Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Jump to content

Coniacian

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 72.181.62.169 (talk) at 21:33, 8 July 2014 (†Sauropods). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Template:Cretaceous The Coniacian is an age or stage in the geologic timescale. It is a subdivision of the Late Cretaceous epoch or Upper Cretaceous series and spans the time between 89.3 ± 1 Ma and 85.8 ± 0.7 Ma (million years ago). The Coniacian is preceded by the Turonian and followed by the Santonian.[1]

Stratigraphic definitions

The Coniacian is named after the city of Cognac in the French region of Saintonge. It was first defined by French geologist Henri Coquand in 1857.

The base of the Coniacian stage is at the first appearance of the inoceramid bivalve species Cremnoceramus rotundatus. An official reference profile for the base (a GSSP) had in 2009 not yet been appointed.

The top of the Coniacian (the base of the Santonian stage) is defined by the appearance of the inoceramid bivalve Cladoceramus undulatoplicatus.

The Coniacian overlaps the regional Emscherian stage of Germany, which is roughly coeval with the Coniacian and Santonian stages. In magnetostratigraphy, the Coniacian is part of magnetic chronozone C34, the so-called Cretaceous Magnetic Quiet Zone, a relatively long period with normal polarity.

Sequence stratigraphy and geochemistry

After a maximum of the global sea level during the early Turonian, the Coniacian was characterized by a gradual fall of the sea level. This cycle is in sequence stratigraphy seen as a first order cycle. During the middle Coniacian a shorter, second order cycle, caused a temporary rise of the sea level (and global transgressions) on top of the longer first order trend. The following regression (Co1, at 87,0 Ma) separates the Middle from the Upper Coniacian substage. An even shorter third order cycle caused a new transgression during the Late Coniacian.

Beginning in the Middle Coniacian, an anoxic event (OAE-3) occurred in the Atlantic Ocean, causing large scale deposition of black shales in the Atlantic domain. The anoxic event lasted till the Middle Santonian (from 87.3 to 84.6 Ma) and is the longest and last such event during the Cretaceous period.[2]

Subdivision

The Coniacian is often subdivided into Lower, Middle and Upper substages. It encompasses three ammonite biozones in the Tethys domain:

In the boreal domain the Coniacian overlaps just one ammonite biozone: that of Forresteria petrocoriensis

Palaeontology

†Ornithopods

Ornithopoda of the Coniacian
Taxa Presence Location Description Images

Bactrosaurus

Turonian to Coniacian Gobi Desert, Mongolia and China Would have been 6 m (20 ft) long[1] and 2 m (7 ft) high when in the quadrupedal stance, and weighed 1100 – 1500 kg (2400 - 3300 lb). Like many hadrosaurs, it could switch between bipedal and quadrupedal stances, but unusually it had large spines protruding from the vertebrae.
Bactrosaurus

Macrogryphosaurus

Turonian to early Coniacian Portezuelo Formation, Argentina A genus of basal iguanodont, a large bipedal herbivore

†Sauropods

Sauropoda of the Coniacian
Taxa Presence Location Description Images

Futalognkosaurus

Coniacian Portezuelo Formation, Argentina The type species, Futalognkosaurus dukei, is estimated to be between 32 and 34 m (105 and 112 ft) in length, rivaling the gigantic Argentinosaurus. Its long neck contained 14 vertebrae, and was over a meter deep in places, due to its extremely tall neural spines which had a distinctive "shark-fin" shape. The hips were also extremely large and bulky, reaching a width of nearly 3 metres (9.8 ft).[4] The alternate early spelling "Futalongkosaurus" may be found in some press reports and on websites.
Futalongkosaurus

Mendozasaurus

Conicaian Mendoza Formation, Argentina Close relative of Futalognkosaurus, it had a heavy neck and high neural spines.

References

Notes

  1. ^ See Gradstein et al. (2004) for a detailed version of the ICS' geologic timescale
  2. ^ See Meyers et al. (2006)

Literature

  • Gradstein, F.M.; Ogg, J.G. & Smith, A.G.; 2004: A Geologic Time Scale 2004, Cambridge University Press.
  • Meyers, P.A.; Bernasconi, S.M. & Forster, A.; 2006: Origins and accumulation of organic matter in expanded Albian to Santonian black shale sequences on the Demerara Rise, South American margin, Organic Geochemistry 37, pp 1816–1830.