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Abstract 

The hope for a futuristic global quantum internet that provides robust and high-capacity quantum information 
transfer lies largely on qudits, the fundamental quantum information carriers prepared in high-dimensional 
superposition states. However, preparing and manipulating N-dimensional flying qudits as well as subsequently 
establishing their entanglement are still challenging tasks, which require precise and simultaneous maneuver of 2 
(N-1) parameters across multiple degrees of freedom. Here, using an integrated approach, we explore the synergy 
from two degrees of freedom of light, spatial mode and polarization, to generate, encode, and manipulate flying 
structured photons and their formed qudits in a four-dimensional Hilbert space with high quantum fidelity, 
intrinsically enabling enhanced noise resilience and higher quantum data rates. The four eigen spin–orbit modes 
of our qudits possess identical spatial–temporal characteristics in terms of intensity distribution and group velocity, 
thereby preserving long-haul coherence within the entirety of the quantum data transmission link. Judiciously 
leveraging the bi-photon entanglement, which is well preserved in the integrated manipulation process, we 
present versatile spin–orbit cluster states in an extensive dimensional Hilbert space. Such cluster states hold 
the promise for quantum error correction which can further bolster the channel robustness in long-range quantum 
communication.

1  Introduction
The rapid evolution of quantum information science is 
forging a quantum paradigm of processing information 
through superposition and entanglement in a parallel 
and secure manner, leading to quantum advantage [1–4]. 
In pursuit of a quantum internet that connects distant 
quantum processors, the ability to transmit quantum 

information encoded into long-lived superposition states 
becomes vital, and information carriers such as flying 
photon qubits in the superposition of two polarization 
states of photons have been utilized [5–8]. Despite these 
exciting developments, a mounting technological barrier 
still exists concerning high-channel capacity transmission 
links, with the quantum data rate limited to 110 Mb/s to 
date [9]. A promising solution is to prepare, manipulate, 
and transmit the fundamental unit of quantum informa-
tion by high-dimensional superposition states (i.e., flying 
qudits) [10, 11]. For their intrinsic high dimensionality, 
qudits can encode richer information and provide more 
intricate entanglement structure, which are eligible for 
more efficient quantum algorithms and can thus further 
enlarge the information capacity and noise resilience for 
the development of the quantum internet [12–16].

To prepare flying qudits for high-capacity, noise-resil-
ient quantum communication, long-distance quantum 
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coherence is essential in the high-dimensional Hilbert 
space [17]. In particular, the eigenstates for construct-
ing photon qudits via superpositions must be indistin-
guishable in terms of their fundamental characteristics, 
including spatial distribution and temporal overlap of 
different eigenstates. In parallel, richer superpositions 
that come with a higher dimensionality also require 
more sophisticated manipulations for flying qudits: 
arbitrary control of an N-dimensional qudit necessitates 
the precise manipulation of 2 (N-1) parameters simulta-
neously [18, 19]. Compared to the N-dimensional qudit 
built upon frequencies [20, 21] or time-bin [22–24], the 
exploitation of more than one degree of freedom (DOF) 
of light in the construction of the Hilbert space leads 
to simultaneous yet individual control over multiple 
DOFs, yielding more convenient and flexible manipula-
tion of flying qudits [25–28]. Specifically, the polariza-
tion and spatial mode DOFs of light can synergistically 
synthesize a high-dimensional spin–orbit Hilbert space 
featuring robust quantum coherence, ideal for high-
dimensional quantum communication. To date, genera-
tion and manipulation of spin–orbit structured photons 
have primarily relied on free-space bulk optics. Spiral 
phase plates and spatial light modulators have demon-
strated their efficacy for producing complex spin–orbit 
structured photons [29]. Furthermore, geometric phase 
elements have been adopted in simpler configurations 
to yield four-dimensional (4D) spin–orbit mutually 
unbiased bases (MUBs) for quantum key distribution 
[27], and also hold promise for generating arbitrary 
spin–orbit SU (4) states [30]. Concurrently, integrated 
photonics have been broadly employed for state manip-
ulation in path [31], frequency [20, 21] and time-bin 
[24] DOFs due to its scalability and robustness. While 
this technology has been widely applied for efficient 
generation of structured light [32], the potential for 
the creation and reconfiguration of entangled photonic 
spin–orbit states for quantum application have not been 
extensively explored. Here, we introduce a novel meth-
odology to create, encode, and arbitrarily reconfigure 
spin–orbit structured photons and their formed flying 
qudits using an integrated photonic platform. The pro-
cess starts with the generation of a biphoton polari-
zation entangled state in free space, followed by the 
transfer of the signal photon into an integrated photonic 
circuit for the spin–orbit state manipulation, during 
which the quantum coherence and bi-photon entangle-
ment are preserved within the entire process. Moreo-
ver, intrinsic entanglement associated with a bi-photon 
state further increases the dimensionality of the system, 
through the formation of three-qubit cluster states with 
greater channel capacity and higher noise resistance [33, 
34] to accelerate quantum networking.

