Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Jump to content

4-polytope: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
9900634102
Tags: Visual edit Mobile edit Mobile web edit
Classes: can one identify an unknown example?
 
(32 intermediate revisions by 21 users not shown)
Line 1: Line 1:
{{short description|Four-dimensional geometric object with flat sides}}
In [[geometry]], a '''4-polytope''' (sometimes also called a '''polychoron'''<ref>[[Norman Johnson (mathematician)|N.W. Johnson]]: ''Geometries and Transformations'', (2018) {{ISBN|978-1-107-10340-5}} Chapter 11: ''Finite Symmetry Groups'', 11.1 ''Polytopes and Honeycombs'', p.224</ref>, '''polycell''', or 9900633102'''polyhedroid''') is a four-dimensional [[polytope]].<ref>{{Cite book | last = Vialar | first = T. | title = Complex and Chaotic Nonlinear Dynamics: Advances in Economics and Finance | publisher = Springer | year = 2009 | page = 674
{| align=right class=wikitable
| url = https://books.google.com/books?id=uf20taaf-VgC&pg=PA674&dq=polychoron#v=onepage&q=polychoron&f=false | isbn = 978-3-540-85977-2}}</ref><ref>{{Cite book
|+ Graphs of the six [[convex regular 4-polytope]]s
|-
!{3,3,3}
!{3,3,4}
!{4,3,3}
|- valign=top align=center
|[[Image:4-simplex t0.svg|120px]]<BR>[[5-cell]]<BR>Pentatope<BR>4-[[simplex]]
|[[Image:4-cube t3.svg|121px]]<BR>[[16-cell]]<BR>Orthoplex<BR>4-[[orthoplex]]
|[[Image:4-cube t0.svg|120px]]<BR>[[8-cell]]<BR>[[Tesseract]]<BR>4-[[hypercube|cube]]
|-
!{3,4,3}
!{3,3,5}
!{5,3,3}
|- valign=top align=center
|[[Image:24-cell t0 F4.svg|120px]]<BR>[[24-cell]]<BR>Octaplex
|[[Image:600-cell graph H4.svg|120px]]<BR>[[600-cell]]<BR>Tetraplex
|[[Image:120-cell graph H4.svg|120px]]<BR>[[120-cell]]<BR>Dodecaplex
|}

In [[geometry]], a '''4-polytope''' (sometimes also called a '''polychoron''',<ref>[[Norman Johnson (mathematician)|N.W. Johnson]]: ''Geometries and Transformations'', (2018) {{ISBN|978-1-107-10340-5}} Chapter 11: ''Finite Symmetry Groups'', 11.1 ''Polytopes and Honeycombs'', p.224</ref> '''polycell''', or '''polyhedroid''') is a [[four-dimensional]] [[polytope]].<ref>{{Cite book | last = Vialar | first = T. | title = Complex and Chaotic Nonlinear Dynamics: Advances in Economics and Finance | publisher = Springer | year = 2009 | page = 674
| url = https://books.google.com/books?id=uf20taaf-VgC&q=polychoron&pg=PA674 | isbn = 978-3-540-85977-2}}</ref><ref>{{Cite book
| last = Capecchi | first = V. |author2=Contucci, P. |author3=Buscema, M. |author4=D'Amore, B. | title = Applications of Mathematics in Models, Artificial Neural Networks and Arts
| last = Capecchi | first = V. |author2=Contucci, P. |author3=Buscema, M. |author4=D'Amore, B. | title = Applications of Mathematics in Models, Artificial Neural Networks and Arts
| publisher = Springer | year = 2010 | page = 598 | url = https://books.google.com/books?id=oNy5MxGXLEwC&pg=PA598&dq=polychoron#v=onepage&q=polychoron&f=false | doi = 10.1007/978-90-481-8581-8
| publisher = Springer | year = 2010 | page = 598 | url = https://books.google.com/books?id=oNy5MxGXLEwC&q=polychoron&pg=PA598 | doi = 10.1007/978-90-481-8581-8
| isbn = 978-90-481-8580-1}}</ref> It is a connected and closed figure, composed of lower-dimensional polytopal elements: [[Vertex (geometry)|vertices]], [[Edge (geometry)|edges]], [[Face (geometry)|faces]] ([[polygon]]s), and [[Cell (mathematics)|cells]] ([[Polyhedron|polyhedra]]). Each face is shared by exactly two cells.
| isbn = 978-90-481-8580-1}}</ref> It is a connected and closed figure, composed of lower-dimensional polytopal elements: [[Vertex (geometry)|vertices]], [[Edge (geometry)|edges]], [[Face (geometry)|faces]] ([[polygon]]s), and [[Cell (mathematics)|cells]] ([[Polyhedron|polyhedra]]). Each face is shared by exactly two cells. The 4-polytopes were discovered by the Swiss mathematician [[Ludwig Schläfli]] before 1853.{{Sfn|Coxeter|1973|p=141|loc=§7-x. Historical remarks}}


