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Abstract 

The orbital degrees of freedom play a pivotal role in understanding fundamental phenomena in solid-state materials 
as well as exotic quantum states of matter including orbital superfluidity and topological semimetals. Despite tremen-
dous efforts in engineering synthetic cold-atom, as well as electronic and photonic lattices to explore orbital physics, 
thus far high orbitals in an important class of materials, namely, higher-order topological insulators (HOTIs), have not 
been realized. Here, we demonstrate p-orbital corner states in a photonic HOTI, unveiling their underlying topological 
invariant, symmetry protection, and nonlinearity-induced dynamical rotation. In a Kagome-type HOTI, we find that 
the topological protection of p-orbital corner states demands an orbital-hopping symmetry in addition to generalized 
chiral symmetry. Due to orbital hybridization, nontrivial topology of the p-orbital HOTI is “hidden” if bulk polarization is 
used as the topological invariant, but well manifested by the generalized winding number. Our work opens a path-
way for the exploration of intriguing orbital phenomena mediated by higher-band topology applicable to a broad 
spectrum of systems.
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In condensed matter systems, an important characteristic 
of electrons besides charge and spin is the orbital degree 
of freedom (ODoF), which plays a crucial role in under-
standing unconventional properties in solid-state materi-
als as well as in “orbital physics” toward unveiling the sci-
ence and technology of correlated electrons [1]. However, 
due to the complexity and various degrees of freedom 
simultaneously involved in real materials, it has always 
been a challenge to fully unravel the physics of strongly 
correlated electronic matter mediated by the ODoF via 
controlled experiments. On the other hand, the inter-
est in synthetic orbital systems including trapped atoms 
in optical lattices surged rapidly over the past decade [2, 
3], leading to “orbital-only” quantum emulators not only 
for fermions but also for bosons. For example, orbital lat-
tices have been employed to demonstrate complex Bose–
Einstein condensates and orbital superfluidity [4] as well 
as exotic topological semimetal phases [5]. Clearly, the 
capability of purposely preparing atoms to higher orbital 
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bands in optical lattices has opened the door for under-
standing orbital physics in condensed matter systems, 
with the ultimate goal of exploring new quantum states 
of matter not found in natural solids.

Apart from ultracold atoms in optical lattices, other 
synthetic platforms wherein the ODoF has emerged and 
caught increasing attention include semiconductor polar-
itonic lattices [6, 7], laser-written photonic lattices [8, 9], 
nanomechanical resonant structures [10], and atom-to-
atom engineered electronic lattices [11, 12]. In particular, 
by employing the p-orbital bands of polariton micropil-
lars arranged in a honeycomb lattice, both orbital edge 
states and exotic Dirac dispersions were observed [13, 
14]. These artificial lattices can be used to flexibly manip-
ulate orbital Dirac matter with transport properties and 
topological features difficult to achieve in conventional 
solid-state systems.

Using such synthetic lattice platforms, symmetry-pro-
tected topological (SPT) phases have been extensively 
explored due to their peculiar characteristics and unique 
potential applications associated with robust boundary 
states, especially in photonics [15–18]. Notable recent 
endeavors have focused on the realization of higher-order 
topological insulators (HOTIs) [19–25]—a new class of 
topological materials that do not obey the conventional 
bulk-edge correspondence principle [18, 26, 27]. While 
their underlying physics is still an ongoing subject of 
investigation, higher-order topological corner states have 
been extensively tested for various applications, includ-
ing topological nanocavities and lasers [28–30]. However, 
to date, all experimental studies in HOTI systems relied 
on the s-orbital band, leaving higher-orbital HOTIs unex-
plored except for a recent proposal [31]. As a popular 
model of HOTIs, the breathing Kagome lattices (BKLs) 
exhibiting C3 rotational symmetry have been widely 
explored for demonstration of HOTIs in many different 
systems [32–41]. Although there is a continuing debate 
concerning the HOTI classification for the BKLs [42], 
experiments using metamaterials have unambiguously 
identified the higher-order topology for the s-orbital 
BKL-type topological crystalline insulators [39]. Further-
more, their robustness to symmetry-breaking perturba-
tions has also been validated [41]. It is thus natural to 
ask: can we realize an HOTI manifesting higher orbitals 
using a synthetic BKL platform, and what are the distinc-
tive topological features and new perspectives associated 
with the orbital HOTIs?

