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Multiple-attribute hashing is now considered to be a powerful
approach for the recognition and localization of 3D objects on the
basis of their invariant properties. In the systems developed to
date, the structure of the hash table is fixed and must be created by
the system developer—an onerous task especially when the aum-
ber of attributes is large, as it must in systems that use both
geometric and nongeometric attributes. Another deficiency of pre-
vious systems is that uncertainty is treated as a fixed value and not
modeled. In this paper, we will present a system, named MULTI-
HASH, which uses the tools of decision trees and uncertainty
modeling for the automatic consteuction of hash tables. The deci-
sion-tree framework in MULTI-HASH is based on a hybrid
method that uses both qualitative attributes, such as the shape of a
surface, and quantitative attributes such as color, dihedral angfes,
etc. The human trainer shows objects to the vision system and, in
an interactive mode, tells the system the model identities of the
various segmented regions, etc. Subsequently, the decision-tree-
based framework learns the structure of the hash table. o 1995y
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1. INTRODUCTION

At the simplest level, the problem we are addressing
may be explained as follows. Let us say we have only
two classes of 2D objects, such as wooden chips, ail the
objects in the first class being red and all the objects in the
second blue. Let us also say that we have a vision system
that knows about color, texture, shape, ctc., and that
also knows how to carry out segmentation on the basis of
constancy of these attributes. We show instances of
these two classes to a vision system and, for each show-
ing, tell the system the class identity of the object. Now,
at the end of this exercise, we want the system to infer
that the best way to distinguish between the two classes
is on the basis of color, and that texture, shape, etc., are
not relevant to the recognition task. Using the language
of hash tables, referring specifically to the manner in
which researchers, including ourselves, have taiked
about hash tables in [19, 26-28, 73], the problem may be
reexpressed as asking the vision system to construct a
hash table, which in this case would be one-dimensional,

and would only involve the color atiribute. The one-di-
mensional hash table would have only two bins, the bins
containing the information **Class 1'" and **Class 2, re-
spectively. We believe that it would be quite feasible Lo
construct such a system today.

Now consider the more difficult problem of 3D objects.
Automatic learning of a hash table here is complicated by
the fact that a 3D object can present itself to a vision
system in one of a large number of poses. The hash table
now must also be able to distinguish between the differ-
ent poses of an object. Of course, one ¢an conceive of
simple situations, such as when we have two ciasses of
3D object, the objects in one class being of color red and
those in the other class of color green. If all that is ex-
pected of the system 15 to learn how to distinguish be-
tween the two classes, the system wouid be no different
from the case discussed above. Such simple situations,
unfortunately, do not arise in practice, and vision sys-
tems must be able to reason about both poses and identi-
ties.

In this paper, we will discuss how the recognition of an
object that can appear in any of an infinity of poses can be
solved by entering feature groupings into the bins of a
hash table, each grouping being such that it permits cal-
culation of the pose of the hypothesized object. This sys-
tem, called MULTI-HASH, assigns to each feature
grouping a bin in a multidimensional hash table on the
basis of the most discriminatory attribute values associ-
ated with the features. MULTI-HASH uses interactive
learning to figure out which attributes to use for setting
up the hash table and where to establish boundaries be-
tween the different bins. During the learning phase, all
that a human user has to do is to teil MULTI-HASH
which featare groupings in the scene correspond to which
groupings on a model object and the identity of the model
object. By using the well-known principles of decision
trees, MULTI-HASH proceeds to efficiently create a
good hash table.

While interactive learning is one of the most distin-
guishing characteristic of MULTI-HASH, the notions
that MULTI-HASH shares most closely with the other
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recently reported vision systems are those of feature
groupings for constructing object hypotheses and geo-
metric hashing for speeding up the process of hypothesis
formation,

One of the better known vision systems that first used
the notion of feature groupings for hypothesis formation
is the 3DPO system by Bolles and Horaud [3], an exten-
sion to 3D of their 2D recognition system reported in [2).
Subsequently, our laboratory also used feature groupings
in the form of local feature sets in a system called 3D-
POLY for fast model-based 3D object recognition and
localization [7]. A local feature set (LES) in 3D-POLY
consists of two or more surfaces, which are adjacent and
rotationally ordered, and the vertex at which they meet.
The same kinds of LFSs are used in MULTI-HASH.
Ancther contribution that has also used the notion of
feature groupings in a sense similar to ours is by Flynn
and Jain {19].

As we said before, the other similarity between
MULTI-HASH and some of the modern systems is the
use of hashing, a notion whose genesis in the context of
model-based vision dates back to the work of Lambdan,
Schwartz, and Wolfson {see [48, 49]). That seminal work
addressed the problem of affine-invariant recognition of
flat ohjects from 2D data, where affine-invariance al-
lowed flat objects to be at slant angles with respect to the
camera. Lambdan, Schwartz, and Wolfson use for fea-
tures the high curvature points on object boundaries in
2D images. These interest points are described by their
positions. Off-line, a coordinate frame is generated for
each possible triplet of a model’s interest points and then
the coordinates of the other interest points are calculated
in this frame. These new coordinates which are invariant
to affine transformations of the object are used as indices
into a hash table in which the triplet used in forming the
coordinate frame and the corresponding model identity
are stored, On-line hypotheses are created via a voting
procedure to find which (model, triplet) pair best matches
some triplet of scene interest points. One drawback of
this approach is that the only features used are high-
curvature boundary points and thus many of the interest-
ing attributes of an object such as surface shape, size,
color, ete., are ignored. The reader is referred to the
work of Grimson [29], Clemens and Jacobs [9], Lambdan
and Wolfson [50], Rigoutsos and Hummel [62, 63], and
Costa et af. [11] for further discussion on the high compu-
tational complexity and the robustness issues associated
with the hashing method of [48]. An interesting extension
of the basic geometric hashing approach of [48, 49] has
been presented by Califano and Mohan {5], where the
authors have also expounded on the benefits of using
multiple attributes for constructing a hash table.

The geometric hashing approach used in MULTI-
HASH is totally different from the one suggested origi-
nally in [48]. The main reason that has motivated this
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difference is that MULTI-HASH is designed for the rec-
ognition of 3D objects from 3D data. Previously pub-
lished parallels to the manner in which we use hashing lie
more in the work of Stein and Medioni [73] and Flynn and
Jain [19].

In the hashing approach used by Stein and Medioni
[73], features such as range edges are decomposed into
smaller features consisting of contiguous straight edge
segments: attributes such as angles between the adjacent
straight segments are then used for forming a hash table.
In contrast to the approach in [19] and the way in which
we us¢ hashing in MULTI-HASH, Stein and Medioni’s
method is tantamount to forming hypotheses from obser-
vations that are too local and possibly toe microscopic in
relation to the size and complexity of an object. The use
of features that are too [ocal for hypothesis formation
shifts the burden of computation to verification. More
specifically, the complexity of verification for this
method grows quadraticaily with respect to the number
of hypotheses generated. For comparison, in MULTI-
HASH the computational effort for verification grows
only linearly in the number of hypotheses formed. How-
ever, it must be said in defense of the method of Stein and
Medioni that when objects are of free-form shape, theirs
is probably the only approach to geometric hashing that
would work today.

