Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Jump to content

Iberian shrew: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m top: Follow-up: update status_ref using AWB
m Phylogeny: I rewrote the two sentences that talk about the variation in phylogenetic relationships resolved from using different types of genomic markers for clarity.
 
(36 intermediate revisions by 23 users not shown)
Line 1: Line 1:
{{short description|Species of mammal}}
{{Taxobox
{{speciesbox
| name = Iberian shrew
| name = Iberian shrew
| image = Sorex granarius SvMerten.jpg
| image_caption = Iberian shrew (''Sorex granarius'')
| image = Sorex granarius SvMerten.jpg
| status = LC
| status = LC
| status_system = IUCN3.1
| status_system = IUCN3.1
| status_ref = <ref name=iucn>{{cite journal |author=Palomo, L.J., Amori, G. & Hutterer, R. |title=''Sorex granarius'' |journal=[[The IUCN Red List of Threatened Species]] |volume=2008 |page=e.T29664A9516734 |publisher=[[IUCN]] |date=2008 |url=http://www.iucnredlist.org/details/29664/0 |doi=10.2305/IUCN.UK.2008.RLTS.T29664A9516734.en |access-date={{SAFESUBST:CURRENTDAY}} {{SAFESUBST:CURRENTMONTHNAME}} {{SAFESUBST:CURRENTYEAR}}}}</ref>
| status_ref = <ref name="iucn status 16 November 2021">{{cite iucn |author=Cassola, F. |date=2019 |title=''Sorex granarius'' |volume=2019 |page=e.T29664A2792173 |doi=10.2305/IUCN.UK.2019-1.RLTS.T29664A2792173.en |access-date=16 November 2021}}</ref>
| genus = Sorex
| regnum = [[Animalia]]
| species = granarius
| phylum = [[Chordata]]
| authority = [[Gerrit Smith Miller Jr.|Miller]], 1910
| classis = [[Mammalia]]
| synonyms =
| ordo = [[Eulipotyphla]]
| range_map = Sorex granarius distribution Map.png
| familia = [[Soricidae]]
| range_map_caption = Iberian shrew range{{Imagefact|date=November 2022}}
| genus = ''[[Sorex]]''
| species = '''''S. granarius'''''
| binomial = ''Sorex granarius''
| binomial_authority = [[Gerrit Smith Miller|Miller]], 1910
| synonyms =
| range_map = Sorex granarius distribution Map.png
| range_map_caption = Iberian shrew range
}}
}}

The '''Iberian shrew''' or '''Lagranja shrew''' (''Sorex granarius'') is a species of [[mammal]] in the family [[Soricidae]]. It is found in [[Portugal]] and [[Spain]].
The '''Iberian shrew''' or '''Lagranja shrew''' ('''''Sorex granarius''''') is a species of [[mammal]] in the family [[Soricidae]]. It is found in [[Portugal]] and [[Spain]].


== Description ==
== Description ==
Line 27: Line 22:


