Saturn IB: Difference between revisions
No edit summary |
Brevity Tags: Visual edit Mobile edit Mobile web edit Advanced mobile edit |
||
(95 intermediate revisions by 52 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|American rocket used in the Apollo program during the 1960s and 70s}} |
|||
{{Infobox rocket ;) |
|||
{{Infobox rocket |
|||
|image = Saturn IB launch configurations.jpg |
|||
| image = Saturn IB launch configurations.jpg |
|||
|caption = Three launch configurations of the Apollo Saturn IB rocket: no spacecraft ([[AS-203]]), Command/Service module (most missions); and Lunar Module ([[Apollo 5]]) |
|||
| caption = Three launch configurations of the Apollo Saturn IB rocket: no spacecraft ([[AS-203]]), [[command and service module]] ([[AS-202]]), and [[Lunar Module]] ([[Apollo 5]]) |
|||
|name = Saturn IB |
|||
| name = Saturn IB |
|||
|country-origin = [[United States]] |
|||
| country-origin = United States |
|||
|function = [[Apollo spacecraft]] development; <br>[[S-IVB]] stage development in support of [[Saturn V]]; <br>[[Skylab]] crew launcher |
|||
| function = [[Apollo (spacecraft)|Apollo spacecraft]] development;<br />[[S-IVB]] stage development in support of [[Saturn V]];<br />[[Skylab]] crew launcher |
|||
|manufacturer = [[Chrysler]] ([[S-IB]]) <br />[[Douglas Aircraft Company|Douglas]] ([[S-IVB]]) |
|||
| manufacturer = [[Chrysler]] ([[S-IB]])<br />[[Douglas Aircraft Company|Douglas]] ([[S-IVB]]) |
|||
|height = {{convert|141.6|ft|m|abbr=on}} <br>without payload<ref name="AS201"/> |
|||
| height = {{convert|141.6|ft|m|abbr=on}}<br />without payload<ref name="AS201" /> |
|||
|alt-height = |
|||
| alt-height = |
|||
|diameter = {{convert|21.67|ft|m|abbr=on}}<ref name="AS201"/> |
|||
| diameter = {{convert|21.67|ft|m|abbr=on}}<ref name="AS201" /> |
|||
|alt-diameter = |
|||
| alt-diameter = |
|||
|mass = {{convert|1,300,220|lb|kg|abbr=on}} <br>without payload<ref name="astronautix">{{cite web |url=http://www.astronautix.com/lvs/saturnib.htm |title=Saturn IB |accessdate=March 17, 2011 |author=Wade, Mark |work=Encyclopedia Astronautica}}</ref> |
|||
| mass = {{convert|1,300,220|lb|kg|abbr=on}}<br />without payload<ref name="astronautix">{{Cite encyclopedia |title=Saturn IB |encyclopedia=Encyclopedia Astronautica |url=http://www.astronautix.com/lvs/saturnib.htm |access-date=March 17, 2011 |archive-url=https://web.archive.org/web/20110514030644/http://www.astronautix.com/lvs/saturnib.htm |archive-date=May 14, 2011 |author=Wade, Mark |url-status=dead}}</ref> |
|||
|alt-mass = |
|||
|stages = 2 |
|||
| stages = 2 |
|||
|LEO-payload = {{convert|46,000|lb|kg|abbr=on}}<ref>{{cite book|last1=Hornung|first1=John|title=Entering the Race to the Moon: Autobiography of an Apollo Rocket Scientist|date=2013|publisher=Jack Be Nimble Publishing|location=Williamsburg, Virginia|url=https://books.google.com/books?id=MsrJy8mmPv0C&pg=PT207&lpg=PT207&dq=Entering+the+Race+to+the+Moon,+Saturn+IB+Established+Its+Place+in+Space&source=bl&ots=i7st8vZ7gj&sig=pzpCZUdSREgiT1F1nJzDzyX10W4&hl=en&sa=X&ved=0ahUKEwjX8o6RmNzKAhUBJnIKHdHBA7kQ6AEILjAD#v=onepage&q=Entering%20the%20Race%20to%20the%20Moon%2C%20Saturn%20IB%20Established%20Its%20Place%20in%20Space&f=false}}</ref> |
|||
| |
| capacities = |
||
{{Infobox rocket/payload |
|||
|status = Retired |
|||
| location = [[Low Earth orbit|LEO]] |
|||
|sites = [[Cape Canaveral Air Force Station Launch Complex 37|LC-37]] & [[Cape Canaveral Air Force Station Launch Complex 34|LC-34]], [[Cape Canaveral Air Force Station|Cape Canaveral]] <br />[[Kennedy Space Center Launch Complex 39|LC-39B]], [[Kennedy Space Center]] |
|||
| altitude = {{cvt|87.5|nmi|km mi}} |
|||
|launches = 9 |
|||
| mass = {{cvt|46,000|lb|kg|order=flip}}<ref>{{Cite book |last=Hornung |first=John |url=https://books.google.com/books?id=MsrJy8mmPv0C&pg=PT207 |title=Entering the Race to the Moon: Autobiography of an Apollo Rocket Scientist |date=2013 |publisher=Jack Be Nimble Publishing |isbn=9780983044178 |location=Williamsburg, Virginia}}</ref> |
|||
|success = 9 |
|||
}} |
|||
|fail = 0 |
|||
| status = Retired |
|||
|payloads = Unmanned [[Apollo CSM]] <br>Unmanned [[Apollo LM]] <br>Manned Apollo CSM |
|||
| sites = [[Cape Canaveral Space Force Station|Cape Canaveral]], [[Cape Canaveral Launch Complex 34|LC-34]] and [[Cape Canaveral Space Launch Complex 37|LC-37]]<br>[[Kennedy Space Center|Kennedy]], [[Kennedy Space Center Launch Complex 39|LC-39B]] |
|||
|first=February 26, 1966 |
|||
| launches = 9 |
|||
|last=July 15, 1975 |
|||
| |
| success = 9 |
||
| payloads = [[Apollo CSM]],<br />Uncrewed [[Apollo LM]] |
|||
| first = {{Start date|1966|2|26}} |
|||
| last = {{End date|1975|7|15}} |
|||
| stagedata = |
|||
{{Infobox rocket/stage |
{{Infobox rocket/stage |
||
| |
| stageno = First |
||
| type = stage |
|||
|diff = <!--variant of rocket this is used on, optional--> |
|||
| |
| name = [[S-IB]] |
||
| |
| length = {{cvt|80.17|ft|m|order=flip}} |
||
| |
| diameter = {{cvt|21.42|ft|m|order=flip}} |
||
| |
| width = <!--{{convert|DIAMETER|ft|m}} with fins--> |
||
| |
| empty = {{cvt|92500|lb|kg|order=flip}} |
||
| |
| gross = {{cvt|973000|lb|kg|order=flip}} |
||
| |
| propmass = {{cvt|880500|lb|kg|order=flip}} |
||
| |
| engines = 8 × [[Rocketdyne H-1|H-1]] |
||
| thrust = {{cvt|1,600,000|lbf|kN|order=flip}} |
|||
|engines = 8 × [[H-1 (rocket engine)|H-1]] |
|||
| |
| SI = {{cvt|272|isp}} |
||
| |
| burntime = 150 seconds |
||
| fuel = [[Liquid oxygen|LOX]] / [[RP-1]] |
|||
|burntime = 150 seconds |
|||
|fuel = [[RP-1]]/[[LOX]] |
|||
}} |
}} |
||
{{Infobox rocket/stage |
{{Infobox rocket/stage |
||
| |
| stageno = Second |
||
| type = stage |
|||
|diff = <!--variant of rocket this is used on, optional--> |
|||
| |
| name = [[S-IVB]] |
||
| length = {{cvt|58.42|ft|m|order=flip}} |
|||
|name = [[S-IVB]]-200 |
|||
| |
| diameter = {{cvt|21.42|ft|m|order=flip}} |
||
| |
| empty = {{cvt|23400|lb|kg|order=flip}} |
||
| |
| gross = {{cvt|251900|lb|kg|order=flip}} |
||
| |
| propmass = {{cvt|228500|lb|kg|order=flip}} |
||
| |
| engines = 1 × [[Rocketdyne J-2|J-2]] |
||
| thrust = {{cvt|200,000|lbf|kN|order=flip}} |
|||
|engines = 1 [[Rocketdyne]] [[J-2 (rocket engine)|J-2]] |
|||
| |
| SI = {{cvt|420|isp}} |
||
| |
| burntime = 480 seconds |
||
| fuel = [[Liquid oxygen|LOX]] / [[LH2|LH<sub>2</sub>]] |
|||
|burntime = 480 seconds |
|||
|fuel = [[LH2]]/[[LOX]] |
|||
}} |
}} |
||
}} |
}} |
||
The '''Saturn IB''' |
The '''Saturn IB'''{{efn|Pronounced "saturn one bee"}} (also known as the '''uprated Saturn I''') was an American [[launch vehicle]] commissioned by the [[NASA|National Aeronautics and Space Administration]] (NASA) for the [[Apollo program]]. It uprated the [[Saturn I]] by replacing the [[S-IV]] second stage ({{convert|90000|lbf|N|adj=on}}, 43,380,000 lb-sec total impulse), with the [[S-IVB]] ({{convert|200000|lbf|N|adj=on}}, 96,000,000 lb-sec total impulse). The [[S-IB]] first stage also increased the [[S-I]] baseline's thrust from {{convert|1500000|lbf|N}} to {{Convert|1600000|lbf|N}} and propellant load by 3.1%. This increased the Saturn I's [[low Earth orbit]] payload capability from {{convert|20000|lb|kg}} to {{convert|46000|lb|kg}}, enough for early flight tests of a half-fueled [[Apollo command and service module]] (CSM) or a fully fueled [[Apollo Lunar Module]] (LM), before the larger [[Saturn V]] needed for lunar flight was ready. |
||
By sharing the S-IVB upper stage, the Saturn IB and Saturn V provided a common interface to the Apollo spacecraft. The only major difference was that the S-IVB on the Saturn V burned only part of its propellant to achieve Earth orbit, so it could be restarted for [[ |