That brings us to the system of Flynn and Jain [19] in
which hashing is used in a manner parallel to ours. Hy-
potheses are formed [19] by using feature groupings con-
sisting of any three surfaces belonging to a model object.
Model feature groupings are stored in the bins of a two-
dimensional hash table. For polvhedral and conical sur-
faces, the two dimensions of the table correspond to the
two dihedral angles, one between the first and the second
surfaces and the other between the second and the third.
If one of the surfaces in a feature grouping is spherical,
the distance between the centroids of the surfaces is used
instead of the dihedral angle. The problem with using just
the dihedral angles for constructing a hash table is that
such attributes may not carry adequate discriminatory
power for many useful model libraries, such as when
objects have a large number of surfaces that meet at 90°,
In [26], where we reported on a predecessor to MULTI-
HASH, we demonstrated how the use of nongeometric
attributes, such as color, in addition to geometric attrib-
utes, such as shape, is useful in the construction of hash
tables. The reader is also referred to the work of Flynn
and Jain [20] for an extension of their work in [19] where
they explored on-line ranking of attributes and the fact
that some objects possess symmetry to reduce the num-
ber of hypothesis generated.

We believe that MULTI-HASH improves upon the
hashing systems of [19, 26, 73] by eliminating one of their
main shortcomings, namely, the use of fixed hash table
structure. A fixed hash table, as used in [19, 26, 73], is
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one in which each axis of the multiple-dimensional hash
table ts partitioned uniformly with fixed intervals. Unfor-
tunately, for objects and sensors of practical interest,
fixed-structure hash tables result in the formation of hot-
spots, meaning some bins with too many entries, result-
ing in the retrieval of too many hypotheses. Fixed struc-
ture hash tables make sense only when it can be assumed
a priori that attribute values are uniformly distributed in
the table. This assumption is almost never realized in
practice.

Two other areas in which MULTI-HASH improves
upon the hashing schemes of [19, 26, 73] is in how it
addresses the question of which attributes to use for the
hash table and how to incorporate attribute uncertainties.
MULTI-HASH automatically determines which attrib-
utes to use as a function of their discriminatory power
with respect to the model-base in guestion. Another
shortcoming of the previous hashing schemes is that they
treat atiribute value uncertainty as a fixed value. For
example, in {19] no atlention is paid 1o atiribute uncer-
tainties during the construction of the hash table, but,
after the table is in place, hypotheses are retrieved by
extracting all bins that fall within a fixed range of the
attributed values; the size of the range reflects some a
priori assumptions regarding how much uncertainty may
be associated with the attributes. Using a fixed range
during retrieval is tantamount to medeling the uncer-
tainty by a fixed interval independent of the attribute
value. There are two problems associated with modeling
uncertainty with fixed intervals. One, it is difficult for a
human user to conjure up the interval to use during the
process of retrieval, and, two, if the interval used is too
large, too many hypotheses will be retrieved; on the
other hand, if the interval is too small, valid hypotheses
will be missed. MULTI-HASH allows for attribute un-
certainties to be dependent on attribute values. This is
accomplished by modeling the uncertainty distributions
and extracting the parameters of these models during the
interactive learning process. A most important benefit of
modeling uncertainties, as is done in MULTI-HASH, is
that it now becomes relatively easy to reason about the
discriminatory power of the various attributes. The ideas
presented here could also be incorporated into the geo-
metric hashing systems of the flavor described in |48, 49].

An overview of the MULTI-HASH system is given in
the next section. In Section 3, which attributes should be
used and how uncertainty is modeied in MULTI-HASH
is discussed. Section 4 then begins with a discussion of
optimality as it applies to the construction of a hash table
and then launches into how decision trees are used in
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MULTI-HASH for constructing good hash tables. The
MULTI-HASH system has been used to successfully and
efficiently guide a robot for recognizing and removing
objects from piles in the presence of occlusion and
against cluttered backgrounds. The results of such exper-
iments using MULTI-HASH are described in Section 3,
where we have also compared the performance with our
previous results in [26].

2. OVERVIEW OF MULTI-HASH

In this section, we will provide the reader with an over-
view of MULTI-HASH, emphasizing the overali flow-of-
control and the interactive learning aspects.

Objects in MULTLI-HASH are represented by surface
and vertex features, the edges being stored implicitly in
the descriptions of vertices. Each feature is represented
by a set of attribute-value pairs. The attribute-value
frame for a surface feature is

{

{Shape: Planar or Cylindrical or Other)

{Area: in pixels or square inches)

{Color: 3 tuple)

{Principal Direction: 3D normal vector)
{Planar Parameter: measures elongation)
{Cylindrical Parameter: radius in inches)
{Adjacent Surfaces: list of surface pointers)
(Angles: between adjacent surfuaces in radians)

}

and the attribute-value frame for a vertex feature is

{

{Location: 3D position vector)

{Adjacent Vertices: list of vertex pointers)

(Outgoing Edge Types: list of Concave/Convex labels)
(Surroundings Surfaces: list of surfuce pointers)

}

The “‘values” shown against each attribute represent ei-
ther all the choices availabie for that attribute or the na-
ture of the numerical data to be used. An attribute may be

guatitatitve OR quantitative
AND
geometric OR nongeometric OR relational
AND
viewpoint dependent OR independent.

FIG. 1.

The model-base used contains objects that differ with respect 1o both geometry and color. (2) Square-shaped object. (b)Y Round-shaped

object. (¢) Colors that the differently shaped objects appear in, including dark and light woods, white, pink, yellow, and red colors.

FIG. 3.

A screen dump from an SGI machine displaying how interactive training takes place in MULTI-HASH. On the left in the main window

is a structured light image of the training scene and on the right is the segmented image.



390 GREWE AND KAK

. Enter LFS Cmsmm [NE wﬁh’ Bound,
o R S s T

nented Scene:  Shone/rel/grene/ 30/ Ned_Te f132.segr




391

INTERACTIVE LEARNING IN MULTIPLE-ATTRIBUTE HASHING

7

0 light pink 0 light yellow

15} white-pink 1 5 Jwhite-yellow
2 L)
g light pink g, 30 light-yellow

‘ ight-ye

< @ ‘ <
- 4z f wpd
= e = -~
ph - pink | - | yellow |
& 45 o 45 |

60 60

75 75

a Color Variation b Color Variation

FIG. 4. (a) A pile containing objects from the model-base shown in Fig. 1. (b) First object recognized: square. yellow cbject. (¢} Second abject
recognized: round, white object. {d) Third object recognized: round, red object. (e) Last object recognized: square, white object.

FIG. 7. (a) Change in measured color as a function of the slant angle far a pink-colored surface. (b) Change in measured color as a function of

the slant angle for a yellow-colored surface.



392

For example, ‘‘shape’ is a qualitative, geometric, and
viewpoint-independent attribute, whereas “‘color” is a
quantitative, nongeometric, and viewpoint-independent
attribute. In contrast, “‘area’ is viewpoint-dependent for
scene objects, since the area measured for a surface obvi-
ously depends on how much of that surface is visible to
the sensor. Also, “‘area’ is geometric and guantitative.
The adjacency attributes, such as ‘‘adjacent surfaces,”
are obviously relational.

A model feature is considered to match a scene feature
if each of their corresponding attribute values match. Dif-
ferent criteria are used for comparing attribute values
depending on whether an attribute i{s viewpoint-depen-
dent or -independent, and on whether it is qualitative or
quantitative. Viewpoint-independent attributes that are
also qualitative are considered to match if their labels are
identical, whereas viewpoint-independent and quantita-
tive attributes are deemed to match if their values fall
within a range of each other where this range is a function
of the uncertainty modeling process that is part of
MULTI-HASH. Viewpoint-dependent attributes are
considered to match if certain inequality or subset rela-
tionships are met. For example, if the area of a scene
surface which is viewpoint-dependent and quantitative is
less than the a model surface’s area then in terms of these
attributes the two features match. For further details on
the matching criteria used for viewpoint-dependent at-
tributes, the reader is referred to [7].