== Phylogeny ==
== Phylogeny ==
The ''Sorex araneus'' group of European shrews consists of ''S. araneus'', ''S. coronatus'', and ''S. granarius'', with all members belonging to the order [[Soricomorpha]] and the family Soricidae.<ref name=":0">{{Cite journal|url = |title = Sorex granarius|last = Garcia-Perea|first = Rosa|date = 1997|journal = Mammalian Species|doi = |pmid = |access-date = }}</ref> Because their morphology is virtually identical, species definitions rely primarily on genetic differences.<ref name=":1">{{cite journal | last1 = Yannic | first1 = G. | last2 = Basset | first2 = P. | last3 = Hausser | first3 = J. | year = 2008 | title = A new perspective on the evolutionary history of western European ''Sorex araneus'' group revealed by paternal and maternal molecular markers | url = http://www.sciencedirect.com/science/article/pii/S1055790308000535 | journal = Molecular Phylogenetics and Evolution | volume = 47 | issue = | pages = 237–250 | doi=10.1016/j.ympev.2008.01.029}}</ref><ref name=":2">{{Cite journal|url = |title = The Sorex araneus group in the northern Iberian System (Spain): a contact zone between S. coronatus and S. granarius?|last = Lopez-Fuster|first = Maria Jose|date = 1999|journal = Acta Theriologica|doi = |pmid = |access-date = }}</ref> The phylogenetic positioning of ''S. granarius'' has been historically difficult even with the use of genetic analyses, with mitochondrial DNA suggesting that it is more closely related to ''S. araneus'' and Y sex chromosomal markers implying a stronger relationship with ''S. coronatus''.<ref name=":1" /> Recent studies of X sex chromosomal markers and autosomal chromosome DNA have been found to offer greater support for the phylogenetic grouping of ''S. granarius'' with ''S. coronatus'',<ref name=":3">{{Cite journal|url = |title = Additional data for nuclear DNA give new insights into the phylogenetic postionl of Sorex granarius within the Sorex araneus group|last = Yannic|first = G.|date = 2010|journal = Molecular Phylogenetics and Evolution|doi = 10.1016/j.ympev.2010.09.015 |pmid = |access-date = }}</ref> as opposed to the traditional grouping of ''S. granarius'' and ''S. araneus''.<ref name=":0" />
The ''Sorex araneus'' group of European shrews consists of ''S. araneus'', ''S. coronatus'', and ''S. granarius'', with all members belonging to the order [[Soricomorpha]] and the family Soricidae.<ref name=":0">{{Cite journal|title = Sorex granarius|last = Garcia-Perea|first = Rosa|date = 1997|journal = Mammalian Species|issue = 554|pages = 1–4|doi = 10.2307/3504323|jstor = 3504323|doi-access = free}}</ref> Because their morphology is virtually identical, species definitions rely primarily on genetic differences.<ref name=":1">{{cite journal | last1 = Yannic | first1 = G. | last2 = Basset | first2 = P. | last3 = Hausser | first3 = J. | year = 2008 | title = A new perspective on the evolutionary history of western European ''Sorex araneus'' group revealed by paternal and maternal molecular markers | journal = Molecular Phylogenetics and Evolution | volume = 47 | issue = 1| pages = 237–250 | doi=10.1016/j.ympev.2008.01.029| pmid = 18325791 }}</ref><ref name=":2">{{Cite journal|title = The Sorex araneus group in the northern Iberian System (Spain): a contact zone between S. coronatus and S. granarius?|last = Lopez-Fuster|first = Maria Jose|date = 1999|journal = Acta Theriologica}}</ref> The phylogenetic positioning of ''S. granarius'' has been historically difficult even with the use of genetic analyses. Mitochondrial DNA suggests that it is more closely related to ''S. araneus,'' while Y-chromosome markers imply a closer relationship with ''S. coronatus''.<ref name=":1" /> More recent studies using both autosomal and X-chromosomal markers offer greater support for the phylogenetic grouping of ''S. granarius'' with ''S. coronatus'',<ref name=":3">{{Cite journal|url = https://serval.unil.ch/notice/serval:BIB_B5D2B73AC0EB|title = Additional data for nuclear DNA give new insights into the phylogenetic position of Sorex granarius within the Sorex araneus group|last = Yannic|first = G.|date = 2010|journal = Molecular Phylogenetics and Evolution|doi = 10.1016/j.ympev.2010.09.015 |pmid = 20883802|volume=57 |issue = 3|pages=1062–1071}}<!--https://serval.unil.ch/resource/serval:BIB_B5D2B73AC0EB.P001/REF.pdf--></ref> as opposed to the traditional grouping of ''S. granarius'' and ''S. araneus''.<ref name=":0" />