By sharing the S-IVB upper stage, the Saturn IB and Saturn V provided a common interface to the Apollo spacecraft. The only major difference was that the S-IVB on the Saturn V burned only part of its propellant to achieve Earth orbit, so it could be restarted for [[trans-lunar injection]]. The S-IVB on the Saturn IB needed all of its propellant to achieve Earth orbit. |
||
The Saturn IB launched two |
The Saturn IB launched two uncrewed CSM suborbital flights to a height of 162 km, one uncrewed LM orbital flight, and the first crewed CSM orbital mission (first planned as [[Apollo 1]], later flown as [[Apollo 7]]). It also launched one orbital mission, [[AS-203]], without a payload so the S-IVB would have residual [[liquid hydrogen]] fuel. This mission supported the design of the restartable version of the S-IVB used in the Saturn V, by observing the behavior of the liquid hydrogen in [[weightlessness]]. |
||
In 1973, the year after the Apollo lunar program ended, three Apollo CSM/Saturn IBs ferried crews to the [[Skylab]] space station. In 1975, one last Apollo/Saturn IB launched the Apollo portion of the joint US-[[ |
In 1973, the year after the Apollo lunar program ended, three Apollo CSM/Saturn IBs ferried crews to the [[Skylab]] space station. In 1975, one last Apollo/Saturn IB launched the Apollo portion of the joint US-[[Soviet Union|USSR]] [[Apollo–Soyuz Test Project]] (ASTP). A backup Apollo CSM/Saturn IB was assembled and made ready for a Skylab rescue mission, but never flown. |
||
The remaining Saturn IBs in NASA's inventory were scrapped after the ASTP mission as no use could be found for them and all heavy lift needs of the US space program could be serviced by the cheaper and more versatile [[Titan (rocket family)|Titan III family]]. |
The remaining Saturn IBs in NASA's inventory were scrapped after the ASTP mission, as no use could be found for them and all heavy lift needs of the US space program could be serviced by the cheaper and more versatile [[Titan (rocket family)|Titan III family]] and also the [[Space Shuttle]]. |
||
==History== |
==History== |
||
In 1959, NASA's [[Silverstein Committee]] issued recommendations to develop the [[Saturn (rocket family)|Saturn class]] launch vehicles, growing from the [[Saturn I|C-1]]. When the [[Apollo program]] was started in 1961 with the goal of landing men on the Moon, NASA chose the Saturn I for Earth orbital test missions. However, the Saturn I's payload limit of {{convert|20000|lb|kg}} would allow testing of only the |
In 1959, NASA's [[Silverstein Committee]] issued recommendations to develop the [[Saturn (rocket family)|Saturn class]] launch vehicles, growing from the [[Saturn I|C-1]]. When the [[Apollo program]] was started in 1961 with the goal of landing men on the Moon, NASA chose the Saturn I for Earth orbital test missions. However, the Saturn I's payload limit of {{convert|20000|lb|kg}} to 162 km would allow testing of only the [[Apollo command module|command module]] with a smaller propulsion module attached, as the [[command and service module]] would have a dry weight of at least {{convert|26300|lb|kg}}, in addition to service propulsion and reaction control fuel. In July 1962, NASA announced selection of the [[Saturn V|C-5]] for the lunar landing mission, and decided to develop another launch vehicle by upgrading the Saturn I, replacing its [[S-IV]] second stage with the [[S-IVB]], which would also be modified for use as the Saturn V third stage. The [[S-I]] first stage would also be upgraded to the S-IB by improving the thrust of its engines and removing some weight. The new Saturn IB, with a payload capability of at least {{convert|16000|kg|lb|order=flip}},<ref>{{Cite book |last=Benson |first=Charles D. |url=http://www.hq.nasa.gov/office/pao/History/SP-4204/ch17-3.html |title=Moonport: A History of Apollo Launch Facilities and Operations |last2=Faherty |first2=William Barnaby |date=1978 |publisher=NASA |chapter=The Apollo-Saturn IB Space Vehicle |access-date=3 February 2016 |archive-url=https://web.archive.org/web/20160324215804/http://www.hq.nasa.gov/office/pao/History/SP-4204/ch17-3.html |archive-date=24 March 2016 |url-status=dead}}</ref> would replace the Saturn I for Earth orbit testing, allowing the command and service module to be flown with a partial fuel load. It would also allow launching the {{convert|32000|lb|kg|adj=on}} [[lunar excursion module]] separately for uncrewed and crewed Earth orbital testing, before the Saturn V was ready to be flown. It would also give early development to the third stage.<ref name="astronautix" /> |
||
On May 12, 1966, NASA announced the vehicle |
On May 12, 1966, NASA announced the vehicle would be called the "uprated Saturn I", at the same time the "lunar excursion module" was renamed the [[lunar module]]. However, the "uprated Saturn I" terminology was reverted to Saturn IB on December 2, 1967.<ref name="astronautix" /> |
||
By the time it was developed, the Saturn IB payload capability had increased to {{convert|41000|lb|kg}}.<ref name="astronautix"/> By 1973, when it was used to launch three [[Skylab]] missions, the first-stage engine had been upgraded further, raising the payload capability to {{convert|46000|lb|kg}}. |
By the time it was developed, the Saturn IB payload capability had increased to {{convert|41000|lb|kg}}.<ref name="astronautix" /> By 1973, when it was used to launch three [[Skylab]] missions, the first-stage engine had been upgraded further, raising the payload capability to {{convert|46000|lb|kg}}. |
||
==Specifications== |
==Specifications== |
||
===Launch vehicle=== |
===Launch vehicle=== |
||
{| class="wikitable |
{| class="wikitable" |
||
|- |
|- |
||
! Parameter<ref name="AS201">{{Citation |title=Postlaunch report for mission AS-201 (Apollo spacecraft 009) - |date=May 1966 |url=https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19750065090_1975065090.pdf |access-date=March 18, 2011 |publisher=NASA}}</ref> |
|||
! '''Parameter'''<ref name="AS201">{{Citation |
|||
! S-IB (1st stage) |
|||
|title = Postlaunch report for mission AS-201 (Apollo spacecraft 009) - |
|||
! S-IVB (2nd stage) |
|||
|publisher = NASA |
|||
! Instrument unit |
|||
|date = May 1966 |
|||
|url = http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19750065090_1975065090.pdf |
|||
|accessdate = March 18, 2011}} |
|||
</ref> |
|||
! '''S-IB 1st Stage''' |
|||
! '''S-IVB-200 2nd Stage''' |
|||
! '''Instrument Unit''' |
|||
|- |
|- |
||
! Height |
|||
| {{ |
| {{cvt|80.17|ft|m|order=flip}} |
||
| {{ |
| {{cvt|58.42|ft|m|order=flip}} |
||
| {{ |
| {{cvt|3|ft|m|order=flip}} |
||
|- |
|- |
||
! Diameter |
|||
| {{ |
| {{cvt|21.42|ft|m|order=flip}} |
||
| {{ |
| {{cvt|21.67|ft|m|order=flip}} |
||
| {{ |
| {{cvt|21.67|ft|m|order=flip}} |
||
|- |
|- |
||
! Structural mass |
|||
| {{ |
| {{cvt|92,500|lb|kg|order=flip}} |
||
| {{ |
| {{cvt|23,400|lb|kg|order=flip}} |
||
| {{ |
| {{cvt|4,400|lb|kg|order=flip}} |
||
|- |
|- |
||
! Propellant |
|||
| [[Liquid oxygen|LOX]] / [[RP-1]] |
|||
| RP-1/LOX |
|||
| [[Liquid oxygen|LOX]] / [[LH2|LH<sub>2</sub>]] |
|||
| LH2/LOX |
|||
| N/A |
| {{N/A}} |
||
|- |
|- |
||
! Propellant mass |
|||
| {{ |
| {{cvt|880,500|lb|kg|order=flip}} |
||
| {{ |
| {{cvt|228,500|lb|kg|order=flip}} |
||
| N/A |
| {{N/A}} |
||
|- |
|- |
||
! Engines |
|||
| |
| 8 × [[Rocketdyne H-1|H-1]] |
||
| |
| 1 × [[Rocketdyne J-2|J-2]] |
||
| N/A |
| {{N/A}} |
||
|- |
|- |
||
! Thrust |
|||
| {{ |
| {{cvt|1,600,000|lbf|kN|order=flip}} sea level |
||
| {{ |
| {{cvt|200,000|lbf|kN|order=flip}} vacuum |
||
| N/A |
| {{N/A}} |
||
|- |
|- |
||
! Burn duration |
|||
| 150 |
| 150 seconds |
||
| 480 |
| 480 seconds |
||
| N/A |
| {{N/A}} |
||
|- |
|- |
||
! Specific impulse |