Object hypotheses in MULTI-HASH are formed by
matching certain kinds of feature groupings, cailed local
feature sets, extracted from a scene with such groupings
from the model-base. As defined in [7], a local feature set
(LFS)is defined as a vertex of an object and the rotation-
ally adjacent surfaces that surround it. Considering the
object in Fig. 1a, the following are two LFSs of the ob-
ject:

{vertex = i, surfaces = 4, 10, 7} and

fvertex = a, surfaces = 1, 10, 2}.

A property of an LFS = {vertex = v, surfuces = §,, 5.,
S3, ...} is that its surfaces are listed in a rotationally adja-
cent order. Rotationally adjacent means that by starting
at surface §, of the LFS, if one were to walk around the
vertex, v, of the LFS in a clockwise manner, surface S,
would be visited followed by 5.

Figure 2 shows a block diagram of MULTI-HASH.
This system can be divided roughly into three parts: (i)
The Jow-level processing ending in feature extraction and
grouping into LFSs; this part of MULTI-HASH is in the
upper left of Fig. 2. (ii) An off-line part for interactive
learning that results in the construction of a multiple-
attribute hash table; this part is shown in the dotted box
in upper right. (iii} The part for forming hypotheses by
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querying the hash table, and the subsequent stages for
pose calculation, hypothesis verification, and, finally, ro-
botic manipulation. Since the focus of this paper is pri-
marily the high-level issues associated with the construc-
tion and utitization of hash tables for object recognition,
we will only briefly touch on the subject of low-level
processing in Section 5.

As stated earlier, one of the most distinguishing char-
acteristics of MULTI-HASH is its use of interactive
learning. As objects become more complicated and are
described by attributes such as color that for a human
model builder are not easy to define precisely, a method
of learning these attributes becomes necessary. MULTI-
HASH learns the attributes that describe a model feature
such as color through interactive training. Figure 3 is a
screen dump that displays how interactive training takes
place in MULTI-HASH. The user places the objects,
either singly or in piles, under the sensor system. A scan
of the scene is taken and fed into the training system. In
Fig. 3, on the left side of the main window is displayed a
color structured-light image produced by such a scan of
the scene and on the right is shown the segmentation of
the range data. Candidate model objects are displaved in
a row at the top of the screen; each object thus displayed
is chosen by the user from a menu listing all the objects in
the model-base. Each object is initially displayed in a
standard pose and the user is provided with menu options
to rotate the object and/or perspective. The user tells
MULTI-HASH the correspondences between the LFSs
in the viewed scene and the model LFSs using a set of
menus. This is done by identifying in the model-base
menu, also displayed in Fig. 3, the identity of the model
and LFS the user wishes to register a scene LFS with. A
window pops up subsequently in which the user types the
scene surface id corresponding to the displayed model
surface id from the model LTS selected. A verification
window listing the attribute values belonging to the mode}
LFS and the corresponding scene LFS just entered is
displayed and the user is requested to verify the registra-
tion between the two. This verification window acts as a
security check, in case the user has accidentally entered
an incorrect correspondence. The user also sets up indi-
vidual surface correspondences which are needed in veri-
fication. A database is thus formed with one or more
training samples for each model LFS and surface. Using
the database, MULTI-HASH learns, for example, what
the color yellow means and how to separate it from the
color red. How MULTI-HASH does this and how it uses
this knowledge to construct a multiple attribute hash ta-
ble is the topic of the following sections.

After MULTI-HASH has constructed a hash table
whose bins contain pointers to model LFSs, hypotheses
are created for a given scene LFS by using the values of
the attributes used in the formation of the table to access
a bin and by retrieving the model LFSs contained in it.
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Before accepting a hypothesis retrieved from a bin,
MULTI-HASH makes sure that the model LFS matches
the scene LFS in question in ierms of ail of the attributes
and not just those used for the formation of the table. For
an accepted hypothesis, the pose of the scene objects is
estimated and then the system proceeds with the verifica-
tion of the hypothesis. Pose estimation and verification
take place in exactly the same manner as discussed in {7,
8]. The reader is also referred to the appendix of [44] for a
tutorial discussion of how pose is estimated.

In addition to interactive learning, another unique as-
pect of MULTI-HASH is its use of color as an attribute
in hashing. Color is a good attribute to use because of its
discriminatory power in many model-bases. As poinied
out in [75], other reasons for using color inciude the fact
that it is a local surface property that is somewhat inde-
pendent of resolution and, with appropriate processing,
viewpoint invariant. Further discussion regarding this
processing will be presented in the next section.

As discussed in Section 5, registered range and color
images are collected by a specially built structured-light
scanner. The scene is illuminated alternately by a laser
light stripe and a broader white light stripe. The laser
light stripe vields the range values. For the extraction of
color information, the white light stripe is sampled at
exactly those points that were previously iiluminated by
the laser stripe.

In the rest of this paper, we will discuss how MULTI-
HASH uses the tools of interactive training, uncertainty
modeling and decision trees to construct a good hash
table. To whet the reader’s appetite for what is to come in
the rest of the paper, we show in Fig. 4a a typical test
scene; MULTI-HASH retrieves for this scene a total of
161 hypotheses, which is a significant reduction from the
318 hypotheses retrieved for the same scene by an earlier
version of this system [26] where a fixed structure was
used for the hash table. The other images in Fig. 4 high-
light in the segmentation map the scene features used for
recognizing the four objects found in the scene,

3. ATTRIBUTES AND MODELING
THEIR UNCERTAINTIES

The MULTI-HASH system automatically selects the
attributes used in the hash table. The methodology used
for this automatic selection requires that the ever-present
uncertainties in the measurement of attribute values be
modeled appropriately. In this section, we will focus on
the issue of attribute value uncertainties.

First, let us consider the question of which attributes
from an LFS to use in the table. Evidently, the attributes
used must be viewpoint invariant since the LFS’s in the
bins of the table are used for forming object and pose
hypotheses and since, initially, the relationship of the
object pose to the viewpoint used is not known. From all
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FIG. 2. Block diagram of MULTI-HASH, a 3D model-based object
recognition system.

the viewpoint-invariant attributes, MULTI-HASH se-
lects a subset based on their discriminatory power for
making the required distinctions between objects and ob-
ject poses for the model-base in question. Figure 5 shows
histograms for two different attributes for the LEFSs for
the objects shown in Fig. 1; the numbers shown in the
bins of, say, the histogram of Fig. 5b indicate the number
of model LFSs for which value of the blue color for one
of the surfaces falls in that bin. Clearly, if a vision system
had to make a choice between the two attributes shown in
Fig. 5, it would choose the blue component of color be-
cause of its greater discriminatory power, as the histo-
gram for this attribute is more uniformly distributed. The
uniformity of the histogram becomes even better if both
these attributes are used together, as illustrated by Fig. 6.
In the next section, we will discuss how the tools of
decision trees and the results of uncertainty modeling can
be used for discovering which attributes are more impor-
tant and therefore which attributes should play more sig-
nificant roles in the construction of the table,

In what follows, we will first discuss the sources of the
uncertainties in attribute values. Next, we will discuss
how these uncertainties are modeled in MULTI-HASH.

Attribute value uncertainties are created by the usual
problems that arise from dealing with real-world environ-
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FIG. 26. (a) A scene containing objects from the model-base shown in Fig. 1. (b) Color-composite light-stripe image of the scene. (¢) 3D plot of
points detected. (d) Segmented image.

