisulfite sequencing (15
clones each) of the CNI1T HS-DMR in wild type and IR
hairpin lines grown with and without 125 mM NaCl.
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Figure 6—figure supplement 3. Expression analysis of CNI1 antisense IncRNA transcripts in response to
hyperosmotic stress. (A) Genome browser view of the genomic region flanking CNIT (At5g27420). Tracks represent
gene annotations (blue), transposons (yellow) and HS-DMR (black), IncRNAs (purple) and normalised signal of
tilling arrays hybridized with labelled RNA extracted from plants exposed to 125 mM NaCl for 2 and 10 hr (red and
blue bars). Signal corresponding to top and bottom strands are indicated (Jin et al., 2013). (B) CNI1 antisense
IncRNAs expression (RT-PCR) after exposure to hyperosmotic stress. NaCl, 125 mM NaCl.
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Figure 7. Working model for stress-dependent epigenetic regulation of CNI1. In wild type, demethylation of a

DMR in response to hyperosmotic stress stimulates INcRNA expression (CNI1-AST), which in turn causes

downregulation of CNIT expression by an unknown mechanism. In insertion and deletion mutants, upregulation of
the CNIT-AS1 is reduced, impairing the salt-dependent reduction in CNI1 expression. In IR hairpin lines, salt-

induced DMR demethylation is countered by forced methylation triggered by the IR hairpin. RADM, RNA directed
DNA methylation activity; RDD, DNA demethylation activity. Black/open lollipops signify methylated/unmethylated

cytosines.
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