|||
| 272 |
| {{cvt|272|isp}} sea level |
||
| 420 |
| {{cvt|420|isp}} vacuum |
||
| N/A |
| {{N/A}} |
||
|- |
|- |
||
! Contractor |
|||
| Chrysler |
| [[Chrysler]] |
||
| Douglas |
| [[Douglas Aircraft Company|Douglas]] |
||
| IBM |
| [[IBM]] |
||
|} |
|} |
||
===Payload configurations=== |
===Payload configurations=== |
||
{| class="wikitable |
{| class="wikitable" |
||
|- |
|- |
||
! |
! Parameter |
||
! [[Apollo command and service module|Command and service module]] |
|||
! '''Command/Service Module''' |
|||
! |
! [[Apollo 5]] |
||
! |
! [[AS-203]] |
||
|- |
|- |
||
! [[Apollo Spacecraft#Launch Escape System (LES)|Launch Escape System]] mass |
|||
| {{ |
| {{cvt|9,200|lb|kg|order=flip}} |
||
| N/A |
| {{N/A}} |
||
| N/A |
| {{N/A}} |
||
|- |
|- |
||
! [[Apollo command and service module]] mass |
|||
| {{ |
| {{cvt|36,400|to|46,000|lb|kg|order=flip}} |
||
| N/A |
| {{N/A}} |
||
| N/A |
| {{N/A}} |
||
|- |
|- |
||
! [[Apollo Lunar Module]] mass |
|||
| N/A |
| {{N/A}} |
||
| {{ |
| {{cvt|31,650|lb|kg|order=flip}} |
||
| N/A |
| {{N/A}} |
||
|- |
|- |
||
! [[Apollo Spacecraft#Spacecraft–lunar module adapter (SLA)|Spacecraft–LM adapter]] mass |
|||
| {{ |
| {{cvt|4,050|lb|kg|order=flip}} |
||
| {{ |
| {{cvt|4,050|lb|kg|order=flip}} |
||
| N/A |
| {{N/A}} |
||
|- |
|- |
||
! [[Nose cone]] height |
|||
| N/A |
| {{N/A}} |
||
| {{ |
| {{cvt|8.3|ft|m|order=flip}} |
||
| {{ |
| {{cvt|27.7|ft|m|order=flip}} |
||
|- |
|- |
||
! Payload height |
|||
| {{ |
| {{cvt|81.8|ft|m|order=flip}} |
||
| {{ |
| {{cvt|36.3|ft|m|order=flip}} |
||
| N/A |
| {{N/A}} |
||
|- |
|- |
||
! Total space vehicle height |
|||
| {{ |
| {{cvt|223.4|ft|m|order=flip}} |
||
| {{ |
| {{cvt|177.9|ft|m|order=flip}} |
||
| {{ |
| {{cvt|169.4|ft|m|order=flip}} |
||
|} |
|} |
||
==S-IB stage== |
===S-IB first stage=== |
||
{{main|S-IB}} |
|||
[[File:Saturn IB 1st stage.jpg|right|thumb|300px|Diagram of the S-IB first stage of the Saturn IB rocket]] |
[[File:Saturn IB 1st stage.jpg|right|thumb|300px|Diagram of the S-IB first stage of the Saturn IB rocket]] |
||
{{Main|S-IB}} |
|||
The S-IB stage was built by the [[Chrysler]] corporation at the [[Michoud Assembly Facility]], [[New Orleans, Louisiana|New Orleans]].<ref name=SIB_final_use/> It was powered by eight [[Rocketdyne H-1]] rocket engines burning [[RP-1]] fuel with [[liquid oxygen]] (LOX). Eight [[PGM-11 Redstone|Redstone]] tanks (four holding fuel and four holding LOX) were clustered around a [[PGM-19 Jupiter|Jupiter rocket]] LOX tank, which earned the rocket the nickname "Cluster's Last Stand".<ref>{{Cite web |title=Saturn I |url=http://www.astronautix.com/s/saturni.html}}</ref> The four outboard engines were mounted on [[gimbal]]s, allowing them to be steered to control the rocket. Eight fins surrounding the base thrust structure provided aerodynamic stability and control. |
|||
''Data from:<ref>NASA Marshall Spaceflight Center, Skylab Saturn IB Flight Manual (MSFC-MAN-206), 30 September 1972</ref>'' |
|||
The S-IB stage was built by the [[Chrysler]] corporation at the [[Michoud Assembly Facility]], [[New Orleans, Louisiana|New Orleans]].<ref name=SIB_final_use/> It was powered by eight [[H-1 (rocket engine)|H-1 rocket engine]]s burning [[RP-1]] fuel with [[liquid oxygen]] (LOX). Eight [[PGM-11 Redstone|Redstone]] tanks (four holding fuel and four holding LOX) were clustered around a [[PGM-19 Jupiter|Jupiter rocket]] LOX tank. The four outboard engines were mounted on [[gimbal]]s, allowing them to be steered to control the rocket. Eight fins surrounding the base thrust structure provided aerodynamic stability and control. |
|||
{{Rocket specifications |
|||
*Height: {{convert|80.17|ft|m|abbr=on}} |
|||
| length main = {{convert|80.17|ft|m|order=flip}} |
|||
| diameter main = {{convert|21.42|ft|m|order=flip}} |
|||
*Number of fins: 8 |
|||
| wingspan main = {{convert|39.42|ft|m|order=flip}} |
|||
| engine = 8 × [[Rocketdyne H-1]] |
|||
| thrust main = {{convert|1,600,000|lbf|kN|order=flip}} |
|||
| burn time = 150 seconds |
|||
*Fuel: [[RP-1]] (Refined [[kerosene]]) 41,000 US gal (155 m<sup>3</sup>) |
|||
| fuel = [[Liquid oxygen|LOX]] / [[RP-1]] |
|||
*Oxidizer: Liquid [[oxygen]] ([[LOX]]) 66,277 US gal (251 m<sup>3</sup>) nominal capacity including 1.5% ullage volume (43,284 US gal / 163 m<sup>3</sup> in four outer tanks plus 22,993 US gal / 87 m<sup>3</sup> in center tank<ref>NASA Marshall Spaceflight Center, Skylab Saturn IB Flight Manual (MSFC-MAN-206), 30 September 1972</ref>) |
|||
}} |
|||
*Burn time: 2.5 min |
|||
*Burnout altitude: {{convert|37|nmi|km|abbr=on}} |
|||
==S-IVB |
===S-IVB second stage=== |
||
{{main|S-IVB (rocket stage)}} |
|||
[[File:Saturn S-IB SIV-B.jpg|right|thumb|300px|Diagram of the S-IVB second stage of the Saturn IB]] |
[[File:Saturn S-IB SIV-B.jpg|right|thumb|300px|Diagram of the S-IVB second stage of the Saturn IB]] |
||
{{Main|S-IVB}} |
|||
The S-IVB was built by the [[Douglas Aircraft Company]] at [[Huntington Beach, California]]. The S-IVB-200 model was similar to the S-IVB-500 third stage used on the [[Saturn V]], with the exception of the interstage adapter, smaller auxiliary propulsion control modules, and lack of on-orbit engine restart capability. It was powered by a single [[J-2 (rocket engine)|J-2]] engine. The fuel and oxidizer tanks shared a common bulkhead, which saved about ten tons of weight and reduced vehicle length over ten feet. |
|||
The S-IVB was built by the [[Douglas Aircraft Company]] at [[Huntington Beach, California]]. The S-IVB-200 model was similar to the S-IVB-500 third stage used on the [[Saturn V]], with the exception of the interstage adapter, smaller auxiliary propulsion control modules, and lack of on-orbit engine restart capability. It was powered by a single [[Rocketdyne J-2]] engine. The fuel and oxidizer tanks shared a common bulkhead, which saved about ten tons of weight and reduced vehicle length over ten feet. |
|||
{{Rocket specifications |
|||
*Height: {{convert|58.42|ft|m|abbr=on}} |
|||
| length main = {{convert|58.42|ft|m|order=flip}} |
|||
| diameter main = {{convert|21.67|ft|m|order=flip}} |
|||
*Engine: single J-2 |
|||
| engine = 1 × [[Rocketdyne J-2]] |
|||
*Thrust: {{convert|200,000|lbf|kN|abbr=on}} |
|||
| thrust main = {{convert|200,000|lbf|kN|order=flip}} |
|||
*Fuel: Liquid [[hydrogen]] ([[LH2]]) 64,000 US gal (242 m<sup>3</sup>) |
|||
| burn time = ~420 seconds |
|||
*Oxidizer: Liquid [[oxygen]] ([[LOX]]) 20,000 US gal (76 m<sup>3</sup>) |
|||
| fuel = [[Liquid oxygen|LOX]] / [[LH2|LH<sub>2</sub>]] |
|||
*Burn time: approx. 7 min |
|||
}} |
|||
*Burnout altitude (for Saturn IB): orbit |
|||
==Instrument Unit== |
|||
{{Main|Saturn V Instrument Unit}} |
|||
[[File:IU-501 From Below.jpg|right|thumb|The Instrument Unit which controlled the Saturn IB and Saturn V]] |
|||
==Instrument unit== |
|||
[[IBM]] built the Instrument Unit at the Space Systems Center in Huntsville, AL. Located at the top of the S-IVB stage, it consisted of a Launch Vehicle Digital Computer (LVDC), an inertial platform, accelerometers, a tracking, telemetry and command system and associated environmental controls. It controlled the entire rocket from just before liftoff until battery depletion. Like other rocket guidance systems, it maintained its [[orbital state vectors|state vector]] (position and velocity estimates) by integrating accelerometer measurements, sent firing and steering commands to the main engines and auxiliary thrusters, and fired the appropriate ordnance and solid rocket motors during staging and payload separation events. |
|||
[[File:IU-501 From Below.jpg|right|thumb|The instrument unit, which controlled the Saturn IB and Saturn V]] |
|||