FIG. 32. (a) Composite color structured-light image of a typical test scene. (b) The segmentation map.
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FIG. 5. Histograms illustrating discriminatory power of two atteib-
utes. The number shown in each bin is the number of mode! LFSs for
which the attribute value in question falls in that bin, (a) Angle attribute
{range 0° to 180°). {b) Biue component of color attribute (range 0 to 255).

ments. For instance, when an object surface is illumi-
nated with a stripe of light, the intensity and the spectral
composition of the light reflected in the direction of the
camera depend on the slant angle of the surface in rela-
tion to both the light source and the camera. To demon-
strate this effect, we took the object in Fig. 1a, positioned
one of its surfaces at different slant angles and, for each
slant angle, we recorded with a color camera the light
reflecied by the surface. Shown in Fig. 7a is the color of
the returned light for the different slant angles, where the
slant angle is the angle the surface normal makes with
respect to the plane of light emitted by the sensor (see
Section 5.1 for a brief discussion of our sensor),

To understand the phenomenon being depicted in Fig.
7a, consider the surface shown in Fig. 8 where, for a
given incident light beam, we have shown reflected light
consisting of specular components and diffuse compo-
nents, the components being additive. In the more mod-
ern literature dealing with colored light, the specular and
the diffuse components are referred to as the surface and
the body components, respectively (24, 25, 30-33, 45, 51,
53, 55]. Light refiected by homogeneous materials, such
as metals, is dominated by the surface component,
whereas light reflected by inhomogeneous materials is
dominated by the body component.
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FIG. 6. Discrete histogram for the case when the two attributes
shown in Fig. 5 are used simultaneously.
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FIG. 8. Sirepresents the specutar reflection resulting from illumina-
tion source i, Diffuse reflection for any illumination source radiates in
all directions, The radius of the arc labeled Di represents the magnitude
of the diffuse reflection component from illumination source 7. Note that
this magnitude is a function of the cosine of the angle the ilumination
source makes with the surface normai.

When the camera is situated in a direction where the
angle of reflection is nearly the same as the angle of inci-
dence, the surface component will usually dominate and
the spectral composition of this component will be ap-
proximately the same as that of the illumination source.
Since our illumination source for the measurement of
color is white light, the color shown in Fig. 7 for the slant
angle of 15° has the most white in it. The angle between
the illumination source and the optical axis of the camera
is approximately 30° and, when the surface is at a slant
angie of 15°, the camera registers the largest specular
component. This is explained approximately by the law
of reflection, which says that the angle of reflection sub-
tended by specular component of light with respect to the
surface normal must equal the angle of incidence of the
illumination light with respect to the normal. More accu-
rately, this phenomenon is also explained by the Tor-
rance—Sparrow model of specular reflection [76]. In [30],
a modified Torrance-Sparrow model of specular reflec-
tion is discussed where the geometric dependence of the
specular components is

FPG
Rs = ——, D
STR v (

where F is the Fresnel reflectance (see [30]). In this
model, it is assumed that the surface is composed of

Booq

=

Surface

FIG. 9. Geometry of reflection.
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small, randomly oriented, mirrorlike microfacets and P is
a probability distribution function of the orientation of
these facets. 7 is the geometrical attenuation factor that
accounts for the shadowing and masking of suiface facets
by adjacent facets and is expressed as

AN - BN - V) 2N - BN -
(V- H) (V- &)

":)}, @

where N as shown in Fig. 9 is the normal vector to the
surface, Vis the line of sight to the camera or viewer, L is
the vector to the illumination source, and H is the bisec-
tor of the V and L vectors. Note that G is maximum when
the normal vector, N, is coincident with the vector H,
this being the case when the angle of incidence is equal to
the angle of reflectance. The Torrance—Sparrow model of
Eq. (1) describes the fact that for larger values of the
incident angle, the peak in the specular reflection compo-
nent will not occur when the angle of reflectance is equal
to the angle of incidence but, when the angle of reflec-
tance is somewhat greater than the angle incidence. The
data used in Fig. 7 was taken by tilting the surface in
guestion and keeping the I and V directions constant.
Consequently, at the relatively small slant angle of 15°,
which is also the angle of incidence, we would expect
that the peak of Rs to occur when the angle of reflectance
1s close to the angle of in¢idence, in this case 15°, and this
is the situation in Figs. 7a and 7b.

When the slant angle of the surface becomes large, the
reflected light consists mostly of the body component.
But the intensity of this light diminishes rapidly as the
surface slant angle approaches 90°. This explains the
“darkness’’ of the result shown for 75°, This diminishing
effect is a result of the fact that, as discussed in {38], if we
assume a perfectly Lambertian surface, the magnitude of
the body component varies as a cosine of the angle of
incidence, which is our slant angle. The geometric depen-
dence of the body components in more modern literature
is described by the Kubelka—Munk (K—-M) theory of the
scattering and absorption of light in the colorant layers of
the material body. The body reflectance, Ry, is described
by an extended version of the K-M theory in [61] as

G = min {1,

. o C(Bb ?\)(] - ri)[ROC(A) - D(BJ)]
RB(BI) A-) - (1 RS) 2[] . rjR;n(?\)] COS(B]) (3)
and
_ w{Meos(8)(2 cos (8) + 1)
O = T4 = W) cos® (@) )
_ 2cos(f) — |
D@y = 2cos(B) + 1’ )

where A is the wavelength and 6, the angle of incidence
between the light source and the normal to the surface.
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Rs is the amount of light that enters the body of the sur-
face. r, is the internal diffuse surface reflectance and is a
function of the index of refraction of the material. R.. is
the reflectance predicted by the original K-M model of
diffuse light and is not a function of 6. Note that as the
angle of incidence, #, increases Rg will decrease which
explains why at large angles, where the body component
dorminates, the color becomes darker. Shown in Fig. 7b is
a similar effect for a yellow-colored surface.

Besides the causes of the variations illustrated in Fig.
7, color measurements can also be affected by the pres-
ence of shadows, interreflections between scene surfaces
and differences in illumination sources. The capability of
humans to perceive the same color for an object indepen-
dent of at least some of these factors is commeonly called
color constancy and is a topic of current research [24, 25,
30-33, 45, 51, 53, 55). Unfortunately, the algorithms that
have been proposed for color constancy require cumber-
some measurements, in the sense of requiring more or
different measurements than what are output by a typical
color camera, and tend to be computationally expensive.
Fortunately, the manner in which data is collected in
MULTI-HASH makes our system somewhat immune to
some of the problems with achieving color constancy. As
discussed previously, a special structured-light scanner
was built for MULTI-HASH that has the ability to con-
struct registered range and color images of a scene. For
the acquisition of both the range and the color informa-
tion, the scene is illuminated one stripe at a time, and this
restricted illumination reduces both the presence of
shadows in the scene and the effects of mutual illumina-
tion caused by interreflections from scene surfaces. Also,
being a learning system, MULTI-HASH has a built-in
capability to adapt to different white-light ilumination
sources.

As pointed out by Healey [30], the kind of variations
we have shown in Fig. 7 resulting from the changes in the
viewing angle with respect to the surface normal can be
minimized by two operations; (i) the removal of specular
highlights from the measured data; followed by (ij) the
normalization of the remaining color measurements, Due
to its computational burden, the former we have not im-
plemented. The latter, we have taken care of by normal-
izing the measured r, g, b values as follows:

-
8 g
s

Figure 10 illustrates the reduction in the variation as
achieved by normalization of the measured color for a set

=
it

X 255 (62)

i

x 255 {6b]

T
il

X 255. (6c)
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FIG. 10. This figure illustrates that normalized values, 1#, g, 5), possess smaller variation than the corresponding {r, g, b] values. Plots are
histograms of [r, g, b} and normalized {7, g, b] values for yellow surfaces at different orientations {x axes of all plots range from 0 1o 255): (a)

histogram of r component, (b) histogram of # component, (¢} histogram of 2z component, (d) histogram of # component, (¢) histogram of g
component, and {f) histogram of & component.
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(a) Area of surface 1 of the object in Fig. a as a function of the slant angle. (a) Dihedral angle between surface 1 and that of the object

in Fig. 1a as a function of the slant angle, which is defined as the angle between the bisector of the dihedral angle and the direction of the

illumination source.

of identically yeilow colored surfaces taken at different
viewpoints: in (a), (b), and (¢) are shown the histograms
for r, g, and b, as output by the camera, and shown in {(d),
(), and (f) are the histograms for 7, 8, and b. The heights
of the histogram bars are the numbers of surfaces. Note
that the span of the color values is much smalier for the
normalized color than for the original r, g, and b output
by our camera and in this sense the normalized color
measurements achieve a greather degree of color con-
stancy.

