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Figure 1. Overview of sptPALM. (A) Schematic of experimental setup. An inclined illumination source is used in combination with a high-numerical
aperture (NA) objective to resolve molecules in a thin slice in a cell. The excitation laser is pulsed to limit motion blur. Tracking yields a set of short
trajectories (mean track length 3-5 frames). Trajectories shown are from a 7.48 ms tracking movie with retinoic acid receptor a-HaloTag (RARA-HaloTag)
labeled with photoactivatable JF549 in U20S nuclei. Asterisks in the movie frames mark particles at the edge of the focus. (B) Schematic of our inference
problem. Each trajectory’s state is assumed to be a random draw from a distribution of state parameters. The goal is to recover this distribution from

the observed trajectories. (C) Effects of particle mobility on trajectory length. RARA-HaloTag trajectories from U20S nuclei were binned into five groups
based on their mean squared displacement (MSD). Individual data points are the mean trajectory length of each group for three distinct knock-in clones
of RARA-HaloTag (c156: 36961 trajectories, c239: 27543 trajectories, c258: 60347 trajectories); bar heights are the means across clones.
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Figure 1—figure supplement 1. Demonstrations of the effect of motion blur on the sptPALM measurement. (A) lllustration of motion blur. Because a
fluorescent emitter has non-negligible movement during a single excitation pulse, the observed intensity distribution is not representative of a point
source. Any pointwise estimate of its position, including those used in this article, incurs some error. (B) Mean displacement of a 2D Brownian motion
during a single excitation pulse ((R) = v/wDA1). The black dotted line is the image pixel size used in the experiments in this manuscript (0.16 um), while
the red dotted line is a typical range of localization error for fixed cell PALM and STORM (10-30 nm). (C) Examples of simulated Brownian emitters with
2 ms excitation pulses. Imaging was simulated using the sptPALMsim package for a paraxial optical system (‘Materials and methods’). Also see Video 5.
(D) Quantification of localization error for Brownian emitters simulated as in (C). Error was defined as the root mean squared deviation of the estimated
position from the mean of the particle’s path during each pulse. (E) Scaling of estimated localization error with diffusion coefficient in real sptPALM.
Trajectories were categorized according to their mean squared displacement (MSD) and for each category the localization error was estimated as the
root negative covariance between sequential jumps. Individual data points in the graph represent biological replicates; each datapoint represents gty
trajectories on a separate coverslip in a separate biological clone (RARA-HT) or transfection (H2B-HT, HaloTag-NLS, HaloTag).
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Figure 2. Schematic comparison of finite state mixtures, Dirichlet process mixtures, and state arrays (SAs). (A) Finite state mixture models use a discrete
set of K states. Challenges include estimating K and producing intelligible output when the underlying dynamic profile is not discrete. (B) Dirichlet
process mixture models (DPMMs) address the problem of nondiscrete dynamic profiles by using a continuous distribution over state parameters.
Inference routines are slow, so in this work we use approximative motion models. (C) SAs, a special case of the finite state mixture. SAs approximate
DPMMs by using a discrete grid of state parameters and have a faster inference routine. Challenges with SAs include the choice of the parameter grid.
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Figure 2—figure supplement 1. Probabilistic graphical models for finite state mixtures, Dirichlet process mixtures, and state arrays. Open circles
indicate random variables, shaded circles represented random variables that are observed in the sptPALM experiment, solid circles indicate constants,
and arrows indicate conditional dependence (Bishop, 2006). (A) Graphical model for finite state mixtures. o is the concentration parameter for a
Dirichlet prior over the state occupations. The usual goal is to infer the posterior p(Z, T, 01, ..., OglX). (B) Graphical model for Dirichlet process
mixtures. o and H are the parameters to a Dirichlet process DP(c, H) used to generate candidate distributions G. The usual goal is to infer the
posterior p(B1X). (C) Graphical model for state arrays. Notice that this is a special case of (A) when the state parameters are treated as constant. The