{{Main|Saturn V instrument unit}} |
|||
[[IBM]] built the instrument unit at the Space Systems Center in [[Huntsville, Alabama]]. Located at the top of the S-IVB stage, it consisted of a Launch Vehicle Digital Computer (LVDC), an inertial platform, accelerometers, a tracking, telemetry and command system and associated environmental controls. It controlled the entire rocket from just before liftoff until battery depletion. Like other rocket guidance systems, it maintained its [[orbital state vectors|state vector]] (position and velocity estimates) by integrating accelerometer measurements, sent firing and steering commands to the main engines and auxiliary thrusters, and fired the appropriate ordnance and solid rocket motors during staging and payload separation events. |
|||
As with other rockets, a completely independent and redundant [[range safety]] system could be invoked by ground radio command to terminate thrust and to destroy the vehicle should it malfunction and threaten people or property on the ground. In the Saturn IB and V, the range safety system was permanently disabled by ground command after safely reaching orbit. This was done to ensure that the S-IVB stage would not inadvertently rupture and create a cloud of debris in orbit that could endanger the crew of the Apollo CSM. |
As with other rockets, a completely independent and redundant [[range safety]] system could be invoked by ground radio command to terminate thrust and to destroy the vehicle should it malfunction and threaten people or property on the ground. In the Saturn IB and V, the range safety system was permanently disabled by ground command after safely reaching orbit. This was done to ensure that the S-IVB stage would not inadvertently rupture and create a cloud of debris in orbit that could endanger the crew of the Apollo CSM. |
||
==Launch sequence events== |
==Launch sequence events== |
||
{{table alignment}} |
|||
{| class="wikitable" border="1" |
|||
{| class="wikitable defaultright col1left" |
|||
|- |
|- |
||
! Launch event<ref name="SL_SAT1B_FM">{{Citation |title=Skylab Saturn 1B Flight Manual - |date=September 30, 1972 |url=https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740021163.pdf |access-date=July 8, 2020 |publisher=NASA}}</ref> |
|||
! '''Launch event''' |
|||
! |
! scope=col | Time (s) |
||
! |
! scope=col | Altitude (km) |
||
! scope=col | Speed (m/s) |
|||
! '''Range (km)''' |
|||
|- |
|- |
||
| Guidance ref release |
|||
| Ignition Command |
|||
| - |
| -5.0 |
||
|. |
| 0.09 |
||
| |
| 0 |
||
|- |
|- |
||
| First |
| First motion |
||
| |
| 0.0 |
||
|. |
| 0.09 |
||
| |
| 0 |
||
|- |
|- |
||
| |
| Mach 1 |
||
| |
| 58.9 |
||
|. |
| 7.4 |
||
| 183 |
|||
|. |
|||
|- |
|- |
||
| Max dynamic pressure |
|||
| Initiate Pitch Maneuver |
|||
| |
| 73.6 |
||
|. |
| 12.4 |
||
| 328 |
|||
|. |
|||
|- |
|- |
||
| Freeze tilt |
|||
| Initiate Roll Maneuver |
|||
| |
| 130.5 |
||
|. |
| 48.2 |
||
| 1587 |
|||
|. |
|||
|- |
|- |
||
| Inboard engine cutoff |
|||
| End Roll Maneuver |
|||
| |
| 137.6 |
||
|. |
| 54.8 |
||
| 1845 |
|||
|. |
|||
|- |
|- |
||
| Outboard engine cutoff |
|||
| Mach One |
|||
| |
| 140.6 |
||
| |
| 57.6 |
||
| 1903 |
|||
|. |
|||
|- |
|- |
||
| S-IB / S-IVB separation |
|||
| Max Q |
|||
| |
| 142.0 |
||
| |
| 59.0 |
||
| 1905 |
|||
|. |
|||
|- |
|- |
||
| S-IVB ignition |
|||
| Freeze Tilt |
|||
| |
| 143.4 |
||
|. |
| 59.9 |
||
| 1900 |
|||
|. |
|||
|- |
|- |
||
| Ullage case jettison |
|||
| Inboard Engine Cutoff |
|||
| |
| 154.0 |
||
| . |
| 69.7 |
||
| |
| 1914 |
||
|- |
|- |
||
| Launch escape tower jettison |
|||
| Outboard Engine Cutoff |
|||
| |
| 165.6 |
||
| . |
| 79.5 |
||
| |
| 1960 |
||
|- |
|- |
||
| Iterative guidance mode initiation |
|||
| Ullage Rockets Ignition |
|||
| |
| 171.0 |
||
| . |
| 83.7 |
||
| |
| 1984 |
||
|- |
|- |
||
| Engine mixture ratio shift |
|||
| S-IB / S-IVB Separation |
|||
| |
| 469.5 |
||
|. |
| 164.8 |
||
| 5064 |
|||
|. |
|||
|- |
|- |
||
| Guidance C/O signal |
|||
| S-IVB Ignition |
|||
| |
| 581.9 |
||
|. |
| 158.4 |
||
| 7419 |
|||
|. |
|||
|- |
|- |
||
| Orbit insertion |
|||
| Ullage Rocket Burnout |
|||
| |
| 591.9 |
||
|. |
| 158.5 |
||
| 7426 |
|||
|. |
|||
|- |
|||
| Ullage Rocket Jettison |
|||
| 156.58 |
|||
|. |
|||
|. |
|||
|- |
|||
| Jettison LES |
|||
| 163.28 |
|||
|. |
|||
|. |
|||
|- |
|||
| Start Pitch Over |
|||
| 613.95 |
|||
| . |
|||
| . |
|||
|- |
|||
| S-IVB Cutoff |
|||
| 616.76 |
|||
| . |
|||
| . |
|||
|- |
|||
| Orbit Insertion |
|||
| 626.76 |
|||
|. |
|||
|. |
|||
|- |
|||
| Start S/C Sep Sequence |
|||
| 663.11 |
|||
|. |
|||
|. |
|||
|- |
|||
| Spacecraft Separation |
|||
| 728.31 |
|||
|. |
|||
|. |
|||
|} |
|} |
||
Acceleration of the Saturn IB increased from 1.24 G at liftoff to a maximum of 4.35 G at the end of the S-IB stage burn, and increased again from 0 G to 2.85 G from stage separation to the end of the S-IVB burn.<ref name="SL_SAT1B_FM" /> |
|||
AS-206, 207, and 208 inserted the [[Apollo command and service module|Command and Service Module]] in a {{convert|150|by|222|km|nmi|abbr=off|sp=us|adj=on}} [[Elliptic orbit|elliptical orbit]] which was co-planar with the [[Skylab]] one. The SPS engine of the Command and Service Module was used at orbit apogee to achieve a [[Hohmann transfer orbit|Hohmann transfer]] to the [[Skylab]] orbit at {{convert|431|km|nmi|abbr=off|sp=us}}.<ref name="SL_SAT1B_FM" /> |
|||
==Saturn IB vehicles and launches== |
==Saturn IB vehicles and launches== |
||
Line 350: | Line 314: | ||
The first five Saturn IB launches for the Apollo program were made from [[Cape Canaveral Air Force Station Launch Complex 34|LC-34]] and [[Cape Canaveral Air Force Station Launch Complex 37|LC-37]], [[Cape Canaveral Air Force Station|Cape Kennedy Air Force Station]]. |
The first five Saturn IB launches for the Apollo program were made from [[Cape Canaveral Air Force Station Launch Complex 34|LC-34]] and [[Cape Canaveral Air Force Station Launch Complex 37|LC-37]], [[Cape Canaveral Air Force Station|Cape Kennedy Air Force Station]]. |
||
The Saturn IB was used between 1973 and 1975 for three |
The Saturn IB was used between 1973 and 1975 for three crewed [[Skylab]] flights, and one [[Apollo-Soyuz Test Project]] flight. This final production run did not have alternating black and white S-IB stage tanks, or vertical stripes on the S-IVB aft tank skirt, which were present on the earlier vehicles. Since LC-34 and 37 were inactive by then, these launches utilized [[Kennedy Space Center Launch Complex 39|Kennedy Space Center's LC-39B]].<ref name="West 2006">{{Cite book |last=Reynolds |first=David West |url=https://archive.org/details/kennedyspacecent00reyn/page/154 |title=Kennedy Space Center: Gateway to Space |publisher=Firefly Books Ltd. |year=2006 |isbn=978-1-55407-039-8 |location=Richmond Hill, Ontario |pages=[https://archive.org/details/kennedyspacecent00reyn/page/154 154–157] |url-access=registration}}</ref> [[Mobile Launcher Platform 3|Mobile Launcher Platform]] No. 1 was modified, adding an elevated platform known as the "milkstool" to accommodate the height differential between the Saturn IB and the much larger Saturn V.<ref name="West 2006" /> This enabled alignment of the Launch Umbilical Tower's access arms to accommodate crew access, fueling, and ground electrical connections for the Apollo spacecraft and S-IVB upper stage. The tower's second stage access arms were modified to service the S-IB first stage.<ref name="West 2006" /> |
||
[[File:Saturn IB vehicle configurations.jpg|thumb|500px|left|Various mission configurations for the Saturn IB launch vehicle]] |
|||
[[File:Saturn IB launches.jpg|thumb|500px|left|All Saturn IB launches from AS-201 through ASTP]] |