We will now discuss the uncertainty in the measure-
ment of the attribute *‘area,’” again as a function of the
siant angle of a surface in relation to the sensor. Figure
11a is a bar graph showing the measured area for surface
1 of the object in Fig. 2a. Area was measured by counting
the number of range data points on the surface and divid-
ing by the cosine of the slant angle. The division by the
cosine accounts for the decreased number of stripes ilhi-
minating the same surface as the angle of the surface
increases. As expected, the variation is relatively small
for surface angles up to 60°, but then the measured value
for the area changes rather quickly. The rapid change for
large angles is owing to the discretization errors exacer-
bating the effects of the relatively few stripes that ilumi-
nate the surface at such angles. Of course, for a different
set of scanning parameters, such as the number of light
stripes per unit of translational movement of the sensor,
the sampling rate along each stripe, etc., the dependence
of the measurements on the orientation of a surface
would be different.

As a final example of the uncertainty in attribute val-
ues, consider the dihedral angle between two surfaces.
Figure 11b is a bar graph showing the measured values of
the dihedral angle between surfaces 1 and 2 of the object
in Fig. la as a function of the slant angle, which is the

angle between the bisector of the dihedral angle and the
illumination source. The variation of this attribute is rela-
tively small.

In a manner similar to what was shown in Figs. 7 and
11, all attributes exhibit variations with respect to object
pose, scanning parameters, ¢tc. Note that the results
shown in these figures were obtained by averaging the
attribute values over ten samples in order to reduce ran-
dom fluctuations. In the rest of this section, we will now
address the issue of how these uncertainties can be mod-
cled. Before attribute uncertainties can be incorporated
into a hash table, they must be modeled in some manner,
especially if the desire is to derive the structure of the
table in some optimal manner with respect to the uncer-
tainties.

Experimentally recorded wvariations, such as those
shown in Figs. 7 and 11, sample some continuous func-
tion that describes the uncertainty distribution for a given
database of objects. Assume, for example, that the mea-
sured attribute values for two classes of objects are as
marked by X and O in Fig. 12. Presumably, the specific
points marked in the figure sample an underlying continu-
ous distributions depicted by the solid ellipses. If we as-
sume that the underlying continuous distributions teli the
true story and proceed to construct a hash table taking
into account only the specific samples marked, bins V
and VI will not contain pointers to class ‘O’ as they
should. Therefore, MULTI-HASH fits Gaussian distribu-
tions—whose applicability is verified by using the
Kolmogorov—Smirnov Goodness-of-Fit Test [10, 56]—to
the training data and then as discussed below performs
subsequent truncation of these distributions for practical
Teasons.,

The uncertainty distribution for each attribute for each
model LFS is modeled as a single-modal Gaussian func-
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FIG. 12. Curves indicate true distributions and X's and O’s mark
the locations of training samples for two model LFSs. The partitioning
shown corresponds to the training samples directly, as opposed 1o their
continuous distributions.

tion. In other words, for the attribute g, for model LFS;,
the density is expressed as

i 1 2 2
di) = —(a; — ) 2ait,
f;(ﬂ) 0',-\/2_77 EXp{ {a niy 2a } (7

where 7, is the mean of the values of attribute a; for the
model LFS;'s samples and o; is the standard deviation.,
These parameters are estimated by

t
"= g 2 8)

1
2 _ — )
U‘! M —_ 1 ;xk T)t) 3 (9)

where x; is the value of attribute ¢, for the &th training
sample, and M the number of training samples collected
for LFS;. When an attribute takes on vector values, 7;
will be a vector and o7 will become a covariance matrix.

If a single Gaussian function cannot be assumed to fit
the data, methods can be applied to find the correct num-
ber of modes or components needed [35, 65, 70 and the
parameters of these components [13, 22, 71]. Another
benefit to fitting Gaussian functions to the data is that the
outliers can be eliminated or their effect reduced [39]. We
have tested the assumption that Gaussian fitting is appro-
priate for each of the system’s attributes by applying the
Kolmogorov-Smirnov Goodness-of-Fit test [10, 56] to
the training data. This test showed that, for this data, for
all but one object in the model-base the Gaussian assump-
tion could be accepted at the .1 significance level. What
that means is that the test that we applied to the data
would reject a correct Gaussian assumption with a proba-
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bility of .1. The one object whose LFSs failed the test at
this level had some of its surfaces composed of different
shades of wood.

The Gaussian distribution functions fit to the data span
the entire attribute space. In fact, it has nonzero values at
all points extending out to infinity in all directions. Be-
cause we are dealing with finite domains, these distribu-
tion functions must be truncated. A truncated Gaussian
function for attribute a takes on the following form where
x, is the left (lower) truncation point and x, is the right
(upper) point:

I\
fa) = (o; V27 ¥ A(x, 1))

when x = x = x,

exp[—(a — m)*/207]

= () elsewhere
1))

and

Alx, x,) = f U\]/E exp{—(a — W22 8a. (11)

The truncation points can be chosen, as discussed in [68],
by taking their maximum likelihood estimaies. Suppose
that we have for a given LFS a set of n training samples
listed in increasing order with respect to their attribute
values: {(x;, X, .. x,). Given the truncated Gaussian func-
tion in Eq. (10), the following is the corresponding likehi-
hood function when all of the training samples fall be-
tween x; and x,:

i=n | .
,le(x") T (0 V2m X A(x, 1) "XF’[; ~(xi= n)2f202] :
(12)

This is merely a product of the probabilities correspond-
ing to each of the training samples, assuming that they
are independent, If a training sample, say x;, were to fall
outside the interval defined by (x, x.), this product of
probabilities will go to zero since, in accordance with Eq.
(10}, the f(x;} would be zero.
The maximization of Eq. (12) with respect to x, and x; is
achieved when the following is minimized:
Alxy, X ). (13}
This i3 obviously minimum when x, = x, and x; = x|,
To allow for greater freedom in modeling, the user can
select x; toben + bk X cand xytoben — & X o by
specifying k. A safety check is implemented in the model-
ing program so that if the value of & would canse x; to be
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greater than x,, then x; is set to x; and also, and if £ would
cause x, to be less than x, then x, is set to x,.

For convenience, if the user does not know whether
the uncertainty distributions are Gaussian or does not
wish to apply goodness-of-fit tests, the user can opt to
model the uncertainties by fitting intervals, meaning uni-
form distributions, to the training data for each model
LFS along each attribute axis of the attribute space. In
this case, for each model LFS the maximum and the
minimum values along each attribute axis are extracted
from the training data and are used as the limits of the
interval being fit. In contrast to {19}, here the uncertain-
ties are modeled with intervals that change as a function
of the modei LFS being considered. The marginal density
function for model LF'S; along the attribute g; axis is de-
scribed by

|
_—_— g =@ =a

, min i max
Amax — iy ,

filay = (14)

0, else,

4. MULTIPLE ATTRIBUTE HASH
TABLE CONSTRUCTION

For constructing a hash table, the system must reason
over the attributes, taking into account their uncertain-
ties, and figure out how to partition the attribute space so
that, at least in the ideal case, each bin of the table con-
tains a pointer to at most one model LFS. As discussed
before, previous systems inappropriately partitioned the
attribute space using fixed intervals and not as a function
of how the space is populated by model LFSs.