goal is to infer p(Z, T1X).
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Figure 3. Application of state arrays and Dirichlet process mixture models (DPMMs) to mixtures of Brownian motions. (A) Regular Brownian motion with
localization error (RBME) is a motion model that involves two parameters: diffusion coefficient and localization error variance. (For brevity, we refer to the
latter simply as ‘localization error.”) Unlike pure Brownian motion, RBME has correlations between sequential jumps due to the influence of localization
error. (B) State array inference for RBMEs. The naive occupation estimate is the initial estimate for the posterior, which is subsequently refined through
variational inference. At the end of inference, we marginalize out localization error to yield 1D distributions over the diffusion coefficient. (C) DPMM
inference for mixtures of Brownian motions. Because the Gibbs sampling routine for a pure DPMM is slow, we use an approximative motion model that
neglects the off-diagonal terms of the covariance matrix in (A). (D) Example of state arrays evaluated on simulated sptPALM. Tracking was simulated in
a spherical nucleus with 700 nm focal depth, uniform photoactivation probability, 14 Hz bleaching rate, 7.48 ms frame intervals, and variable localization
error. The lines represent the state array posterior mean occupations for independent replicates of the same simulation.
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Figure 3—figure supplement 1. Challenges distinguishing between diffusion and localization error. (A) The variance of the jumps of a regular Brownian
motion with localization error (RBME) depends on both real diffusion and localization error. (B) Naive state occupation estimates for two experimental
sptPALM datasets. Dotted white lines indicate contours in the state space with constant jump variance. (C) lllustration of the difficulty in coinference of
diffusion coefficient and localization error for a simulated sptPALM dataset with four states. (D) lllustration of the danger of misestimating the localization
error for the Dirichlet process mixture model (DPMM) method with simulated mixtures of three RBME states. In this case, the assumed localization error
in the DPMM algorithm was held constant at 30 nm. Because state arrays (SAs) naturally incorporate uncertainty about localization error, inference is
more stable with respect to changes in the experimental localization error. Note that this has a stronger effect on slower-moving states.
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Figure 3—figure supplement 2. Accounting for the influence of defocalization on state occupations. (A) Demonstration of the effect of defocalization
on trajectory length. 340,727 Brownian trajectories were simulated in a 5 pm radius nucleus with a 700 nm focal depth and 14 Hz bleaching rate. The
diffusion coefficients for each trajectory were drawn with equal probability from a slow state (0.05 um? s™') and a fast state (5 pm?s™). Tracking was
simulated without gaps, so that particles outside the focal volume at any frame interval are considered 'lost’ for all subsequent frames. For each
observed trajectory length, we quantified the fraction of trajectories with that length in the fast state. (B) Approach used to calculate the fraction of
defocalized trajectories. Two possible initial probability densities for the particle in z are shown. The Green's function for the diffusion model is used

to propagate the probability density. At each frame interval, the density that lies outside the focal volume (corresponding to particles that are not

Figure 3—figure supplement 2 continued on next page
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Figure 3—figure supplement 2 continued

observed) is set to zero. (C) Comparison of the algorithm in (B) with the defocalized fraction from simulated data. Trajectories were initialized in a slab
with thickness Az and infinite XY extent, then tracked without gaps. The fraction of trajectories remaining was quantified at each frame interval. Each
black dot corresponds to a simulation with 100,000 trajectories, while the lines correspond to the output of the algorithm in (B).
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Figure 4. Comparison of the mean squared displacement (MSD) histogram, Dirichlet process mixture model (DPMM), and state array (SA) methods

to recover dynamic profiles from trajectory simulations. (A-C) Mixtures of diffusing states were simulated in a 700 nm focal volume with 7.48 ms frame
intervals. Simulations were divided into three classes of increasing difficulty based on the treatment of localization error as described in the text.

For each replicate, exactly 12,800 trajectories were simulated. Estimated occupations for five independent replicates are overlaid on each subplot.