[[File:Saturn IB launches.jpg|thumb|500px|left|All Saturn IB launches from AS-201 through ASTP]] |
||
{{ |
{{clear}} |
||
{| class="wikitable |
{| class="wikitable" |
||
|- |
|- |
||
! |
! style="background:#efefef;"| Serial<br />number |
||
! |
! style="background:#efefef;" | Launch<br />date<br />(UTC) |
||
!Launch site |
|||
! style="background:#efefef;"| Spacecraft <br>Mass (kg) |
|||
! |
! style="background:#efefef;" | Mission |
||
! |
! style="background:#efefef;"| Spacecraft<br />mass (kg) |
||
! style="background:#efefef;"| Notes |
|||
|- |
|- |
||
| align=center|'''SA-201''' |
| align=center|'''SA-201''' |
||
| align="right" |February 26, 1966<br />16:12:01 |
|||
| align=center|[[AS-201]] |
|||
|[[Cape Canaveral Space Force Station|Cape Kennedy]], [[LC-34]] |
|||
| align="center" |[[AS-201]] |
|||
| align=center|20,820 |
| align=center|20,820 |
||
| Uncrewed suborbital test of Block I CSM<br />(command and service module) |
|||
| align=right|February 26, 1966 |
|||
| Unmanned suborbital test of Block I CSM <br>(Command/Service Module) |
|||
|- |
|- |
||
| align=center|'''SA-203''' |
| align=center|'''SA-203''' |
||
| align= |
| align="right" |July 5, 1966<br />14:53:17 |
||
|[[Cape Canaveral Space Force Station|Cape Kennedy]], [[LC-37|LC-37B]] |
|||
| align="center" |[[AS-203]] |
|||
| align=center|None |
| align=center|None |
||
| Uncrewed test of unburned LH<sub>2</sub> behavior in orbit<br />to support S-IVB-500 restart design |
|||
| align=right|July 5, 1966 |
|||
| Unmanned test of unburned LH<sub>2</sub> behavior in orbit <br>to support S-IVB-500 restart design |
|||
|- |
|- |
||
| align=center| '''SA-202''' |
| align=center| '''SA-202''' |
||
| align= |
| align="right" | August 25, 1966<br />17:15:32 |
||
|[[Cape Canaveral Space Force Station|Cape Kennedy]], [[LC-34]] |
|||
| align="center" | [[AS-202]] |
|||
| align=center| 25,810 |
| align=center| 25,810 |
||
| Uncrewed suborbital test of Block I CSM |
|||
| align=right| August 25, 1966 |
|||
| Unmanned suborbital test of Block I CSM |
|||
|- |
|- |
||
| rowspan=2 align=center| '''SA-204''' |
| rowspan=2 align=center| '''SA-204''' |
||
| colspan="1" | |
|||
| align=center| [[Apollo 1]] |
|||
|[[Cape Canaveral Space Force Station|Cape Kennedy]], [[LC-34]] |
|||
| align="center" | [[Apollo 1]] |
|||
| align=center| 20,412 |
| align=center| 20,412 |
||
| Was to be first crewed orbital test of Block I CSM.<br />Cabin fire on January 27, 1967, killed astronauts and damaged CM during dress rehearsal for planned February 21, 1967 launch |
|||
| colspan=1| |
|||
| Was to be first manned orbital test of Block I CSM. <br>Cabin fire killed astronauts and damaged CM during <br>dress rehearsal for planned February 21, 1967 launch |
|||
|- |
|- |
||
| align= |
| align="right" | January 22, 1968<br />22:48:08 |
||
|[[Cape Canaveral Space Force Station|Cape Kennedy]], [[LC-37|LC-37B]] |
|||
| align="center" | [[Apollo 5]] |
|||
| align=center| 14,360 |
| align=center| 14,360 |
||
| Uncrewed orbital test of lunar module, used Apollo 1 launch vehicle |
|||
| align=right| January 22, 1968 |
|||
| Unmanned orbital test of Lunar Module, <br>used Apollo 1 launch vehicle |
|||
|- |
|- |
||
| align=center| '''SA-205''' |
| align=center| '''SA-205''' |
||
| align= |
| align="right" | October 11, 1968<br />15:02:45 |
||
|[[Cape Canaveral Space Force Station|Cape Kennedy]], [[LC-34]] |
|||
| align="center" | [[Apollo 7]] |
|||
| align=center| 16,520 |
| align=center| 16,520 |
||
| Crewed orbital test of Block II CSM |
|||
| align=right| October 11, 1968 |
|||
| Manned orbital test of Block II CSM |
|||
|- |
|- |
||
| align=center| '''SA-206''' |
| align=center| '''SA-206''' |
||
| align= |
| align="right" | May 25, 1973<br />13:00:00 |
||
|[[Kennedy Space Center|Kennedy]], [[LC-39B]] |
|||
| align="center" | [[Skylab 2]] |
|||
| align=center| 19,979 |
| align=center| 19,979 |
||
| align=right| May 25, 1973 |
|||
| Block II CSM ferried first crew to Skylab orbital workshop |
| Block II CSM ferried first crew to Skylab orbital workshop |
||
|- |
|- |
||
| align=center| '''SA-207''' |
| align=center| '''SA-207''' |
||
| align= |
| align="right" | July 28, 1973<br />11:10:50 |
||
|[[Kennedy Space Center|Kennedy]], [[LC-39B]] |
|||
| align="center" | [[Skylab 3]] |
|||
| align=center| 20,121 |
| align=center| 20,121 |
||
| align=right| July 28, 1973 |
|||
| Block II CSM ferried second crew to Skylab orbital workshop |
| Block II CSM ferried second crew to Skylab orbital workshop |
||
|- |
|- |
||
| rowspan=2 align=center| '''SA-208''' |
| rowspan=2 align=center| '''SA-208''' |
||
| |
|||
| align=center| [[Skylab Rescue|AS-208]] |
|||
|[[Kennedy Space Center|Kennedy]], [[LC-39B]] |
|||
| colspan=2| |
|||
| align="center" | [[Skylab Rescue|AS-208]] |
|||
| |
|||
| Standby Skylab 3 rescue CSM-119; not needed |
| Standby Skylab 3 rescue CSM-119; not needed |
||
|- |
|- |
||
| align= |
| align="right" | November 16, 1973<br />14:01:23 |
||
|[[Kennedy Space Center|Kennedy]], [[LC-39B]] |
|||
| align="center" | [[Skylab 4]] |
|||
| align=center| 20,847 |
| align=center| 20,847 |
||
| align=right| November 16, 1973 |
|||
| Block II CSM ferried third crew to Skylab orbital workshop |
| Block II CSM ferried third crew to Skylab orbital workshop |
||
|- |
|- |
||
| rowspan=2 align=center| '''SA-209''' |
| rowspan=2 align=center| '''SA-209''' |
||
| |
|||
| align=center| [[Skylab Rescue|AS-209]] |
|||
|[[Kennedy Space Center|Kennedy]], [[LC-39B]] |
|||
| colspan=2| |
|||
| align="center" | [[Skylab Rescue|AS-209]] |
|||
| Standby Skylab 4 and later Apollo-Soyuz rescue CSM-119. <br>Not needed, currently on display in the [[Kennedy Space Center Visitor Complex#Rocket garden|KSC rocket garden]] |
|||
| |
|||
| Standby Skylab 4 and later Apollo-Soyuz rescue CSM-119.<br />Not needed, currently on display in the [[Kennedy Space Center Visitor Complex#Rocket Garden|KSC rocket garden]] |
|||
|- |
|- |
||
| |
|||
| align=center| [[Skylab 5]] |
|||
| |
|||
| colspan=2| |
|||
| align="center" | [[Skylab 5]] |
|||
| Planned CSM mission to lift Skylab workshop's orbit <br>to endure until [[Space Shuttle]] ready to fly; cancelled. |
|||
| |
|||
| Planned CSM mission to lift Skylab workshop's orbit<br />to endure until [[Space Shuttle]] ready to fly; cancelled. |
|||
|- |
|- |
||
| align=center| '''SA-210''' |
| align=center| '''SA-210''' |
||
| align= |
| align="right" | July 15, 1975<br />19:50:01 |
||
|[[Kennedy Space Center|Kennedy]], [[LC-39B]] |
|||
| align="center" | [[Apollo–Soyuz Test Project|ASTP]] |
|||
| align=center| 16,780 |
| align=center| 16,780 |
||
| Apollo CSM with special docking adapter module,<br />rendezvoused with Soyuz 19. Last Saturn IB flight. |
|||
| align=right| July 15, 1975 |
|||
| Apollo CSM with special docking adapter module, <br>rendezvoused with Soyuz 19. Last Saturn IB flight. |
|||
|- |
|- |
||
| align=center| '''SA-211''' |
| align=center| '''SA-211''' |
||
| |
|||
| colspan=3| |
|||
| |
|||
| Unused |
|||
| colspan="2" | |
|||
| Unused. First stage was on display at the Alabama Welcome Center on I-65 in Ardmore, Alabama from 1979 to 2023: Now dismantled for disposal.<ref name="Historic Alabama welcome center rocket dismantling begins">{{Cite web |date=14 September 2023 |title=Historic Alabama welcome center rocket dismantling begins |url=https://www.al.com/news/2023/09/historic-alabama-welcome-center-rocket-dismantling-begins.html |access-date=2023-09-20}}</ref> <br />S-IVB stage rests with Skylab underwater training simulator hardware and is on display outdoors at the U.S. Space and Rocket Center in Huntsville, Alabama. |
|||
|- |
|- |
||
| align=center| '''SA-212''' |