2 � Results
Beyond the polarization states (also called photon spins: |↑� 
and |↓� ) used in conventional qubits on a two-level Poincare 
sphere (PS), we construct qudits by the superposition of 
spin–orbit states [18, 35, 36] that carry coupled photon 
spin and orbital angular momentum (OAM). This forms 
a high-order PS (HOPS) with states 

∣

∣↑,±l � and 
∣

∣↓,±l � 
where l is the OAM order [18]. Through HOPS where 
multiple DOFs of light are at play, our qudits transcend the 
quantum system into higher dimensions. For a given OAM 
order l, it is worth emphasizing that the four spin–orbit 
eigenstates travel at the same speed and feature identical 
modal characteristics and far-field divergence, which 
guarantees indistinguishability in both space and time and 
yields long-distance coherence that is essential for building 
flying photon qudits [37]. While previous research has 
successfully generated these states using free space optical 
elements such as spatial light modulators and q-plates [27, 
30, 38–40], the task of preparing and manipulating the 
spin–orbit entangled states within an integrated system 
in a scalable and robust way [41] still remains a significant 
challenge.

Here, we demonstrate an on-chip integrated experimen-
tal scheme with dual functionalities, i.e., preparing a single 
photon in an arbitrary spin–orbit SU (4) state as well as 
creating the high-dimensional bi-photon entanglement 
between the two photons in SU (4) and SU (2) spaces. To 
form such an entanglement structure, a bi-photon polari-
zation-entangled state is first generated by the SPDC pro-
cess [42]: |�1� = 1√

2
(|Hs�|Vi� − |Vs�|Hi�) , where H and V 

denote horizontal and vertical polarizations and s and i 
represent signal and idler photons, respectively. The idler 
photon remains in free space for the remote entanglement 
manipulation on the signal photon, whereas the signal pho-
ton is sent to the photonic integrated circuits (Fig. 1a) after 
passing through a polarization beam splitter which trans-
forms the polarization DOF to the path DOF (see Supple-
mentary Information). In this scenario, the superposition 
state of the signal photon in an SU (2) polarization space is 
translated to the superposition between on-chip waveguide 
modes |1s � and |3s � . To expand the dimensionality for the 
signal photon, two Mach–Zehnder interferometers are 
strategically designed to perform two parallel on-chip SU 
(2) transformations with respect to inputs at |1s � and |3s � , 
transforming the bi-photon entangled state |�1� to

where |2s � and |4s � are other two waveguide modes paired 
with |1s � and |3s � (Fig.  1a), respectively, and θ1 ( θ2 ) and 
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ϕ1 ( ϕ2 ) correspond to the relative amplitudes and phase 
between |1s � and |2s � ( |3s � and |4s � ), efficiently controlled 
by four on-chip phase shifters. Next, the four waveguide 
modes are translated to the four desired spin–orbit states, 
by coupling to two same-sized microring resonators (R1 
and R2) with two different angular gratings. These grat-
ings scatter the signal photon into the free-space Bessel 
modes with distinct spin–orbit locking [43] (see Supple-
mentary Information), i.e., from |1s � and |2s � to 