(D) Accuracy of state occupation estimates for each method as a function of sample size. Each method was run on trajectory simulations generated from
an underlying three-state dynamic model (0.02 um? s™ [20%], 0.5 pm? s [30%)], 5.0 um? s [50%)), then occupations were estimated by integrating the
distribution produced by each method. Limits of integration were set to 0-0.08 um?s™ (state 1), 0.08-1.5 um? s (state 2), or 1.5-40 um? s (state 3). 20
replicates were run per condition. (E) Mean absolute error (MAE) in state occupation estimates for the simulations in (D). Each value is the average MAE
across all replicates. (F) Inferring mixtures of diffusing states with similar diffusion coefficients using SAs. For each replicate, a total of 6400 trajectories
were simulated with the indicated underlying state distribution. (G) Effect of state transitions on the MSD, DPMM, and SA approaches. We varied the
first-order transition rate constant between two diffusing states, simulating 6400 trajectories per replicate.
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Figure 4—figure supplement 1. Comparison of Dirichlet process mixture models (DPMMs), state arrays (SAs), and mean squared displacement
(MSD) histograms to estimate state occupations for several kinds of trajectory simulation. In all panels, the y-axis represents the probability (or inferred
probability) of a particular diffusion coefficient. In detail: for the ground truth, the y-axis is the probability of simulating a particular diffusion coefficient.
For the MSD approach, the y-axis is the proportion of trajectories with estimated diffusion coefficients that fall into the corresponding bin. For the

Figure 4—figure supplement 1 continued on next page
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Figure 4—figure supplement 1 continued

DPMM and SA methods, the y-axis is the posterior probability of each of a discrete set of diffusion coefficient bins spanning 0.01-100.0 pm?s™. In the
case of SA, this posterior probability has been marginalized over the localization error component. Five independent replicates are overlaid on each
subplot. (A) ‘Class 1’ simulations with known and constant localization error (standard deviation 30 nm). (B) ‘Class 2’ simulations with constant but
unknown localization error (standard deviation 30 nm). In the cases of DPMM and MSD, the localization error was first inferred using jump covariance
and then held constant when estimating the distribution over the diffusion coefficient. In the case of SA, the localization error is jointly inferred with the
diffusion coefficient. (C) ‘Class 3’ simulations with variable and unknown localization error. Inference proceeded as in (B), but in the case of the MSD
approach, the localization error and diffusion coefficient were jointly inferred for each trajectory.
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Figure 4—figure supplement 2. Quantitative comparison of the results in Figure 4—figure supplement 1. Accuracy of the mean squared
displacement (MSD) histogram, Dirichlet process mixture model (DPMM), and state array (SA) methods for estimating dynamic profiles. The trajectory
simulations were the same as in Figure 4—figure supplement 1 using 12,800 simulated trajectories. (A) In order to compare the simulated ground truth
profile (which could be discrete or continuous) with the output of each method, we quantified the root mean squared deviation (RMSD) of the estimated
cumulative distribution function (CDF) from the ground truth CDF. (B) Accuracies of each method in terms of CDF RMSD. Each value is the average CDF
RMSD over five replicates. (C) Scatterplot of CDF RMSDs for each simulation replicate in (B). Each dot represents a replicate of the same simulation.
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Figure 4—figure supplement 3. Effect of sample size on accuracy and precision of the mean squared displacement (MSD) histogram, Dirichlet process
mixture model (DPMM), and state array (SA) methods using two-state trajectory simulations. (A) Trajectories were simulated with two distinct diffusion
coefficients (0.1 um? s [40% occupation] and 5.0 um? s [60% occupation]) in a 5 pm sphere with specular reflections, 7.48 ms frame intervals, 14 Hz
bleaching rate, and a 700 nm focal depth ('Materials and methods’). Occupation estimates were derived by integrating the normalized histogram (for
the MSD method) or the mean of the posterior distribution (for DPMM and SA methods). The limits of integration for each state were identical for all
methods: 0-1 um? s™ (state 1) and 1-40 pm? s (state 2). (B) Estimated occupations for each state according to each method (20 replicates per sample
size). (C) Mean absolute error (MAE) of state occupation estimates for each replicate in (B). (D) Tabular presentation of the data in (C). Each number is

