Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Jump to content

Cyclopentadiene: Difference between revisions

Page 1
Page 2
Content deleted Content added
CheMoBot (talk | contribs)
Updating {{chembox}} (changes to watched fields - added verified revid - updated 'DrugBank_Ref', 'ChEMBL_Ref', 'KEGG_Ref') per Chem/Drugbox validation (report errors or [[user talk:CheMoBot|bu
Citation bot (talk | contribs)
Altered title. Add: isbn, chapter. Removed parameters. | Use this bot. Report bugs. | Suggested by Whoop whoop pull up | Category:Annulenes | #UCB_Category 4/15
 
(98 intermediate revisions by 63 users not shown)
Line 1: Line 1:
{{chembox
{{Chembox
| Verifiedfields = changed
| Watchedfields = changed
| Watchedfields = changed
| verifiedrevid = 443550282
| verifiedrevid = 448739996
| Name = Cyclopentadiene
| ImageFileL1 = Cyclopentadiene.png
| ImageNameL1 = Skeletal formula of cyclopentadiene
| ImageFileL1 = Cyclopentadiene.png
| ImageFileR1 = Cyclopentadiene-3D-vdW.png
| ImageSizeL1 = 100px
| ImageNameR1 = Spacefill model of cyclopentadiene
| ImageNameL1 = Skeletal structure
| ImageFileR1 = Cyclopentadiene-3D-vdW.png
| ImageFile2 = Cyclopentadiene-3D-balls.png
| ImageSizeR1 = 100px
| ImageSize2 = 100
| ImageName2 = Ball and stick model of cyclopentadiene
| ImageNameR1 = Space-filling model
| PIN = Cyclopenta-1,3-diene
| ImageFile2 = Cyclopentadiene-3D-balls.png
| OtherNames = 1,3-Cyclopentadiene<ref name=PGCH/><br />Pyropentylene<ref>{{cite book |author = William M. Haynes |title = CRC Handbook of Chemistry and Physics |publisher = CRC Press/Taylor and Francis |date = 2016 |isbn = 978-1498754286 |volume=97 |page=276 (3-138) |trans-title=Physical Constants of Organic Compounds}}</ref>
| ImageSize2 = 140px
|Section1={{Chembox Identifiers
| ImageName2 = Ball-and-stick model
| Abbreviations = CPD, HCp
| OtherNames = pentole, pyropentylene, CPD, CpH
| CASNo = 542-92-7
| Section1 = {{Chembox Identifiers
| UNII_Ref = {{fdacite|correct|FDA}}
| CASNo_Ref = {{cascite|correct|CAS}}
| PubChem = 7612
| ChemSpiderID = 7330
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| UNII = 5DFH9434HF
| UNII = 5DFH9434HF
| ChEBI_Ref = {{ebicite|correct|EBI}}
| UNII_Ref = {{fdacite|correct|FDA}}
| EINECS = 208-835-4
| MeSHName = 1,3-cyclopentadiene
| ChEBI = 30664
| ChEBI = 30664
| ChEBI_Ref = {{ebicite|correct|EBI}}
| RTECS = GY1000000
| Beilstein = 471171
| Gmelin = 1311
| SMILES = C1C=CC=C1
| SMILES = C1C=CC=C1
| StdInChI = 1S/C5H6/c1-2-4-5-3-1/h1-4H,5H2
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 7330
| InChI = 1/C5H6/c1-2-4-5-3-1/h1-4H,5H2
| InChIKey = ZSWFCLXCOIISFI-UHFFFAOYAI
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI = 1S/C5H6/c1-2-4-5-3-1/h1-4H,5H2
| InChI = 1/C5H6/c1-2-4-5-3-1/h1-4H,5H2
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey = ZSWFCLXCOIISFI-UHFFFAOYSA-N
| StdInChIKey = ZSWFCLXCOIISFI-UHFFFAOYSA-N
| CASNo_Ref = {{cascite|correct|CAS}}
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| InChIKey = ZSWFCLXCOIISFI-UHFFFAOYAI
| CASNo = 542-92-7
}}
| RTECS = GY1000000
|Section2={{Chembox Properties
}}
| C = 5
| Section2 = {{Chembox Properties
