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Abstract The recent, controversial approval of antibody-based treatments for Alzheimer’s 
disease (AD) is fueling a heated debate on the molecular determinants of this condition. The discus-
sion should also incorporate a critical revision of the limitations of preclinical mouse models in 
advancing our understanding of AD. We critically discuss the limitations of animal models, stressing 
the need for careful consideration of how experiments are designed and results interpreted. We 
identify the shortcomings of AD models to recapitulate the complexity of the human disease. We 
dissect these issues at the quantitative, qualitative, temporal, and context-dependent levels. We 
argue that these models are based on the oversimplistic assumptions proposed by the amyloid 
cascade hypothesis (ACH) of AD and fail to account for the multifactorial nature of the condition. 
By shedding light on the constraints of current experimental tools, this review aims to foster the 
development and implementation of more clinically relevant tools. While we do not rule out a role 
for preclinical models, we call for alternative approaches to be explored and, most importantly, for a 
re-evaluation of the ACH.

Introduction
The accumulating failures of so many AD clinical trials, along with the recent, highly controversial 
Food and Drug Administration (FDA) approval of monoclonal antibodies – that at best show limited 
clinical benefits (Høilund-Carlsen et al., 2024; Kepp et al., 2023a) – provide reason to reconsider the 
molecular determinants of AD and the ACH, in particular.

In its original formulation, the ACH identifies the dysmetabolism of β-amyloid (Aβ) and its paren-
chymal deposition into senile plaques as the primary driver of a pathogenic, although still unclear, 
series of molecular events leading to the formation of hyperphosphorylated tau inclusions and, even-
tually, neuronal death (Hardy and Higgins, 1992). The non-linear association between Aβ plaques 
and cognitive deficits has led to revisions of the ACH, including the suggestion that soluble, low-
molecular-weight Aβ oligomers – rather than plaques – are the primary neurotoxic species (Cline 
et al., 2018; Lambert et al., 1998), although this too remains highly controversial (Morris et al., 
2018; Morris et al., 2014). The ACH is also at the foundation of the current ‘ATN research frame-
work’ for AD. The ATN is designed to provide a structured and unbiased categorization of the AD 
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continuum and is based upon biological/molecular changes identified by post-mortem examination 
or by biomarkers (i.e. amyloid – ‘A,’ tau – ‘T,’ and neurodegeneration – ‘N’ Jack et al., 2018). There 
continue to be good reasons to consider that the ATN construct offers a suboptimal and incomplete 
heuristic value (Morris et al., 2018).

While few scientists rule out any role of amyloid in the disease, there is growing skepticism around 
the sole centrality of Aβ in AD. Novel hypotheses are reconsidering the construct in the light of 
mounting discrepancies with recent clinical, epidemiological, and pharmacological findings (Granzotto 
and Sensi, 2024; Herrup, 2022; Herrup, 2015; Kepp et al., 2023a; Kepp et al., 2023b; Kurkinen, 
2023; Liu et al., 2023; Morris et al., 2018; Morris et al., 2014). These discrepancies include but are 
not limited to, the large proportion of cognitively unimpaired elderly who have amyloid pathology, 
the long-known evidence for the contribution of mixed neuropathology in AD cases, and the modest 
benefits offered by Aβ-lowering antibodies [reviewed in Høilund-Carlsen et al., 2023, Granzotto and 
Sensi, 2024, and Guo et al., 2024]. In this context, two prominent studies investigating the effect of 
Aβ passive immunotherapy in cognitively unimpaired subjects at risk of developing AD challenged 
the validity of the ACH. The Alzheimer’s prevention initiative (API) Colombia study enrolled carriers of 
a mutation (PSEN E280A), conferring a particular risk of developing AD (Alzforum, 2022). The Anti-
Amyloid Treatment in Asymptomatic Alzheimer’s Disease (A4) study enrolled subjects with elevated 
brain levels of Aβ as assessed by Amyloid PET imaging (Sperling et al., 2023). Both trials were unsuc-
cessful, joining the long list of Aβ-targeting interventions that failed to produce clinically relevant 
benefits (Panza et al., 2019). As always, the amyloid proponents suggest it is not due to fallacies in 
the ACH and suggest other reasons for these trials' failure. However, these protestations are increas-
ingly debated. Recently, Frisoni et al. attempted to reconcile the inconsistencies and proposed a more 
sophisticated view of the ACH that includes the contribution of stochastic elements to AD etiology, 
like environmental/modifiable factors and low-risk genes (Frisoni et al., 2022). However, the revised 
version still maintains a central role for amyloid in the disease. We do not exclude a role for amyloid. 
However, all current evidence points to an urgent need to begin revisiting the model, allowing for 
the likely molecular and cellular mechanisms, driven by a complex range of factors that ultimately 
generate Alzheimer’s dementia.

The above concerns call for an urgent revaluation of the ACH and the development of new hypoth-
eses. The reappraisal of the ACH should also encompass a re-evaluation of the preclinical models 

Table 1. Most common first- and second-generation transgenic models of Alzheimer’s disease (AD).

