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Abstract 

Hopfions are three-dimensional (3D) topological states discovered in field theory, magnetics, and hydrodynamics 
that resemble particle-like objects in physical space. Hopfions inherit the topological features of the Hopf fibration, 
a homotopic mapping from unit sphere in 4D space to unit sphere in 3D space. Here we design and demonstrate 
dynamic scalar optical hopfions in the shape of a toroidal vortex and expressed as an approximate solution to Max-
well’s equations. Equiphase lines correspond to disjoint and interlinked loops forming complete ring tori in 3D space. 
The Hopf invariant, product of two winding numbers, is determined by the topological charge of the poloidal spati-
otemporal vortices and toroidal spatial vortices in toroidal coordinates. Optical hopfions provide a photonic testbed 
for studying topological states and may be utilized as high-dimensional information carriers.
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1  Introduction
The knot theory originates in Lord Kevin’s model pro-
posed in 1867 that atoms are made of vortex rings or 
vortex knots [1]. Although the hypothesis was proved to 
be unsuccessful, the knot theory has since then prolifer-
ated in both mathematics and physics [2,3]. One pecu-
liar category of knots—the torus knots—are disjoint and 
linked closed loops, nesting to construct complete ring 
tori. Physicists find the torus knot a suitable candidate for 
building hopfions—three-dimensional (3D) topological 
states that resemble particle-like objects.

Hopfions are named after Heinz Hopf who discovered 
the Hopf fibration in 1931 [4]. The Hopf fibration delin-
eates an elegant mapping from unit sphere in 4D space 
(S3) to unit sphere in 3D space (S2), belonging to the third 
homotopy group π3(S2) = Z [5−7]. The preimages of any 
arbitrary points in S2 are disjoint and interlinked circles 
(S1) in S3. The S3  that resides in four-dimensional space 
can be “seen” by the use of stereographic projection and 
the topological features of linkedness of closed loops are 
preserved.

The search of hopfions in physical systems started with 
the seminal work of Korepin and Faddeev [8] and after 
nearly half a century, hopfions have been unveiled in vari-
ous branches of science. Hopf structures are discovered 
in superfluid helium as particle-like objects with finite 
dimension and energy [9]. Null solutions to Maxwell’s 
equations reveal that electromagnetic field lines, spin 
or polarization vectors can be tied based on the Hopf 
fibration to form diverse knots and links and exploited 
as information carriers [10–19]. Vortex lines in fluids 
appear in Hopf topological structures and the linked-
ness as well as knottedness are conserved in inviscid 
fluids [20]. Topological defect lines in liquid crystals are 
tweezed to create Hopf links [21–23]. The abovemen-
tioned hopfions are vector hopfions that each point in 
S2  corresponds to a vector that has multiple degrees of 
freedom. On the contrary, each point in S2 of scalar hop-
fions is distinguished by the value of a scalar parameter. 
The corresponding preimage is a closed loop consisting 
of all points having the same scalar value. Scalar hopfions 
have been predicted and are believed to be experimen-
tally feasible in a Bose-Einstein condensate (BEC) con-
trolled by inhomogeneous magnetic fields or in a rotating 
trapped atomic BEC [24,25].

Particle-like topological objects such as skyrmions have 
attracted considerable interest in light science in recent 
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years [26–30] because of their nano size and topological 
stability. A skyrmion can be described by knots of twist-
ing field lines. Hopfions are topological objects that can 
be formed from a closed loop of twisted skyrmion strings 
[17]. Last year, Sugic et  al. synthesized the transverse 
states of polarization and the phase profile into a Hopf 
fibration texture in the focal volume [31], which was 
recently extended to higher-order cases [32].

Rather than steady-state continue-wave structured 
light, the concept of scalar optical hopfions proposed in 
the current paper is spatiotemporally structured pulse 
propagating in space-time, providing an additional 
dimension (time) to encode and transfer topological 
information. The dynamic scalar optical hopfion is a trav-
elling wave packet in the shape of a toroidal vortex. Sca-
lar optical hopfions are weaved by nested equiphase lines 
that each equiphase line corresponds to one complex 
knot or several unknotted and interlinked closed loops. 
The linking number of two equiphase lines is governed 
by the Hopf invariant that is the product of the winding 
numbers. All equiphase lines form an infinite number of 
layers of complete ring tori. The discovery of scalar opti-
cal hopfions may spur interest in exploring novel meth-
ods for light-matter interaction, optical metrology, 
information encoding, and optical manipulation [33–38].