| H = 6
| Formula = C<sub>5</sub>H<sub>6</sub>
| Appearance = Colourless liquid
| MolarMass = 66.10 g/mol
| Odor = irritating, [[terpene]]-like<ref name=PGCH/>
| Appearance = colourless liquid
| Density = 0.786 g/cm<sup>3</sup>, liquid
| Density = 0.802 g/cm<sup>3</sup>
| MeltingPtC = -85
| MeltingPtK = 183
| BoilingPtK = 312 to 316
| BoilingPtC = 41
| pKa = 16
| Solubility = Insoluble
| ConjugateBase = [[Cyclopentadienyl anion]]
| pKa = 16
| Solubility = insoluble<ref name=PGCH/>
}}
| VaporPressure = {{convert|400|mmHg|kPa|abbr=on}}<ref name=PGCH/>
| Section3 = {{Chembox Structure
| RefractIndex = 1.44 (at 20&nbsp;°C)<ref name="CRC97">{{Cite book |url=https://www.worldcat.org/oclc/930681942 |title=CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data. |date=2016 |editor1=William M. Haynes |editor2=David R. Lide |editor3=Thomas J. Bruno |isbn=978-1-4987-5428-6 |edition=2016-2017, 97th |location=Boca Raton, Florida |publisher=CRC Press |oclc=930681942}}</ref>
| MolShape = Planar<ref>{{cite journal | title = Ab initio G2 and DFT calculations on electron affinity of cyclopentadiene, silole, germole and their 2,3,4,5-tetraphenyl substituted analogs : structure, stability and EPR parameters of the radical anions | author = Valery I. Faustov, Mikhail P. Egorov, Oleg M. Nefedov and Yuri N. Molin | journal = Phys. Chem. Chem. Phys. | year = 2000 | volume = 2 | pages = 4293–4297 | doi = 10.1039/b005247g}}</ref>
| MagSus = {{val|-44.5e-6|u=cm<sup>3</sup>/mol}}
| Dipole =
}}
}}
| Section7 = {{Chembox Hazards
|Section3={{Chembox Structure
| MolShape = Planar<ref>{{cite journal | title = Ab initio G2 and DFT calculations on electron affinity of cyclopentadiene, silole, germole and their 2,3,4,5-tetraphenyl substituted analogs: structure, stability and EPR parameters of the radical anions | first1= Valery I. |last1=Faustov |first2=Mikhail P. |last2=Egorov |first3=Oleg M. |last3=Nefedov |first4=Yuri N. |last4=Molin | journal = Phys. Chem. Chem. Phys. | year = 2000 | volume = 2 | pages = 4293–4297 | doi = 10.1039/b005247g | issue = 19| bibcode= 2000PCCP....2.4293F }}</ref>
| FlashPt = 25 °C
| Dipole = 0.419 [[Debye|D]]<ref name="CRC97"/>
}}
}}
| Section8 = {{Chembox Related
|Section4={{Chembox Thermochemistry
| Function = [[hydrocarbon]]s
| Entropy = 182.7&nbsp;J/(mol·K)
| OtherFunctn = [[Benzene]]<br/>[[Cyclobutadiene]]<br/>[[Cyclopentene]]
| HeatCapacity = 115.3&nbsp;J/(mol·K)
| OtherCpds = [[Dicyclopentadiene]]}}
| DeltaHform = 105.9&nbsp;kJ/mol<ref name="CRC97"/>
}}
|Section5={{Chembox Hazards
| FlashPtC = 25
| PEL = TWA 75 ppm (200&nbsp;mg/m<sup>3</sup>)<ref name=PGCH>{{PGCH|0170}}</ref>
| IDLH = 750 ppm<ref name=PGCH/>
| REL = TWA 75 ppm (200&nbsp;mg/m<sup>3</sup>)<ref name=PGCH/>
| LC50 = 14,182 ppm (rat, 2&nbsp;[[hour|h]])<br/>5091 ppm (mouse, 2&nbsp;h)<ref>{{IDLH|542927|Cyclopentadiene}}</ref>
| AutoignitionPtC = 640
| NFPA-H = 2
| NFPA-F = 3
| NFPA-I = 0
}}
|Section6={{Chembox Related
| OtherFunction_label = [[hydrocarbon]]s
| OtherFunction = [[Benzene]]<br/>[[Cyclobutadiene]]<br/>[[Cyclopentene]]
| OtherCompounds = [[Dicyclopentadiene]]
}}
}}
}}