Mouse line Transgene(s) Ref(s)

First-generation
APP transgenic mice

PDAPP APP V717F (Indiana)
Games et al., 1995; 
Rockenstein et al., 1995

Tg2576 APP K670N, M671L (Swedish) Hsiao et al., 1996

APP23 APP K670N, M671L (Swedish)
Kelly et al., 2003; Van Dam 
et al., 2003

J20 APP K670N, M671L (Swedish), V717F (Indiana) Mucke et al., 2000

TgCRND8 APP K670N, M671L (Swedish), V717F (Indiana) Chishti et al., 2001

APP and PSEN transgenic mice

APPPS1
APP K670N, M671L (Swedish);
PSEN1 L166P Radde et al., 2006

5xFAD

APP K670N, M671L (Swedish), I716V (Florida), and 
V717I (London);
PSEN1 M146L and L286V

Oakley et al., 2006; Tang et al., 
2016

Second-generation knock-in APP 
transgenic mice

App knock-in (humanized 
Aβ) App G676R, F681Y, R684H (humanized Aβ) Serneels et al., 2020

APPNL-F
Humanized Aβ+APP K670N, M671L (Swedish), I716F 
(Iberian)

Saito et al., 2014APPNL-G-F
Humanized Aβ+APP K670N, M671L (Swedish), I716F 
(Iberian), E693G (Arctic)

APPSAA
Humanized Aβ+APP K670N, M671L (Swedish), 
E693G (Arctic), T714I (Austrian) Xia et al., 2022

https://doi.org/10.7554/eLife.90633
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designed to recapitulate the AD phenotype and frequently employed as tools for early safety/efficacy 
testing of drug candidates and for the identification of novel, druggable targets (Ganesan et  al., 
2024; LaFerla and Green, 2012; Scearce-Levie et al., 2020). Transgenic mammals, particularly mice, 
are the organisms of choice for investigating AD-related mechanisms in a complex in vivo setting. 
AD is also modeled on invertebrates, like Drosophila melanogaster and Caenorhabditis elegans. 
However, the phylogenetic distance from mammals of these systems limits their relevance and overall 
implications for the dementia field (Elder et al., 2010).

So far, more than 210 rodent models have been generated to recapitulate AD’s clinical features in 
research laboratories. Extensive, ongoing efforts have been and are made to engineer and charac-
terize animal models to dissect the molecular mechanisms of the disease (Alzforum, 2023a). Unfortu-
nately, the translational outcomes of these endeavors have, to date, been poor. We suggest that part 
of the reason is likely because of technical and biological limitations and, in some cases, conceptual 
flaws.

Differences in genetic background, transgenes, breeding and handling strategies, housing condi-
tions, protocols for quantifying phenotypic traits, and endless additional variables make it challenging, 
if not impossible, to frame the information generated through these models within a consistent and 
comprehensive picture. Some of these issues have been discussed elsewhere (Errington, 2024; 
Mullane and Williams, 2019; Padmanabhan and Götz, 2023; Reynolds, 2022). Here, we will focus 
on the transgenic mouse models' shortcomings in terms of why they offer limited support for the ACH 
and why their use as preclinical models needs to be taken with caution (Table 1).

In the following sections, we will summarize the limitations in the preclinical modeling of AD that are 
sketched – in broad brush strokes – at the qualitative, quantitative, temporal, and context-dependent 
levels. However, we also discuss the opportunities offered by mouse models for addressing some still 
unresolved scientific questions.

Qualitative
Mice with APP and PSEN mutations
Most preclinical studies employ transgenic rodent models that, to different degrees, express human 
genes whose mutations are associated with the familial form of AD (fAD). Mutations in PSEN1 
[encoding presenilin 1 (PSEN1)], PSEN2 [encoding presenilin 2 (PSEN2)], and/or APP [encoding 
amyloid precursor protein (APP)] affect APP processing and are causally implicated in the develop-
ment of autosomal dominant AD (Figure 1). In many cases, to drive any phenotype, the mice express 
more than one of such mutations. However, the very low prevalence of fAD – less than 1% of total 
cases (Pavisic et al., 2020) – makes the findings obtained in these models impossible to generalize to 
the broad spectrum of sporadic AD cases (sAD), causing misleading overinterpretation of the results.

Long-term monitoring of neuropathological and functional changes in these models reveals a 
composite scenario that often conflicts with the clinical features of sporadic sAD (Drummond and 
Wisniewski, 2017). Two common issues with fAD models that contrast with the clinical manifestations 
of human disease are the absence of tau pathology and brain atrophy. Most models do not show 
neurodegeneration. When neurodegeneration does occur, modest neuronal loss is observed, and it is 
usually confined to discrete brain regions (e.g. a single layer of the cortex or hippocampal subfields) 
and even then, only in a small fraction of amyloid-dependent models of AD. Of note, these minor signs 
of neurodegeneration are primarily described in transgenic mice in which APP mutations occur in the 
presence of PSEN1 mutations, thereby raising questions on the specific contribution of Aβ versus the 
role of PSEN1 in causing the pathological phenotype. Indeed, early studies pinpoint PSEN mutations 
in the mouse models as the likely primary drivers of features of AD-related neuronal dysfunction, like 
dysregulation of calcium (Ca2+) signaling, metal ion dyshomeostasis, synaptic dysfunction, impaired 
adult neurogenesis, and increased neuronal vulnerability to cytotoxic stimuli (Al Rahim et al., 2020; 
Corona et al., 2011; Duff et al., 1996; Hernandez-Sapiens et al., 2022; Mattson et al., 2000; Stutz-
mann et al., 2006; Stutzmann et al., 2004). Although not systematically studied, the effect of PSEN1 
in animal models seems to occur in an Aβ-pathology independent fashion, as mice harboring APP and 
PSEN1 fAD mutations lose their phenotype upon removal of the PSEN1 mutation. Conversely, single 
Psen1 KI mutants continued to display functional alterations (Bomba et al., 2013; Stutzmann et al., 
2006). Overall, this evidence suggests a critical role for PSEN in neurological function, a construct that 
has been conceptualized in the ‘presenilin hypothesis of AD’ (Shen and Kelleher, 2007; Yan et al., 

https://doi.org/10.7554/eLife.90633
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Figure 1. Limitations of the preclinical mouse models of Alzheimer’s disease (AD). The scheme reports the pillars of the amyloid cascade hypothesis 
(ACH) left; modified from Karran et al., 2011. For each step, we aimed at identifying key limitations in the preclinical modeling of the cascade. We 
envision that these pitfalls, along with discrepancies of the amyloid construct cascade itself, critically dampen the potential translational value of these 
models.