∣

∣↑s,+ls � 
and 

∣

∣↓s,−ls � on HOPS I (via R1) and from |3s � and |4s � to 
∣

∣↑s,−ls � and 
∣

∣↓s,+ls � on HOPS II (via R2). In this pro-
cess, θ1 ( θ2 ) and ϕ1 ( ϕ2 ) mentioned above control the lati-
tude and longitude of the superposition state on HOPS 
I (II) (Fig. 1b), respectively. This procedure results in the 
entanglement of the signal photon’s spin–orbit state, 
characterized by the HOPS sets, with the idler photon’s 
polarization state, represented by the PS, as depicted in 
Fig. 1b. We would like to point out that although the local 
transformation applied to the signal photon preserves 
the original Schmidt number of 2 which quantifies the 
entanglement between the signal and idler photon [44], 
it increases the dimensionality of the signal photon to 4. 
In this scenario, the 4D spin–orbit space associated with 
the signal photon defines a single-photon qudit with a 
dimensionality of N = 4, formed by the four spin–orbit 

states of the signal photon. Along with its entanglement 
with the idler photon (i.e., Eq. (1)), it can lead to a mul-
tidimensional entangled state featuring a dimensionality 
of 2N [45].

The full state reconfiguration of the signal photon in 
the designed spin–orbit SU (4) space is completed by lev-
eraging the signal-idler photon entanglement, where the 
polarization manipulation and post selection of the idler 
photon on its PS can provide two independent parame-
ters to remotely project the superposition state of the sig-
nal photon on HOPS III. This manipulation enables the 
coupling between HOPS I and II via HOPS III to form 
the complete high-dimensional SU(4) hyper-HOPS for 
the signal photon:

where α and β are complex coefficients from the 
polarization manipulation and post selection of the 
idler photon (i.e., |ψi � = β∗|Hi � − α∗|Vi � ), satisfy-
ing the relation of |α|2 + |β|2 = 1 . The post selection 
process facilitates a superposition pure state for the 

(2)
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Fig. 1  Schematic for generation and manipulation of spin–orbit flying qudits. The signal photon from a pair of polarization-entangled photons, 
after passing through a polarized beam splitter, are injected into the integrated circuits (upper panel of a) through waveguide modes |1s� and|3s� . 
Two on-chip Mach–Zehnder (MZ) interferometers transforms the signal photon into a SU(4) space, spanned by 4 waveguide modes and visualized 
by the orange high-order Poincare sphere (HOPS) sets in b. Four phase shifters H1, H3, H2, and H4 can control the latitude ( θ1,θ2 ) and the longitude 
( ϕ1,ϕ2 ) on HOPS I and II. Subsequently, the waveguide modes are coherently transformed to four spin–orbit states|↑s ,+6s�,|↑s ,−6s� , |↓s ,−6s� 
and |↓s ,+6s� through two ring resonators R1 and R2 with scatterers inscribed at their inner sidewalls (see Supplementary Information). Meanwhile, 
the idler photon spans a two-dimensional Hilbert space depicted by the blue Poincare sphere (PS) in b, which is entangled with the signal 
photon’s HOPS set. This entanglement facilitates the convenient access of HOPS III, which completes the arbitrary generation and reconfiguration 
of the signal photon’s spin–orbit SU (4) state. The lower panel of a shows the scanning electron microscope (SEM) image of the photonic integrated 
circuits. Also note that two orange arrows shown in a represent two different modes of signal photons, rather than two distinct photons
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signal photon, constituted by 4 spin–orbit eigenstates 
|↑s,+ls�, |↓s,−ls�, |↑s,−ls� and |↓s,+ls� , defining a flying 
qudit which can be conveniently configured in an arbi-
trary spin–orbit SU (4) state. Note that the 4D qudit we 
constructed here consists of the spin and OAM degrees 
of freedom of a single photon, which is fundamentally 
different from the system composed of two entangled 
qubits carried by two separate photons [46].