the MAE averaged across all replicates for that simulation.
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Figure 4—figure supplement 4. Effect of sample size on accuracy and precision of the mean squared displacement (MSD) histogram, Dirichlet process
mixture model (DPMM), and state array (SA) methods using four-state trajectory simulations. (A) Trajectories were simulated with four distinct diffusion
coefficients: 0.02 um? s (10% occupation), 0.2 pm?s™ (40% occupation), 1.0 um? s-' (20% occupation), or 8.0 pm?s™ (30% occupation). Apart from the
dynamic model, the simulation was performed as in Figure 4—figure supplement 3. Occupation estimates were derived by integrating the normalized
histogram (for the MSD method) or the mean of the posterior distribution (for DPMM and SA methods). The limits of integration for each state were
identical for all methods: 0.0-0.08 um?s-' (state 1), 0.08-0.5 um?s-' (state 2), 0.5-3 um? s™" (state 3), and 3-40 um?s-' (state 4). (B) Estimated occupations
for each state according to each method (20 replicates per sample size). (C) Mean absolute error of state occupation estimates for each replicate in

(B). (D) Tabular presentation of the data in (C). Each number is the average across all replicates for that simulation.
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Figure 4—figure supplement 5. State array and Dirichlet process mixture model (DPMM) performance on optical-dynamical simulations of sptPALM
movies with two diffusing states. (A) Summary of approach. We simulated a paraxial imaging system and generated SPT movies by systematically
varying the state occupations and fast diffusion coefficients for a two-state Brownian model (‘Materials and methods’). After simulation, we ran tracking
and state array or DPMM inference, then compared the recovered state occupations with the simulated ground truth. About 5000 trajectories were
identified by the tracking algorithm per condition. (B) Posterior mean occupations for each simulated condition. Each row corresponds to a distinct

value for Dy, and each color to a distinct slow state occupation; arrows indicate the simulated ground truth states.
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Figure 4—figure supplement 6. State array and Dirichlet process mixture model (DPMM) accuracy 2. Quantitative evaluation of state array and DPMM

performance on optical-dynamical simulations from Figure 4—figure supplement 5. (A) Accuracy of state occupation retrieval. The ‘slow fraction’

was defined as the integrated posterior occupation below 0.04 pm?

estimation. The fast diffusion coefficient (' Dy, ') was defined as the mean diffusion coefficient above 0.04 um?s™

s and compared against the ground truth. (B) Accuracy of fast diffusion coefficient
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Figure 4—figure supplement 7. Effect of state transitions on Dirichlet process mixture model (DPMM) and state array (SA) methods. (A) State diagram
for two-state regular Brownian motion with first-order state transitions. The transition rate constant k was identical for both transitions. (B) Settings for
the state transition simulations. Under these conditions, the mean trajectory length was 7 frames. 6400 trajectories were used for each run. (C) Outcome
of the simulations. The y-axis corresponds to the occupation or occupation estimate for a particular diffusion coefficient. Specifically, for the ground
truth column, the y-axis is the probability to simulate a particular diffusion coefficient; for mean squared displacement (MSD), it is the fraction of
trajectories with estimated diffusion coefficients that fall into the respective bin; for the DPMM and SA methods, it is the posterior mean occupation
estimate. For both DPMMs and SAs, we used a maximum trajectory length of 12 frames. For the MSD, DPMM, and SA methods, the result of inference
with five independent replicates is overlaid on each subplot.
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Figure 4—figure supplement 8. Performance of Dirichlet process mixture model (DPMM) and state array (SA) methods on states with diffusion

