Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

De Moivre's formula

(Redirected from De Moivre's identity)

In mathematics, de Moivre's formula (also known as de Moivre's theorem and de Moivre's identity) states that for any real number x and integer n it is the case that where i is the imaginary unit (i2 = −1). The formula is named after Abraham de Moivre,[1] although he never stated it in his works.[2] The expression cos x + i sin x is sometimes abbreviated to cis x.

The formula is important because it connects complex numbers and trigonometry. By expanding the left hand side and then comparing the real and imaginary parts under the assumption that x is real, it is possible to derive useful expressions for cos nx and sin nx in terms of cos x and sin x.

As written, the formula is not valid for non-integer powers n. However, there are generalizations of this formula valid for other exponents. These can be used to give explicit expressions for the nth roots of unity, that is, complex numbers z such that zn = 1.

Using the standard extensions of the sine and cosine functions to complex numbers, the formula is valid even when x is an arbitrary complex number.

Example

edit

For   and  , de Moivre's formula asserts that   or equivalently that   In this example, it is easy to check the validity of the equation by multiplying out the left side.

Relation to Euler's formula

edit

De Moivre's formula is a precursor to Euler's formula   with x expressed in radians rather than degrees, which establishes the fundamental relationship between the trigonometric functions and the complex exponential function.

One can derive de Moivre's formula using Euler's formula and the exponential law for integer powers

 

since Euler's formula implies that the left side is equal to   while the right side is equal to  

Proof by induction

edit

The truth of de Moivre's theorem can be established by using mathematical induction for natural numbers, and extended to all integers from there. For an integer n, call the following statement S(n):

 

For n > 0, we proceed by mathematical induction. S(1) is clearly true. For our hypothesis, we assume S(k) is true for some natural k. That is, we assume

 

Now, considering S(k + 1):

 

See angle sum and difference identities.

We deduce that S(k) implies S(k + 1). By the principle of mathematical induction it follows that the result is true for all natural numbers. Now, S(0) is clearly true since cos(0x) + i sin(0x) = 1 + 0i = 1. Finally, for the negative integer cases, we consider an exponent of n for natural n.

 

The equation (*) is a result of the identity

 

for z = cos nx + i sin nx. Hence, S(n) holds for all integers n.

Formulae for cosine and sine individually

edit

For an equality of complex numbers, one necessarily has equality both of the real parts and of the imaginary parts of both members of the equation. If x, and therefore also cos x and sin x, are real numbers, then the identity of these parts can be written using binomial coefficients. This formula was given by 16th century French mathematician François Viète:

 

In each of these two equations, the final trigonometric function equals one or minus one or zero, thus removing half the entries in each of the sums. These equations are in fact valid even for complex values of x, because both sides are entire (that is, holomorphic on the whole complex plane) functions of x, and two such functions that coincide on the real axis necessarily coincide everywhere. Here are the concrete instances of these equations for n = 2 and n = 3:

 

The right-hand side of the formula for cos nx is in fact the value Tn(cos x) of the Chebyshev polynomial Tn at cos x.

Failure for non-integer powers, and generalization

edit

De Moivre's formula does not hold for non-integer powers. The derivation of de Moivre's formula above involves a complex number raised to the integer power n. If a complex number is raised to a non-integer power, the result is multiple-valued (see failure of power and logarithm identities).

Roots of complex numbers

edit

A modest extension of the version of de Moivre's formula given in this article can be used to find the n-th roots of a complex number for a non-zero integer n. (This is equivalent to raising to a power of 1 / n).

If z is a complex number, written in polar form as

 

then the n-th roots of z are given by

 

where k varies over the integer values from 0 to |n| − 1.

This formula is also sometimes known as de Moivre's formula.[3]

Complex numbers raised to an arbitrary power

edit

Generally, if   (in polar form) and w are arbitrary complex numbers, then the set of possible values is   (Note that if w is a rational number that equals p / q in lowest terms then this set will have exactly q distinct values rather than infinitely many. In particular, if w is an integer then the set will have exactly one value, as previously discussed.) In contrast, de Moivre's formula gives   which is just the single value from this set corresponding to k = 0.