The two-dimensional analogue of a 4-polytope is a [[polygon]], and the three-dimensional analogue is a [[polyhedron]].
The two-dimensional analogue of a 4-polytope is a [[polygon]], and the three-dimensional analogue is a [[polyhedron]].
Line 12: Line 33:
A 4-polytope is a closed [[Four-dimensional space|four-dimension]]al figure. It comprises [[vertex (geometry)|vertices]] (corner points), [[edge (geometry)|edges]], [[face (geometry)|faces]] and [[cell (mathematics)|cells]]. A cell is the three-dimensional analogue of a face, and is therefore a [[polyhedron]]. Each face must join exactly two cells, analogous to the way in which each edge of a polyhedron joins just two faces. Like any polytope, the elements of a 4-polytope cannot be subdivided into two or more sets which are also 4-polytopes, i.e. it is not a compound.
A 4-polytope is a closed [[Four-dimensional space|four-dimension]]al figure. It comprises [[vertex (geometry)|vertices]] (corner points), [[edge (geometry)|edges]], [[face (geometry)|faces]] and [[cell (mathematics)|cells]]. A cell is the three-dimensional analogue of a face, and is therefore a [[polyhedron]]. Each face must join exactly two cells, analogous to the way in which each edge of a polyhedron joins just two faces. Like any polytope, the elements of a 4-polytope cannot be subdivided into two or more sets which are also 4-polytopes, i.e. it is not a compound.


==Geometry==
The most familiar 4-polytope is the [[tesseract]] or hypercube, the 4D analogue of the cube.
The convex [[regular 4-polytopes]] are the four-dimensional analogues of the [[Platonic solids]]. The most familiar 4-polytope is the [[tesseract]] or hypercube, the 4D analogue of the cube.
{{-}}

The convex regular 4-polytopes can be ordered by size as a measure of 4-dimensional content (hypervolume) for the same radius. Each greater polytope in the sequence is ''rounder'' than its predecessor, enclosing more content{{Sfn|Coxeter|1973|pp=292-293|loc=Table I(ii): The sixteen regular polytopes {''p,q,r''} in four dimensions|ps=: [An invaluable table providing all 20 metrics of each 4-polytope in edge length units. They must be algebraically converted to compare polytopes of unit radius.]}} within the same radius. The 4-simplex (5-cell) is the limit smallest case, and the 120-cell is the largest. Complexity (as measured by comparing [[Regular 4-polytope#As configurations|configuration matrices]] or simply the number of vertices) follows the same ordering.