2 � Results and discussion
The envelope function of a light field in a uniform 
medium with anomalous group velocity dispersion 
(GVD) in Cartesian coordinates is expressed as [39,40],

where ψ is the wave function, x, y, and z are Cartesian 
coordinates, τ is the retarded time in the local frame, k 
is the wave number, k2 is the GVD at ω = ω0. Equation (1) 
can be normalized with regard to the dimensions of the 
wave packet and reads,
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 . An approximate 
solution to Eq. (2) can be expressed as:

 where r⊥ =
√

x2 + y2 , r0 and z0 are constants, l1 and l2 
are integers. Equation  (3) is the wave function of a sca-
lar optical hopfion in the shape of a toroidal vortex. As 
shown in Fig.  1, a scalar hopfion consists of an infinite 
number of layers of tori. Each torus are weaved by closed 
loops. Each closed loop is painted in one specific color 
and corresponds to a point in the parameter space and 
to a circle on unit sphere in 4D space. Each closed loop 
of a scalar hopfion is an equiphase line. As presented 
in Eq.  (3), the phase of a scalar hopfion is the sum of a 
spatial spiral phase with topological charge l1 and a spa-
tiotemporal spiral phase with topological charge l2. The 
two numbers are also known as the winding numbers 
defined as,
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tion vectors in the toroidal plane and poloidal plane, 
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Fig. 1  Schematic of the Hopf fibration and scalar hopfion. The equiphase lines in a scalar hopfion presents the topological features of the Hopf 
fibration
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respectively. The Hopf invariant is defined as the product 
of the two winding numbers:

.
For any ring torus in 3D space, equiphase points of a 

scalar optical hopfion form closed loops. Note that a 
ring torus is a surface not a solid. As shown in Fig.  2a, 
the red loop consists of all points in the green ring torus 
that have the phase value of 1.5; the blue loop represents 
equiphase points for phase value of 3. The two loops are 
disjoint and linked only once. The linking number is gov-
erned by the Hopf index that is l1 × l2 = 1 for this case. 
In Fig. 2b, both winding numbers are 2. Instead of being 
one closed loop, the red equiphase lines are actually two 
closed loops linked to each other once. Consequently, 
the red and blue equiphase lines are linked four times. 
The linking number is consistent with the Hopf index 
l1 × l2 = 4 . In Fig. 2c, the winding number l1 is 2 and l2 
is 3. The equiphase line is a knot winding about the ring 
twice and about the hole triple times. The red and blue 
knots are linked to each other 6 times. In Fig.  2d, the 
winding number l1 is 4 and l2 is 2. The equiphase lines 
are composed of two disjoint and linked closed loops. 
Taking the red curves for example, each of the pair of 

(6)QHopf = l1l2

red loops winds about the ring twice and about the 
hole once. The red loops and the blue loops are linked 
2× 2× 2 = 8 times that is consistent with the Hopf 
index l1 × l2 = 8 . It is obvious from the above examples 
that the linking number of equiphase loops are equal to 
the Hopf invariant that is the product of the two wind-
ing numbers. The equiphase line may be one closed loop 
or split into several disjoint and linked closed loops. The 
number of disjoint loops of one specific equiphase line is 
equal to the greatest common divider of the two wind-
ing numbers. For example, the greatest common divider 
in Fig. 2d is 2, therefore, the red curves are composed of 
two disjoint and linked loops. If both winding numbers 
are greater than 1 and their greatest common divider is 1, 
the equiphase line turns out to be an optical knot. Addi-
tional examples can be found in the supplementary infor-
mation (Additional file 1).

Disjoint and linked loops are one distinct feature of 
hopfions. Another peculiar feature is that these disjoint 
and linked loops form complete ring tori. In Fig. 3, four 
examples of hopfions with different sets of winding num-
bers are presented. A total of 50 equiphase lines are plot-
ted for each graph. The phase values are equally spaced 
and listed on the right side of the figures. Evidently, 
regardless of the combination of the two winding num-
bers, all equiphase lines form a complete ring torus. A 

Fig. 2  Optical hopfions showing two equiphase lines with winding numbers: a l1 = 1, l2 = 1. b l1 = 2, l2 = 2. c l1 = 2, l2 = 3. d l1 = 4, l2 = 2
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ring torus is a surface created by rotating a circle about 
an axis in the same plane as the circle in 3D space. The 
radius of the circle is always smaller than the distance 
between the center of the circle and the rotating axis, 
i.e., the poloidal radius is always smaller than the toroidal 
radius for a ring torus. It is of great importance to note 
that regardless of the shape and size of the ring torus, the 
two distinct features of hopfions are always valid. In other 
words, equiphase lines form complete and infinite num-
ber of layers of tori in 3D space with disjoint and inter-
linked closed loops. The Hopf index judges the linking 
number of any pair of individual loops corresponding to 
different scalar values.

