Isotopes of germanium: Difference between revisions
neutronium-0 should not be considered |
No edit summary |
||
Line 20: | Line 20: | ||
<sup>76</sup>Ge is used in experiments on the nature of neutrinos, by searching for [[Double beta decay#Neutrinoless double beta decay|neutrinoless double beta decay]]. |
<sup>76</sup>Ge is used in experiments on the nature of neutrinos, by searching for [[Double beta decay#Neutrinoless double beta decay|neutrinoless double beta decay]]. |
||
<sup>71</sup>Ge is the most stable nuclide for [[isotone]]s with 39 [[neutron]]s, which has a half-life of 11.3 days. Note that 39 is the most "unstable" [[neutron number]] among all numbers 0 to 128 (compare: [[isotopes of francium|87]] is the most "unstable" [[proton number]] among all numbers 1 to 98), all other numbers (0 to 128) of neutrons have a nuclide with a half-life 22 years or more (including stable |
<sup>71</sup>Ge is the most stable nuclide for [[isotone]]s with 39 [[neutron]]s, which has a half-life of 11.3 days. Note that 39 is the most "unstable" [[neutron number]] among all numbers 0 to 128 (compare: [[isotopes of francium|87]] is the most "unstable" [[proton number]] among all numbers 1 to 98), all other numbers (0 to 128) of neutrons have a nuclide with a half-life 22 years or more (including [[stable nuclide]]s). |
||
== List of isotopes == |
== List of isotopes == |
Revision as of 07:03, 3 January 2024
| ||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Ge) | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Germanium (32Ge) has five naturally occurring isotopes, 70Ge, 72Ge, 73Ge, 74Ge, and 76Ge. Of these, 76Ge is very slightly radioactive, decaying by double beta decay with a half-life of 1.78 × 1021 years[4] (130 billion times the age of the universe).
Stable 74Ge is the most common isotope, having a natural abundance of approximately 36%. 76Ge is the least common with a natural abundance of approximately 7%.[5] When bombarded with alpha particles, the isotopes 72Ge and 76Ge will generate stable 75As and 77Se, releasing high energy electrons in the process.[6]
At least 27 radioisotopes have also been synthesized ranging in atomic mass from 58 to 89. The most stable of these is 68Ge, decaying by electron capture with a half-life of 270.95 d. It decays to the medically useful positron-emitting isotope 68Ga. (See gallium-68 generator for notes on the source of this isotope, and its medical use.) The least stable known germanium isotope is 59Ge with a half-life of 13.3 ms.
While most of germanium's radioisotopes decay by beta decay, 61Ge and 65Ge can also decay by β+-delayed proton emission.[5] 84Ge through 87Ge also have minor β−-delayed neutron emission decay paths.[5]
76Ge is used in experiments on the nature of neutrinos, by searching for neutrinoless double beta decay.
71Ge is the most stable nuclide for isotones with 39 neutrons, which has a half-life of 11.3 days. Note that 39 is the most "unstable" neutron number among all numbers 0 to 128 (compare: 87 is the most "unstable" proton number among all numbers 1 to 98), all other numbers (0 to 128) of neutrons have a nuclide with a half-life 22 years or more (including stable nuclides).