One can think of many solutions to this problem of
automatic discovery of partitions in the attribute space.
We could use neural networks [46], symbolic reasoning
[12, 52], statistical pattern classification (single shot clas-
sifiers) [16, 17, 21, 22, 71], decision trees [4, 6, 14, 18, 23,
47, 54, 57, 58-60, 67, 72], fuzzy logic [46], etc. In this
paper, in what is to follow, we will explore the use of
decision trees for discovering the partitions. An advan-
tage of constructing a hash tabie from a decision tree is
that the classification rules described by the decision tree
can be printed out to give the user a clear explanation of
the classification process.

In the next subsection, we first introduce the notion of
an optimal hash table. Since the procedures that could be
used to construct optimal hash tables directly tend to be
computationally expensive, we will exploit the relation-
ship between hash tables and decision trees and take ad-
vantage of efficient algorithms to induce decision trees.
In Section 4.2, we then discuss some previous research
on the induction of decision trees. In Section 4.3, we
describe how MULTI-HASH combines uncertainty mod-
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eling and the learning of decision trees to solve the prob-
lem of efficiently constructing a multiple attribute hash
table. Then, in Section 4.4, we discuss how a decision
tree translates into a hash table.

4.1. Optimal Hash Table

Ideally, our goal ought to be to find an optimal hash
table for hypothesis formation. Optimal means a table
which on the average possesses “purer’’ bins and, at the
same time, has a minimum number of bins. A bin is
“pure’” if it contains only one model LFS; meaning part
or all of this model LLFS’s uncertainty distribution occu-
pies the attribute space encompassed by the bin. A bin is
“purer’” than another bin if the number of model LFSs
contained in the former is smaller than the number con-
tained in the latter. If more than one table has the same
“purity,”” the table that is simpler, meaning has fewer
bins, should be chosen. Minimizing the number of bins
not only reduces the amount of memory needed, but, as
pointed out by Quinlan [58], given a choice between two
correct tables it seems sensible to prefer the simpler one
on the grounds that it is more likely to capture correctly
more samples outside of the training set used to construct
the table.

An optimal table can be found by searching over ail
possible partitions of the attribute space and choosing the
set of partitions that are optimal in the sense of purity
and, for this set, selecting a table with the minimum num-
ber of bins. In what follows, we will show that this notion
of optimality can be expressed as the minimization of the
average entropy associated with each bin.!

The entropy associated with each bin can be expressed
as

H{bin;) =

! {P(LFSjibini) log(P(LFS;|bin)), if P()#+0, (15

-3 !
a, it P}y =0,

=t

where J is the number of different model LLFSs and
P(LFS;(bin; is the probability that a sample will be from
LFS; given it has fallen into bin,. Using Bayes' rule,
P(LFS,\bin} is calculated as

! As the reader wiil recall, the entropy associated with a set of events
is maximized if those events are all equiprobable. Clearly then the
entropy would be minimized for the case when the probability distribu-
tion over the events is maximally nonuniform, meaning all of the proba-
bility is assigned to a single event. That is exactly what we wish to see in
each bin of the hash table, In an optimal hash table, each bin will
contain the samples from a single LFS.
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P(bin{LFS;) P(LFS))
P(bin;)

P(LFSJ‘bm,) = (16)

J
P(bin} = 3, P(LFS;, biny), (17
J=1

where P(bin;) is the probability that any sample randomly
drawn from all the LFS distributions will fall in hin; and
P(bin|LF 5, is the probability that a sample drawn ran-
domly from the distribution for LFS; will falf in bin;.
P(LFS;) is the a priori probability that LFS; will be ob-
served in a scene and can be expressed as follows:

#models

P(LFS) = Y P(LFS; M) P(M)
k=1
where P(LFSjiMk) =0if LFS; & M, (18)

#models

J
PM) =1 and Y PLFS|M) =1 (19)
j=1

A=1 J

P(LFS;|M,) is to be interpreted as the relative frequency
of the visibility of LFS; for model M,. If the object M;
were to be viewed from a large number of different view-
points distributed uniformly over the viewing sphere, the
number of times LFS; would be visible divided by the
total number of viewpoints would constitute an estimate
for P(LFS;IM,). P(M,) is the relative frequency with
which the mode! M, appears in the scene. If there is no
prior knowledge, it is assumed that P(LFS;) = 1/J for all
J,» where recall that J is the number of LFSs in the model-
base,

P(bin)|LFS5;) needed in Eq. (16) can be estimated from
the distributions fit to the training samples as

P(bin)LFS)) = L j{: j:“fﬁm) dA = ﬁ L fila) da,
(20}

where A is a vector composed of all of the attributes used
for the table, f; the distribution fit to the data of LFS; and
S the marginal distribution along the attribute axis a;. The
parameter g is the dimensionality of the attribute space
and /; the greatest lower bound for attribute a; describing
the underlying space occupied by the bin in question.
Similarly, u; is the least upper bound for attribute «;,
Expressing P(bin; | LFS;) as a product of the distribu-
tions along each attribute axis is based on the assumption
that the uncertainty variations in attribute values are in-
dependent. That is, if for a given LFS; there is a variation
in the value of the dihedral angle caused by, say, the pose
of the object in relation to the sensor, this variation
would be independent of the variation in, say, the blue
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component of color. We beljeve that this assumption is
justified because any correlations that might exist be-
tween the uncertainties in different attributes are at most
of second order and, therefore, not very consequential.

Our discussion so far tells us how to compute the en-
tropy associated with each bin, the formula given by Eq.
(15). In order to construct a measure of entropy for the
entire hash table, we must take into account the entropies
associated with all its bins, weighting the contribution
from each bin by P(bin):

#hins

E = Y P(bin) H(bin). 1)
i=1

The entropy associated with a bin wili be maximum
when all the LFS distributions overlapping with that bin
are equiprobable. By the same token, the entropy associ-
ated with each bin will be a minimum—and the bin will be
pure—when the bin overlaps the distribution from only
one LFS, since in that case H(bin) would be zero, As a
result the average entropy, E, in Eq. (21) will be a mini-
mum (zero) when each bin contains at most one of the
model LFSs (i.e., when the bins are pure). If no zero
average entropy table exists, then the table with mini-
mum average entropy will possess bins which are on av-
erage as pure as possible.

As mentioned before, an optimal hash table can be
constructed by searching all possible partitions of the at-
tribute space and choosing a partition that minimizes the
average entropy E. To elaborate, suppose the attribute 4;
is quantized into n; discrete levels for the purpose of mea-
surement and analysis, then along this axis we can have a
maximum of »; partitions. The total number of different
partitions that one can construct for the entire attribute
space will then be

Number of Possible Hash Tables

#nlﬁmes i H;
i=1 ki=1 kj

#atiribules

H 0(2.'1) = O(znx #alfribure.\),
i=1

il

(22)

where n is of the same order of magnitude as the largest
of the n;’s. Thus, the computational complexity of finding
the optimal hash table by exhaustive search is exponen-
tial with respect to both the number of attributes used and
the number of quantization levels along each attribute
axis. This is demonstrated in Fig. 13, which shows plots
of the log of the number of tables versus both the number
of attributes and the number of guantization levels for
each attribute. For the former plot, where we show the
dependence on the dimensionality of the atiribute space,
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Log plots of the number of possible tables versus and dimensionality of the attribute space in {a) and versus the number of quantization

levels along each attribute axis in {b). For the plot in (a), we used 10 gquantization levels for each attribute axis. For the plot in (b), we have a two-

dimensional attribute space.

we used 10 quantization levels for each attribute axis.
For the latter plot, a two-dimensional attribute space was
assumed.