{{Regular convex 4-polytopes}}


==Visualisation==
==Visualisation==
Line 86: Line 111:
** 10 (regular) [[Schläfli-Hess polytope]]s
** 10 (regular) [[Schläfli-Hess polytope]]s
** 57 hyperprisms built on [[Nonconvex uniform polyhedron|nonconvex uniform polyhedra]]
** 57 hyperprisms built on [[Nonconvex uniform polyhedron|nonconvex uniform polyhedra]]
** Unknown total number of nonconvex uniform 4-polytopes: [[Norman Johnson (mathematician)|Norman Johnson]] and other collaborators have identified 1849 known cases (convex and star), all constructed by [[vertex figures]] by [[Stella (software)|Stella4D software]].<ref>[http://www.mit.edu/~hlb/Associahedron/program.pdf Uniform Polychora], Norman W. Johnson (Wheaton College), 1845 cases in 2005</ref>
** Unknown total number of nonconvex uniform 4-polytopes: [[Norman Johnson (mathematician)|Norman Johnson]] and other collaborators have identified 2191 forms (convex and star, excluding the infinite families), all constructed by [[vertex figures]] by [[Stella (software)|Stella4D software]].<ref>[https://www.mit.edu/~hlb/Associahedron/program.pdf Uniform Polychora], Norman W. Johnson (Wheaton College), 1845 cases in 2005</ref>


'''Other convex 4-polytopes''':
'''Other convex 4-polytopes''':
* [[Polyhedral pyramid]]
* [[Polyhedral pyramid]]
* [[Polyhedral bipyramid]]
* [[Polyhedral prism]]
* [[Polyhedral prism]]
<!--* [[Polyhedral antiprism]]-->
<!--* [[Polyhedral antiprism]]-->
Line 121: Line 147:


*[[Regular 4-polytope]]
*[[Regular 4-polytope]]
*The [[3-sphere]] (or glome) is another commonly discussed figure that resides in 4-dimensional space. This is not a 4-polytope, since it is not bounded by polyhedral cells.
*[[3-sphere]] analogue of a sphere in 4-dimensional space. This is not a 4-polytope, since it is not bounded by polyhedral cells.
*The [[duocylinder]] is a figure in 4-dimensional space related to the [[duoprism]]s. It is also not a 4-polytope because its bounding volumes are not polyhedral.
*The [[duocylinder]] is a figure in 4-dimensional space related to the [[duoprism]]s. It is also not a 4-polytope because its bounding volumes are not polyhedral.


Line 128: Line 154:
=== Notes ===
=== Notes ===
{{Reflist}}
{{Reflist}}
{{notelist}}


=== Bibliography ===
=== Bibliography ===
* [[Harold Scott MacDonald Coxeter|H.S.M. Coxeter]]:
* [[Harold Scott MacDonald Coxeter|H.S.M. Coxeter]]:
** {{Cite book | last=Coxeter | first=H.S.M. | author-link=Harold Scott MacDonald Coxeter | year=1973 | orig-year=1948 | title=Regular Polytopes | publisher=Dover | place=New York | edition=3rd | title-link=Regular Polytopes (book) }}
** H. S. M. Coxeter, [[M. S. Longuet-Higgins]] and [[J. C. P. Miller]]: ''Uniform Polyhedra'', Philosophical Transactions of the Royal Society of London, Londne, 1954
** H.S.M. Coxeter, M.S. Longuet-Higgins and [[J.C.P. Miller]]: ''Uniform Polyhedra'', Philosophical Transactions of the Royal Society of London, Londne, 1954
** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973
* '''Kaleidoscopes: Selected Writings of H.S.M. Coxeter''', edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
** '''Kaleidoscopes: Selected Writings of H.S.M. Coxeter''', edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', [Math. Zeit. 46 (1940) 380–407, MR 2,10]
*** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', [Math. Zeit. 46 (1940) 380–407, MR 2,10]
** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', [Math. Zeit. 188 (1985) 559–591]
*** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', [Math. Zeit. 188 (1985) 559–591]
** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', [Math. Zeit. 200 (1988) 3–45]
*** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', [Math. Zeit. 200 (1988) 3–45]
* [[John Horton Conway|J.H. Conway]] and [[Michael Guy (computer scientist)|M.J.T. Guy]]: ''Four-Dimensional Archimedean Polytopes'', Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
* [[John Horton Conway|J.H. Conway]] and [[Michael Guy (computer scientist)|M.J.T. Guy]]: ''Four-Dimensional Archimedean Polytopes'', Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
* [[Norman Johnson (mathematician)|N.W. Johnson]]: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. Dissertation, University of Toronto, 1966
* [[Norman Johnson (mathematician)|N.W. Johnson]]: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. Dissertation, University of Toronto, 1966
*[http://www.polytope.de Four-dimensional Archimedean Polytopes] (German), Marco Möller, 2004 PhD dissertation [http://www.sub.uni-hamburg.de/opus/volltexte/2004/2196/pdf/Dissertation.pdf]
*[http://www.polytope.de Four-dimensional Archimedean Polytopes] (German), Marco Möller, 2004 PhD dissertation [http://www.sub.uni-hamburg.de/opus/volltexte/2004/2196/pdf/Dissertation.pdf] {{Webarchive|url=https://web.archive.org/web/20050322235615/http://www.sub.uni-hamburg.de/opus/volltexte/2004/2196/pdf/Dissertation.pdf |date=2005-03-22 }}