List of isotopes
Nuclide [n 1] |
Z | N | Isotopic mass (Da) [n 2][n 3] |
Half-life [n 4][n 5] |
Decay mode [n 6] |
Daughter isotope [n 7] |
Spin and parity [n 8][n 5] |
Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy | Normal proportion | Range of variation | |||||||||||||||||
58Ge | 32 | 26 | 57.99101(34)# | 2p | 56Zn | 0+ | |||||||||||||
59Ge | 32 | 27 | 58.98175(30)# | 13.3(17) ms | 2p | 57Zn | 7/2−# | ||||||||||||
60Ge | 32 | 28 | 59.97019(25)# | 21(6) ms | β+, p | 59Zn | 0+ | ||||||||||||
β+, 2p | 58Cu | ||||||||||||||||||
61Ge | 32 | 29 | 60.96379(32)# | 39(12) ms | β+, p (80%) | 60Zn | (3/2−)# | ||||||||||||
β+ (20%) | 61Ga | ||||||||||||||||||
62Ge | 32 | 30 | 61.95465(15)# | 129(35) ms | β+ | 62Ga | 0+ | ||||||||||||
63Ge | 32 | 31 | 62.94964(21)# | 142(8) ms | β+ | 63Ga | (3/2−)# | ||||||||||||
64Ge | 32 | 32 | 63.94165(3) | 63.7(25) s | β+ | 64Ga | 0+ | ||||||||||||
65Ge | 32 | 33 | 64.93944(11) | 30.9(5) s | β+ (99.99%) | 65Ga | (3/2)− | ||||||||||||
β+, p (.01%) | 64Zn | ||||||||||||||||||
66Ge | 32 | 34 | 65.93384(3) | 2.26(5) h | β+ | 66Ga | 0+ | ||||||||||||
67Ge | 32 | 35 | 66.932734(5) | 18.9(3) min | β+ | 67Ga | 1/2− | ||||||||||||
67m1Ge | 18.20(5) keV | 13.7(9) μs | 5/2− | ||||||||||||||||
67m2Ge | 751.70(6) keV | 110.9(14) ns | 9/2+ | ||||||||||||||||
68Ge[n 9] | 32 | 36 | 67.928094(7) | 271.05(8) d | EC | 68Ga | 0+ | ||||||||||||
69Ge | 32 | 37 | 68.9279645(14) | 39.05(10) h | β+ | 69Ga | 5/2− | ||||||||||||
69m1Ge | 86.765(14) keV | 5.1(2) μs | 1/2− | ||||||||||||||||
69m2Ge | 397.944(18) keV | 2.81(5) μs | 9/2+ | ||||||||||||||||
70Ge | 32 | 38 | 69.9242474(11) | Stable | 0+ | 0.2038(18) | |||||||||||||
71Ge | 32 | 39 | 70.9249510(11) | 11.43(3) d | EC | 71Ga | 1/2− | ||||||||||||
71mGe | 198.367(10) keV | 20.40(17) ms | IT | 71Ge | 9/2+ | ||||||||||||||
72Ge | 32 | 40 | 71.9220758(18) | Stable | 0+ | 0.2731(26) | |||||||||||||
72mGe | 691.43(4) keV | 444.2(8) ns | 0+ | ||||||||||||||||
73Ge | 32 | 41 | 72.9234589(18) | Stable | 9/2+ | 0.0776(8) | |||||||||||||
73m1Ge | 13.2845(15) keV | 2.92(3) μs | 5/2+ | ||||||||||||||||
73m2Ge | 66.726(9) keV | 499(11) ms | 1/2− | ||||||||||||||||
74Ge | 32 | 42 | 73.9211778(18) | Stable | 0+ | 0.3672(15) | |||||||||||||
75Ge | 32 | 43 | 74.9228589(18) | 82.78(4) min | β− | 75As | 1/2− | ||||||||||||
75m1Ge | 139.69(3) keV | 47.7(5) s | IT (99.97%) | 75Ge | 7/2+ | ||||||||||||||
β− | 75As | ||||||||||||||||||
75m2Ge | 192.18(7) keV | 216(5) ns | 5/2+ | ||||||||||||||||
76Ge[n 10] | 32 | 44 | 75.9214026(18) | (2.022±0.018±0.038)×1021 y[7] | β−β− | 76Se | 0+ | 0.0783(7) | |||||||||||
77Ge | 32 | 45 | 76.9235486(18) | 11.30(1) h | β− | 77As | 7/2+ | ||||||||||||
77mGe | 159.70(10) keV | 52.9(6) s | β− (79%) | 77As | 1/2− | ||||||||||||||
IT (21%) | 77Ge | ||||||||||||||||||
78Ge | 32 | 46 | 77.922853(4) | 88(1) min | β− | 78As | 0+ | ||||||||||||
79Ge | 32 | 47 | 78.9254(1) | 18.98(3) s | β− | 79As | (1/2)− | ||||||||||||