'''Cyclopentadiene''' is an [[organic compound]] with the [[Chemical formula|formula]] C<sub>5</sub>H<sub>6</sub>. This colorless liquid has a strong and [[unpleasant odor]]. At room temperature, this cyclic [[diene]] [[Dimer (chemistry)|dimer]]izes over the course of hours to give [[dicyclopentadiene]] via a [[Diels–Alder reaction]]. This dimer can be [[retro-Diels–Alder reaction|restored]] by heating to give the monomer.
'''Cyclopentadiene''' is an [[organic compound]] with the [[chemical formula|formula]] C<sub>5</sub>H<sub>6</sub>.<ref name=scha1965>LeRoy H. Scharpen and Victor W. Laurie (1965): "Structure of cyclopentadiene". ''The Journal of Chemical Physics'', volume 43, issue 8, pages 2765–2766. {{doi|10.1063/1.1697207}}.</ref> It is often abbreviated '''CpH''' because the [[cyclopentadienyl anion]] is abbreviated Cp<sup>&minus;</sup>.


This colorless liquid has a strong and [[unpleasant odor]]. At room temperature, this cyclic [[diene]] [[dimer (chemistry)|dimerizes]] over the course of hours to give [[dicyclopentadiene]] via a [[Diels–Alder reaction]]. This dimer can be [[retro-Diels–Alder reaction|restored]] by heating to give the monomer.
The compound is mainly used for the production of cyclopentene and its derivatives. It is popularly used as a precursor to the cyclopentadienyl [[ligand]] ('Cp') in [[cyclopentadienyl complex]]es in [[organometallic chemistry]].<ref>Hartwig, J. F. Organotransition Metal Chemistry, from Bonding to Catalysis; University Science Books: New York, 2010. ISBN 189138953X.</ref>

The compound is mainly used for the production of [[cyclopentene]] and its derivatives. It is popularly used as a precursor to the [[cyclopentadienyl anion]] (Cp<sup>&minus;</sup>), an important [[ligand]] in [[cyclopentadienyl complex]]es in [[organometallic chemistry]].<ref>{{cite book |last=Hartwig |first= J. F. |title=Organotransition Metal Chemistry: From Bonding to Catalysis |publisher=University Science Books |location=New York, NY |date=2010 |isbn=978-1-891389-53-5}}</ref>


==Production and reactions==
==Production and reactions==
[[File:AW Cyclopentadiene.jpg|thumb|left|Cyclopentadiene monomer in an ice bath]]
Cyclopentadiene production is usually not distinguished from dicyclopentadiene since they are interconverted. They are obtained from coal tar (about 10 – 20 g/ton) and steam cracking from [[naphtha]] (about 14&nbsp;kg/ton).<ref name=Ullmann/> To obtain cyclopentadiene monomer, commercial dicyclopentadiene is "cracked" by heating to ~ 180 &deg;C. The monomer is collected by distillation, and used soon thereafter.<ref>{{OrgSynth | title = Cyclopentadiene and 3-Chlorocyclopentene | prep = cv4p0238 | collvol = 4 | collvolpages = 238 | author = Robert Bruce Moffett | year = 1962}}</ref>
Cyclopentadiene production is usually not distinguished from [[dicyclopentadiene]] since they interconvert. They are obtained from coal tar (about 10–20&nbsp;g/[[tonne|t]]) and by steam [[Cracking (chemistry)|cracking]] of [[Petroleum naphtha|naphtha]] (about 14&nbsp;kg/t).<ref name=Ullmann/> To obtain cyclopentadiene monomer, commercial dicyclopentadiene is cracked by heating to around 180&nbsp;°C. The monomer is collected by distillation and used soon thereafter.<ref>{{OrgSynth | title = Cyclopentadiene and 3-Chlorocyclopentene | prep = cv4p0238 | collvol = 4 | collvolpages = 238 | first= Robert Bruce |last=Moffett | year = 1962}}</ref> It advisable to use some form of [[fractionating column]] when doing this, to remove refluxing uncracked dimer.