Since the combinatorics of this exhaustive search can
make it too onerous for many applications, we will now
discuss an approach that uses the induction of a decision
tree to efficiently construct a hash table. First, we discuss
how optimal tables are related to optimal trees,

The simple relationship between a decision tree and its
corresponding hash table is described by the fact that the
partitions on the various axes of a hash table correspond
to tests at the different nodes of a decision tree. There-
fore, since a direct approach to the construction of a hash
table is too computationally cumbersome, an indirect ap-
proach to the construction of such a table would consist
of first constructing an appropriate decision tree. Note
that while, from the standpoint of ultimate utility, a hash
table is equivalent to a decision tree, the foriner is more
useful on account of constant time access to the contents
of the bins. The time it would take to reach the leaves of a
decision tree, on the other hand, is proportional to the
depth of the tree. So the thing to do is to construct a
decision tree and then translate it into an equivalent hash
table. As an example, consider the decision tree in Fig.
14a. At each node we have shown a decision threshold
for a two-dimensional attribute space. The dark lines
shown in the table in Fig. 14b correspond to these deci-
sion thresholds, To make a table out of these thresholds,
the dark lines must be extended by the dashed lines to
create partitions as shown there. The partitions created
lead to the table structure. It is interesting to note that
there does not exist a unique decision tree for ascertain-

ing the partitions needed for a hash table. For example,
the two different decision trees shown in Figs. 15a and
15b yield the same hash table.

It has been proven in [40] that finding an optimal binary
decision tree is NP-hard when the optimality criteria are
the minimization of the classification error and the mini-
mization of the expected number of tests required to
identify an unknown sample. Therefore, strictly speak-
ing, the problems of finding an optimum hash table and an
optimum decision tree are both exponentially complex.
Yet, due to the existence of already-published large body
of work on heuristic algorithms for constructing decision
trees, we shall follow the decision tree approach. Of
course, as is true of all heuristic algorithms for solving
hard combinatorial problems, these algorithms are not
guaranteed to yield optimal decision trees, but, as we will
show, the result can be very c¢lose to the optimum. The
reader is referred to [4, 6, 14, 18, 23, 54, 57-60] for litera-
ture dealing with efficient heuristics for constructing de-
cision trees. In what follows, we will first review some of
the more salient developments reported in the literature,
especially as they pertain to our own work. Subse-
quently, in Section 4.3, we will present a method that is
especially suited to our vision domain.

4.2, Decision Trees: A Brief Review

As discussed in [60), the induction of a decision tree,
meaning the learning of a decision tree from human-sup-
plied examples, is one microcosm of machine learning. In
[74], learning is defined as the process in which the attri-
butes necessary for discriminating one concept from an-
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(a) An example of a decision tree. At each node marked by a circle, a decision threshold is used. Each node marked by a box is a

terminal node, The annotation {a, 1) under a node means that the attribute a was subject to a decision threshold ¢, with ail samples whose attribute
values are less than t going to the left branch, and the rest to the right branch. (b) The corresponding hash table, where each test in the tree creates a

partition for the appropriate attribute axis,

other are discovered. This is essentially the classification
problem in which a concept is 2 model LES in our case.

Unlike other methods of classification that use all of
the attributes in a single decision step (often called single
shot classifiers), decision trees classify by using a se-
quence of hierarchical decisions (tests). The interested
reader is referred to [4, 6, 18, 23, 54, 57-60] for previous
work in the area of top-down induction of decision trees,
meaning arranging the tests in a decision tree in such a
manner that the more ‘‘informative’” a test the higher it
will be in the tree. Various methods have been proposed
to measure the information content of a test. Other as-
pects of algorithms for inducing deciston trees are decid-
ing when a node should no longer be split, meaning that it

root node

FIG. 15,
attribute a2.

1s a terminal leaf node, and also how to assign class labels
{model LFSs) to terminal nodes.

We now present, in the form of steps delineated below,
the core algorithm that is common to all methods that
perform top-down induction of a decision tree.

1. Begin with a tree consisting of the root node con-
taining all training samples.

2. At each nonterminal leaf node in the current tree,
find the test {= (artribute, threshold)} that splits the train-
ing samples at this node into sets such that the splitting
criterion is optimized.

3. If a node contains only elements from one class or
can not be split any further based on the stopping crite-
rion used, label it as a terminal node.

root node

Two possible trees that lead to the same table. In (a), the first test is applied to attribute al, and in (b), the first test is applied to
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FIG. 16. When training samples are used directly for determining the decision thresholds, overfitting to the data is more likely to occur, as
exemplified by too many decision thresholds in (a). On the contrary, when attribute uncertainty is modeled analytically, a better set of thresholds,

as shown in (b), can be derived.

4. If any nonterminal leaf nodes remain, go to step 2.
5. Assign class labels to the terminal nodes.

Many splitting criteria have been proposed. Frequently
the criteria involve the computation of entropy {4, 58].
Such a splitting criterion makes sense becatise the goal in
growing a tree is to obtain nodes that, to the largest ex-
tent possible, contain a single class, meaning are pure,
and, therefore, have minimal entropy.

In our approach to constructing decision trees, we use
parametric models of uncertainty for the class distribu-
tions. The disadvantage of using the training sampies di-
rectly is that one is more likely to overfit to the data,
particularly when the number of training sampies is
small. By overfitting we mean the creation of a larger
number of decision thresholds than are necessary. For
example, Fig. 16 shows two different sets of decision
thresholds for the two classes displayed there; the deci-
sion thresholds shown in (b) are clearly superior to those
shown in (a), and therefore correspond to tests in a
“right-sized’” tree in the sense defined by Breiman er al.
{4]. Further discussion on the adverse effects of a limited
number of training samples on a decision tree is pre-
sented in [23,) 58, 72]. As discussed in [58], overfitting can
be reduced by using an appropriate stopping criterion.
Another advantage of using parametric models of uncer-
tainty is that at the lower levels of the tree the estimation
of the probabilities that we use in our splitting criterion
(discussed in the next subsection) is more accurate than
for the case when training samples are used directly. This
is a result of the fact that the nodes at lower levels of a
tree will usually contain fewer samples. In a sense, the
adverse effect of a limited number of training samples
becomes magnified at these lower level nodes in a deci-
sion tree. Therefore, instead of using the training samples

directly, we first fit parametric models to training data
and then use these medels for growing a decision Iree.

4.3. Growing a Decision Tree

In this section, we discuss a method to efficiently con-
struct a decision tree from which a multiple-attribute
hash table can be directly created. Specifically, modeling
of the uncertainty present in the training data and the
efficient induction of a decision tree are combined in this
method. Recall that attribute values for every class pos-
sess uncertainty and are thus described by a distribution.
Because we utilize distribution models we no longer have
to retain the training samples for the purpose of inducing
a tree. Figure 17 shows a block diagram of our approach.

The search for the best test at each node as dictated by
the splitting criterion involves simple integrations of the
uncertainty distributions. At each node in our decision
tree, only binary decisions are made for quantitative at-
tributes; for qualitative attributes with v values the node
is split into v chifdren.? It is desirabie to make a binary
decision if possible because the best single partition will
be found at each node. As pointed out by Quinlan [58],
splitting a node into more than two modes introduces a
bias into selecting optimum decision thresholds, in the
sense that the entropy associated with each cthild node
will, in general, become lower as the size of the attribute
space associated with the child node decreases.