In this work, we experimentally demonstrate p-orbital 
HOTIs using photonic BKLs established by a continu-
ous-wave (CW) laser-writing technique. In a triangle-
shaped nontrivial BKL, both px - and py-type orbital 
corner states are observed, with characteristic intensity 
and phase structures manifesting the zero-dimensional 

“zero-energy” modes. Furthermore, corner excitation 
leads to dynamical rotation of a dipole beam due to the 
nonlinearity-induced lifting of px and py orbital mode 
degeneracy. We calculate the band structures and topo-
logical invariants of the orbital HOTIs and confirm their 
nontrivial topology from the winding number, albeit the 
topology is “hidden” in the conventional bulk polariza-
tion due to orbital coupling-induced band crossing. The 
SPT phase of orbital HOTIs is found to be inherited from 
the lower s-band Hamiltonian, being protected by the C3 
rotational symmetry, the generalized chiral symmetry 
(GCS), as well as by a previously unknown orbital-hop-
ping symmetry not applicable to the s-band HOTIs.

The photonic BKL platform used to demonstrate p
-orbital HOTIs is illustrated in Fig.  1a, which has six-
unit cells comprised of three sublattices (A, B, and C) 
with intracell and intercell hopping amplitudes t1 and t2 , 
respectively. When t1< t2 , the BKL exhibits a nontrivial 
topology, featuring SPT corner states as in previously 
studied s-orbital HOTIs [32–35]. In our laser-written 
BKL, t1 and t2 are tuned through the respective wave-
guide distances, while every waveguide supports two 
dipole modes (see left inset, Fig. 1a), allowing for both px 
and py orbitals. When the ODoF is taken into account, 
additional hopping amplitudes tσ(tπ ) must be considered, 
being those responsible for the longitudinal (transverse) 
hopping when the p-orbitals are oriented parallel (per-
pendicular) to the bond direction [43] (see right inset, 
Fig.  1a). Under the tight-binding model, the full energy 
spectrum is calculated from the p-band Hamiltonian 
[31] (see "Methods") and plotted in Fig. 1b, where local-
ized orbital corner states in the strongly topologically 
nontrivial regime are marked. Although the nontrivial 
phase occurs once t1< t2 in an infinite BKL, we found 
that localized corner states are present in a narrower 
window of parameters in an experimentally accessible 
BKL. Furthermore, the band structure for a representa-
tive nontrivial case is plotted in Fig.  1c, which displays 
six topological orbital corner modes in the bandgap with 
eigenvalues close to zero. Two typical corner modes 
exhibiting characteristic px - and py-type orbitals are 
shown in Fig. 1d1, d2: their amplitudes distribute equally 
among three corner sites, showing no leaking to the 
nearest-neighbor sites but only a weak amplitude in the 
next-nearest-neighbor (NNN) sites. If we consider, for 
example, the px-type orbital at the top vertex, the cor-
ner mode is exponentially localized at the A-sublattice 
sites with an opposite phase between the dipoles in the 
corner and the two NNN sites (Fig.  1d1)—a character-
istic feature of the HOTI corner modes [34, 44]. Other 
orbital orientations with unequal amplitude distribu-
tions at three vertices of a finite-sized BKL are discussed 
in the Additional file 1. Here we point out the difference 



Page 3 of 9Zhang et al. eLight             (2023) 3:5 	

between the BKL employed in this work, where each 
constituting waveguide supports both fundamental and p
-orbital modes, and the 2D Su–Schrieffer–Heeger (SSH) 
lattices used in previous work [44], where each waveguide 
supports a single mode and no p-orbitals were involved.