The key to experimentally generate optical hopfions 
is to manipulate poloidal and toroidal spiral phase in 
toroidal coordinates. A linear method has recently been 
demonstrated to create toroidal vortices of light [41]. 
As shown in Fig.  4, through manipulating spiral phase 
in the k-space by the use of a two-dimensional pulse 
shaper consisting of a grating, a cylindrical lens and a 
spatial light modulator (SLM1), a fully controlled twisted 
phase is generated in the spatiotemporal domain. The 
spatiotemporal optical vortex (STOV) is experimentally 
elongated to a STOV tube along the vortex line by two 
cylindrical lenses in a confocal configuration. The STOV 
tube is wrapped into a toroidal vortex through confor-
mal mapping by SLM2 and SLM3. SLM2 performs the 

log-polar to Cartesian coordinate transformation. SLM3 
corrects the phase and applies a toroidal spiral phase. 
SLM3 and SLM1 control the two winding numbers l1 and 
l2, respectively. Both winding numbers can be arbitrary 
integer with both signs. However, high-order STOVs 
tend to split upon free-space propagation. Choosing 
proper negative GVD materials or preconditioning the 
controlled phase imprinted by SLM1 can circumvent the 
problem [42,43].

Characterization of a scalar optical hopfion is a chal-
lenging task that requires high-resolution and full 3D 
phase measurement of an ultrafast wave packet. Lim-
ited by existing capabilities, we perform two-dimen-
sional phase measurement of the poloidal spiral phase 
through interfering the hopfion wave packet (l1 = 1, 
l2 = 1) with a transform-limited reference pulse split 
from the source. The reference pulse is considerably 
shorter in time and interferes with each temporal slice 
of the hopfion wave packet with the help of an elec-
tronically controlled precision stage. The poloidal 
phase is theoretically a spiral phase in the spatiotem-
poral domain. Eight spots at equally-spaced toroidal 
angles are chosen and the interference patterns at these 
spots are analyzed. Figure 5a shows an example of the 
interference patterns obtained at the toroidal angle of 
112.5 degrees. The orientations of mirrors are carefully 
adjusted so that the fringes are parallel to the specified 

Fig. 3  Optical hopfions showing 50 equiphase lines to form ring tori with winding numbers: a l1 = 1, l2 = 1. b l1 = 2, l2 = 2. c l1 = 3, l2 = 4. d l1 = 4, 
l2 = 2
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toroidal angle. As the reference pulse interferes with the 
head of the hopfion wave packet, the fringe patterns are 
straight lines (label 1). Approaching the center of the 
spatiotemporal vortex, the fringes start to bend (label 
2). When the temporal slice is coincident with the vor-
tex core, the upper and lower fringes are shifted by half 
a period (label 3). The shifting is caused by the π dif-
ference between the upper and lower fringes, a salient 
feature of a spatiotemporal vortex of topological charge 
1. As the temporal slicing continues, the fringes bend 
to the opposite direction (label 4) and become straight 
again as the slicing approaches the tail of the hopfion 
wave packet (label 5). Based on the fringe patterns, the 
poloidal spiral phase can be reconstructed. The toroidal 
spiral phase is a spatial spiral phase applied by SLM3 
and assumed to be perfect in this case due to the dif-
ficulties of fully resolving the 3D details of the phase 
distributions of the entire wave packet. The total phase 
is the sum of the poloidal phase and the toroidal phase. 
Figure 5b shows the theoretical equiphase curves plot-
ted in solid lines and the experimental phase data 
denoted by circles. The topological features of a scalar 
optical hopfion are clearly presented.

3 � Conclusion
In summary, we propose a dynamic scalar optical hop-
fion model and provides its analytical expression as an 
approximate solution to Maxwell’s equations. Numeri-
cal simulations and experimental data demonstrate that 
the equiphase lines are disjoint and linked closed loops 
in the form of links and knots with a linking number 
determined by the Hopf invariant. All equiphase loops 
form complete tori that fill up the entire 3D space. The 
dynamic scalar optical hopfions provide a photonic test-
bed for studying topological states that resemble particle-
like objects, and may find applications in spatiotemporal 
mode excitation in artificial materials and nanostruc-
tures, and in optical communication as high-dimensional 
information carriers.

4 � Methods
The fiber laser is dispersion-managed and mode-locked 
with a central wavelength of 1030  nm. The model of 
the SLMs is GAEA-2-NIR-069 made by Holoeye. A 

Fig. 4  Schematic of the experimental setup for the generation and characterization of optical hopfions. A chirped pulse is transformed to a STOV 
by the use of a two-dimensional pulse shaper, elongated to a STOV tube and conformally mapped to an optical hopfion. BS: beam splitter; SLM: 
spatial light modulator
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Gaussian pulse is converted to a STOV pulse through 
a 2D pulse shaper. The STOV pulse is elongated to a 
STOV tube through two cylindrical lenses. The STOV 
tube is conformally mapped to a scalar hopfion using 
SLM2 and SLM3. The characterization is performed by 
interference with a transform-limited reference pulse 
split from the source. The temporal scan is controlled 
by an electrical precision stage (Zolix MAR20-65). The 
phase reconstruction is based on all the fringe patterns 
measured at 8 equally spaced toroidal angles during the 
temporal scan.

Abbreviations
3D: Three dimension; BEC: Bose-Einstein condensate; GVD: Group velocity 
dispersion; STOV: Spatiotemporal optical vortex; SLM: Spatial light modulator.
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