coefficients slower than the minimum diffusion coefficient included in the support. (A) Schematic of approach. We performed a trajectory simulation with
two states, including one with a diffusion coefficient (10 pm? s™) smaller than the smallest supported diffusion coefficient for the three methods (10
um? s™). Five replicates are overlaid on each subplot. (B) State occupations were estimated by integrating the posterior mean over the peaks. Note that
a peak appears at 107 rather than the simulated 10*. (C) Estimates for the occupation of the slow and fast states with each method. (D) Mean absolute
error of the state occupation estimates in (C). The value reported is the mean of the mean absolute error over the five replicates.
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Figure 4—figure supplement 9. Performance of Dirichlet process mixture model (DPMM) and state array (SA) algorithms on clusters of states with
similar diffusion coefficients. (A) Schematic of approach. We performed a trajectory simulation with three clusters of states with similar diffusion
coefficients, then analyzed these simulations with the mean squared displacement (MSD) histogram, DPMM, or SA methods. Five replicates are overlaid
on each subplot. Notice that none of the three methods could distinguish the states within each cluster. (B) Occupation estimates for each of the three
clusters were estimated by integrating the posterior mean over the following ranges: 0-0.2 pm?s™, 0.2-2.5 pm?s”, and 2.5-40 pm?s™. (C) Estimates for
the occupation of each cluster of states. (D) Mean absolute error of the state occupation estimates in (C). The value reported is the mean of the mean
absolute error over the five replicates.
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Figure 4—figure supplement 10. Comparison of state arrays with vbSPT with optical-dynamical simulations. (A) Schematic of approach. sptPALM
movies were simulated with an underlying multistate Brownian motion model. These were tracked and analyzed with state arrays and vbSPT. We do not
consider the ability of vbSPT to estimate transition rates, and no state transitions were included in the simulation. (B) Comparison of vbSPT and state
array accuracy on models with two states. Because the number of states returned by vbSPT is variable (between 2 and 7 for this data), we estimated

Figure 4—figure supplement 10 continued on next page

Heck:

ert et al. eLife 2022;11:e70169. DOI: https://doi.org/10.7554/eLife.70169

21 of 29



ELlfe Research article Biochemistry and Chemical Biology | Physics of Living Systems

Figure 4—figure supplement 10 continued

Dy, as the state closest to the true Dy, For state arrays, Dy,g was estimated as the mode of the posterior distribution above 0.02 pm?s™. For both
methods, the slow fraction was estimated as the sum of the occupation of all states below 1.0 pm?s™. (C) Comparison of vbSPT and state arrays on
various dynamic models. Each row corresponds to a particular dynamic model, as shown in the left column. The y-axis corresponds to true occupation
for the ‘Ground truth’ column, occupation of the best model for vbSPT, and the mean posterior occupation for state arrays. On average, 5510
trajectories were tracked in each simulation. In the table at the right, the numbers in parentheses are the deviation from the true number of simulated
states.
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Figure 4—figure supplement 11. State arrays applied to fractional Brownian motion with localization error (FBME) using optical-dynamical simulations.
(A) Example FBME trajectories. The two parameters of interest are the modified scaling coefficient § (parameterizing the size of the increments,
analogous to the diffusion coefficient) and the Hurst parameter H (parameterizing correlations between increments). (B) Increment covariance matrices
and angular distributions for the three main regimes of FBME. Notice that the localization error term contributes to the off-diagonal terms in the

covariance, resulting in a departure from pure FBM. (C

) Schematic of state array for FBME. The state array is comprised of a 3D parameter array of S,

H, and localization error variance. After inference, the posterior is marginalized over localization error to yield 2D functions of S and H. (D) Posterior

occupation for various simulated multistate FBM mod
crosshairs indicate the ground truth simulated states.