===Sigmatropic rearrangement===
===Sigmatropic rearrangement===
The hydrogen atoms in cyclopentadiene undergo rapid [[sigmatropic reaction|[1,5]-sigmatropic shifts]]. The hydride shift is, however, sufficiently slow at 0&nbsp;°C to allow alkylated derivatives to be manipulated selectively.<ref>{{cite journal |last1=Corey |first1=E. J. |last2=Weinshenker |first2=N. M. |last3=Schaaf |first3=T. K. |last4=Huber |first4=W. |year=1969 |title=Stereo-controlled synthesis of prostaglandins F-2a and E-2 (dl)|journal=Journal of the American Chemical Society |volume=91 |issue=20 |pages=5675–5677 |doi=10.1021/ja01048a062 |pmid=5808505}}</ref>
The hydrogen atoms in cyclopentadiene undergo rapid [1,5]-[[sigmatropic reaction|sigmatropic shifts]] as indicated by <sup>1</sup>H [[Nuclear magnetic resonance|NMR spectra]] recorded at various temperatures.<ref>Streitwieser, A.; [[Clayton Heathcock|Heathcock, C. H.]]; Kosower, E. M. (1998). ''Introduction to Organic Chemistry (4th Edn.)'' Upper Saddle River, NJ: Prentice Hall.</ref>
[[File:Prostaglandin Diels-Alder Corey (cropped2).png|400 px|thumb|center|Diene-selective Diels–Alder reaction in Corey's total synthesis of prostaglandin F2α]]

Even more [[fluxional molecule|fluxional]] are the derivatives C<sub>5</sub>H<sub>5</sub>E(CH<sub>3</sub>)<sub>3</sub> (E = [[silicon|Si]], [[germanium|Ge]], [[tin|Sn]]), wherein the heavier element migrates from carbon to carbon with a low activation barrier.


===Diels–Alder reactions===
===Diels–Alder reactions===
Famously, cyclopentadiene dimerizes via a reversible Diels–Alder reaction. The conversion occurs in hours at room temperature, but the monomer can be stored for days at −20 °C.<ref name=Ullmann>Dieter Hönicke, Ringo Födisch, Peter Claus, Michael Olson “Cyclopentadiene and Cyclopentene” in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim. {{DOI|10.1002/14356007.a08_227}}</ref>
Cyclopentadiene is a highly reactive [[diene]] in the [[Diels–Alder reaction]] because minimal distortion of the diene is required to achieve the envelope geometry of the transition state compared to other dienes.<ref>{{cite journal |first1=Brian |last1=Levandowski |first2=Ken |last2=Houk |date=2015 |title=Theoretical Analysis of Reactivity Patterns in Diels–Alder Reactions of Cyclopentadiene, Cyclohexadiene, and Cycloheptadiene with Symmetrical and Unsymmetrical Dienophiles |doi=10.1021/acs.joc.5b00174 |pmid=25741891 |journal=[[J. Org. Chem.]] |volume=80 |issue=7 |pages=3530–3537}}</ref> Famously, cyclopentadiene dimerizes. The conversion occurs in hours at room temperature, but the monomer can be stored for days at −20&nbsp;°C.<ref name=Ullmann>{{Ullmann|first1=Dieter |last1=Hönicke |first2=Ringo |last2=Födisch |first3=Peter |last3=Claus |first4=Michael |last4=Olson |title=Cyclopentadiene and Cyclopentene |DOI=10.1002/14356007.a08_227}}</ref>
{| class="wikitable" style="float:center;"
|+Effect of temperature on rate of dimerization of C<sub>5</sub>H<sub>6</sub>
|-
!Relative rate||Temperature (°C)
|-align="center"
|0.05
|<sup>_</sup>20
|-align="center"
|0.5
|0
|-align="center"
|3.5
|25
|-align="center"
|15
|40
|} Cyclopentadiene readily undergoes other Diels–Alder reactions with [[dienophile]]s such as [[1,4-Benzoquinone|1,4-benzoquinone]].<ref>{{OrgSynth | author = Masaji Oda, Takeshi Kawase, Tomoaki Okada, and Tetsuya Enomoto | title = 2-Cyclohexene-1,4-dione | collvol = 9 | collvolpages = 186 | year = 1998 | prep = cv9p0186}}</ref> Cycloaddition of O<sub>2</sub> gives the bicyclic peroxide.