Analogues in other settings

edit

Hyperbolic trigonometry

edit

Since cosh x + sinh x = ex, an analog to de Moivre's formula also applies to the hyperbolic trigonometry. For all integers n,

 

If n is a rational number (but not necessarily an integer), then cosh nx + sinh nx will be one of the values of (cosh x + sinh x)n.[4]

Extension to complex numbers

edit

For any integer n, the formula holds for any complex number  

 

where

 

Quaternions

edit

To find the roots of a quaternion there is an analogous form of de Moivre's formula. A quaternion in the form

 

can be represented in the form

 

In this representation,

 

and the trigonometric functions are defined as

 

In the case that a2 + b2 + c2 ≠ 0,

 

that is, the unit vector. This leads to the variation of De Moivre's formula:

 [5]

Example

edit

To find the cube roots of

 

write the quaternion in the form

 

Then the cube roots are given by:

 

2 × 2 matrices

edit

With matrices,   when n is an integer. This is a direct consequence of the isomorphism between the matrices of type   and the complex plane.

References

edit
  • Abramowitz, Milton; Stegun, Irene A. (1964). Handbook of Mathematical Functions. New York: Dover Publications. p. 74. ISBN 0-486-61272-4..
  1. ^ Moivre, Ab. de (1707). "Aequationum quarundam potestatis tertiae, quintae, septimae, nonae, & superiorum, ad infinitum usque pergendo, in termimis finitis, ad instar regularum pro cubicis quae vocantur Cardani, resolutio analytica" [Of certain equations of the third, fifth, seventh, ninth, & higher power, all the way to infinity, by proceeding, in finite terms, in the form of rules for cubics which are called by Cardano, resolution by analysis.]. Philosophical Transactions of the Royal Society of London (in Latin). 25 (309): 2368–2371. doi:10.1098/rstl.1706.0037. S2CID 186209627.
    • English translation by Richard J. Pulskamp (2009)
    On p. 2370 de Moivre stated that if a series has the form   , where n is any given odd integer (positive or negative) and where y and a can be functions, then upon solving for y, the result is equation (2) on the same page:  . If y = cos x and a = cos nx , then the result is  
    • In 1676, Isaac Newton found the relation between two chords that were in the ratio of n to 1; the relation was expressed by the series above. The series appears in a letter — Epistola prior D. Issaci Newton, Mathescos Professoris in Celeberrima Academia Cantabrigiensi; … — of 13 June 1676 from Isaac Newton to Henry Oldenburg, secretary of the Royal Society; a copy of the letter was sent to Gottfried Wilhelm Leibniz. See p. 106 of: Biot, J.-B.; Lefort, F., eds. (1856). Commercium epistolicum J. Collins et aliorum de analysi promota, etc: ou … (in Latin). Paris, France: Mallet-Bachelier. pp. 102–112.
    • In 1698, de Moivre derived the same series. See: de Moivre, A. (1698). "A method of extracting roots of an infinite equation". Philosophical Transactions of the Royal Society of London. 20 (240): 190–193. doi:10.1098/rstl.1698.0034. S2CID 186214144.; see p 192.
    • In 1730, de Moivre explicitly considered the case where the functions are cos θ and cos nθ. See: Moivre, A. de (1730). Miscellanea Analytica de Seriebus et Quadraturis (in Latin). London, England: J. Tonson & J. Watts. p. 1. From p. 1: "Lemma 1. Si sint l & x cosinus arcuum duorum A & B, quorum uterque eodem radio 1 describatur, quorumque prior sit posterioris multiplex in ea ratione quam habet numerus n ad unitatem, tunc erit  ." (If l and x are cosines of two arcs A and B both of which are described by the same radius 1 and of which the former is a multiple of the latter in that ratio as the number n has to 1, then it will be [true that]  .) So if arc A = n × arc B, then l = cos A = cos nB and x = cos B. Hence  
    See also:
  2. ^ Lial, Margaret L.; Hornsby, John; Schneider, David I.; Callie J., Daniels (2008). College Algebra and Trigonometry (4th ed.). Boston: Pearson/Addison Wesley. p. 792. ISBN 9780321497444.
  3. ^ "De Moivre formula", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  4. ^ Mukhopadhyay, Utpal (August 2006). "Some interesting features of hyperbolic functions". Resonance. 11 (8): 81–85. doi:10.1007/BF02855783. S2CID 119753430.
  5. ^ Brand, Louis (October 1942). "The roots of a quaternion". The American Mathematical Monthly. 49 (8): 519–520. doi:10.2307/2302858. JSTOR 2302858.
edit
Listen to this article (18 minutes)
 
This audio file was created from a revision of this article dated 5 June 2021 (2021-06-05), and does not reflect subsequent edits.