| align=center| '''SA-212''' |
||
| |
|||
| colspan=3| |
|||
| |
|||
| Unused. First stage scrapped.<ref name=SIB_final_use>{{cite web |url=http://www.spacelaunchreport.com/satstg2.html |title=Saturn IB History |accessdate=2009-11-01}}</ref> <br>S-IVB stage converted to [[Skylab]] space station. |
|||
| colspan="2" | |
|||
| Unused. First stage scrapped.<ref name="SIB_final_use">{{Cite web |title=Saturn IB History |url=http://www.spacelaunchreport.com/satstg2.html |url-status=usurped |archive-url=https://archive.today/20130104180922/http://www.spacelaunchreport.com/satstg2.html |archive-date=January 4, 2013 |access-date=2009-11-01}}</ref><br />S-IVB stage converted to [[Skylab]] space station. |
|||
|- |
|- |
||
| align=center| '''SA-213''' |
| align=center| '''SA-213''' |
||
| |
|||
| colspan=3| |
|||
| |
|||
| colspan="2" | |
|||
| Only first stage built. Unused and scrapped.<ref name=SIB_final_use/> |
| Only first stage built. Unused and scrapped.<ref name=SIB_final_use/> |
||
|- |
|- |
||
| align=center| '''SA-214''' |
| align=center| '''SA-214''' |
||
| |
|||
| colspan=3| |
|||
| |
|||
| colspan="2" | |
|||
| Only first stage built. Unused and scrapped.<ref name=SIB_final_use/> |
| Only first stage built. Unused and scrapped.<ref name=SIB_final_use/> |
||
|} |
|} |
||
Line 457: | Line 447: | ||
[[File:Saturn IB at KSC.jpg|right|thumb|SA-209 on display at KSC]] |
[[File:Saturn IB at KSC.jpg|right|thumb|SA-209 on display at KSC]] |
||
As of 2023 there are two locations where Saturn IB vehicles (or parts thereof) are on display: |
|||
*SA-209 is on display at the [[Kennedy Space Center Visitor Complex]], with the Apollo Facilities Verification Vehicle. |
*'''SA-209''' is on display at the [[Kennedy Space Center Visitor Complex]], with the Apollo Facilities Verification Vehicle. Due to severe corrosion, the first stage engines and service module were replaced with fabricated duplicates in 1993–1994. |
||
*The SA-211 |
*The '''SA-211''' S-IVB stage was mated with the Skylab underwater training docking adapter and Apollo Telescope Mount and is on display in the Rocket Garden of the [[U.S. Space & Rocket Center]] in Huntsville, Alabama. The '''SA-211''' first stage was on display with a mockup [[S-IVB]] stage stacked in a launch-ready condition at the Alabama Welcome Center on [[Interstate 65]] in [[Ardmore, Alabama]], since July 1979.{{Coord|34.954548|-86.89193|display=inline|region:US-AL_type:landmark}}<ref>{{Cite news |last=Dooling |first=Dave |date=May 6, 1979 |title=Space and Rocket Plans Summer Celebration |work=[[The Huntsville Times]]}}</ref><ref>{{Cite news |last=Hughes |first=Bayne |date=April 6, 2014 |title=Iconic rocket due for repair |url=http://www.decaturdaily.com/news/local/article_274db950-be01-11e3-a8d4-001a4bcf6878.html |access-date=April 8, 2014 |work=[[The Decatur Daily]]}}</ref> The structural integrity of the display, after four decades of weathering, could not be repaired. Dismantling of the vehicle for disposal began by September 14, 2023.<ref name="Historic Alabama welcome center rocket dismantling begins" /> |
||
*The SA-211 S-IVB stage was converted to a Skylab mockup and is on display at the [[U.S. Space and Rocket Center]] in [[Huntsville, Alabama]]. |
|||
==Cost== |
==Cost== |
||
In 1972, the cost of a Saturn IB including launch was {{ |
In 1972, the cost of a Saturn IB including launch was {{US$|55,000,000|year=1972|round=-6}}.<ref name="SP4221Ch6">{{Cite web |title=SP-4221 The Space Shuttle Decision- Chapter 6: Economics and the Shuttle |url=https://history.nasa.gov/SP-4221/ch6.htm |access-date=2011-01-15 |publisher=NASA}}</ref> |
||
==See also== |
==See also== |
||
* [[Comparison of orbital launchers families]] |
* [[Comparison of orbital launchers families]] |
||
* [[Comparison of orbital launch systems]] |
* [[Comparison of orbital launch systems]] |
||
==Notes== |
|||
{{notelist}} |
|||
==References== |
==References== |
||
{{ |
{{Reflist}} |
||
==External links== |
==External links== |
||
* http://www.apollosaturn.com/ |
* http://www.apollosaturn.com/ |
||
* http://www.spaceline.org/rocketsum/saturn-Ib.html |
* http://www.spaceline.org/rocketsum/saturn-Ib.html |
||
* NASA Marshall Spaceflight Center, ''{{ |
* NASA Marshall Spaceflight Center, ''{{Cite web |title=Skylab Saturn IB Flight Manual |url=https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740021163_1974021163.pdf}} {{small|(19.8 MB)}}'', 30 September 1972 |
||
* {{ |
* {{Cite web |title=Saturn launch vehicles |url=https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710065502_1971065502.pdf |url-status=dead |archive-url=https://web.archive.org/web/20050416215829/https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710065502_1971065502.pdf |archive-date=2005-04-16}} {{small|(61.2 MB)}} |
||
{{Apollo program hardware}} |
|||
{{Expendable launch systems}} |
|||
{{Orbital launch systems}} |
|||
{{US launch systems}} |
{{US launch systems}} |
||
{{ |
{{Saturn rockets}} |
||
[[Category:1966 in spaceflight]] |
[[Category:1966 in spaceflight]] |
||
Line 487: | Line 480: | ||
[[Category:1975 in spaceflight]] |
[[Category:1975 in spaceflight]] |
||
[[Category:Apollo program]] |
[[Category:Apollo program]] |
||
[[Category: |
[[Category:Apollo 7]] |
||
[[Category:Vehicles introduced in 1966]] |
|||
[[Category:Saturn IB]] |
Latest revision as of 02:40, 14 October 2024
Function | Apollo spacecraft development; S-IVB stage development in support of Saturn V; Skylab crew launcher |
---|---|
Manufacturer | Chrysler (S-IB) Douglas (S-IVB) |
Country of origin | United States |
Size | |
Height | 141.6 ft (43.2 m) without payload[1] |
Diameter | 21.67 ft (6.61 m)[1] |
Mass | 1,300,220 lb (589,770 kg) without payload[2] |
Stages | 2 |
Capacity | |
Payload to LEO | |
Altitude | 87.5 nmi (162.1 km; 100.7 mi) |
Mass | 21,000 kg (46,000 lb)[3] |
Launch history | |
Status | Retired |
Launch sites | Cape Canaveral, LC-34 and LC-37 Kennedy, LC-39B |
Total launches | 9 |
Success(es) | 9 |
First flight | February 26, 1966 |
Last flight | July 15, 1975 |
Type of passengers/cargo | Apollo CSM, Uncrewed Apollo LM |
First stage – S-IB | |
Height | 24.44 m (80.17 ft) |
Diameter | 6.53 m (21.42 ft) |
Empty mass | 42,000 kg (92,500 lb) |
Gross mass | 441,000 kg (973,000 lb) |
Propellant mass | 399,400 kg (880,500 lb) |
Powered by | 8 × H-1 |
Maximum thrust | 7,100 kN (1,600,000 lbf) |
Specific impulse | 272 s (2.67 km/s) |
Burn time | 150 seconds |
Propellant | LOX / RP-1 |
Second stage – S-IVB | |
Height | 17.81 m (58.42 ft) |
Diameter | 6.53 m (21.42 ft) |
Empty mass | 10,600 kg (23,400 lb) |
Gross mass | 114,300 kg (251,900 lb) |
Propellant mass | 103,600 kg (228,500 lb) |
Powered by | 1 × J-2 |
Maximum thrust | 890 kN (200,000 lbf) |
Specific impulse | 420 s (4.1 km/s) |
Burn time | 480 seconds |
Propellant | LOX / LH2 |
The Saturn IB[a] (also known as the uprated Saturn I) was an American launch vehicle commissioned by the National Aeronautics and Space Administration (NASA) for the Apollo program. It uprated the Saturn I by replacing the S-IV second stage (90,000-pound-force (400,000 N), 43,380,000 lb-sec total impulse), with the S-IVB (200,000-pound-force (890,000 N), 96,000,000 lb-sec total impulse). The S-IB first stage also increased the S-I baseline's thrust from 1,500,000 pounds-force (6,700,000 N) to 1,600,000 pounds-force (7,100,000 N) and propellant load by 3.1%. This increased the Saturn I's low Earth orbit payload capability from 20,000 pounds (9,100 kg) to 46,000 pounds (21,000 kg), enough for early flight tests of a half-fueled Apollo command and service module (CSM) or a fully fueled Apollo Lunar Module (LM), before the larger Saturn V needed for lunar flight was ready.