https://doi.org/10.7554/eLife.90633
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2024). The construct identifies PSEN mutations and/or impaired PSEN functioning as the primary 
contributor to neurodegeneration in fAD. Importantly, the presenilin hypothesis offers an alternative 
view of fAD pathogenesis (Kelleher and Shen, 2017) as, contrary to the ACH, it points to the accu-
mulation of Aβ as the byproduct of a faulty enzymatic activity and not as the trigger of AD per se. 
Notably, systematic analysis of fAD-causing PSEN1 mutations has shown that in 75% of the dementia 
cases, the mutations led to decreased production of Aβ fragments (Sun et al., 2017), supporting 
the notion that amyloid is not the disease driver. Conversely, it is not out of the question that human 
AD-causing mutations in APP contribute to AD via an effect on presenilin function. Thus, if the mouse 
models harboring PSEN (or PSEN + APP) mutations offer value, they may be a model of the presenilin 
hypothesis rather than a model of the ACH.

The idea that PSEN dysfunction – rather than Aβ – is central to AD development is further 
supported by the clinical failures of γ-secretase inhibitors. γ-secretase comprises several subunits, 
including PSEN, and – beyond the cleavage of APP – the enzyme has numerous roles in the central 
nervous system (CNS). Unsurprisingly, γ-secretase inhibitors, developed to limit APP cleavage and 
amyloid production, have been consistently found to worsen cognition in clinical trials (Coric et al., 
2015; Doody et al., 2013). The effect was likely attributed to the inhibition of PSENs activity and its 
negative downstream impact on multiple signaling pathways, like Notch signaling (Hur, 2022).

The topological distribution and the mechanisms of – albeit modest – neuronal loss of these fAD 
models offer additional inconsistencies with the ACH (Jankowsky and Zheng, 2017). In these trans-
genic mice, neuronal demise, when present, often occurs in the form of necrotic cell death near senile 
plaques, a finding more in line with ‘mechanical’ disruption of neuronal integrity rather than the result 
of a chronic, staged, and regulated process of neuronal dysfunction (Tanaka et al., 2020). There are, 
of course, a few exceptions, such as the J20 model (Wright et al., 2013).

To circumvent the drawbacks posed by the first-generation overexpressing models, researchers 
have developed second-generation knock-in transgenic mice in which the App gene is humanized with 
the addition of fAD mutations. These models exhibit alterations of Aβ metabolism that precede subtle 
cognitive deficits, Aβ42 overproduction, increased Aβ42/Aβ40 ratio, and neuroinflammation without 
the pitfalls associated with APP overexpression. Although the approach bypasses the limitations 
posed by first-generation mice, critical drawbacks and divergence with clinical observations remain. 
For instance, to produce Aβ neuropathology, knock-in models require the presence of multiple APP 
mutations not found in humans. The AppNL mice, a model that carries only the ‘pathogenic’ Swedish 
mutation, failed to develop amyloid pathology up to 22 months of age (Saito et al., 2014). Surpris-
ingly, AppNL mice are proposed as a negative control for the multiple App knock-in strains (Alzforum, 
2023b; Saito et al., 2014). Notably, assessment of synaptic functioning in App knock-in mice revealed 
only presynaptic alterations and not the postsynaptic alterations seen in humans. This suggests again 
that other factors like presenilins or gross inflammation, rather than a direct action of Aβ per se, may 
cause human post-synaptic dysfunction and neuronal loss (Benitez et al., 2021). Similarly, the novel 
App knock-in mouse model AppSAA harbors multiple disease-causing mutations (Swedish, Arctic, and 
Austrian) to promote Aβ pathology. Surprisingly, and in contrast to AD patients, AppSAA mice exhibit 
increased brain metabolism (measured by FDG-PET) as Aβ pathology progresses (Xia et al., 2022). 
Like the first-generation models, knock-in mice do not develop tau pathology nor generate overt 
signs of neurodegeneration.

Mice with tau mutations
Several mouse lines have been engineered to mimic the inclusions of hyperphosphorylated tau 
observed in AD patients, which may potentially overcome the lack of tau pathology of APP strains. Tau 
pathology is considered an accurate correlate of AD-related neurodegeneration, as the extent and 
topological distribution of tau accumulation mirrors the disease’s clinical course more faithfully than 
other biomarkers (Knopman et al., 2021). While they are often considered models of AD, most tau 
models overexpress the human MAPT gene, harboring mutations absent in AD cases but associated 
with frontotemporal lobar degeneration (FTLD). Unlike APP models, these mice better phenocopy 
some of the clinical features of AD, like neurofibrillary tangles (NFT) inclusions, neurodegeneration, 
and cognitive deficits. However, the strong genetic drive required to display an overt tau pathology 
raises questions on the generalizability of the findings when applied to sporadic forms of tauopathies, 
including AD.

https://doi.org/10.7554/eLife.90633
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An additional caveat is that tau isoforms differ between humans and mice. In humans, alterna-
tive splicing of the MAPT gene gives rise to six tau isoforms characterized by differences in length, 
N-terminal sequences, and the presence of three- (3 R) or four- (4 R) repeated microtubule-binding 
sequences (Hernández et al., 2020). Compared to the human homolog, murine tau differs in terms 
of the number of repeats (tau 3 R is absent in adult mice) as well as in the sequence of the N-terminal 
domain (11 amino acids shorter in mice) (Hernández et al., 2020). These features might be critical 
for shaping the physiological and pathological properties of the protein. For instance, the N-terminal 
domain is relevant for the tau-driven modulation of proteins involved in neuronal functioning (i.e. 
NMDA receptors Miyamoto et al., 2017, Synapsin-1, and Synaptotagmin-1, among others Hernández 
et al., 2020; Stefanoska et al., 2018). Changes in the ratio between 3 R and 4 R isoforms are also 
different from what is found in neurodegenerative tauopathies, including AD (Bowles et al., 2022; 
Cherry et al., 2021; Ginsberg et al., 2006). Therefore, substantial over-expression of the human 
form of tau in mice, an experimental setting in which tau and its binding partners are profoundly 
different, may result in potential artifacts and findings with poor translational value. Notably, recent 
findings concerning immune-mediated neurodegeneration in animal models suggest new mecha-
nisms of degeneration in human tauopathies (Chen et al., 2023). If the evidence continues to stack 
up, immune dysfunction in the tau mice may become a model of disease, at the very least for tauop-
athy, and could be worth pursuing.