===Deprotonation===
===Deprotonation===
{{main|Cyclopentadienyl anion}}
The compound is unusually [[acid]]ic (p''K''<sub>a</sub> 16) for a [[hydrocarbon]], a fact explained by the high stability of the [[aromatic]] cyclopentadienyl [[anion]], [[Carbon|C]]<sub>5</sub>[[Hydrogen|H]]<sub>5</sub><sup>−</sup>. Simple compounds of this anion (such as the commercially available [[sodium cyclopentadienide]]) are often depicted as salts, although the free anion is not present in appreciable quantities in solution.{{Citation needed|date=October 2009}} [[Deprotonation]] can be achieved with a variety of bases, typically sodium hydride or even sodium metal. The anion serves as a nucleophile in [[organic synthesis]], the preparation of modified cyclopentadienyl ligands, and metallocenes, described in the next section.
The compound is unusually [[acid]]ic (p''K''<sub>a</sub>&nbsp;= 16) for a [[hydrocarbon]], a fact explained by the high stability of the [[aromatic]] cyclopentadienyl anion, {{chem|C|5|H|5|−}}. [[Deprotonation]] can be achieved with a variety of bases, typically [[sodium hydride]], sodium metal, and [[butyl lithium]]. Salts of this anion are commercially available, including [[sodium cyclopentadienide]] and [[lithium cyclopentadienide]]. They are used to prepare [[cyclopentadienyl complex]]es.


===Metallocene derivatives===
===Metallocene derivatives===
{{main|metallocene}}
{{main|Metallocene}}
Metallocenes and related [[Cyclopentadienyl complex|cyclopentadienyl derivatives]] have been heavily investigated and represent a cornerstone of [[organometallic chemistry]] owing to their high stability. The first metallocene characterised, [[ferrocene]], was prepared the way many other metallocenes are prepared by combining alkali metal derivatives of the form MC<sub>5</sub>H<sub>5</sub> with dihalides of the [[transition metal]]s:<ref>{{cite book |author1-link=Gregory S. Girolami |author3-link=Robert Angelici |last1=Girolami |first1=G. S. |last2=Rauchfuss |first2=T. B. |last3=Angelici |first3=R. J. |title=Synthesis and Technique in Inorganic Chemistry |year=1999 |publisher=University Science Books |location=Mill Valley, CA |isbn=0-935702-48-2}}</ref> As typical example, [[nickelocene]] forms upon treating [[nickel(II) chloride]] with sodium cyclopentadienide in [[tetrahydrofuran|THF]].<ref>{{cite book |last1=Jolly |first1=W. L. |title=The Synthesis and Characterization of Inorganic Compounds |url=https://archive.org/details/synthesischaract0000joll |url-access=registration |year=1970 |publisher=Prentice-Hall |location=Englewood Cliffs, NJ |isbn=0-13-879932-6}}</ref>
[[Image:Protonated rhodocene.svg|thumb|left|200px|[(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)Rh(η<sup>4</sup>-C<sub>5</sub>H<sub>6</sub>)], an 18-valence electron mixed-[[hapticity]] [[rhodocene]] derivative<ref>{{cite journal|title = Uber Aromatenkomplexe von Metallen: '''''LXXXVIII.''''' Uber Monomeres und Dimeres Dicyclopentadienylrhodium und Dicyclopentadienyliridium und Uber Ein Neues Verfahren Zur Darstellung Ungeladener Metall-Aromaten-Komplexe|year = 1966|last1 = Fischer|first1 = E. O.|last2 = Wawersik|first2 = H.|authorlink1 = Ernst Otto Fischer|journal = [[Journal of Organometallic Chemistry|J. Organomet. Chem.]]|volume = 5|issue = 6|pages = 559–567|language = German|url = |doi = 10.1016/S0022-328X(00)85160-8}}</ref> that can form when the rhodocene monomer is protonated.]]