== Ecology ==
== Ecology ==


=== Distribution and Habitat ===
=== Distribution and habitat ===
The distribution of ''S. granarius'' is lateral through the [[Sistema Central|Central System]] mountain range of the Iberian Peninsula and reaches Galacia, Spain in the north and the Tajo River in the south.<ref name=":0" /> There is also speculation of ''S. granarius'' cohabitation with ''S. coronatus'' in the [[Sistema Ibérico|Iberian System]].<ref name=":2" /> In the wild, ''S. granarius'' is known to live in woody areas consisting of juniper (''Juniperus nana''),<ref name=":2" /> beech (''Fagus sylvatica''), Pyrenean oak (''Quercus pyrenaica''), Scots pine (''Pinus sylvestris''), evergreen oak (''Quercus rotundifolia''), ash (''Fraxinus''), or birch (''Betula'') at 500 to 2000 meter elevations.<ref name=":0" />
The distribution of ''S. granarius'' is lateral through the [[Sistema Central|Central System]] mountain range of the Iberian Peninsula and reaches Galicia, Spain in the north and the Tagus (Tejo) River in the south.<ref name=":0" /> There is also speculation of ''S. granarius'' cohabitation with ''S. coronatus'' in the [[Sistema Ibérico|Iberian System]].<ref name=":2" /> In the wild, ''S. granarius'' is known to live in woody areas consisting of juniper (''Juniperus nana''),<ref name=":2" /> beech (''Fagus sylvatica''), Pyrenean oak (''Quercus pyrenaica''), Scots pine (''Pinus sylvestris''), evergreen oak (''Quercus rotundifolia''), ash (''Fraxinus''), or birch (''Betula'') at 500 to 2000 meter elevations.<ref name=":0" />


=== Predators ===
=== Predators ===
Line 40: Line 35:


=== Chromosomes ===
=== Chromosomes ===
In the group of ''Sorex araneus'' shrews, males possess distinctive XY<sub>1</sub>Y<sub>2</sub> sex chromosomes.<ref name=":0" /><ref name=":1" /><ref name=":4" /> The Y chromosome comprises two portions: the original Y sex chromosome (Y<sub>1</sub>) and a portion that forms an arm of one of the autosomal chromosomes (Y<sub>2</sub>).<ref name=":4">{{Cite journal|url = |title = The distributions of telomeric and ribosomal DNA on the chromosomes of two closely related species, Sorex araneus and Sorex granarius (Soricidae, Eulipotyphla)|last = Zhdanova|first = Natalia|date = 2007|journal = Russian Journal of Theriology|doi = |pmid = |access-date = }}</ref> ''S. granarius'' is unique among this group because it possesses primarily [[acrocentric]] chromosomes with only two pairs of [[Centromere|metacentric]] chromosomes, whereas ''S. araneus'' has a complete set of metacentric chromosomes.<ref name=":4" />
In the group of ''Sorex araneus'' shrews, males possess distinctive XY<sub>1</sub>Y<sub>2</sub> sex chromosomes.<ref name=":0" /><ref name=":1" /><ref name=":4" /> The Y chromosome comprises two portions: the original Y sex chromosome (Y<sub>1</sub>) and a portion that forms an arm of one of the autosomal chromosomes (Y<sub>2</sub>).<ref name=":4">{{Cite journal|title = The distributions of telomeric and ribosomal DNA on the chromosomes of two closely related species, Sorex araneus and Sorex granarius (Soricidae, Eulipotyphla)|last = Zhdanova|first = Natalia|date = 2007|journal = Russian Journal of Theriology| volume=6 | pages=007–013 | doi=10.15298/rusjtheriol.06.1.03 |doi-access = free}}</ref> ''S. granarius'' is unique among this group because it possesses primarily [[acrocentric]] chromosomes with only two pairs of [[Centromere|metacentric]] chromosomes, whereas ''S. araneus'' has a complete set of metacentric chromosomes.<ref name=":4" />


