Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Jump to content

Linearly disjoint

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, algebras A, B over a field k inside some field extension of k are said to be linearly disjoint over k if the following equivalent conditions are met:

  • (i) The map induced by is injective.
  • (ii) Any k-basis of A remains linearly independent over B.
  • (iii) If are k-bases for A, B, then the products are linearly independent over k.

Note that, since every subalgebra of is a domain, (i) implies is a domain (in particular reduced). Conversely if A and B are fields and either A or B is an algebraic extension of k and is a domain then it is a field and A and B are linearly disjoint. However, there are examples where is a domain but A and B are not linearly disjoint: for example, A = B = k(t), the field of rational functions over k.

One also has: A, B are linearly disjoint over k if and only if the subfields of generated by , resp. are linearly disjoint over k. (cf. Tensor product of fields)

Suppose A, B are linearly disjoint over k. If , are subalgebras, then and are linearly disjoint over k. Conversely, if any finitely generated subalgebras of algebras A, B are linearly disjoint, then A, B are linearly disjoint (since the condition involves only finite sets of elements.)

See also

References