Mice with multiple transgenes
Age-dependent Aβ accumulation is common to many non-human species (i.e. non-human primates, 
dogs, sheep). However, whether this impacts animal cognition remains unclear, with the neuropatho-
logical features of AD mostly a matter for human beings. No other non-human animal – except 
possibly the Octodon degus (Steffen et al., 2016) – displays the coexistence of Aβ pathology, NFT 
inclusions, glucose dysmetabolism, and neurodegeneration (Walker and Jucker, 2017). To generate 
a more robust phenotype, transgenic models harboring mutations on the APP and/or PSEN and the 
MAPT gene have been developed, like the 3xTg-AD or the TauPS2APP (Grueninger et al., 2010; 
Oddo et al., 2003). These examples indicate that extreme measures are required to generate models 
encompassing some of the critical features of AD. This is in stark contrast to humans, where the vast 
majority of AD cases occur without these gene mutations.

The failure of APP mutants to recapitulate disease without human tau mutations may, at the very 
least, point to the possible importance of crosstalk between Aβ and tau. Mapt knock-out mice cross-
bred with APP transgenic models show reduced neuronal deficits and improved memory performance 
compared to mice harboring the wild-type Mapt gene. These results suggest that tau confers toxicity 
to Aβ and not vice versa (Roberson et  al., 2007; Ittner et  al., 2010; Sasaguri et  al., 2017). In 
addition, recently generated double knock-in mice harboring all six human MAPT isoforms and the 
humanized AppNL-F gene have been characterized. Notably, the humanization of the murine tau gene 
was found sufficient to accelerate the propagation of pathological tau independently of the presence 
of Aβ (Saito et al., 2019). These observations suggest that tau in fact may sit above Aβ in the cascade 
of events leading to AD.

Quantitative
In vitro and in vivo studies are primarily performed in settings in which Aβ concentrations are several 
orders of magnitude above the physiological range (Figure 1). In vitro evidence, designed to demon-
strate the neurotoxic properties of synthetic Aβ adducts – in their different lengths and flavors –, 
was based on cultured neurons exposed to nanomolar concentrations of low-molecular-weight oligo-
meric forms of the peptide. These levels are a thousand-fold higher than the concentration found 
in vivo, usually in the picomolar range (Kepp et  al., 2023a). The physiological relevance of such 
high Aβ concentrations is dubious. Mounting evidence suggests that physiological Aβ levels exert 
neurotrophic-like effects on synaptogenesis, neuronal survival, growth, and differentiation (Giuffrida 
et al., 2009; Yankner et al., 1990; Zhou et al., 2022). This dichotomic behavior (where low concentra-
tions have opposite effects than high concentrations) is common to many molecules, like for instance, 
neurotrophins where the balance between proBDNF and mature BDNF levels acts on the opposite 
side of the neurodegenerative-plasticity spectrum (Brem and Sensi, 2018).

https://doi.org/10.7554/eLife.90633
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A further, often neglected issue of in vitro and in vivo studies using Aβ oligomers is the lack of 
control over the aggregation state of Aβ. The in vitro and in vivo extracellular milieu contains variable 
amounts of molecules and ions that are known to affect Aβ conformation (i.e., proteins, oxidizing and 
reducing agents, metal ions, and cell released Aβ cleaving enzymes). Finally, two independent studies 
reported that Aβ dimers – long considered central species in amyloid-driven toxicity – may be artifacts 
driven by SDS-based sample processing (Pujol-Pina et al., 2015; Watt et al., 2013).

Other quantitative pitfalls are associated with in vivo genetic models of AD. Three key aminoacid 
substitutions make murine Aβ less prone to aggregation when compared to its human counterpart. To 
overcome this issue, first-generation transgenic models overexpressed variable copy numbers of the 
APP gene harboring different AD-related mutations (Figure 1). The approach successfully generated 
Aβ-enriched plaques in the brain of the transgenic models. Yet, several limitations and questions of 
the relevance to human AD remain:

1.	 Unlike the mice, AD does not appear to involve overexpression of the entire APP gene (Harrison 
et al., 1996; Matsui et al., 2007), which can per se be harmful to neuronal functioning, eventu-
ally resulting in cytotoxicity (Bartley et al., 2012; Benitez et al., 2021; Bolognesi and Lehner, 
2018).

2.	 Overexpression of APP includes other fragments besides Aβ, whose role is still largely underex-
plored. It remains possible that other fragments of APP drive toxicity. Indeed, it has never been 
ruled out that changes to the expression of the C99 fragment of APP underlie the neurodegen-
eration of fAD, as initially noted by John Hardy in his original paper on the ACH as an alternative 
mechanism of fAD (Hardy and Higgins, 1992).

3.	 Not all the APP mutations linked to fAD are consistently associated with Aβ overproduction. 
While some ‘pathogenic’ mutations, like the Swedish (K670N/M671L), Flemish (A692G), or 
London (V717I), increase Aβ production, others like the Italian (E693K), the Dutch (E693Q), the 
Arctic (E693G), or the Osaka (E693Δ) mutations produce unaltered or even reduced levels of Aβ 
fragments (De Jonghe et al., 1998; Nilsberth et al., 2001; Tiwari and Kepp, 2016).

4.	 The biological significance of the Aβ42/ Aβ40 ratio – a widely employed biomarker of brain Aβ 
deposition – is debated (Imbimbo et al., 2023; Kepp et al., 2023b).

5.	 Overexpression might be toxic per se by disrupting other genes in the proximity of the insertion 
site of the transgene or by engulfing cellular proteostasis (Alzforum, 2023c; Saito et al., 2016; 
Saito et al., 2014).

6.	 Some of the phenotypes observed in first-generation AD models can also be critically reconsid-
ered in light of the ‘presenilin hypothesis of AD’ as the increased workload of PSENs to metab-
olize overexpressed APP may divert the enzyme from the cleavage activity of the many other 
physiologically relevant substrates required for neuronal functioning (Haapasalo and Kovacs, 
2011).

As above, the transgenic animal models drive very high levels of APP production, with the effect 
that high concentrations of Aβ are generated. Other approaches involve the injection of Aβ oligomers 
directly into the rodent brain. Both strategies can model some of the key effects of the disease, such 
as synapse loss. However, it is also likely that the high, unnatural monomer or oligomer concentrations 
drive additional responses, such as activation of inflammatory responses that per se produce damage 
in an amyloid-independent fashion.

‘Quantitative’ concerns also apply to tau models of AD. Although high levels of total tau have 
been reported in AD patients, there is no consensus that tau overexpression occurs in AD (Hier 
et al., 2022). The PS19 and the rTg4510 are two of the most widely used models of tau pathology for 
AD. They harbor the human 4 R tau with the P301S and the P301L mutation, respectively. However, 
these models generate expression levels that are 5- (for PS19) to 13-fold (for rTg4510) higher than 
the endogenous murine tau (Jankowsky and Zheng, 2017). The results are early signs of tau hyper-
phosphorylation, NFTs formation, neurodegeneration, overt cognitive and motor deficits, and early 
lethality (Lewis et  al., 2000). Similar traits, however, have been reported in mice overexpressing 
wild-type murine tau. These findings thereby indicate that, in mice, tau overexpression is sufficient to 
promote neurotoxicity independently of the tau genotype (Adams et al., 2009).

Temporal
Despite decades of research efforts, aging remains the primary risk factor for AD (Herrup, 2010; 
Mattson and Arumugam, 2018). Aging offers the ideal battleground where multiple molecular 

https://doi.org/10.7554/eLife.90633


 Review article﻿﻿﻿﻿﻿﻿ Medicine | Neuroscience

Granzotto et al. eLife 2024;13:e90633. DOI: https://doi.org/10.7554/eLife.90633 � 8 of 21

determinants could wreak havoc in the brain. This aspect has not been adequately considered 
as a cofactor in the preclinical modeling of the disease or the critical interpretation of the results 
(Padmanabhan and Götz, 2023). The time-dependent loss of physiological fitness impinges on 
many of the very same mechanisms linked to AD pathogenesis, like oxidative stress, mitochondrial 
dysfunction, impaired DNA repair, altered cellular metabolism, ion dyshomeostasis, aberrant neuronal 
network functioning, neuroinflammation, vascular disease, senescence, and stem cell exhaustion 
(López-Otín et al., 2013; Mattson and Arumugam, 2018). The gist is: is the dysregulation of Aβ and 
tau that accelerates cellular demise during aging, or is a yet unidentified perturbation of the trajectory 
of physiological aging that results in the accumulation of misfolded proteins as a byproduct?

The early and aggressive presentation of amyloid- and tau-pathology observed in preclinical models 
of AD does not help to resolve this critical issue (Figure 2). Commonly used AD mouse models, like 
the 5xFAD, display amyloid deposits starting at 2–4 months of age (Oblak et al., 2021). The J20 mice 
develop amyloid pathology a bit later, following the onset of inflammation; however, this still occurs 
at a relatively young age (Wright et al., 2013). With all due limitations, this early accumulation can 
be translated to Aβ deposits occurring in 4–8 year-old humans, a scenario not found even in the most 
aggressive cases of fAD, let alone sAD. It is also worth noting that even fAD cases require decades 
for the disease to take hold, usually when carriers of APP or PSEN mutations are in their 40 s or 50 s 
(Frisoni et al., 2022). These observations suggest that (1) the human brain can cope for decades with 
the genetically driven accumulation of Aβ and/or that (2) additional age-related factors are required 
for disease onset. However, we acknowledge the argument that the purpose of the animal models is 
to accelerate pathology to study the disease, thereby requiring an aggressive phenotype to attempt 
to model human AD.

A temporal explanation is also called in support of the fact that first- and second-generation fAD 
models fail to develop tau pathology and brain atrophy. The case is frequently made that lack of NFT 
and overt neuronal loss rely on the AD time course since the short lifespan of rodents prevents the 
development of Aβ-driven tauopathy and neurodegeneration observed in humans. However, these 
arguments do not align with observations from non-human primates (Walker and Jucker, 2017). 
These mammals show steeper aging trajectories when compared to humans, with extensive cerebral 
Aβ deposition that occurs at ages proportional to their lifespan and in the absence of tau pathology 
or overt signs of dementia (Finch and Sapolsky, 1999; Walker and Jucker, 2017).

Figure 2. Inconsistencies in the trajectories of Alzheimer’s disease (AD) pathology between humans and preclinical models. (A) The pictogram 
illustrates the dynamics of β-amyloid (Aβ) (red) and tau (blue) pathology as well as the trajectory of cognitive symptoms (green) in the sporadic forms 
of AD (modified from Frisoni et al., 2022). Please note that, in the case of familial form of AD (fAD) or APOEε4-related AD, the pathology follows 
a similar sequence of events but with early and steeper trajectories (Frisoni et al., 2022). (B) The pictogram estimates the dynamics of key AD 
features as observed in the most widely used AD mouse models. Unlike what is observed in humans, in these preclinical settings, cognitive deficits 
usually anticipate the appearance of Aβ pathology. Tau inclusions and signs of overt neurodegeneration are absent. (C) The pictogram estimates the 
dynamics of key AD features as observed in second-generation knock-in mouse models of AD. In this experimental setting, Aβ pathology anticipates 
the development of subtle cognitive decline (Sakakibara et al., 2018). Like first-generation overexpressing models, tau tangles and brain atrophy are 
absent. The trajectories in B and C have been estimated by employing data extracted from publications using the mouse models listed in Table 1 and 
normalized for each pathological feature. Time courses of the original reports were used whenever possible, alternatively, early studies investigating the 
time-dependent changes in the phenotype of these models were interrogated.
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Context
The accumulated clinical evidence indicates that several genetic and environmental factors, with 
different potency, have been acknowledged as AD contributors (Frisoni et al., 2022; Knopman et al., 
2021; Livingston et al., 2020).

In that context, molecular genetics analyses provide invaluable information on AD’s complex 
etiology. Besides the rare mutations on APP, PSEN1, and PSEN2 genes showing an essentially 100% 
penetrance, linkage and genome-wide association studies (GWAS) have identified well over 20 addi-
tional genetic risk loci (Andrews et al., 2023). Although the contribution of each associated gene 
was frequently interpreted in relation to Aβ- or tau-pathology, it is notable that these genes belong to 
three major pathways: cholesterol and lipid metabolism, immune system and inflammatory responses, 
and endosomal vesicle cycling (Van Cauwenberghe et al., 2016).

In this context, the contribution of APOE is an area of active investigation (Chen et al., 2021; 
Ganesan et al., 2024). This key protein is involved in fat metabolism – including cholesterol. In humans, 
three major allelic variants exist: APOEε2, ε3, and ε4 (Huebbe and Rimbach, 2017). Each genotype is 
strongly associated with a different risk of developing the late-onset form of the disease with the ε4 
isoform increasing it while the ε2 being protective. The most common ε3 allele is considered neutral 
(Serrano-Pozo et al., 2021). Given the central role played by APOE in cholesterol metabolism and 
AD, caution must be exercised when interpreting results from preclinical models, as substantial dissim-
ilarities exist among species in this very specific pathway. First, important differences concern APOE 
itself. The single mouse APOE isoform (mAPOE) shares only 70% of the homology with its human 
counterparts. This is a serious red flag, considering that the three human isoforms, 299 amino acids 
long, differ from each other for just up to two residues (Frieden and Garai, 2012). In agreement, early 
studies comparing the effects on Aβ deposition of human isoforms vs. mAPOE revealed that mAPOE 
significantly accelerates plaque formation compared to its humanized homolog (Fagan et al., 2002). 
In addition, the daily turnover of the brain sterol pool is more than an order of magnitude higher in 
mice than in humans (0.4% vs 0.03% per day, respectively) (Dietschy and Turley, 2004). These findings 
indicate different synthesis, transport, and clearance needs that, in AD transgenic models, are likely to 
affect the pathology burden (Granzotto et al., 2011). Similarly, other risk factor-related genes for AD 
are often quite different in gene structure and processing in mice.

Profound metabolic changes also accompany AD. Epidemiological evidence indicates that meta-
bolic alterations are strongly involved in AD pathogenesis, with obesity and diabetes being included 
in the list of the 12 modifiable risk factors that account for around 40% of all dementia cases (Living-
ston et al., 2020). In the brain, insulin acts as a potent neurotrophic factor where it modulates critical 
activities, like synaptic plasticity and cognitive functions (Arnold et al., 2018). Importantly, central 
insulin resistance and defective insulin signaling have been consistently observed in human post-
mortem studies, leading to the hypothesis that AD is a ‘Type 3 diabetes’ (Steen et al., 2005). Obesity, 
a risk factor for diabetes, is also increasingly recognized as an active player in AD. Chronic inflamma-
tion associated with obesity contributes to neuroinflammation, and adipokines, bioactive molecules 
secreted by adipose tissue, may have neuroinflammatory and neurodegenerative effects (Bomba 
et al., 2019; Kotredes et al., 2023; Mooldijk et al., 2022). In this context, calculations estimate a 
sevenfold higher basal metabolic rate in mice vs humans (Terpstra, 2001), a difference that might 
affect pathology progression or, as demonstrated in other settings, influence the effectiveness of 
disease-modifying interventions (Gordon-Larsen et al., 2021; Terpstra, 2001).

Brain inflammation is emerging as a core feature of AD. The last few years have witnessed a signif-
icant advancement in our understanding of how inflammatory processes modulate the pathogenesis 
of AD (Kinney et al., 2018; Morris et al., 2018; Morris et al., 2014; Paolicelli et al., 2022). Robust 
associations were identified between AD susceptibility and genetic variants linked to genes specifi-
cally expressed by myeloid cells. These include CD33, CLU, MS4A4A and MS4A6A, PLCG2, SORL1, 
and TREM2 (Andrews et al., 2023; McQuade and Blurton-Jones, 2019). Functionally, these genes 
largely encode proteins involved in phagocytosis, a central and therapeutically exploitable process in 
AD (Andrews et al., 2023). In parallel, novel research tools have disclosed an even more composite 
scenario (Hasselmann and Blurton-Jones, 2020; Paolicelli et  al., 2022). Comparative single-cell 
analysis of humans vs mice showed that brain cells of the two species exhibit similar transcriptomic 
profiles in physiological settings, but remarkable changes occur upon pathological conditions (Zhou 
et al., 2020). The effect is particularly prominent in microglia, the immune cells of the brain (Zhou 
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et al., 2020). A twofold interpretation can be drawn. Either the disease model in preclinical settings 
differs from the human AD, and/or the response to AD pathology is highly context- and species-
dependent. In addition, growing evidence helped to profoundly revise the view of the brain as an 
immune-privileged organ (Louveau et al., 2015), with cells of the adaptive immune system and the 
peripheral-central immune crosstalk increasingly recognized with a causal role in the pathophysiology 
of AD (see Andrews et al., 2023; Bettcher et al., 2021; Haage and De Jager, 2022 for comprehen-
sive reviews on the topic).