=== Telomeres ===
=== Telomeres ===
The telomere length and location of ''S. granarius'' further distinguish the organism from ''S. araneus'': ''S. araneus'' possesses small telomeres on each chromosome that range in size from 6.8 to 15.2 kb.<ref name=":5" /> The telomeres of ''S. granarius'' are located only on the short arms of the acrocentric chromosomes, and can reach lengths of approximately 300 kb, making them the largest mammalian telomeres described to date.<ref name=":3" /> These [[mega-telomere]]s appear to preserve their impressive length through both the enzyme telomerase and active homologous recombination.<ref name=":5">{{Cite journal|url = |title = Recombinogenetic telomeres in diploid Sorex granarius (Soricidae, Eulipotyphla) fibroblast cells|last = Zhdanova|first = Natalia|date = 1014|journal = Molecular and Cellular Biology|doi = |pmid = |access-date = }}</ref> Additionally, the intermittent repetitive sequences of ''S. granarius'' telomeres are infused with ribosomal DNA, and it is the only known [[Eutheria]]n mammal with this feature.<ref name=":5" />
The telomere length and location of ''S. granarius'' further distinguish the organism from ''S. araneus'': ''S. araneus'' possesses small telomeres on each chromosome that range in size from 6.8 to 15.2 kb.<ref name=":5" /> The telomeres of ''S. granarius'' are located only on the short arms of the acrocentric chromosomes, and can reach lengths of approximately 300 kb, making them the largest mammalian telomeres described to date.<ref name=":3" /> These [[mega-telomere]]s appear to preserve their impressive length through both the enzyme telomerase and active homologous recombination.<ref name=":5">{{Cite journal|title = Recombinogenetic telomeres in diploid Sorex granarius (Soricidae, Eulipotyphla) fibroblast cells|last = Zhdanova|first = Natalia|date = 1014|journal = Molecular and Cellular Biology| volume=34 | issue=15 | pages=2786–2799 |doi = 10.1128/mcb.01697-13 | pmid=24842907 |pmc=4135569 |doi-access = free}}</ref> Additionally, the intermittent repetitive sequences of ''S. granarius'' telomeres are infused with ribosomal DNA, and it is the only known [[Eutheria]]n mammal with this feature.<ref name=":5" />


==References==
==References==
Line 50: Line 45:
==Further reading==
==Further reading==