The photonic integrated circuit including Mach–Zehnder 
interferometers coupled with microring resonators was 
fabricated on a Si3N4-on-SiO2 platform. The cross-section of 
the waveguides and microrings was designed to be 
550 nm × 300 nm to support the desired spin–orbit locking 
for the SPDC-generated entangled photons at the 
wavelength of approximately 810 nm. The angular gratings 
inscribed on microring resonators R1 and R2 were also 
carefully designed with the scatterers’ size of 
80  nm × 80  nm × 300  nm, such that their emissions carry 
opposite OAM orders under the same photon spin ( l = ±6 ), 
matching the designed spin–orbit eigenstates on HOPS I 
and II (Fig. 1b). In each Mach–Zehnder interferometer, two 
cascaded thermal-based phase shifters together perform the 
SU(2) transformation on the signal photon by tuning θ1,2 and 
ϕ1,2 , transforming to the bi-photon state denoted in Eq. (1). 
In the experiment, the spin–orbit states on HOPS I and II 
were tuned to |ψs1� = 1√

2
(
∣

∣↑s,+6s � +
∣

∣↓s,−6s �) and 

|ψs2� = 1√
2
(
∣

∣↑s,−6s � +
∣

∣↓s,+6s �) , which served as the 
north and south pole states of HOPS III, respectively 
(Fig.  2a). To demonstrate the high-dimensional coherent 

manipulation needed for a photon qudit, we further manipu-
lated the polarization state of the idler photon to remotely 
maneuver the signal photon switching between four iconic 
states: the aforementioned two pole states |ψs1� and |ψs2� on 
HOPS III, and two 4D states |ψs3� = 1√

2
(|ψs1� + |ψs2�) and 

|ψs4� = 1√
2
(|ψs1� − i|ψs2�) on the equator as superpositions 

of the two pole states. Quantum state tomography was sub-
sequently conducted to fully characterize the complete 4D 
quantum state of the signal photon through sixteen separate 
projection measurements in each tomography process (see 
Supplementary Information), when the polarization state of 
the idler photon was tuned from the two poles of its PS 
( |ψi1� = |Vi� and |ψi2� = |Hi� ) to the equator at 
|ψi3� = 1√

2
(|Hi� − |Vi�) and |ψi4� = 1√

2
(|Hi� + i|Vi�) , cor-

responding to |ψs1� to |ψs4� for the signal photon, respec-
tively (Fig.  2b). The experimentally reconstructed density 
matrix of the signal photon in the 4D spin–orbit Hilbert 
space exhibits great consistency with the theory, confirmed 
by high quantum fidelities for all four spin–orbit states with 
an average quantum fidelity of 92.6% (see Supplementary 
Information). Here, the imperfection of the quantum fideli-
ties is mainly attributed to the instability of the relative phase 
between different off-chip paths and the light coupling from 
free space to the on-chip waveguide, and can be alleviated by 
utilizing active feedback control or making the generation 
scheme fully integrated through employing an on-chip spon-
taneous four-wave mixing (SFWM) entanglement source 
[47]. Moreover, the impurities of the transverse spin at the 
inner sidewall of the ring resonator could also cause the 

Fig. 2  Integrated generation and manipulation of the high-dimensional spin–orbit SU(4) state. a The locations of four selected iconic spin–
orbit states on the HOPS set of the signal photon, where the states are: |ψs1� = 1√