In our experiments, we write waveguides site-by-site 
in a nonlinear crystal [45], establishing both topologi-
cally nontrivial (Fig.  2a1) and trivial (Fig.  2a2) photonic 
BKLs. All waveguides remain intact during measure-
ments, whereas probing of corner states is performed 
with an appropriately-shaped beam that can undergo 
linear or nonlinear propagation depending on whether 
a bias field is employed [44]. For a direct comparison of 
propagation through the 20-mm-long lattices, the ampli-
tude and phase of the probe beam are pre-modulated to 
mimic the corner mode profiles in Fig. 1d (see Additional 
file 1). Measured results to illustrate orbital HOTI corner 
states are presented in Fig.  2b1–f2. Specifically, for the 
excitation of the px-type orbital corner states, the input 
probe beam is made of three x-oriented dipoles with a 

nonuniform intensity distribution and staggered phase, 
i.e., (0,π) for the top dipole vs. (π , 0) for the other two 
(Fig. 2b1). The modulated probe beam is then launched 
into the BKLs at the top corner of the synthetic struc-
ture (the three uppermost A-sublattice sites). After lin-
ear propagation through the trivial and nontrivial BKLs, 
a significant difference is observed. In the nontrivial 
regime, the probe beam remains to be corner-localized 
in the A sublattice, with no intensity reaching the neigh-
boring B and C sites (Fig. 2c1), thus confirming the for-
mation of orbital HOTI corner states (see Fig. 1d1). On 
the contrary, the same probe beam becomes strongly dis-
torted in the trivial regime, spreading into the edge and 
bulk sites with a tangible intensity distribution also in the 
B and C sites (Fig. 2c2). These results are corroborated by 
numerical simulations showing good agreement with the 
experiments (Fig. 2d1, d2).

In another set of measurements, the input probe beam 
is modulated so as to excite py-type orbital corner states, 
see Fig. 1d2. Similar results confirm the formation of a p

Fig. 1  Illustration of “zero-energy” p-orbital topological corner states in a BKL. a Schematic diagram of the triangular BKL with six-unit cells, where 
the white dashed triangle marks one unit cell consisting of three sublattices (A, B, and C), and t1 and t2 indicate the intracell and intercell hopping 
amplitudes, respectively. Each lattice site corresponds to a laser-written waveguide, which supports p-orbital modes (see the left inset). Two types 
of orbital hopping amplitudes, tσ and tπ , are illustrated in the right inset. In the top vertex of the lattice, we depict the rotation of an orbital corner 
state under nonlinear excitation. b Calculated eigenvalue spectrum βL as a function of t1/t2 at tπ/tσ = −0.3 for the finite-size BKL shown in (a), 
where distinct “zero-energy” corner states in the highly nontrivial regime are marked in red. c Calculated band structure for the BKL with t1/t2 = 0.1 , 
showing six corner states (red dots) at βL ≈ 0 , where two representatives ( px - and py-type modes relative to the top corner) are plotted in (d1, d2). 
Note that a topological p-orbital corner mode, as the px-mode illustrated in (d1), is characteristically localized at the corner site 1, with a staggered 
phase distribution in the NNN site 3 but zero amplitude at the nearest-neighbor site 2
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-orbital mode in the orthogonal direction (see Fig.  2b2 
and Fig. 2e1–f2). In addition, to validate the need for the 
staggered phase structure, a series of experiments and 
numerical simulations are performed by setting the input 
dipoles all in phase for direct comparison (see Addi-
tional file 1). Our results reveal that both px - and py-type 
orbital corner states can be realized under appropriate 
excitations.

To demonstrate that the p-orbital BKL is indeed a 
symmetry-protected HOTI, we need to identify the topo-
logical invariant and prove the robustness of the corner 
states. The first candidate is the bulk polarization [46], or 
the Z3 Berry phase [31, 47] of the s-band BKL. In Fig. 3a, 
b1, b2, we plot the calculated polarization and 6-band 
structures as a function of the coupling ratio tπ/tσ . Polar-
izations of the upper three bands are always 0 , 1/3 , and 
2/3 , however the order of these three values changes 
with tπ/tσ as shown in Fig. 3a. The sum of the quantized 
polarizations of the upper three bands is always 1, yet 
this value must be regarded as mod 1, which implies that 
polarization vanishes. Although the vanishing of bulk 
polarization happens only in a parameter region where 
one needs to consider three bands instead of two or five 
[31], it suggests that polarization is not a good topologi-
cal invariant at least for the p-orbital BKL.