By sharing the S-IVB upper stage, the Saturn IB and Saturn V provided a common interface to the Apollo spacecraft. The only major difference was that the S-IVB on the Saturn V burned only part of its propellant to achieve Earth orbit, so it could be restarted for trans-lunar injection. The S-IVB on the Saturn IB needed all of its propellant to achieve Earth orbit.
The Saturn IB launched two uncrewed CSM suborbital flights to a height of 162 km, one uncrewed LM orbital flight, and the first crewed CSM orbital mission (first planned as Apollo 1, later flown as Apollo 7). It also launched one orbital mission, AS-203, without a payload so the S-IVB would have residual liquid hydrogen fuel. This mission supported the design of the restartable version of the S-IVB used in the Saturn V, by observing the behavior of the liquid hydrogen in weightlessness.
In 1973, the year after the Apollo lunar program ended, three Apollo CSM/Saturn IBs ferried crews to the Skylab space station. In 1975, one last Apollo/Saturn IB launched the Apollo portion of the joint US-USSR Apollo–Soyuz Test Project (ASTP). A backup Apollo CSM/Saturn IB was assembled and made ready for a Skylab rescue mission, but never flown.
The remaining Saturn IBs in NASA's inventory were scrapped after the ASTP mission, as no use could be found for them and all heavy lift needs of the US space program could be serviced by the cheaper and more versatile Titan III family and also the Space Shuttle.
History
[edit]In 1959, NASA's Silverstein Committee issued recommendations to develop the Saturn class launch vehicles, growing from the C-1. When the Apollo program was started in 1961 with the goal of landing men on the Moon, NASA chose the Saturn I for Earth orbital test missions. However, the Saturn I's payload limit of 20,000 pounds (9,100 kg) to 162 km would allow testing of only the command module with a smaller propulsion module attached, as the command and service module would have a dry weight of at least 26,300 pounds (11,900 kg), in addition to service propulsion and reaction control fuel. In July 1962, NASA announced selection of the C-5 for the lunar landing mission, and decided to develop another launch vehicle by upgrading the Saturn I, replacing its S-IV second stage with the S-IVB, which would also be modified for use as the Saturn V third stage. The S-I first stage would also be upgraded to the S-IB by improving the thrust of its engines and removing some weight. The new Saturn IB, with a payload capability of at least 35,000 pounds (16,000 kg),[4] would replace the Saturn I for Earth orbit testing, allowing the command and service module to be flown with a partial fuel load. It would also allow launching the 32,000-pound (15,000 kg) lunar excursion module separately for uncrewed and crewed Earth orbital testing, before the Saturn V was ready to be flown. It would also give early development to the third stage.[2]
On May 12, 1966, NASA announced the vehicle would be called the "uprated Saturn I", at the same time the "lunar excursion module" was renamed the lunar module. However, the "uprated Saturn I" terminology was reverted to Saturn IB on December 2, 1967.[2]
By the time it was developed, the Saturn IB payload capability had increased to 41,000 pounds (19,000 kg).[2] By 1973, when it was used to launch three Skylab missions, the first-stage engine had been upgraded further, raising the payload capability to 46,000 pounds (21,000 kg).
Specifications
[edit]Launch vehicle
[edit]Parameter[1] | S-IB (1st stage) | S-IVB (2nd stage) | Instrument unit |
---|---|---|---|
Height | 24.44 m (80.17 ft) | 17.81 m (58.42 ft) | 0.91 m (3 ft) |
Diameter | 6.53 m (21.42 ft) | 6.61 m (21.67 ft) | 6.61 m (21.67 ft) |
Structural mass | 42,000 kg (92,500 lb) | 10,600 kg (23,400 lb) | 2,000 kg (4,400 lb) |
Propellant | LOX / RP-1 | LOX / LH2 | — |
Propellant mass | 399,400 kg (880,500 lb) | 103,600 kg (228,500 lb) | — |
Engines | 8 × H-1 | 1 × J-2 | — |
Thrust | 7,100 kN (1,600,000 lbf) sea level | 890 kN (200,000 lbf) vacuum | — |
Burn duration | 150 seconds | 480 seconds | — |
Specific impulse | 272 s (2.67 km/s) sea level | 420 s (4.1 km/s) vacuum | — |
Contractor | Chrysler | Douglas | IBM |
Payload configurations
[edit]Parameter | Command and service module | Apollo 5 | AS-203 |
---|---|---|---|
Launch Escape System mass | 4,200 kg (9,200 lb) | — | — |
Apollo command and service module mass | 16,500 to 20,900 kg (36,400 to 46,000 lb) | — | — |
Apollo Lunar Module mass | — | 14,360 kg (31,650 lb) | — |
Spacecraft–LM adapter mass | 1,840 kg (4,050 lb) | 1,840 kg (4,050 lb) | — |
Nose cone height | — | 2.5 m (8.3 ft) | 8.4 m (27.7 ft) |
Payload height | 24.9 m (81.8 ft) | 11.1 m (36.3 ft) | — |
Total space vehicle height | 68.1 m (223.4 ft) | 54.2 m (177.9 ft) | 51.6 m (169.4 ft) |
S-IB first stage
[edit]The S-IB stage was built by the Chrysler corporation at the Michoud Assembly Facility, New Orleans.[5] It was powered by eight Rocketdyne H-1 rocket engines burning RP-1 fuel with liquid oxygen (LOX). Eight Redstone tanks (four holding fuel and four holding LOX) were clustered around a Jupiter rocket LOX tank, which earned the rocket the nickname "Cluster's Last Stand".[6] The four outboard engines were mounted on gimbals, allowing them to be steered to control the rocket. Eight fins surrounding the base thrust structure provided aerodynamic stability and control.
Data from:[7]
General characteristics
- Length: 24.44 metres (80.17 ft)
- Diameter: 6.53 metres (21.42 ft)
- Wingspan: 12.02 metres (39.42 ft)
Engine
- 8 × Rocketdyne H-1
S-IVB second stage
[edit]The S-IVB was built by the Douglas Aircraft Company at Huntington Beach, California. The S-IVB-200 model was similar to the S-IVB-500 third stage used on the Saturn V, with the exception of the interstage adapter, smaller auxiliary propulsion control modules, and lack of on-orbit engine restart capability. It was powered by a single Rocketdyne J-2 engine. The fuel and oxidizer tanks shared a common bulkhead, which saved about ten tons of weight and reduced vehicle length over ten feet.
General characteristics
- Length: 17.81 metres (58.42 ft)
- Diameter: 6.61 metres (21.67 ft)
Engine
- 1 × Rocketdyne J-2
Instrument unit
[edit]IBM built the instrument unit at the Space Systems Center in Huntsville, Alabama. Located at the top of the S-IVB stage, it consisted of a Launch Vehicle Digital Computer (LVDC), an inertial platform, accelerometers, a tracking, telemetry and command system and associated environmental controls. It controlled the entire rocket from just before liftoff until battery depletion. Like other rocket guidance systems, it maintained its state vector (position and velocity estimates) by integrating accelerometer measurements, sent firing and steering commands to the main engines and auxiliary thrusters, and fired the appropriate ordnance and solid rocket motors during staging and payload separation events.
As with other rockets, a completely independent and redundant range safety system could be invoked by ground radio command to terminate thrust and to destroy the vehicle should it malfunction and threaten people or property on the ground. In the Saturn IB and V, the range safety system was permanently disabled by ground command after safely reaching orbit. This was done to ensure that the S-IVB stage would not inadvertently rupture and create a cloud of debris in orbit that could endanger the crew of the Apollo CSM.