==External links==
==External links==
{{Commons category|Polychora}}
{{Commons category}}
*{{Mathworld | urlname=Polychoron | title=Polychoron }}
*{{Mathworld | urlname=Polychoron | title=Polychoron }}
*{{Mathworld | urlname=PolyhedralFormula | title=Polyhedral formula }}
*{{Mathworld | urlname=PolyhedralFormula | title=Polyhedral formula }}
*{{Mathworld | urlname=RegularPolychoron | title=Regular polychoron Euler characteristics}}
*{{Mathworld | urlname=RegularPolychoron | title=Regular polychoron Euler characteristics}}
*{{PolyCell | urlname = uniform.html| title = Four dimensional figures page}}
*{{GlossaryForHyperspace | anchor=Polychoron | title=Polychoron}}
*[http://www.polytope.net/hedrondude/polychora.htm Uniform Polychora], Jonathan Bowers
*[http://www.polytope.net/hedrondude/polychora.htm Uniform Polychora], Jonathan Bowers
*[http://public.beuth-hochschule.de/~meiko/pentatope.html Uniform polychoron Viewer - Java3D Applet with sources]
*[https://web.archive.org/web/20110718202453/http://public.beuth-hochschule.de/~meiko/pentatope.html Uniform polychoron Viewer - Java3D Applet with sources]
* Dr. R. Klitzing, [http://www.bendwavy.org/klitzing/dimensions/polychora-neu.htm polychora]
* R. Klitzing, [http://www.bendwavy.org/klitzing/dimensions/polychora-neu.htm polychora]


{{Polytopes}}
{{Polytopes}}
Line 156: Line 181:
[[Category:Four-dimensional geometry]]
[[Category:Four-dimensional geometry]]
[[Category:Algebraic topology]]
[[Category:Algebraic topology]]
[[Category:Polychora| ]]
[[Category:4-polytopes| ]]

Latest revision as of 00:57, 17 October 2024

Graphs of the six convex regular 4-polytopes
{3,3,3} {3,3,4} {4,3,3}

5-cell
Pentatope
4-simplex

16-cell
Orthoplex
4-orthoplex

8-cell
Tesseract
4-cube
{3,4,3} {3,3,5} {5,3,3}

24-cell
Octaplex

600-cell
Tetraplex

120-cell
Dodecaplex

In geometry, a 4-polytope (sometimes also called a polychoron,[1] polycell, or polyhedroid) is a four-dimensional polytope.[2][3] It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), and cells (polyhedra). Each face is shared by exactly two cells. The 4-polytopes were discovered by the Swiss mathematician Ludwig Schläfli before 1853.[4]

The two-dimensional analogue of a 4-polytope is a polygon, and the three-dimensional analogue is a polyhedron.

Topologically 4-polytopes are closely related to the uniform honeycombs, such as the cubic honeycomb, which tessellate 3-space; similarly the 3D cube is related to the infinite 2D square tiling. Convex 4-polytopes can be cut and unfolded as nets in 3-space.

Definition

[edit]

A 4-polytope is a closed four-dimensional figure. It comprises vertices (corner points), edges, faces and cells. A cell is the three-dimensional analogue of a face, and is therefore a polyhedron. Each face must join exactly two cells, analogous to the way in which each edge of a polyhedron joins just two faces. Like any polytope, the elements of a 4-polytope cannot be subdivided into two or more sets which are also 4-polytopes, i.e. it is not a compound.