An additional context-dependent issue in AD modeling is posed by the heterogeneous set of 
neuropathology that, at the population level, contribute to dementia in older adults (Boyle et al., 
2018; Brenowitz et al., 2017). Post-mortem data reveal that most aging brains are the target of 
mixed neuropathology (i.e. AD, cerebral amyloid angiopathy, TDP-43, Lewy body, atherosclerosis, 
etc.) (Boyle et  al., 2018) while the isolated presence of senile plaques and NFTs is found only in 
a tiny fraction of dementia cases (Boyle et al., 2021; Boyle et al., 2018; Brenowitz et al., 2017; 
Morris et al., 2018). Post-mortem examination of >1000 dementia cases identified >230 different 
neuropathological combinations (Boyle et al., 2018), indicating almost person-specific pathological 
signatures and disease trajectories. This complexity cannot be recapitulated in preclinical settings.

When delving into AD, it is crucial to consider sex-related factors. The risk of developing AD is 
nearly double in women, a difference not fully explained by the female longer life expectancy (Reed-
Geaghan, 2022). Although many studies are investigating sex-based differences in preclinical models, 
the results should be interpreted with caution. Indeed, biological differences can bias the outcomes. 
Among others, female mice lack the reproductive senescence features, including menopause and the 
extended post-reproductive periods, that characterize at least one-third of women’s lifespan and that 
fall within the most critical timeframe for developing early signs of dementia (Moir and Tanzi, 2019). 
In agreement, a causative role of the dysregulation of sex hormones in explaining the higher vulner-
ability of women to AD has been proposed (Carroll et al., 2007; Ratnakumar et al., 2019; Xiong 
et al., 2022).

For what concerns preclinical models, additional differences in the underlying biology of humans 
and mice need to be more carefully considered when modeling AD, testing interventions, and inter-
preting the data. For instance, nocturnal rodents have opposite circadian cycles when compared to 
humans. Since most experimental procedures are performed during the rodent inactive phase, recent 
findings suggested that circadian rhythms might influence and bias translational studies (Esposito 
et  al., 2020). This might also occur in the context of AD, considering the importance of inactive 
phases (i.e. sleep hours) for the clearance of brain interstitial fluids from proteins and solutes accumu-
lated during the wake/active cycles, like Aβ and tau (Holth et al., 2019; Roh et al., 2012). We raise 
this point to be comprehensive, but do not suggest it is the major limitation of the animal models.

Finally, the experimental conditions under which laboratory animals are typically housed often 
overlook the significant impact of an enriched environment, social engagement, physical activity, 
and natural pathogens or pollutants – all crucial factors observed in real-world scenarios – on the 
development and progression of AD (de Sousa et al., 2023; Dhana et al., 2024; Kivipelto et al., 
2018). These environmental elements play a core role in influencing molecular mechanisms that 
promote brain resilience against age-related insults, like the activation of neurotrophic and bioen-
ergetic signaling pathways, vital factors for maintaining cognitive health and mitigating the effects 
of neurodegeneration (Cotman and Berchtold, 2002; Mattson and Arumugam, 2018). Incor-
porating these environmental features within experimental models is essential for capturing the 
holistic impact of lifestyle elements on AD pathology and developing more translatable therapeutic 
strategies.

Implications for the ACH
First-generation of APP (or tau) overexpressing mouse models remain the primary tools in use for 
studying AD (Table  1). The original findings with these and similar AD model mice were consid-
ered strong support of the ACH. In hindsight, studies showing that overloading the brain from birth 
with foreign protein/s generates a phenotype, while its/their removal has some subsequent benefit, 
may have been over-interpreted in support of the ACH. The interpretation is problematic not only 
in the context of the qualitative, quantitative, temporal, and contextual limitations of the models as 
discussed herein but also because of the absence of adequate controls for extensive protein overload.

https://doi.org/10.7554/eLife.90633
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While the data do not exclude that Aβ and/or tau may contribute to dementia, additional risk factor-
related genes (e.g. TREM2, MS4A, CLU, etc.) or environmental cues should be tested in enriched 
preclinical settings. Embracing the complexity of the molecular mechanisms of AD could substantially 
advance our comprehension of the disease and help therapeutic strategies.

Is all lost?
While a purely Aβ-centric view of dementia is no longer tenable (Granzotto and Sensi, 2024; Herrup, 
2015; Kepp et al., 2023a; Morris et al., 2018; Morris et al., 2014), preclinical mouse models may 
still provide answers to disease-related questions in three primary respects.

First, mice are valuable for investigating the fundamental mechanisms through which perturba-
tion of cellular interactions leads to brain dysfunction. Specifically, the commonly used mice – such 
as the J20 (Mucke et al., 2000; Wright et al., 2013) –, induced neuroinflammation or senescence 
models, as well as non-genetically modified animals, may prove helpful in studying the consequences 
of altered cellular interactions associated with inflammatory response and/or aging, two critical factors 
in dementia (Engelhart et al., 2004). While the trigger of inflammation in the mouse models, such 
as the J20 mouse model, namely the ectopic overexpression of human proteins, may not be identical 
to what drives human AD, these models are still valuable for further our understanding of the role of 
aberrant microglial astrocytic and adaptive immune responses in neuronal and synapse dysfunction.

Second, the commonly used mice expressing full-length mutant APP and/or mutant PSENs help 
unravel Aβ-independent mechanisms involved in AD. In other words, what is the role of the full human 
APP, the presenilins, and the various fragments and isoforms, beyond their effects on Aβ, in brain 
function and pathology? These mechanisms have been investigated (Saganich et al., 2006) but they 
remain greatly under-explored.