* Garcia-Perea, R., J. Ventura, M. J. Lopez-Fuster, and J. Gisbert. 1997. [https://web.archive.org/web/20151117020044/http://mspecies.oxfordjournals.org/content/mspeciesarc/554/1 Sorex granarius]. ''Mammalian Species'' 554: 1 - 4. Accessed 3 November 2015.
* {{cite journal|last1=Garcia-Perea|first1= R.|first2= J. |last2=Ventura|first3=M. J.|last3= Lopez-Fuster|first4=J.|last4= Gisbert|date= 1997|url=http://mspecies.oxfordjournals.org/content/mspeciesarc/554/1|archive-url=https://web.archive.org/web/20151117020044/http://mspecies.oxfordjournals.org/content/mspeciesarc/554/1|url-status=dead|archive-date=2015-11-17|title= Sorex granarius|journal= Mammalian Species|issue= 554|pages=1–4|doi=10.2307/3504323|jstor= 3504323|doi-access=free}}
* {{cite journal | last1 = Yannic | first1 = G. | last2 = Basset | first2 = P. | last3 = Hausser | first3 = J. | year = 2008 | title = A new perspective on the evolutionary history of western European ''Sorex araneus'' group revealed by paternal and maternal molecular markers | url = http://www.sciencedirect.com/science/article/pii/S1055790308000535 | journal = Molecular Phylogenetics and Evolution | volume = 47 | issue = | pages = 237–250 | doi=10.1016/j.ympev.2008.01.029}}
* {{cite journal | last1 = Yannic | first1 = G. | last2 = Basset | first2 = P. | last3 = Hausser | first3 = J. | year = 2008 | title = A new perspective on the evolutionary history of western European ''Sorex araneus'' group revealed by paternal and maternal molecular markers | journal = Molecular Phylogenetics and Evolution | volume = 47 | issue = 1| pages = 237–250 | doi=10.1016/j.ympev.2008.01.029| pmid = 18325791 }}
* {{cite journal | last1 = Lopez-Fuster | first1 = M. J. | last2 = Ventura | first2 = J. | last3 = Garcia-Perea | first3 = R. | last4 = Gisbert | first4 = J. | year = 1999 | title = The ''Sorex araneus'' group in the northern Iberian System (Spain): a contact zone between ''S. coronatus'' and ''S. granarius''? | url = http://rcin.org.pl/Content/12837 | journal = Acta Theriologica | volume = 44 | issue = | pages = 113–122 }}
* {{cite journal | last1 = Lopez-Fuster | first1 = M. J. | last2 = Ventura | first2 = J. | last3 = Garcia-Perea | first3 = R. | last4 = Gisbert | first4 = J. | year = 1999 | title = The ''Sorex araneus'' group in the northern Iberian System (Spain): a contact zone between ''S. coronatus'' and ''S. granarius''? | url = http://rcin.org.pl/Content/12837 | journal = Acta Theriologica | volume = 44 | pages = 113–122 }}
* {{cite journal | last1 = Yannic | first1 = G. | last2 = Dubey | first2 = S. | last3 = Hausser | first3 = J. | last4 = Basset | first4 = P. | year = 2010 | title = Additional data for nuclear DNA give new insights into the phylogenetic position of ''Sorex granarius'' within the ''Sorex araneus'' group | url = http://www.sciencedirect.com/science/article/pii/S1055790310003829 | journal = Molecular Phylogenetics and Evolution | volume = 57 | issue = | pages = 1062–1071 | doi=10.1016/j.ympev.2010.09.015}}
* {{cite journal | last1 = Yannic | first1 = G. | last2 = Dubey | first2 = S. | last3 = Hausser | first3 = J. | last4 = Basset | first4 = P. | year = 2010 | title = Additional data for nuclear DNA give new insights into the phylogenetic position of ''Sorex granarius'' within the ''Sorex araneus'' group | journal = Molecular Phylogenetics and Evolution | volume = 57 | issue = 3| pages = 1062–1071 | doi=10.1016/j.ympev.2010.09.015| pmid = 20883802 | url = https://serval.unil.ch/notice/serval:BIB_B5D2B73AC0EB }}
* {{cite journal | last1 = Zhdanova | first1 = N. S. | last2 = Minina | first2 = J. M. | last3 = Karamysheva | first3 = T. V. | last4 = Rubtsov | first4 = N. B. | year = 2007 | title = The distributions of telomeric and ribosomal DNA on the chromosomes of two closely related species, ''Sorex araneus'' and ''Sorex granarius'' (Soricidae,Eulipotyphla) | url = http://zmmu.msu.ru/rjt/articles/ther6_1%20007_013%20Zhdanova.pdf | format = PDF | journal = Russian Journal of Theriology | volume = 6 | issue = 1| pages = 7–13 }}
* {{cite journal | last1 = Zhdanova | first1 = N. S. | last2 = Minina | first2 = J. M. | last3 = Karamysheva | first3 = T. V. | last4 = Rubtsov | first4 = N. B. | year = 2007 | title = The distributions of telomeric and ribosomal DNA on the chromosomes of two closely related species, ''Sorex araneus'' and ''Sorex granarius'' (Soricidae,Eulipotyphla) | url = http://zmmu.msu.ru/rjt/articles/ther6_1%20007_013%20Zhdanova.pdf | journal = Russian Journal of Theriology | volume = 6 | issue = 1| pages = 7–13|doi=10.15298/rusjtheriol.06.1.03 | doi-access = free }}
* {{cite journal | last1 = Zhdanova | first1 = N. S. | last2 = Draskovic | first2 = I. | last3 = Minina | first3 = J. M. | last4 = Karamysheva | first4 = T. V. | last5 = Novo | first5 = C. L. | last6 = Liu | first6 = W. -Y. | last7 = Porreca | first7 = R. M. | last8 = Gibaud | first8 = A. | last9 = Zvereva | first9 = M. E. | last10 = Skvortsov | first10 = D. A. | last11 = Rubtsov | first11 = N. B. | last12 = Londono-Vallejo | first12 = A. | year = 2014 | title = Recombinogenic telomeres in diploid ''Sorex granarius'' (Soricidae, Eulipotyphla) fibroblast cells | url = http://mcb.asm.org/content/34/15/2786.short | journal = Molecular and Cellular Biology | volume = 34 | issue = 15| pages = 2786–2799 | doi=10.1128/mcb.01697-13}}
* {{cite journal | last1 = Zhdanova | first1 = N. S. | last2 = Draskovic | first2 = I. | last3 = Minina | first3 = J. M. | last4 = Karamysheva | first4 = T. V. | last5 = Novo | first5 = C. L. | last6 = Liu | first6 = W. -Y. | last7 = Porreca | first7 = R. M. | last8 = Gibaud | first8 = A. | last9 = Zvereva | first9 = M. E. | last10 = Skvortsov | first10 = D. A. | last11 = Rubtsov | first11 = N. B. | last12 = Londono-Vallejo | first12 = A. | year = 2014 | title = Recombinogenic telomeres in diploid ''Sorex granarius'' (Soricidae, Eulipotyphla) fibroblast cells | journal = Molecular and Cellular Biology | volume = 34 | issue = 15| pages = 2786–2799 | doi=10.1128/mcb.01697-13| pmc=4135569 | pmid = 24842907 }}
{{Soricomorpha|S2.}}