2
(|↑s ,+6s� + |↓s ,−6s�) , |ψs2� = 1√

2
(|↑s ,−6s� + |↓s ,+6s�) , 

|ψs3� = 1√
2
(|ψs1� + |ψs2�) and |ψs4� = 1√

2
(|ψs1� − i|ψs2�) . b The experimentally retrieved (upper row) and theoretically predicted (lower row) 

density matrices ρs = |ψs��ψs| of the four quantum states depicted in a. The spin–orbit states are generated by appropriately biasing the on-chip 
optical phase shifters and projecting the idler photon into |ψi1� = |Vi� , |ψi2� = |Hi� , |ψi3� = 1√

2
(|Hi� − |Vi�) and |ψi4� = 1√

2
(|Hi� + i|Vi�) , 

respectively. The experimental density matrices are reconstructed through full quantum tomography with 16 projective measurements. The 
quantum fidelities are 93.3%, 96.2%, 91.0% and 90.0%, respectively, with an average high fidelity of 92.6%, validating the capability of the coherent 
generation and reconfiguration of the high-dimensional spin–orbit SU (4) states
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degradation of the quantum state, which could be further 
optimized towards unity by fine-tuning the resonator’s width 
and height [48].

The ability to prepare the flying photon qudit is the key to 
high-dimensional quantum key distribution for robust and 
noise-resilient quantum communication. According to the 
high-dimensional BB84 protocol [10–12, 49], two mutually 
unbiased bases {|αi�} and 

{

|βj�
}

 with 4 states each can be 
created using eight orthogonal superpositions of any paired 
spin–orbit eigenstates satisfying 

∣

∣�αi|αj�
∣

∣

2 =
∣

∣�βi|βj�
∣

∣

2 = δij 
and 

∣

∣�αi|βj�
∣

∣

2 = 1
4
 . Here, the mutually unbiased bases are 

chosen to be: {|αi� } = 1√
2

{

|↑s,+6s� + |↑s,−6s�, |↑s,+6s�
−|↑s,−6s�, |↓s,+6s� + |↓s,−6s�, |↓s,+6s� − |↓s,−6s�

}

 
and {|βi� } = 1√

2

{

|↑s,+6s� + |↓s,+6s�, |↑s,+6s� − |↓s,+6s�,
|↑s,−6s� + |↓s,−6s�, |↑s,−6s� − |↓s,−6s�

}

 . In practice, 
the two mutually unbiased bases shared between the trans-
mitter (Alice) and the receiver (Bob) together form an 8 × 8 
probability-of-detection matrix (Fig. 3a), where each matrix 
element represents the probability of the quantum state pre-
pared by the transmitter to be decoded by the receiver. The 
experimentally reconstructed matrix (Fig.  3b), after 64 

projective measurements, demonstrated a high preparation 
fidelity of 86.9% (well above the protocol threshold of 81.1%), 
confirming the viability of applying the generated flying pho-
ton qudit for quantum communication. In this scenario, we 
simulated the image encryption transmission from the trans-
mitter to the receiver under the high-dimensional BB84 pro-
tocol (Fig. 3c) [50], where the photonic state was randomly 
prepared at |αi� or |βi� by the transmitter and retrieved by the 
receiver based on the measured probability-of-detection 
matrix (see Supplementary Information). To transmit this 
colored image, the RGB values in each pixel were discretized 
into four levels and subsequently encrypted by quantum 
keys corresponding to |αi� or |βi� . The reconstructed image 
successfully reproduced the original image, which demon-
strated the capability of secure communication using spin–
orbit qudits. Compared with the conventional protocol using 
flying qubits, the 4D qudits enabled the transmission of dou-
bled bits of information while maintaining the same single 
photon generation rate. Additionally, the quantum bit error 
rate threshold also increases from 11.0% to 18.9%, granting 
efficient quantum data transfer with enhanced noise resil-
ience. It is worth to mention that reaching a high secret key 