Third, a reconceptualization of murine models is needed. A question remains whether mice engi-
neered with humanized genes (such as APP, MAPT, APOEε4, TREM2, and so on) will prove valuable 
for modeling human AD. Many of us are hopeful, but it is still unclear how biochemical and cellular 
signaling mechanisms in mice interact with human genes, an area in need of further consideration.

Alternative possibilities and future directions
Collective efforts are underway to develop better, more informative, and predictive models to 
improve translation from animal to humans (Vitek et al., 2020). These include the generation of mice 
combining multiple genetic and environmental risk factors (Ganesan et al., 2024; Rizzo et al., 2023) 
or the development of novel strains to evaluate the impact of naturally occurring genetic variations 
(limited in laboratory strains) on the AD phenotype (Neuner et al., 2019; Onos et al., 2019). In that 
respect, we are cautiously excited by the MODEL-AD project (MODEL-AD Consortium, 2024). The 
outcomes of these studies designed to generate sAD-relevant models could be highly informative 
(Kotredes et al., 2023). In addition, AD involves complex mechanisms beyond amyloid plaques and 
tau tangles, like synaptic dysfunction, mitochondrial impairment, Ca2+ dysregulation, neuroinflamma-
tion, oxidative stress, metal ion dyshomeostasis, and disruptions in neuronal signaling. As we noted 
above, there are also questions about the effects of the environment and natural pathogens on the 
brain, which are also not well modeled in pristine mouse facilities. Animal models often fail to fully 
replicate the complex interplay of the environment and the molecular and cellular processes that are 
strongly associated with disease symptoms. A better modeling and a deeper exploration of these 
mechanisms – alone or in synergy with the pathological features of AD – could inform the develop-
ment of more targeted interventions.

It is also imperative to heighten methodological rigor in investigations employing murine models. 
The inadequacy of adhering to the rigorous standards observed in human clinical trials should be 
addressed. For instance, at a minimum, implementing blinding protocols and preferably blinding 
across all aspects of the analyses has become mandatory to generate data with translational value 
(Cozachenco et al., 2023). Regrettably, most animal studies do not consistently observe such prac-
tices (Errington, 2024; Reynolds, 2022).

There has been a notable shift towards human-centric approaches, emphasizing human-derived 
cellular models, organoids, and larger animals, like non-human primates. Human cells of the central 
nervous system, usually derived from induced pluripotent stem cells (iPSC), have emerged as indispens-
able tools to delve into disease mechanisms specific to human biology. In this context, human-mouse 
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chimeras are a valuable tool for studying the behavior of iPSC-derived cell subtypes xenografted 
in murine models of AD (Balusu et al., 2023; Espuny-Camacho et al., 2017; Hasselmann et al., 
2019; Mancuso et al., 2019). However, like with any experimental model, some trade-offs are to be 
expected. Human cell engraftment is performed in immune-deficient AD strains, thereby missing the 
critical contribution of the immune system to the generation of the pathological phenotype.

Complementing this, co-culture 3D systems and human brain organoids – multicellular, complex 
3D structures – derived from iPSC provide a physiologically relevant platform to study the complexity 
of AD (Cenini et al., 2021; Kim et al., 2020; Penney et al., 2020). Of note, developing novel and 
user-friendly differentiation protocols for iPSCs into cells of the central nervous system is democra-
tizing this technology, making it accessible to laboratories with limited expertise in stem cell research. 
This broadens the availability of iPSC-based approaches and facilitates the testing of disparate, non-
mainstream hypotheses. Nevertheless, human cell- and organoid-based models possess inherent 
limitations. These include the absence of a fully developed and functional nervous system (i.e. complex 
circuit dynamics), the lack of tissue vascularization, and the inability to capture the intricate interplay 
between multiple organ systems (Andrews and Kriegstein, 2022).

To bridge these gaps, there is now mounting interest in larger animal models, including non-human 
primates (Jennings et al., 2016). These animal models still bear discrepancies in brain structure and 
function compared to humans, potentially affecting the translational capacity of the findings, let alone 
ethical concerns (Bailey and Taylor, 2016). Complementing this, a comparative biology approach 
has been recently proposed. This perspective stems from the idea that companion animals undergo 
concomitant age-related changes and share the same environment and lifestyle of the patients, 
thereby acting as a proxy of the complex network of factors that modulate the disease (de Sousa 
et al., 2023).

These diversified preclinical settings must be supplemented with human studies and clinical 
research data. In this regard, integrating in silico studies has great potential. One area revolves around 
developing multi-scale computational models, which provide an eco-system for integrating and inter-
rogating molecular, cellular, and network-level interactions (Rollo et al., 2023). In silico work can also 
foster the development of personalized medicine approaches for AD, including factors acting inside 
and outside the CNS (Doraiswamy et al., 2018; Lee et al., 2019; Massetti et al., 2024). By incorpo-
rating individual patient data, including genetic profiles and environmental exposures, computational 
models can help predict disease progression and identify optimal treatment strategies tailored to 
each patient’s unique circumstances (Forloni, 2020). Finally, in silico analysis can be employed to 
explore the heterogeneity of AD cases, considering the diverse clinical presentations and progression 
patterns observed among patients.

Conclusions
In conclusion, the limitations of current preclinical AD models and the questionable benefit observed 
in anti-Aβ clinical trials call for an urgent reconsideration of our strategies (Granzotto and Sensi, 
2024; Høilund-Carlsen et al., 2023; Kepp et al., 2023b).

On the preclinical front, a more comprehensive setting involving other experimental systems and 
more rigorous experimental designs is required to guarantee the cost-effective generation of data 
with high translational value (Cozachenco et al., 2023).

A more nuanced and context-dependent experimental approach, taken with careful thought, is 
crucial for the development of effective disease models and, ultimately, for improving our ability to 
prevent, diagnose, and treat this devastating disorder.
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