To resolve the above issue, we introduce an auxiliary 
Hamiltonian H ′(k , θ) obtained via a unitary transfor-
mation of the p-band Hamiltonian H(k) [31, 47], which 
employs a rotational operator R(θ) (see “Methods” and 

Additional file  1). The C3 symmetry and the GCS are 
both preserved as θ is changed (see Additional file 1). At 
θ = 4π/3 , the auxiliary Hamiltonian is identical to the 
p-orbital BKL Hamiltonian, whereas at θ = 0 it is com-
posed of two independent BKL Hamiltonians—one for 
the tσ hopping and the other for the tπ hopping, just as 
if we had two decoupled s-band BKLs (Fig. 3c). For each 
of these Hamiltonian components, the topological invari-
ant is given by the bulk polarization [46], which depends 
solely on t1/t2 . In Fig. 3d we plot the band-gap structure 
of the auxiliary Hamiltonian as a function of θ , showing 
that the gap does not close as θ is varied from 0 to 4π/3 . 
Thus, the key point is that the orbital BKL described 
by the auxiliary Hamiltonian does not undergo a topo-
logical phase transition, so the p-orbital Hamiltonian 
at θ = 4π/3 is topologically non-trivial, just as for the s
-band BKLs when t1/t2 < 1 (see Additional file  1 for 
details).

Another interesting question that arises is whether 
there is a topological invariant that can manifest the 
nontrivial topology for the orbital HOTIs directly. To 
this end, we propose a generalized winding number W 
as defined in "Methods" [14, 48]. Results are displayed 
in Fig. 3e: W = 2 is found for the topologically nontriv-
ial regime (t1/t2 < 1) and W = 0 for the trivial regime 
t1/t2 > 1 . We emphasize that W is clearly a good topo-
logical invariant, independent of θ . In fact, for BKL-like 
orbital HOTIs, the need of using the winding number W 
is essential. This is because, for the Kagome geometry, 

Fig. 2  Demonstration of p-orbital topological corner states in a photonic BKL. a1, a2 Experimental BKLs in the nontrivial (a1) and trivial (a2) 
regimes. b1, b2 Zoom-in interferograms of the probe beam with a reference plane wave, showing the out-of-phase relation between the corner 
site 1 and its NNN site 3 for both px - (b1) and py-type (b2) orbital excitations. The white ellipses identify the three-dipole probe beams, where the 
plus/minus signs represent 0/π phases for each dipole, and dashed straight lines are added to see the phase structure from the shifted (b1) and 
the aligned (b2) interference fringes, confirming the staggered phase structures (see also numerical results in right insets). c1, c2 Observed output 
intensity patterns in nontrivial (c1) and trivial (c2) BKLs stemming from a px-orbital corner excitation. d1, d2 Numerical simulations corresponding 
to (c1, c2). Results from a py-orbital corner excitation are shown in (e1, e2) and (f1, f2). Grey circles in (c1–f2) mark the BKL sites. Lattice parameters 
are d1 = 39 μm and d2 = 31 μm for p-orbital excitation in the nontrivial BKL. Note the zero amplitude at the nearest-neighbor site 2 in (c1–f1)
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one cannot physically decouple the system into two inde-
pendent Hamiltonians—one for the tσ and the other for 
the tπ hopping, akin to the chiral Hamiltonian for the 
quantum spin Hall effect [49, 50]. Orbital hybridization 
leads to band crossing and mixing from the σ and π sub-
spaces as the parameter θ is changed, so one cannot relate 
a single band to a particular subspace. The vanishing bulk 
polarization cannot unequivocally reveal the underly-
ing nontrivial topology in the BKL. This is quite different 
from the 2D SSH-based HOTIs [19, 22–24, 44, 51], which 
can be decomposed into two independent Hamiltoni-
ans associated with orthogonal orbital hopping (see, e.g. 
Ref [51].). Given that BKL-based HOTIs are protected 
by the GCS, the use of the winding number can resolve 
this issue. If θ changes progressively from 0 to 4π/3 , the 
band gap at zero-energy either remains open as shown 
in Fig. 3d or simply exhibits a “trivial” touching without 
band inversion—see Additional file 1. Consequently, the 
upper and lower three bands never topologically entan-
gle. Since a continuous tuning of θ does not induce a 
phase transition, the topological invariants are entirely 

inherited from the decoupled auxiliary Hamiltonian at 
θ = 0.