Geometry

[edit]

The convex regular 4-polytopes are the four-dimensional analogues of the Platonic solids. The most familiar 4-polytope is the tesseract or hypercube, the 4D analogue of the cube.

The convex regular 4-polytopes can be ordered by size as a measure of 4-dimensional content (hypervolume) for the same radius. Each greater polytope in the sequence is rounder than its predecessor, enclosing more content[5] within the same radius. The 4-simplex (5-cell) is the limit smallest case, and the 120-cell is the largest. Complexity (as measured by comparing configuration matrices or simply the number of vertices) follows the same ordering.

Regular convex 4-polytopes
Symmetry group A4 B4 F4 H4
Name 5-cell

Hyper-tetrahedron
5-point

16-cell

Hyper-octahedron
8-point

8-cell

Hyper-cube
16-point

24-cell


24-point

600-cell

Hyper-icosahedron
120-point

120-cell

Hyper-dodecahedron
600-point

Schläfli symbol {3, 3, 3} {3, 3, 4} {4, 3, 3} {3, 4, 3} {3, 3, 5} {5, 3, 3}
Coxeter mirrors
Mirror dihedrals 𝝅/3 𝝅/3 𝝅/3 𝝅/2 𝝅/2 𝝅/2 𝝅/3 𝝅/3 𝝅/4 𝝅/2 𝝅/2 𝝅/2 𝝅/4 𝝅/3 𝝅/3 𝝅/2 𝝅/2 𝝅/2 𝝅/3 𝝅/4 𝝅/3 𝝅/2 𝝅/2 𝝅/2 𝝅/3 𝝅/3 𝝅/5 𝝅/2 𝝅/2 𝝅/2 𝝅/5 𝝅/3 𝝅/3 𝝅/2 𝝅/2 𝝅/2
Graph
Vertices 5 tetrahedral 8 octahedral 16 tetrahedral 24 cubical 120 icosahedral 600 tetrahedral
Edges 10 triangular 24 square 32 triangular 96 triangular 720 pentagonal 1200 triangular
Faces 10 triangles 32 triangles 24 squares 96 triangles 1200 triangles 720 pentagons
Cells 5 tetrahedra 16 tetrahedra 8 cubes 24 octahedra 600 tetrahedra 120 dodecahedra
Tori 1 5-tetrahedron 2 8-tetrahedron 2 4-cube 4 6-octahedron 20 30-tetrahedron 12 10-dodecahedron
Inscribed 120 in 120-cell 675 in 120-cell 2 16-cells 3 8-cells 25 24-cells 10 600-cells
Great polygons 2 squares x 3 4 rectangles x 4 4 hexagons x 4 12 decagons x 6 100 irregular hexagons x 4
Petrie polygons 1 pentagon x 2 1 octagon x 3 2 octagons x 4 2 dodecagons x 4 4 30-gons x 6 20 30-gons x 4
Long radius
Edge length
Short radius
Area
Volume
4-Content

Visualisation

[edit]
Example presentations of a 24-cell
Sectioning Net
Projections
Schlegel 2D orthogonal 3D orthogonal

4-polytopes cannot be seen in three-dimensional space due to their extra dimension. Several techniques are used to help visualise them.

Orthogonal projection

Orthogonal projections can be used to show various symmetry orientations of a 4-polytope. They can be drawn in 2D as vertex-edge graphs, and can be shown in 3D with solid faces as visible projective envelopes.

Perspective projection

Just as a 3D shape can be projected onto a flat sheet, so a 4-D shape can be projected onto 3-space or even onto a flat sheet. One common projection is a Schlegel diagram which uses stereographic projection of points on the surface of a 3-sphere into three dimensions, connected by straight edges, faces, and cells drawn in 3-space.

Sectioning

Just as a slice through a polyhedron reveals a cut surface, so a slice through a 4-polytope reveals a cut "hypersurface" in three dimensions. A sequence of such sections can be used to build up an understanding of the overall shape. The extra dimension can be equated with time to produce a smooth animation of these cross sections.