Fig. 3  Demonstration of the potential towards high-dimensional quantum key distribution. a and b are the theoretically and experimentally 
retrieved probability-of-detection matrix, respectively, in which each row and column label the state prepared by the transmitter and decoded 
by the receiver, respectively. The experimentally reconstructed matrix shows a preparation fidelity of 86.85% exceeding the protocol 
threshold of 81.1%, validating the feasibility of conducting high-dimensional quantum key distribution. c Simulated secret communication 
using the high-dimensional BB84 protocol for quantum key distribution. With the experimentally measured probability-of-detection matrix, 
the transmitter and receiver can share a series of secret keys using the protocol. The original image’s RGB values of each pixel are discretized 
into four levels (left panel) and then encrypted using the transmitter’s quantum keys sequentially (middle panel). The encrypted image 
is subsequently sent to the receiver and decoded with the receiver’s secret keys after information reconciliation (right panel)
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rate with such 4D qudits requires the deterministic detection 
of spin–orbit states. This could be potentially achieved 
through the efficient OAM sorting technique that has dem-
onstrated an experimental separation efficiency of over 92% 
[51]. With this foundation, we anticipate assessing the practi-
cality of our generation scheme by conducting real-time 
quantum key distribution experiments under true environ-
mental conditions in our subsequent research.

The entanglement between the signal and idler photon is 
maintained throughout the integrated manipulation pro-
cess, allowing for the exploitation of the whole biphoton 
system, which further expands the dimensionality of the 
Hilbert space. In our experimental scheme, the Hilbert 
space of the biphoton state is a tensor product space of 
three two-dimensional systems: the spin and the OAM 
degrees of freedom for the signal photon, alongside the 
spin degree of freedom for the idler photon. Together, they 
constitute an eight-dimensional (8D) Hilbert space, charac-
terizing a three-qubit quantum system. (Fig. 4a). One sig-
nificant group of quantum states in this Hilbert space is the 
high-dimensional cluster state with versatile graph struc-
tures [52], featuring a greater channel capacity. In compari-
son to the multi-qubit system with a single DOF, our 

high-dimensional spin–orbit system conveniently offers 
simultaneous control of two DOFs as well as the two-qubit 
operation over different DOFs of the same particle, which 
greatly facilitates the generation and manipulation of com-
plex cluster states in a flexible way [25, 33, 53]. By perform-
ing the local unitary operation on the idler photon where 
two pole states of the PS are transformed to two superposi-
tion states (i.e., |Ai� = 1√

2
(|Hi� − |Vi�) and 

|Di� = 1√
2
(|Hi� + |Vi�) ), we can successfully generate a lin-

early connected three-qubit cluster state:

in which the spin and OAM DOFs of the signal pho-
ton are correlated with the spin DOF of the idler pho-
ton, as illustrated in the graph representation in Fig. 4a. 
The genuine multipartite entanglement structure brings 
exotic coupled polarization and intensity distribution of 

|�cluster� =
1
√
8
(| ↑s,+6s� + | ↓s,+6s� + | ↑s,−6s�

+| ↓s,−6s�)|Ai� +
1
√
8
(| ↑s,+6s�

−| ↓s,+6s� − | ↑s,−6s� + | ↓s,−6s�)|Di�

Fig. 4  Eight-dimensional cluster state in the spin–orbit entanglement space spanned by signal and idler photons. a The PS representation 
and the graph representation of the three-qubit cluster state. The coupled HOPSs structure illustrates the eight-dimensional Hilbert space spanned 
by the spin ( Ss ) and OAM ( Os ) of the signal photon and the spin ( Si ) of the idler photon. The center blue PS represents the idler photon space 
spanned by |Ai� and |Di� obtained after performing the local unitary transformation with respect to the idler photon PS in Fig. 1a, while the top 
(bottom) panel shows the four-dimensional spin–orbit Hilbert space of the signal photon with projecting the idler photon onto the pole state 
|Ai� ( |Di� ). The solid points on each sphere depict the projection of the cluster state onto the corresponding HOPS. The black dashed panel 
illustrates the graph representation of the constructed cluster state |�cluster� . The spin of the signal photon Ss , the spin of the idler photon Si , 
and the OAM of the signal photon Os are sequentially and linearly connected, showing that the state is a simultaneous + 1-eigenvalue eigenstate 
of σx ,Ss ⊗ σz ,Si ⊗ IOs