The case for W = 1 in Fig.  3e merits further discus-
sion. Since the BKLs possess a C3 symmetry, the winding 
numbers for each direction along the lattice unit vec-
tors are identical (see “Methods”). W = 2 implies that 
both subspaces of the auxiliary Hamiltonian at θ = 0 are 
topologically nontrivial, thus there are two SPT states 
(corresponding to px - and py-orbitals) in each corner. 
In contrast, W = 1 indicates that only one subspace is 
topologically nontrivial while the other is indeed trivial. 
Intuitively, one would think that half of the corner states 
should persist as θ is changed. However, as the trivial and 
nontrivial subspaces are coupled, the corner states of the 
whole system merge into the bulk. The absence of cor-
ner states for W = 1 is in agreement with the condition 
t1σ /t2σ = t1π/t2π that must be held in order to pin the 
orbital corner states at zero energy (see Additional file 1): 
the diagonal white line in Fig. 3e illustrating this condi-
tion does not cross the two W = 1 quadrants. Thus, we 
only have topological corner states in the W = 2 region.

Fig. 3  Theoretical analysis of p-orbital HOTIs: topological invariant and corner-mode robustness. a Bulk polarization of the upper three bands 
(blue, green, and purple as plotted in (b1) and (b2) as a function of the orbital coupling ratio tπ/tσ , exhibiting step jumps at the band-crossing 
points (marked by vertical dashed lines). The sum of the quantized polarizations of the upper three bands is (0+ 1/3+ 2/3)mod1 = 0 . b1–b2 
Band structures plotted for (b1) tπ/tσ = −0.19 and (b2) tπ/tσ = −0.77 at t1/t2 = 0.6 and θ = 4π/3 , showing the change in band-crossing for the 
upper three bands. c Band structure of the auxiliary Hamiltonian H′(k , θ) calculated for t1/t2 = 0.6 and tπ/tσ = −0.8 at θ = 0 , which is equivalent 
to two sets of decoupled s-band BKLs: red for one set and dark blue for the other set. d 3D plot of the band structure of H′(k , θ) as a function of θ , 
showing that the gap at zero energy remains open for any θ (or for that matter, any orbital hybridization). e Calculated winding numbers, where the 
white dotted line marks the orbital-hopping-symmetry condition t1σ /t2σ = t1π/t2π required for topological protection of the orbital corner states. 
Here, circles in the lower inset illustrate distinct windings for each case, and the blue cross in the W = 2 region corresponds to the experimental 
parameters used to realize the p-orbital HOTI. f1–f2 Robustness test of orbital corner states in a rhombic BKL obtained by applying random 
perturbations with increasing strengths δ between site couplings that (f1) preserve the A-SubSy (i.e., without A-A coupling) and (f2) break the 
A-SubSy (i.e., with A-A coupling). The corner modes (red circles) remain at zero energy in (f1) but not in (f2). See Additional file 1 for details
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To prove the immunity of an orbital corner state to 
perturbations, we investigate its robustness in a rhom-
bic BKL, which hosts two orthogonal corner modes only 
at one corner, by following the approach recently devel-
oped for the study of sub-symmetry (SubSy)-protected 
topological states [41]. Here we assume that neglecting 
the long-range hopping is a reasonable approximation. 
Our results (Fig.  3f1, f2) show that orbital corner states 
residing in the A sublattice are protected under pertur-
bations that respect the A-subsymmetry [41]. Moreover, 
we uncover that in addition to the C3 symmetry and the 
GCS, the topological protection of the p-orbital HOTI 
corner states requires a counterintuitive orbital-hopping 
symmetry (see “Methods” and Additional file  1). Such a 
symmetry demands t1σ /t2σ = t1π/t2π  (marked by the 
white dashed line in Fig. 3e), which basically implies that 
the two orthogonal orbital hoppings should experience 
no difference when the lattice breathing characterized by 
t1/t2 occurs. The lattice used in our experiments satisfies 
this condition with good approximation, as indicated by 
the blue cross in the region of W = 2 in Fig. 3e.