els. SPT movies were simulated with the sptPALMsim package ('Materials and methods'); red
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Figure 4—figure supplement 12. Systematic errors in fractional Brownian motion with localization error (FBME) parameter retrieval due to motion
blur. (A) State array posterior distributions for single-state FBME models, simulated as in Figure 4—figure supplement 11. Each subplot represents
the posterior distribution for simulations of one motion model. The ground truth model’s Hurst parameter is indicated with a horizontal gray dotted line
and the scaling coefficient with a vertical white dotted line. (B) Rationalization of the effect in panel (A). The 'true path’ is a simulated FBM, the red bars
indicate the simulated excitation laser pulses, and ‘'mean in pulse’ is the mean position of each particle during each excitation laser pulse. Motion blur
may exert a more significant effect for low Hurst parameters because the corresponding FBMEs have more motion in the higher temporal frequencies,
which is averaged out over each pulse.
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Figure 5. State arrays (SAs) applied to experimental sptPALM. All sptPALM experiments were performed with the photoactivatable dye PA-JFX549
using a TIRF microscope with HiLo illumination, 7.48 ms frame intervals, and 1 ms excitation pulses. (A) Naive and SA occupations for four different
tracking targets. The upper two panels are the naive occupations for each nucleus in each of two biological replicates. Biological replicates correspond
to separate knock-in clones for RARA-HaloTag or separate transfections for the other constructs (mean 1627 trajectories per nucleus). The bottom
panel displays the SA occupations for a run of the SA algorithm on trajectories pooled from a single biological replicate (mean 17,899 trajectories

per biological replicate). Asterisks for RARA-HaloTag and H2B-HaloTag indicate that the immobile fraction for these constructs has been truncated

to visualize the faster-moving states. (B) Naive occupation estimate for RARA-HaloTag constructs bearing domain deletions or point mutations.
‘Exogenously expressed’ constructs were expressed from a nucleofected PiggyBac vector under an L30 promoter. (C) Quantification of the immobile
fractions and mean free diffusion coefficients for the four constructs in (A). The ‘immobile fraction’ was defined as the total occupation below 0.05 pm?
s, while the mean free diffusion coefficient was the posterior mean diffusion coefficient above this threshold. Each dot represents a biological replicate
(a different knock-in clone for RARA-HT or a different nucleofection for H2B-HT, HT-NLS, and HT).
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Figure 5—figure supplement 1. Validation of endogenously tagged U20S RARA-HaloTag cell lines. In all subpanels, ‘atRA’ refers to all-trans retinoic
acid. (A) Western blots for endogenous RARA-HaloTag knock-ins in U20S cells. The expected molecular weight of RARA-HaloTag-3xFLAG is 97 kDa.

(B) Luciferase assays with a retinoic acid-responsive promoter with wildtype or RARA-HaloTag knock-in U20S cell lines. (C) Luciferase assays with
transfected RARA constructs to assess the effect of tagging on transactivation of a retinoic acid response element-driven luciferase gene. RARA(WT)
indicates a transgene bearing the wildtype version of RARA, and C88G is a DNA-binding mutant. (D) Spinning disk confocal microscopy images of
endogenously tagged RARA-HaloTag cell lines labeled with TMR-HaloTag ligand. The intensities for all three images have been scaled to the same min/

max in arbitrary intensity units.
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Figure 5—figure supplement 2. Assessing variability of state arrays (SAs) on experimental sptPALM by subsampling. (A) Biological replicates of each
of the tracking experiments shown in Figure 5A. Tracking was performed on an inverted TIRF setup with 7.48 ms frame intervals and 1 ms stroboscopic
excitation with the dye PAJFX549-HaloTag ligand. RARA-HT cells were knock-ins as described in Figure 5—figure supplement 1, H2B-HaloTag

cells were previously described (McSwiggen et al., 2019), and HT and HT-NLS were expressed from a nucleofected PiggyBac vector under an EFla.
promoter. (B) Resampling experiment to evaluate the sources of variability in DPMM/SA runs on RARA-HaloTag trajectories. RARA-HaloTag trajectories
from one tracking dataset were sampled according to one of three schemes, then analyzed with the Dirichlet process mixture model (DPMM) and SA
methods. 20 replicates were performed for each condition, and the Kullback-Leibler divergence of the posterior occupation of each replicate from the
cross-replicate posterior occupation was used to quantify variability.