Nets

A net of a 4-polytope is composed of polyhedral cells that are connected by their faces and all occupy the same three-dimensional space, just as the polygon faces of a net of a polyhedron are connected by their edges and all occupy the same plane.

Topological characteristics

[edit]
The tesseract as a Schlegel diagram

The topology of any given 4-polytope is defined by its Betti numbers and torsion coefficients.[6]

The value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, and is zero for all 4-polytopes, whatever their underlying topology. This inadequacy of the Euler characteristic to reliably distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers.[6]

Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal 4-polytopes, and this led to the use of torsion coefficients.[6]

Classification

[edit]

Criteria

[edit]

Like all polytopes, 4-polytopes may be classified based on properties like "convexity" and "symmetry".

Classes

[edit]

The following lists the various categories of 4-polytopes classified according to the criteria above:

The truncated 120-cell is one of 47 convex non-prismatic uniform 4-polytopes

Uniform 4-polytope (vertex-transitive):

Other convex 4-polytopes:

The regular cubic honeycomb is the only infinite regular 4-polytope in Euclidean 3-dimensional space.

Infinite uniform 4-polytopes of Euclidean 3-space (uniform tessellations of convex uniform cells)

Infinite uniform 4-polytopes of hyperbolic 3-space (uniform tessellations of convex uniform cells)

Dual uniform 4-polytope (cell-transitive):

Others:

The 11-cell is an abstract regular 4-polytope, existing in the real projective plane, it can be seen by presenting its 11 hemi-icosahedral vertices and cells by index and color.

Abstract regular 4-polytopes:

These categories include only the 4-polytopes that exhibit a high degree of symmetry. Many other 4-polytopes are possible, but they have not been studied as extensively as the ones included in these categories.

See also

[edit]
  • Regular 4-polytope
  • 3-sphere – analogue of a sphere in 4-dimensional space. This is not a 4-polytope, since it is not bounded by polyhedral cells.
  • The duocylinder is a figure in 4-dimensional space related to the duoprisms. It is also not a 4-polytope because its bounding volumes are not polyhedral.

References

[edit]

Notes

[edit]
  1. ^ N.W. Johnson: Geometries and Transformations, (2018) ISBN 978-1-107-10340-5 Chapter 11: Finite Symmetry Groups, 11.1 Polytopes and Honeycombs, p.224
  2. ^ Vialar, T. (2009). Complex and Chaotic Nonlinear Dynamics: Advances in Economics and Finance. Springer. p. 674. ISBN 978-3-540-85977-2.
  3. ^ Capecchi, V.; Contucci, P.; Buscema, M.; D'Amore, B. (2010). Applications of Mathematics in Models, Artificial Neural Networks and Arts. Springer. p. 598. doi:10.1007/978-90-481-8581-8. ISBN 978-90-481-8580-1.
  4. ^ Coxeter 1973, p. 141, §7-x. Historical remarks.
  5. ^ Coxeter 1973, pp. 292–293, Table I(ii): The sixteen regular polytopes {p,q,r} in four dimensions: [An invaluable table providing all 20 metrics of each 4-polytope in edge length units. They must be algebraically converted to compare polytopes of unit radius.]
  6. ^ a b c Richeson, D.; Euler's Gem: The Polyhedron Formula and the Birth of Topoplogy, Princeton, 2008.
  7. ^ Uniform Polychora, Norman W. Johnson (Wheaton College), 1845 cases in 2005

Bibliography

[edit]
  • H.S.M. Coxeter:
    • Coxeter, H.S.M. (1973) [1948]. Regular Polytopes (3rd ed.). New York: Dover.
    • H.S.M. Coxeter, M.S. Longuet-Higgins and J.C.P. Miller: Uniform Polyhedra, Philosophical Transactions of the Royal Society of London, Londne, 1954
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
  • J.H. Conway and M.J.T. Guy: Four-Dimensional Archimedean Polytopes, Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • Four-dimensional Archimedean Polytopes (German), Marco Möller, 2004 PhD dissertation [2] Archived 2005-03-22 at the Wayback Machine
[edit]
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds