Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Editing Carlitz exponential

You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to a username, among other benefits.
Content that violates any copyrights will be deleted. Encyclopedic content must be verifiable through citations to reliable sources.
Latest revision Your text
Line 7: Line 7:
==Definition==
==Definition==


We work over the polynomial ring '''F'''<sub>''q''</sub>[''T''] of one variable over a [[finite field]] '''F'''<sub>''q''</sub> with ''q'' elements. The [[Completion (metric space)|completion]] '''C'''<sub>∞</sub> of an [[algebraic closure]] of the field '''F'''<sub>''q''</sub>((''T''<sup>&minus;1</sup>)) of [[formal Laurent series]] in ''T''<sup>&minus;1</sup> will be useful. It is a complete and algebraically closed field.
We work over the polynomial ring '''F'''<sub>''q''</sub>[''T''] of one variable over a [[finite field]] '''F'''<sub>''q''</sub> with ''q'' elements. The [[Completion (metric space)|completion]] '''C'''<sub>∞</sub> of an [[algebraic closure]] of the field '''F'''<sub>''q''</sub>((''T''<sup>&minus;1</sup>)) of [[formal Laurent series]] in ''T''<sup>&minus;1</sup> will be needed. It is a complete and algebraically closed field.


First we need analogues to the [[factorials]], which appear in the definition of the usual exponential function. For ''i''&nbsp;>&nbsp;0 we define
First we need analogues to the [[factorials]], which appear in the definition of the usual exponential function. For ''i''&nbsp;>&nbsp;0 we define
By publishing changes, you agree to the Terms of Use, and you irrevocably agree to release your contribution under the CC BY-SA 4.0 License and the GFDL. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel Editing help (opens in new window)

Copy and paste: – — ° ′ ″ ≈ ≠ ≤ ≥ ± − × ÷ ← → · §   Cite your sources: <ref></ref>


{{}}   {{{}}}   |   []   [[]]   [[Category:]]   #REDIRECT [[]]   &nbsp;   <s></s>   <sup></sup>   <sub></sub>   <code></code>   <pre></pre>   <blockquote></blockquote>   <ref></ref> <ref name="" />   {{Reflist}}   <references />   <includeonly></includeonly>   <noinclude></noinclude>   {{DEFAULTSORT:}}   <nowiki></nowiki>   <!-- -->   <span class="plainlinks"></span>


Symbols: ~ | ¡ ¿ † ‡ ↔ ↑ ↓ • ¶   # ∞   ‹› «»   ¤ ₳ ฿ ₵ ¢ ₡ ₢ $ ₫ ₯ € ₠ ₣ ƒ ₴ ₭ ₤ ℳ ₥ ₦ № ₧ ₰ £ ៛ ₨ ₪ ৳ ₮ ₩ ¥   ♠ ♣ ♥ ♦   𝄫 ♭ ♮ ♯ 𝄪   © ® ™
Latin: A a Á á À à  â Ä ä Ǎ ǎ Ă ă Ā ā à ã Å å Ą ą Æ æ Ǣ ǣ   B b   C c Ć ć Ċ ċ Ĉ ĉ Č č Ç ç   D d Ď ď Đ đ Ḍ ḍ Ð ð   E e É é È è Ė ė Ê ê Ë ë Ě ě Ĕ ĕ Ē ē Ẽ ẽ Ę ę Ẹ ẹ Ɛ ɛ Ǝ ǝ Ə ə   F f   G g Ġ ġ Ĝ ĝ Ğ ğ Ģ ģ   H h Ĥ ĥ Ħ ħ Ḥ ḥ   I i İ ı Í í Ì ì Î î Ï ï Ǐ ǐ Ĭ ĭ Ī ī Ĩ ĩ Į į Ị ị   J j Ĵ ĵ   K k Ķ ķ   L l Ĺ ĺ Ŀ ŀ Ľ ľ Ļ ļ Ł ł Ḷ ḷ Ḹ ḹ   M m Ṃ ṃ   N n Ń ń Ň ň Ñ ñ Ņ ņ Ṇ ṇ Ŋ ŋ   O o Ó ó Ò ò Ô ô Ö ö Ǒ ǒ Ŏ ŏ Ō ō Õ õ Ǫ ǫ Ọ ọ Ő ő Ø ø Œ œ   Ɔ ɔ   P p   Q q   R r Ŕ ŕ Ř ř Ŗ ŗ Ṛ ṛ Ṝ ṝ   S s Ś ś Ŝ ŝ Š š Ş ş Ș ș Ṣ ṣ ß   T t Ť ť Ţ ţ Ț ț Ṭ ṭ Þ þ   U u Ú ú Ù ù Û û Ü ü Ǔ ǔ Ŭ ŭ Ū ū Ũ ũ Ů ů Ų ų Ụ ụ Ű ű Ǘ ǘ Ǜ ǜ Ǚ ǚ Ǖ ǖ   V v   W w Ŵ ŵ   X x   Y y Ý ý Ŷ ŷ Ÿ ÿ Ỹ ỹ Ȳ ȳ   Z z Ź ź Ż ż Ž ž   ß Ð ð Þ þ Ŋ ŋ Ə ə
Greek: Ά ά Έ έ Ή ή Ί ί Ό ό Ύ ύ Ώ ώ   Α α Β β Γ γ Δ δ   Ε ε Ζ ζ Η η Θ θ   Ι ι Κ κ Λ λ Μ μ   Ν ν Ξ ξ Ο ο Π π   Ρ ρ Σ σ ς Τ τ Υ υ   Φ φ Χ χ Ψ ψ Ω ω   {{Polytonic|}}
Cyrillic: А а Б б В в Г г   Ґ ґ Ѓ ѓ Д д Ђ ђ   Е е Ё ё Є є Ж ж   З з Ѕ ѕ И и І і   Ї ї Й й Ј ј К к   Ќ ќ Л л Љ љ М м   Н н Њ њ О о П п   Р р С с Т т Ћ ћ   У у Ў ў Ф ф Х х   Ц ц Ч ч Џ џ Ш ш   Щ щ Ъ ъ Ы ы Ь ь   Э э Ю ю Я я   ́
IPA: t̪ d̪ ʈ ɖ ɟ ɡ ɢ ʡ ʔ   ɸ β θ ð ʃ ʒ ɕ ʑ ʂ ʐ ç ʝ ɣ χ ʁ ħ ʕ ʜ ʢ ɦ   ɱ ɳ ɲ ŋ ɴ   ʋ ɹ ɻ ɰ   ʙ ⱱ ʀ ɾ ɽ   ɫ ɬ ɮ ɺ ɭ ʎ ʟ   ɥ ʍ ɧ   ʼ   ɓ ɗ ʄ ɠ ʛ   ʘ ǀ ǃ ǂ ǁ   ɨ ʉ ɯ   ɪ ʏ ʊ   ø ɘ ɵ ɤ   ə ɚ   ɛ œ ɜ ɝ ɞ ʌ ɔ   æ   ɐ ɶ ɑ ɒ   ʰ ʱ ʷ ʲ ˠ ˤ ⁿ ˡ   ˈ ˌ ː ˑ ̪   {{IPA|}}

Wikidata entities used in this page

Pages transcluded onto the current version of this page (help):