Finally, we observe an intriguing phenomenon—the 
dynamical rotation of orbital corner modes under the 
action of nonlinearity. As discussed in Additional file 1, 
the six p-orbital corner modes in a finite-size BKL are 
not all degenerate in their eigenvalues. Besides the two 
typical corner modes exhibiting characteristic—px
- and py-type orbitals shown in Fig. 1d1, d2, the other 
four orbital corner-mode eigenvalues are degenerate 

in pairs. This leads to mode beating, and the amplitude 
distribution and orbital orientation in the three corners 
are susceptible to parameter variation such as in lattice 
size or potential. In our experiment, when a dipole-
like beam is initially tilted away from the “equilibrium” 
position of the px- or py-orbital mode, excitation at one 
corner leads to a dipole rotation towards the preferred 
orbital orientation under a self-focusing nonlinearity. A 
typical example is shown in Fig.  4, where both clock-
wise (Fig. 4a1–a4) and counter-clockwise (Fig. 4b1–b4) 
rotations of about 10° are observed when the top cor-
ner is excited with a dipole beam tilted, respectively, at 
θ = −30◦ and θ = 30◦ relative to the y-axis.

To better understand the underlying physical mecha-
nism, we investigate numerically the observed phe-
nomenon by use of the discrete NLSE for nonlinear 
beam propagation (see Additional file 1). We find that 
such rotations can be explained by the nonlinearity-
induced lifting of the orbital mode degeneracy (Fig. 4c) 
since an oblique p-orbital can be regarded as the 
superposition of px - and py-type orbital components. 
Nonlinearity can introduce local variation of the lat-
tice potential and break the lattice symmetry, and 
depending on the strength, it can also drive the corner 
modes away from zero-energy position and even form 
corner solitons [44]. Here we use a weak self-focusing 
nonlinearity as encountered in the experiment, and 
numerically show that the dynamical rotation can be 
explained by a dissimilar response of two orthogonal 

Fig. 4  Nonlinearity-induced dynamical rotation of p-orbital corner states. a1, b1 Excitation of the top corner of a nontrivial BKL with a dipole-like 
beam initially tilted at (a1) θ = −30◦ and (b1) θ = 30◦ with respect to the y-axis. a2–a4 Experimental output of the orbital corner state under an 
initial excitation corresponding to (a1), showing a clockwise rotation under the action of a self-focusing nonlinearity (with a bias field of 175 kV/m). 
b2–b4 Opposite rotation observed under the same nonlinearity when the initial excitation corresponds to (b1). The grey triangle in each panel 
outlines the BKL boundaries. Note that no rotation occurs when the dipole is initially oriented along the y-axis. c Orbital band structure calculated 
from the discrete NLSE at a dimensionless distance Z = 50, for a probe beam incident at θ = 30◦ and propagating under both linear ( γ = 0 ) and 
nonlinear ( γ = 0.6 ) regimes. A tilted dipole-like beam excites two orthogonal orbital corner modes which are nearly degenerate in the linear 
regime ( �βL ≈ 0 ). Here, the nonlinearity lifts the degeneracy and increases the difference �βNL between the nonlinear eigenvalues, in turn leading 
to a rotation of the orbital state. Insets illustrate the orientation of a probe beam at Z = 25 in the two regimes
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components to the action of nonlinearity, which lifts 
the degeneracy of the two orbital modes.

Before closing, we further emphasize the following 
differences between this work and that in Ref. [40], 
which also used a BKL-type lattice but focused on 
nonlinear s-orbital HOTI. (1) The ODoF requires each 
waveguide in the BKL can support at least the higher 
orbital p-mode, while the fs-laser-writing BKL wave-
guide as used for the s-orbital HOTI typically supports 
only a fundamental s-mode. (2) Different from the s
-orbital, the coupling strength of the p-orbital is ori-