Heckert et al. eLife 2022;11:e70169. DOI: https://doi.org/10.7554/eLife.70169 27 of 29



ELlfe Research article Biochemistry and Chemical Biology | Physics of Living Systems

Arbitrary ranges of diffusion coefficients

A selected for visualization
() (i) (i) (iv)
NPM1-HaloTag, labeled — — — —
with PA-JFX549 and 0.02 1

analyzed with state
arrays

L RtY 100 : 10 coefzﬂc'? 4
pm? s7)
B Localization / \ \
density (detections
per 0.01 yum?)

Diffusion

State array
posterior
occupation

o
o
o

s Unnormalized

, Pposterior
(proportional to total
amount of each
state)

localization

l Normalize by
density

04

75 Local
% posterior
% occupation

0.2

0.0 0.00

& 08 :
1= c c c c
< 32000 _ L6 _ 206 _So6{ F — S o061
S n T © T © T © .%. © ©
® 0 5 S04 5 S04 S S 04 5 £ 04
N 2 1000 { =3 F3E F3 = =3 é
R S 02 ¥ Qo021 & S 02 So2{_
o= T e = =
-4 0 0.0 L——= 0.0 L—— 0.0 L—— 0.0 L——
=E\- =E|- =E|- =E‘- =E\-
3 228 823 823 820 220
-8 C S5 80 S5 80 S5 80 580G
282 282 262 282 282
cog fog fogs fog cog
O = O = O = O O £
23 23 23 23 23
2 25 —
S o —> Reduced photoactivation -
S5 C 0010 5 o
S8® = 3
I I B e e o e  SLAN A s 0.008 ¢ £ 8
a 102 8o c
0.006 § &5
cE~ 10 - ® 3
S0y o 0004 @B ¢
N O« o=@
2% E 0.002 ® P&
583" 2w
° 1 0.000% S
o o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
N < © [°e] o N < © «© o N <
- - - - - N &N o
Frame

Figure 6. Spatiotemporal variation in the state array posterior distribution. (A) Posterior occupations for a state array evaluated on NPM1-HaloTag
trajectories in U20S nuclei. The ranges labeled i, ii, iii, and iv indicate parts of the dynamic profile isolated for analysis in subsequent panels. (B) Spatial
distribution of the posterior probability in (A) for NPM1-HaloTag trajectories in a single U20S nucleus. The posterior model over the diffusion coefficient
was evaluated for each of the origin trajectories, and these points were then used to perform a kernel density estimate (KDE) with a 100 nm Gaussian
kernel. For the local normalized occupation, these KDEs were normalized to estimate the relative fractions of molecules in each state. (C) Quantification
of the analysis in (B) for 15 nuclei. ‘Nucleoplasmic’ trajectories were defined as trajectories outside nucleoli but inside the nucleus. (D) Temporal variation
in the posterior distribution.
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Figure 6—figure supplement 1. Validation of U20S NPM1-HaloTag lines. (A) Western blots of heterozygously tagged NPM1-HaloTag-3xFLAG in U20S
nuclei. (B) U20S NPM1-HaloTag cells stained with 100 nM TMR-HaloTag ligand and imaged on a spinning disk confocal microscope. (C) Additional
examples of cells quantified as in Figure 6B. The local occupation estimate is the fraction of particles in each neighborhood estimated to have the

corresponding range of diffusion coefficients, as indicated in Figure 6B. To aid visualization, both localization density and local occupations were
smoothed via convolution with a 2D isotropic Gaussian kernel of sigma 100 nm. (D) Naive occupation estimate for trajectories in different subcellular
compartments. Trajectories were classified as either inside nucleoli, ‘nucleoplasmic’ (outside nucleoli but inside the nucleus), or extranuclear. The regular
Brownian motion with localization error (RBME) likelihood function was evaluated on each set of trajectories, aggregated across trajectories and plotted

as a function of the diffusion coefficient. Each row in the plot is separate nucleus, and the occupation estimates have been scaled for each compartment

by the total number of trajectories.
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