: NiCl<sub>2</sub> + 2&nbsp;NaC<sub>5</sub>H<sub>5</sub> → Ni(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub> + 2&nbsp;NaCl
Metallocenes and related cyclopentadienyl derivatives have been heavily investigated and represent a cornerstone of [[organometallic chemistry]] owing to their high stability. Indeed, the first metallocene characterised, [[ferrocene]], was prepared the way many other metallocenes are prepared: by combining alkali metal derivatives of the form MC<sub>5</sub>H<sub>5</sub> with dihalides of the [[transition metal]]s:<ref>{{cite book |last1= Girolami|first1= G. S.|last2= Rauchfuss|first2= T. B.|last3= Angelici|first3= R. J.|title= Synthesis and Technique in Inorganic Chemistry|year= 1999|publisher= University Science Books|location= Mill Valley, CA|isbn= 0935702482}}</ref> As typical example, [[nickelocene]] forms upon treating [[nickel(II) chloride]] with sodium cyclopentadiene in [[THF]].<ref>{{cite book |last1= Jolly|first1= W. L.|title= The Synthesis and Characterization of Inorganic Compounds|year= 1970|publisher= Prentice-Hall|location= Englewood Cliffs, NJ|isbn= 0138799326}}</ref>


Organometallic complexes that include both the cyclopentadienyl anion and cyclopentadiene itself are known, one example of which is the [[rhodocene]] derivative produced from the rhodocene monomer in [[protic solvent]]s.<ref>{{cite journal |title = Permethylmetallocene: 5. Reactions of Decamethylruthenium Cations |year = 1985 |last1 = Kolle |first1 = U. |last2 = Grub |first2 = J. |journal = [[Journal of Organometallic Chemistry|J. Organomet. Chem.]] |volume = 289 |issue = 1 |pages = 133–139 |doi =10.1016/0022-328X(85)88034-7 }}</ref>
:NiCl<sub>2</sub> + 2 NaC<sub>5</sub>H<sub>5</sub> &rarr; Ni(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub> + 2 NaCl


===Organic synthesis===
Organometallic complexes that include both the cyclopentadienyl anion and cyclopentadiene itself are known, one example of which is the [[rhodocene]] derivative produced from the rhodocene monomer in [[protic solvent]]s.<ref>{{cite journal|title = Permethylmetallocene '''''5''''' Reactions of Decamethylruthenium Cations|year = 1985|last1 = Kolle|first1 = U.|last2 = Grub|first2 = J.|journal = [[Journal of Organometallic Chemistry|J. Organomet. Chem.]]|volume = 289|issue = 1|pages = 133–139|url = |doi =10.1016/0022-328X(85)88034-7 }}</ref>
It was the starting material in [[Leo Paquette]]'s 1982 synthesis of [[dodecahedrane]].<ref>{{cite journal |title= Domino Diels–Alder reactions. I. Applications to the rapid construction of polyfused cyclopentanoid systems |journal= [[J. Am. Chem. Soc.]] |year= 1974 |volume= 96 |issue= 14 |pages= 4671–4673 |doi= 10.1021/ja00821a052 |author1-link=Leo Paquette |last1=Paquette |first1= L. A. |last2= Wyvratt |first2= M. J. }}</ref> The first step involved [[redox|reductive]] dimerization of the molecule to give [[Fulvalene|dihydrofulvalene]], not simple addition to give dicyclopentadiene.
{{Clearleft}}

[[File:DodecahedranePrecursorSynthesis.png|thumb|center|400px|The start of Paquette's 1982 dodecahedrane synthesis. Note the dimerisation of cyclopentadiene in step&nbsp;1 to dihydrofulvalene.]]
{{Clear left}}


==Uses==
==Uses==
Aside from serving as a precursor to cyclopentadienyl-based catalysts, the main commercial application of cyclopentadiene is as a precursor to [[comonomer]]s. Semi-hydrogenation gives [[cyclopentene]]. Diels–Alder reaction with [[butadiene]] gives [[ethylidene norbornene]], a comonomer in the production of [[EPDM rubber]]s.
Cyclopentadiene is mainly useful as a precursor to [[cyclopentene]] and related monomers such as ethylidenenorbornene. Such species are used in the production of specialty polymers. Cyclopentadienyl complexes serve as reagents in organic synthesis. It was also used as the starting material in [[Leo Paquette]]'s 1982 [[dodecahedrane]] synthesis.<ref>{{cite journal |title= Domino Diels–Alder reactions. I. Applications to the rapid construction of polyfused cyclopentanoid systems |authors= Paquette, L. A.; Wyvratt, M. J. |journal= [[J. Am. Chem. Soc.]] |year= 1974 |volume= 96 |issue= 14 |pages= 4671–4673 |doi= 10.1021/ja00821a052 }}</ref> The first step involved [[redox|reductive]] dimerization of the molecule to give [[Fulvalene|dihydrofulvalene]], not simple addition to give dicyclopentadiene.