entation-dependent, so one needs two coupling tπ and 
tσ to describe the orbital coupling dynamics. (3) For 
the s-orbital HOTI, the conventional bulk polarization 
can be used to characterize the topological properties 
of the corner states as in Ref. [40]. However, we have 
shown that the nontrivial topology of the p-orbital 
HOTI is “hidden” if the bulk polarization is used due 
to hybridization effects, but well manifested by the 
generalized winding number (see also discussion in 
Section IX of the Additional file 1). (4) We have found 
that the topological protection of p-orbital corner 
states demands an orbital-hopping symmetry, which 
has no counterpart whatsoever in the s-orbital HOTI. 
(5) Apart from different mechanisms for the employed 
nonlinearity itself, Ref [40] focused on nonlinear 
HOTI corner states and corner solitons, while the 
nonlinearity in our current work is used as “perturba-
tion” to induce p-orbital corner mode rotation which 
is not applicable to the s-orbital HOTI.

We have thus shown that p-orbital HOTIs in pho-
tonic BKLs have a nontrivial band topology inherited 
from their s-orbital counterparts, which is character-
ized by the winding number rather than the quantized 
bulk polarization. Higher-order orbital corner states 
are topologically protected by the GCS along with an 
orbital-hopping symmetry not found in HOTIs where 
σ - and π-orbital couplings can be fully decoupled. 
These results have a direct impact on topological pho-
tonics involving the ODoF, especially given that dif-
ferent experimental platforms have enabled active and 
precise control of gain and loss, on-site energy, and 
coupling strength, in both real and synthetic dimen-
sions [52–58]. For instance, using the ODoF, it is pos-
sible to construct a host of new topological phases 

including hybrid quadrupole topological insulators 
[59] and orbital modes in non-Euclidean surfaces with 
disclinations [60]. Our results may prove relevant to 
those studies, as well as to the development of new 
photonic devices such as topological vortex wave-
guides and topological lasers.

1 � Methods
1.1 � Orbital Hamiltonian and the winding number
Under the tight-binding approximation, the p-orbital 
corner states in a BKL can be found from the real-space 
Hamiltonian H expressed as [31]:

where aim,n(˜aim,n) , bim,n(
˜bim,n) and cim,n (̃cim,n) ( i = 1, 2, 3 ) 

are the σ-type ( π-type) annihilation operators at the A, B, 
and C sublattice sites in the (m, n) th unit cell, directed 
along the primitive lattice vectors ei . The coefficients 
t1σ (t2σ ) and t1π (t2π ) are the intracell (intercell) orbital 
coupling strengths (see Fig. 1a; Additional file 1). In Fig. 1, 
the linear band structure (βL) is obtained by diagonaliz-
ing H for different dimerization parameters t1/t2 under 
an orbital hopping symmetry t1σ /t2σ = t1π/t2π . The p
-orbital mode distribution is found by retrieving both px - 
and py-components from the calculated eigenvectors of 
H . In the momentum space, the Fourier transform of H 
for an orthogonal basis along x - and y-directions reads as

where the matrix entries Hi (i = 1, 2, 3) are 2× 2 matrices 
defined as 
Hi(k) = eie

†
i

(

t1σ + t2σ e
ik·ei

)

+ did
†
i

(

t1π + t2π e
ik·ei

)

 , with 
k =

(

kx, ky
)

 being the transverse wave vector, and di the 
unit vector orthogonal to ei. The SPT phase of the p-
band BKL model is identified from an auxiliary Hamilto-
nian H ′(k , θ) , which is achieved by applying a unitary 
transformation on H(k) (see Additional file 1 for details). 
The structure of H ′(k , θ) is identical to that in Eq. (2), 
with the matrix entries Hi(k) replaced by 

H
′

i
(k , θ) =

(

t1σ + t2σ e
ik·ei 0

0 t1π + t2π e
ik·ei

)

R(θ) , where 

R(θ) =

(

cosθ −sinθ

sinθ cosθ

)

 is the rotation operator. The 

orbital Kagome Hamiltonian H(k) (Eq. 2) is fully equiva-
lent to H ′(k , θ = 4π/3) , i.e., at θ = 4π/3 . In our analysis, 
R(θ) is used to artificially tune the auxiliary Hamiltonian 

(1)