{{Soricomorpha|S2.}}
{{Taxonbar}}
{{Taxonbar|from=Q1767438}}


[[Category:Sorex]]
[[Category:Sorex]]
[[Category:Endemic mammals of the Iberian Peninsula]]
[[Category:Endemic mammals of the Iberian Peninsula]]
[[Category:Taxonomy articles created by Polbot]]
[[Category:Mammals described in 1910]]

Latest revision as of 02:31, 7 December 2023

Iberian shrew
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Eulipotyphla
Family: Soricidae
Genus: Sorex
Species:
S. granarius
Binomial name
Sorex granarius
Miller, 1910
Iberian shrew range[image reference needed]

The Iberian shrew or Lagranja shrew (Sorex granarius) is a species of mammal in the family Soricidae. It is found in Portugal and Spain.

Description

[edit]

Relative to other Sorex species, S. granarius is intermediate in size, with a total body length (including the tail) of approximately 103.6 mm and an average weight of 6.3 g.[2] Adults are identified by their dark-colored back, which contrasts with their lighter tan sides and off-white belly.[2] The fur of young shrews has only two discernible colors: the darker color on the back and the lighter color on the belly.[2] In both adults and juveniles, the fur is also adapted for cold, damp habitats: each guard hair possesses an indentation along its length that helps to prevent water from reaching the body.[2]

The skull of S. granarius can be used to distinguish it from other species belonging to the European Sorex araneus group of shrews.[2] Comparatively, the snout of S. granarius is small and flat, the mandible possesses a diminished coronoid process and a narrow angular process, and the temporal fossa of the skull resembles a triangle.[2]

Phylogeny

[edit]

The Sorex araneus group of European shrews consists of S. araneus, S. coronatus, and S. granarius, with all members belonging to the order Soricomorpha and the family Soricidae.[2] Because their morphology is virtually identical, species definitions rely primarily on genetic differences.[3][4] The phylogenetic positioning of S. granarius has been historically difficult even with the use of genetic analyses. Mitochondrial DNA suggests that it is more closely related to S. araneus, while Y-chromosome markers imply a closer relationship with S. coronatus.[3] More recent studies using both autosomal and X-chromosomal markers offer greater support for the phylogenetic grouping of S. granarius with S. coronatus,[5] as opposed to the traditional grouping of S. granarius and S. araneus.[2]

Ecology

[edit]

Distribution and habitat

[edit]