Launch sequence events
[edit]Launch event[8] | Time (s) | Altitude (km) | Speed (m/s) |
---|---|---|---|
Guidance ref release | -5.0 | 0.09 | 0 |
First motion | 0.0 | 0.09 | 0 |
Mach 1 | 58.9 | 7.4 | 183 |
Max dynamic pressure | 73.6 | 12.4 | 328 |
Freeze tilt | 130.5 | 48.2 | 1587 |
Inboard engine cutoff | 137.6 | 54.8 | 1845 |
Outboard engine cutoff | 140.6 | 57.6 | 1903 |
S-IB / S-IVB separation | 142.0 | 59.0 | 1905 |
S-IVB ignition | 143.4 | 59.9 | 1900 |
Ullage case jettison | 154.0 | 69.7 | 1914 |
Launch escape tower jettison | 165.6 | 79.5 | 1960 |
Iterative guidance mode initiation | 171.0 | 83.7 | 1984 |
Engine mixture ratio shift | 469.5 | 164.8 | 5064 |
Guidance C/O signal | 581.9 | 158.4 | 7419 |
Orbit insertion | 591.9 | 158.5 | 7426 |
Acceleration of the Saturn IB increased from 1.24 G at liftoff to a maximum of 4.35 G at the end of the S-IB stage burn, and increased again from 0 G to 2.85 G from stage separation to the end of the S-IVB burn.[8]
AS-206, 207, and 208 inserted the Command and Service Module in a 150-by-222-kilometer (81-by-120-nautical-mile) elliptical orbit which was co-planar with the Skylab one. The SPS engine of the Command and Service Module was used at orbit apogee to achieve a Hohmann transfer to the Skylab orbit at 431 kilometers (233 nautical miles).[8]
Saturn IB vehicles and launches
[edit]The first five Saturn IB launches for the Apollo program were made from LC-34 and LC-37, Cape Kennedy Air Force Station.
The Saturn IB was used between 1973 and 1975 for three crewed Skylab flights, and one Apollo-Soyuz Test Project flight. This final production run did not have alternating black and white S-IB stage tanks, or vertical stripes on the S-IVB aft tank skirt, which were present on the earlier vehicles. Since LC-34 and 37 were inactive by then, these launches utilized Kennedy Space Center's LC-39B.[9] Mobile Launcher Platform No. 1 was modified, adding an elevated platform known as the "milkstool" to accommodate the height differential between the Saturn IB and the much larger Saturn V.[9] This enabled alignment of the Launch Umbilical Tower's access arms to accommodate crew access, fueling, and ground electrical connections for the Apollo spacecraft and S-IVB upper stage. The tower's second stage access arms were modified to service the S-IB first stage.[9]
Serial number |
Launch date (UTC) |
Launch site | Mission | Spacecraft mass (kg) |
Notes |
---|---|---|---|---|---|
SA-201 | February 26, 1966 16:12:01 |
Cape Kennedy, LC-34 | AS-201 | 20,820 | Uncrewed suborbital test of Block I CSM (command and service module) |
SA-203 | July 5, 1966 14:53:17 |
Cape Kennedy, LC-37B | AS-203 | None | Uncrewed test of unburned LH2 behavior in orbit to support S-IVB-500 restart design |
SA-202 | August 25, 1966 17:15:32 |
Cape Kennedy, LC-34 | AS-202 | 25,810 | Uncrewed suborbital test of Block I CSM |
SA-204 | Cape Kennedy, LC-34 | Apollo 1 | 20,412 | Was to be first crewed orbital test of Block I CSM. Cabin fire on January 27, 1967, killed astronauts and damaged CM during dress rehearsal for planned February 21, 1967 launch | |
January 22, 1968 22:48:08 |
Cape Kennedy, LC-37B | Apollo 5 | 14,360 | Uncrewed orbital test of lunar module, used Apollo 1 launch vehicle | |
SA-205 | October 11, 1968 15:02:45 |
Cape Kennedy, LC-34 | Apollo 7 | 16,520 | Crewed orbital test of Block II CSM |
SA-206 | May 25, 1973 13:00:00 |
Kennedy, LC-39B | Skylab 2 | 19,979 | Block II CSM ferried first crew to Skylab orbital workshop |
SA-207 | July 28, 1973 11:10:50 |
Kennedy, LC-39B | Skylab 3 | 20,121 | Block II CSM ferried second crew to Skylab orbital workshop |
SA-208 | Kennedy, LC-39B | AS-208 | Standby Skylab 3 rescue CSM-119; not needed | ||
November 16, 1973 14:01:23 |
Kennedy, LC-39B | Skylab 4 | 20,847 | Block II CSM ferried third crew to Skylab orbital workshop | |
SA-209 | Kennedy, LC-39B | AS-209 | Standby Skylab 4 and later Apollo-Soyuz rescue CSM-119. Not needed, currently on display in the KSC rocket garden | ||
Skylab 5 | Planned CSM mission to lift Skylab workshop's orbit to endure until Space Shuttle ready to fly; cancelled. | ||||
SA-210 | July 15, 1975 19:50:01 |
Kennedy, LC-39B | ASTP | 16,780 | Apollo CSM with special docking adapter module, rendezvoused with Soyuz 19. Last Saturn IB flight. |
SA-211 | Unused. First stage was on display at the Alabama Welcome Center on I-65 in Ardmore, Alabama from 1979 to 2023: Now dismantled for disposal.[10] S-IVB stage rests with Skylab underwater training simulator hardware and is on display outdoors at the U.S. Space and Rocket Center in Huntsville, Alabama. | ||||
SA-212 | Unused. First stage scrapped.[5] S-IVB stage converted to Skylab space station. | ||||
SA-213 | Only first stage built. Unused and scrapped.[5] | ||||
SA-214 | Only first stage built. Unused and scrapped.[5] |
For earlier launches of vehicles in the Saturn I series, see the list in the Saturn I article.
Saturn IB rockets on display
[edit]As of 2023 there are two locations where Saturn IB vehicles (or parts thereof) are on display:
- SA-209 is on display at the Kennedy Space Center Visitor Complex, with the Apollo Facilities Verification Vehicle. Due to severe corrosion, the first stage engines and service module were replaced with fabricated duplicates in 1993–1994.
- The SA-211 S-IVB stage was mated with the Skylab underwater training docking adapter and Apollo Telescope Mount and is on display in the Rocket Garden of the U.S. Space & Rocket Center in Huntsville, Alabama. The SA-211 first stage was on display with a mockup S-IVB stage stacked in a launch-ready condition at the Alabama Welcome Center on Interstate 65 in Ardmore, Alabama, since July 1979.34°57′16″N 86°53′31″W / 34.954548°N 86.89193°W[11][12] The structural integrity of the display, after four decades of weathering, could not be repaired. Dismantling of the vehicle for disposal began by September 14, 2023.[10]
Cost
[edit]In 1972, the cost of a Saturn IB including launch was US$55,000,000 (equivalent to $401,000,000 in 2023).[13]
See also
[edit]Notes
[edit]- ^ Pronounced "saturn one bee"
References
[edit]- ^ a b c Postlaunch report for mission AS-201 (Apollo spacecraft 009) - (PDF), NASA, May 1966, retrieved March 18, 2011
- ^ a b c d Wade, Mark. "Saturn IB". Encyclopedia Astronautica. Archived from the original on May 14, 2011. Retrieved March 17, 2011.
- ^ Hornung, John (2013). Entering the Race to the Moon: Autobiography of an Apollo Rocket Scientist. Williamsburg, Virginia: Jack Be Nimble Publishing. ISBN 9780983044178.
- ^ Benson, Charles D.; Faherty, William Barnaby (1978). "The Apollo-Saturn IB Space Vehicle". Moonport: A History of Apollo Launch Facilities and Operations. NASA. Archived from the original on 24 March 2016. Retrieved 3 February 2016.
- ^ a b c d "Saturn IB History". Archived from the original on January 4, 2013. Retrieved 2009-11-01.
{{cite web}}
: CS1 maint: unfit URL (link) - ^ "Saturn I".
- ^ NASA Marshall Spaceflight Center, Skylab Saturn IB Flight Manual (MSFC-MAN-206), 30 September 1972
- ^ a b c Skylab Saturn 1B Flight Manual - (PDF), NASA, September 30, 1972, retrieved July 8, 2020
- ^ a b c Reynolds, David West (2006). Kennedy Space Center: Gateway to Space. Richmond Hill, Ontario: Firefly Books Ltd. pp. 154–157. ISBN 978-1-55407-039-8.
- ^ a b "Historic Alabama welcome center rocket dismantling begins". 14 September 2023. Retrieved 2023-09-20.
- ^ Dooling, Dave (May 6, 1979). "Space and Rocket Plans Summer Celebration". The Huntsville Times.
- ^ Hughes, Bayne (April 6, 2014). "Iconic rocket due for repair". The Decatur Daily. Retrieved April 8, 2014.
- ^ "SP-4221 The Space Shuttle Decision- Chapter 6: Economics and the Shuttle". NASA. Retrieved 2011-01-15.
External links
[edit]- http://www.apollosaturn.com/
- http://www.spaceline.org/rocketsum/saturn-Ib.html
- NASA Marshall Spaceflight Center, "Skylab Saturn IB Flight Manual" (PDF). (19.8 MB), 30 September 1972
- "Saturn launch vehicles" (PDF). Archived from the original (PDF) on 2005-04-16. (61.2 MB)