H =

∑

m,n

t1σ

(

a1
†
m,nb1m,n + b2

†
m,nc2m,n + c3

†
m,na3m,n

)

+

∑

m,n

t2σ

(

a1
†
m,nb1m+1,n + b2

†
m,nc2m−1,n+1 + c3

†
m,na3m,n+1

)

+

∑

m,n

t1π

(

˜a
†
1m,n

˜b1m,n
+ ˜b

†
2m,n

c̃2m,n
+ c̃

†
3m,n

˜a3m,n

)

+

∑

m,n

t2π

(

˜a
†
1m,n

˜b1m+1,n
+ ˜b

†
2m,n

c̃2m−1,n+1
+ c̃

†
3m,n

˜a3m,n+1

)

+ h.c.,

(2)H(k) =





0 H
†
1 H3

H1 0 H
†
2

H
†
3 H2 0



,



Page 8 of 9Zhang et al. eLight             (2023) 3:5 

H ′(k , θ) from the orbital-decoupled θ = 0 to the physical 
θ = 4π/3 Kagome model, to unequivocally identify the 
topological phase.

The winding number coefficients Wi are calculated 
from the matrix elements of H ′(k , θ) along each direction 
pointed by ei in the first Brillouin zone through the fol-
lowing expression:

with det
[

H
′

i
(k , θ)

]

=

∣

∣det
[

H
′

i
(k , θ)

]
∣

∣ei�i(k ,θ) , where �i(k , θ)  
is the argument of det

[

H
′

i
(k , θ)

]

 , and ki is the wave vector 
along the direction ei . In general, for an arbitrary value of 
θ , we have W = W1 = W2 = W3 , i.e., all Wi are equal as 
long as the C3 symmetry is preserved in the system.

1.2 � Continuous model and numerical simulations
To provide a direct correspondence to the experimen-
tal results in our photonic platform based on a saturable 
photorefractive (PR) crystal (SBN:61), numerical simu-
lations from the following continuous-model nonlinear 
Schrödinger-like equation (NLSE) are compared to the 
measurements [44]:

Here, �(x, y, z) is the electric field envelope, where x 
and y are the transverse coordinates and z is the propa-
gation distance. k = 2πn0/�0 is the wavenumber in the 
medium, where n0 = 2.35 is the crystal refractive index 
and �0 = 532 nm is the laser wavelength. �n is the refrac-
tive index change determined by both the crystal electro-
optic coefficient and the bias field. IL(x, y) and IP

(

x, y
)

 are 
the intensity patterns of the lattice-writing and probing 
beams, respectively. The strength of the nonlinearity is 
controlled by the probe-beam intensity and the bias field 
[44]. Solutions to Eq. (4) for orbital corner states in both 
trivial and nontrivial BKL geometries are found via the 
split-step Fourier transform method.

2 � Experimental method
Experimental BKLs in trivial and nontrivial geometries 
are established by a site-to-site writing process of each 
component waveguide using an ordinarily-polarized CW 
green laser beam [45]. To attain a variable planar distri-
bution, a spatial light modulator (SLM) is employed to 
modulate the initial phase of the laser beam in the Fourier 
space. The effective PR “memory effect” guarantees that 
all waveguides remain intact during the measurement 
time window. The excitation of the orbital corner states 

(3)Wi =
1

2π

∫ 2π

0

dki
d�i(ki)

dki
, i = 1, 2, 3

(4)i
∂�

∂z
= −

1

2k
∇

2
⊥
� −

k�n

n0

�

1+ IL
(

x, y
)

+ IP
(

x, y
) .

is carried out with a low-power extraordinarily-polar-
ized probe beam, which undergoes linear propagation 
through the lattices for the results presented in Fig.  2. 
The probe beam is appropriately shaped via amplitude 
and phase modulation in order to excite the p-orbital 
corner modes (see Additional file  1). In the nonlinear 
regime, a tilted dipole-like probe beam is launched at the 
top corner of the nontrivial BKL, where the strength of 
the self-focusing nonlinearity can be controlled by the 
probe-beam intensity and the bias field.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s43593-​022-​00039-7.

Additional file 1. Supplementary Information including experimental 
details, calculation of topological invariants, and perturbation analysis.
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