The distribution of S. granarius is lateral through the Central System mountain range of the Iberian Peninsula and reaches Galicia, Spain in the north and the Tagus (Tejo) River in the south.[2] There is also speculation of S. granarius cohabitation with S. coronatus in the Iberian System.[4] In the wild, S. granarius is known to live in woody areas consisting of juniper (Juniperus nana),[4] beech (Fagus sylvatica), Pyrenean oak (Quercus pyrenaica), Scots pine (Pinus sylvestris), evergreen oak (Quercus rotundifolia), ash (Fraxinus), or birch (Betula) at 500 to 2000 meter elevations.[2]

Predators

[edit]

Domestic cats (Felis catus), European wild cats (Felis silvestris), and barn owls (Tyto alba) have been noted to prey upon S. granarius[2].

Genetics

[edit]

Chromosomes

[edit]

In the group of Sorex araneus shrews, males possess distinctive XY1Y2 sex chromosomes.[2][3][6] The Y chromosome comprises two portions: the original Y sex chromosome (Y1) and a portion that forms an arm of one of the autosomal chromosomes (Y2).[6] S. granarius is unique among this group because it possesses primarily acrocentric chromosomes with only two pairs of metacentric chromosomes, whereas S. araneus has a complete set of metacentric chromosomes.[6]

Telomeres

[edit]

The telomere length and location of S. granarius further distinguish the organism from S. araneus: S. araneus possesses small telomeres on each chromosome that range in size from 6.8 to 15.2 kb.[7] The telomeres of S. granarius are located only on the short arms of the acrocentric chromosomes, and can reach lengths of approximately 300 kb, making them the largest mammalian telomeres described to date.[5] These mega-telomeres appear to preserve their impressive length through both the enzyme telomerase and active homologous recombination.[7] Additionally, the intermittent repetitive sequences of S. granarius telomeres are infused with ribosomal DNA, and it is the only known Eutherian mammal with this feature.[7]

References

[edit]
  1. ^ Cassola, F. (2019). "Sorex granarius". IUCN Red List of Threatened Species. 2019: e.T29664A2792173. doi:10.2305/IUCN.UK.2019-1.RLTS.T29664A2792173.en. Retrieved 16 November 2021.
  2. ^ a b c d e f g h i j k l Garcia-Perea, Rosa (1997). "Sorex granarius". Mammalian Species (554): 1–4. doi:10.2307/3504323. JSTOR 3504323.
  3. ^ a b c Yannic, G.; Basset, P.; Hausser, J. (2008). "A new perspective on the evolutionary history of western European Sorex araneus group revealed by paternal and maternal molecular markers". Molecular Phylogenetics and Evolution. 47 (1): 237–250. doi:10.1016/j.ympev.2008.01.029. PMID 18325791.
  4. ^ a b c Lopez-Fuster, Maria Jose (1999). "The Sorex araneus group in the northern Iberian System (Spain): a contact zone between S. coronatus and S. granarius?". Acta Theriologica.
  5. ^ a b Yannic, G. (2010). "Additional data for nuclear DNA give new insights into the phylogenetic position of Sorex granarius within the Sorex araneus group". Molecular Phylogenetics and Evolution. 57 (3): 1062–1071. doi:10.1016/j.ympev.2010.09.015. PMID 20883802.
  6. ^ a b c Zhdanova, Natalia (2007). "The distributions of telomeric and ribosomal DNA on the chromosomes of two closely related species, Sorex araneus and Sorex granarius (Soricidae, Eulipotyphla)". Russian Journal of Theriology. 6: 007–013. doi:10.15298/rusjtheriol.06.1.03.
  7. ^ a b c Zhdanova, Natalia (1014). "Recombinogenetic telomeres in diploid Sorex granarius (Soricidae, Eulipotyphla) fibroblast cells". Molecular and Cellular Biology. 34 (15): 2786–2799. doi:10.1128/mcb.01697-13. PMC 4135569. PMID 24842907.

Further reading

[edit]