==Derivatives==
[[Image:DodecahedranePrecursorSynthesis.png|thumb|center|400px|The start of Paquette's 1982 dodecahedrane synthesis. Note the dimerisation of cyclopentadiene in step 1 to dihydrofulvalene.]]
[[File:(t-Bu)3C5H3.png|thumb|right|144 px|Structure of ''t''-Bu<sub>3</sub>C<sub>5</sub>H<sub>3</sub>, a prototypical [[bulky cyclopentadiene]]<ref>{{cite book |doi=10.1002/9781119477822.ch8 |title=Inorganic Syntheses |year=2018 |last1=Reiners |first1=Matthis |last2=Ehrlich |first2=Nico |last3=Walter |first3=Marc D. |chapter=Synthesis of Selected Transition Metal and Main Group Compounds with Synthetic Applications |volume=37 |page=199 |isbn=978-1-119-47782-2 |s2cid=105376454}}</ref>]]


Cyclopentadiene can substitute one or more hydrogens, forming derivatives having covalent bonds:
==Abbreviation==
* [[Bulky cyclopentadiene]]s
The commonly used abbreviation of the cyclopentadienyl anion is Cp. The abbreviation played a part in the naming of [[copernicium]]: the original proposal for the element's symbol was also Cp, but because of the abbreviation for this anion and the fact that [[lutetium]] was originally named [[Cassiopeia (constellation)|cassiopeium]] and had Cp for the symbol as well, the symbol for copernicium was changed to Cn.<ref>{{cite web|url=http://www.periodicvideos.com/videos/112.htm|title = Copernicium Video – The Periodic Table of Videos – University of Nottingham|accessdate=2011-02-22|}}</ref>
* [[Calicene]]
* [[Cyclopentadienone]]
* [[Di-tert-butylcyclopentadiene|Di-''tert''-butylcyclopentadiene]]
* [[Methylcyclopentadiene]]
* [[Pentamethylcyclopentadiene]]
* [[Pentacyanocyclopentadiene]]

Most of these substituted cyclopentadienes can also form [[anion]]s and join [[cyclopentadienyl complex]]es.


==See also==
==See also==
*[[Aromaticity]]
*[[Aromaticity]]
*[[Methylcyclopentadiene]] and [[pentamethylcyclopentadiene]], also found as ligands in organometallic chemistry


==References==
== References ==
{{Reflist}}
{{Reflist}}


==External links==
==External links==
*[http://www.inchem.org/documents/icsc/icsc/eics0857.htm International Chemical Safety Card 0857]
*[http://www.inchem.org/documents/icsc/icsc/eics0857.htm International Chemical Safety Card 0857]
*[http://www.cdc.gov/niosh/npg/npgd0170.html NIOSH Pocket Guide to Chemical Hazards]
*[https://www.cdc.gov/niosh/npg/npgd0170.html NIOSH Pocket Guide to Chemical Hazards]

{{cycloalkenes}}


[[Category:Cycloalkenes]]
{{Cycloalkenes}}
{{Annulenes}}
[[Category:Dienes]]
{{Cyclopentadiene complexes}}


[[Category:Cyclopentadienes| ]]
[[cs:Cyklopentadien]]
[[Category:Annulenes]]
[[de:Cyclopentadien]]
[[Category:Five-membered rings]]
[[fi:Syklopentadieeni]]
[[fr:Cyclopentadiène]]
[[it:Ciclopentadiene]]
[[ja:シクロペンタジエン]]
[[nl:Cyclopentadieen]]
[[pl:Cyklopentadien]]
[[pt:Ciclopentadieno]]
[[sv:Cyklopentadien]]
[[ur:Cyclopentadiene]]
[[zh:环戊二烯]]