79mGe | 185.95(4) keV | 39.0(10) s | β− (96%) | 79As | (7/2+)# | ||||||||||||||
IT (4%) | 79Ge | ||||||||||||||||||
80Ge | 32 | 48 | 79.92537(3) | 29.5(4) s | β− | 80As | 0+ | ||||||||||||
81Ge | 32 | 49 | 80.92882(13) | 7.6(6) s | β− | 81As | 9/2+# | ||||||||||||
81mGe | 679.13(4) keV | 7.6(6) s | β− (99%) | 81As | (1/2+) | ||||||||||||||
IT (1%) | 81Ge | ||||||||||||||||||
82Ge | 32 | 50 | 81.92955(26) | 4.55(5) s | β− | 82As | 0+ | ||||||||||||
83Ge | 32 | 51 | 82.93462(21)# | 1.85(6) s | β− | 83As | (5/2+)# | ||||||||||||
84Ge | 32 | 52 | 83.93747(32)# | 0.947(11) s | β− (89.2%) | 84As | 0+ | ||||||||||||
β−, n (10.8%) | 83As | ||||||||||||||||||
85Ge | 32 | 53 | 84.94303(43)# | 535(47) ms | β− (86%) | 85As | 5/2+# | ||||||||||||
β−, n (14%) | 84As | ||||||||||||||||||
86Ge | 32 | 54 | 85.94649(54)# | >150 ns | β−, n | 85As | 0+ | ||||||||||||
β− | 86As | ||||||||||||||||||
87Ge | 32 | 55 | 86.95251(54)# | 0.14# s | 5/2+# | ||||||||||||||
88Ge | 32 | 56 | 87.95691(75)# | >=300 ns | 0+ | ||||||||||||||
89Ge | 32 | 57 | 88.96383(97)# | >150 ns | 3/2+# | ||||||||||||||
This table header & footer: |
- ^ mGe – Excited nuclear isomer.
- ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- ^ Bold half-life – nearly stable, half-life longer than age of universe.
- ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- ^
Modes of decay:
EC: Electron capture IT: Isomeric transition n: Neutron emission p: Proton emission - ^ Bold symbol as daughter – Daughter product is stable.
- ^ ( ) spin value – Indicates spin with weak assignment arguments.
- ^ Used to generate 68Ga
- ^ Primordial radionuclide
- Angular momentum or 3rd order sub particles are omitted as spin(2)=0,45,45.
References
- Isotope masses from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- Isotopic compositions and standard atomic masses from:
- de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.
- ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ^ "Standard Atomic Weights: Germanium". CIAAW. 2009.
- ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- ^ A. M. Bakalyarov; A. Ya. Balysh; S. T. Belyaev; V. I. Lebedev; S. V. Zhukov (2003). "Results of the experiment on investigation of Germanium-76 double beta decay". Physics of Particles and Nuclei Letters. 2 (2): 77–81. arXiv:hep-ex/0309016. Bibcode:2003hep.ex....9016B.
- ^ a b c Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- ^ Via a set of two reactions:
4He + 72Ge → 75Se + 1n, 75Se decays by electron capture to 75As with a half-life of 120 days
76Ge + 1n → 77Ge, which then undergoes beta decay to 77As with a half-life of 11.3 hours, which in turn undergoes beta decay to 77Se with a half-life of 39 hours - ^ M. Agostini; et al. (2023-10-03). "Final Results of GERDA on the Two-Neutrino Double-β Decay Half-Life of 76Ge". Physical Review Letters. 131 (14). American Physical Society (APS): 142501. arXiv:2308.09795. Bibcode:2023PhRvL.131n2501A. doi:10.1103/physrevlett.131.142501. ISSN 0031-9007. PMID 37862664. S2CID 261049638.