 , σz ,Ss ⊗ σx ,Si ⊗ σz ,Os
 and ISs ⊗ σz ,Si ⊗ σx ,Os

 , where  I  , σx , σz are identity matrix and Pauli matrices for the corresponding DOFs. 
b The spatial field distribution of the generated cluster state, where the top and bottom panels show the polarization and intensity distribution 
of the cluster state. The orange images, light green arrows, and blue arrows denote the intensity and polarization distribution of the signal photon 
and the polarization of the idler photon, respectively. c Experimentally reconstructed (top panel) and theoretically predicted (bottom panel) density 
matrix ρcluster = |�cluster���cluster | , featuring a high quantum fidelity of 88.4%
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the optical field (Fig.  4b), enabling the controllability of 
the spatial field distribution of the signal photon via the 
manipulation and the polarization projection of the idler 
photon. The generated cluster state was characterized 
with a full quantum tomography consisting of 64 pro-
jective measurements (see Supplementary Information). 
The retrieved density matrix ρcluster = |�cluster���cluster | 
demonstrated a quantum fidelity of 88.4%, verifying 
the system in a high-dimensional entangled quantum 
state. The successful generation of the high-fidelity clus-
ter state, due to the greater channel capacity, allows the 
encoding of complex quantum information capable of 
quantum error correction [33], thereby further enhanc-
ing the robustness of the quantum channel. Moreover, 
the integrated generation scheme of cluster states, which 
can be further scaled up, holds the promise of mitigat-
ing quantum losses to establish long-range quantum 
communication without the need for excessive quantum 
memories [34]. Additionally, the created cluster states 
may enable the essential infrastructure for the practical 
deployment of one-way quantum computation [52, 53]. 
Note that the fidelity of the spin–orbit hybrid entangled 
states generated in our system is lower compared to high-
dimensional entanglements within a single degree of 
freedom reported in other literatures. This is primarily 
due to the instabilities of our experimental setup instead 
of the fundamental limitation of the generation scheme, 
which could be mitigated by adopting a fully integrated 
generation approach with on-chip SFWM source [47].

3 � Discussion
In summary, we demonstrated the convenient generation 
and flexible manipulation of high-dimensional quantum 
states in a spin–orbit coupled Hilbert space. Integrating 
the generated spin–orbit structured photons into the 
pre-existing fiber network infrastructure [54, 55] offers 
promising prospects for a fiber-based high-dimensional 
quantum key distribution system that could potentially 
achieve elevated secret key rates [56]. With the same 
propagation constant and spatial profile, these quantum 
states maintain long-distance coherence, delivering 
a flying photon qudit for high-capacity, long-haul 
quantum network. This characteristic makes them 
excellent candidates for establishing satellite-based 
intercontinental secure quantum communication, which 
exhibits smaller loss and higher secure key rate compared 
to the fiber-based quantum communication over 
equivalent distances [7]. Note that integrated photonics 
has been applied to the generation of structured light, 
complementary to the conventional approaches based 
on free space optics [32]. While our work is focused on 
4D qudits, the demonstrated on-chip platform is highly 

scalable to support even a higher-dimensional Hilbert 
space, making it of broad significance for constructing 
high-dimensional quantum networks. Further integration 
of on-chip SFWM quantum sources can lead to a fully 
integrated generation scheme [47], enhancing resistance 
to the inefficiencies of free-space to on-chip waveguide 
coupling and fluctuations in free-space setups, thereby 
establishing a robust entanglement distribution source 
suited for quantum satellites and ground stations with a 
higher quantum data rate and fidelity.
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