? If hierarchical relationships for a qualitative attribute are known-—
such as when rectangular and square shapes can be expressed more
generally as paralielepiped shapes—-then u-ary decisions, where v << v,
can be made for these variables as discussed in [54]. Note that qualita-
tive attributes are treated as having one-point distributions.
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User Provides Taining Samples
-specifies a priori information

-specifies bounds on ranges of
attribute vafues

\

Pecision Tree Construction

-Graussian or interval models are it to data

-tree is grown using model parameters,
the entropy measure, and & memory

constraint.

Canstruct Table

-a hash table is buily divecily from decision
tree

-partitions are stored along each attribute axis
in & lookup table for fast processing

FIG. 17. From the training samples pravided by the user to the
construction of the hash table, this block diagram shows the overall
organization of the processing steps,

In line with the discussion in Section 4.2, we will now
present the core decision tree growing algorithm, shown
in Fig. 18. Stored at each node #» in the tree are

1. the test used to split the node into child nodes, the
test described by the pair (attribute, threshold),

2. for all j, the joint probability P{n. LFS;) of node n
and LFS;;

3. P(n), the probability that an LFS drawn randomly
from the entire training set will reside at node #.

1 grow_iree_procedureitree)

2 { Create tree with a root node

3 for each leaf node n € tree that is not Terminal

4 { choose the test m such that

5 ¥ tests m'#m E{n,m) < E{n,m")

6 if (stopping_procedure(n, m) == FALSE)

7 { split n using the test m

8 store m at node n

9 create children nodes i, and calculate P(n,)

10 and P(n;,LFS;) for all j; store these at n,-

11 for each child n,

12 if 0y contains only one class

13 { itis pure, label n; ax Terminal}
}

14 else

15 { label n as Terminal}

}
}

FIG. 18. Procedure to grow a decision tree.
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As for the semantics of these probabilities, note that as-
sociated impficitly with each node is a portion of the
attribute space. So, when, say, the root node is split into
two child nodes, one of the child nodes inherits some
portion of the attribute space, the rest going to the other.
Keeping this in mind, the interpretations to be given to
P(n) and P(n, LFS;) parallel those given earlier to P(bin)
and Plkin, LFS;).

For the splitting criterion in the tree growing proce-
dure, we associate two different entropies with each
node. One, the eniropy that reflects the various LFS dis-
tributions at that node: this, in common with the notation
used earlier for the entropies of the bins, will be denoted
by H(n) at node n. Two, the average entropy calculated
at node n by averaging over the entropies associated with
all its child nodes; this entropy will be denoted by E(n,
test), where test is the test used to split the node # into its
children. The splitting criterion at each node n selects a
test that minimizes E(n, test).

If a given test rest splits a node # into child nodes
Hy, . .., ny, the expression for E(n, test) is given by

aumber children

E(n, test) = 2, pln; | H{n) (23)
and the expression for H(x) by
H(n) = —; P(LFS; | mlog(P(LFS; | n)), (24)
where
P(LFS; | n) = P(n | LF.SI';-)(’;( P(LFS) (25)
Pin) = i} P(n, LFS)). (26)

J

In a manner parallel to Eq. (20), the conditional probabil-
ity P(n | LFS;) is given by

P(n| LFS) = L Ny L fi{A) dA = 1:[| f:"f;i(a,-) da,
| 27)

where A is a vector composed of all of the attributes, f;
the joint distribution fit to the data of LFS;, and [} the
marginal distribution along the attribute axis g;. For each
attribute a;, /; is the highest lower bound used in the tests
along the path leading from the root down to the node n
including the current test under consideration. In a simi-
lar sense, u; is the lowest upper bound for attribute a;.
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attribute 2

Class ] Class 2

threshold = k'ﬁa, =120 atribute 1

FIG. 19. Threshold selected to minimize entropy in Eq. {23).

These values for a node can be determined by tracing
backward from the current node to the root, or for effi-
ciency, the values could be stored at each node as the
tree is grown. As part of the background knowledge nec-
essary for any decision tree algorithm, it is also necessary
to specify the range of values of each attribute and the
quantization interval for the attribute, Specification of
the latter is required since the search for the optimum
threshold along an attribute axis takes place in steps of
the quantization interval,

To give the reader some intuitive insights into how the
above formulas work, assume that we have a two-attri-
bute space and two model LFSs, whose attribute uncer-
tainties are represented by truncated Gaussian functions
labeled Class 1 and 2 shown in Fig. 19. The root of the
tree represents the entire attribute space containing all of
the model LLFS distributions. Now we must decide what
test to carry out in order to divide this space into two or
more subspaces, each assigned to a different child node.
The test could be on either of the attributes. Since each
test is basically a thresholding operation on an attribute
value, we must select a threshold on one of the attributes.
The simplest approach to solving this problem consists of
assuming a quantization of the attribute axes, meaning
the existence of the smallest indivisible segment along
each of the attributes, denoted Ag;. The formulas shown
above then call for testing for each threshold, as a multi-
ple of Aa;, for both attributes. Assume that we are testing
the threshold

kan,-

on attribute g; to figure out how the distributions at the
root node should be divided up among the child nodes. In
Fig. 19, we show this threshold as equal to 120.0 for
attribute a;. The means and standard deviations of each
truncated Gaussian model fit to each modet LFS class are

GREWE AND KAK

Classl: % =100.0,0,=10.0 and %;=100.0,5,=3.0;
Class2: 7,=155.0,0,=20.0 and m,=100.0,0,=3.0.

The Gaussian functions are truncated at =*=2¢ around
each mean, and we will assume that each model LES is
equally tikely, p{LFS;) = 172, j = 1, 2. We begin by esti-
mating p(root | LFS,) using Eq. (27):

plroot | LFS)) = p(root | LFS,) = 1.0.
Thus,
plroot, LFS) = plroot, LES,) = 0.5 and plroct) = 1.0
and

p(LFS; | root) = p(LFS; | root) = 0.5,

These estimates are used to compute the entropy associ-
ated with the root by using Eq. {24), and the resulting
value is approximately 1.3863. Note that the more equal
the probabilities p(L.FS,; | root), the larger the value of the
entropy. Now, in order te compute £, we need 10 esti-
mate the entropies H(n,) associated with each resulting
child node using Eq. (24). Child n; covers the space to the
left of the partition and child r; covers the space to the
right. In our case, the threshold shown in Fig. 19 would
result in the following:

120

play | LFS) = | flta) day x [ fitar) do,

1.0 x 1.0 =1.0

)

120

i

106
" e day x [ fYan day

= (.0181247 x 1.0 = 0.0181247

plny | LESy)

plna\ LES) = [ fi(@) day x [ (@) day

=00 x 1.0 =00

piny | LFSy) = [ fia) day x [ f3ay) day

= 0.9818753 % 1.0 = 0.9818753.

Here the values for the integrals of the Gaussians are
obtained from standard published tables for such pur-
poscs. From these numbers, we get the following esti-
mates:

pin, LFES) =05 x 1.0=05
plm, LFS) = 0.5 x 0.0181247 = 0.0009062
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1 stopping_procedure(node n, test)

2 | if ((E(nlest) - Hin)] < Zero_Difference)
3 { Stop Splitting

4 return{TRUE) }

5 if total bin count with test > MAX_BINS
6 { Stop Splitting

7 return(TRUE) }

8 if all of the LFS distcibutions falling in n tatally overlap
9 { Stop Splitting

10 return(TRUE) }

11 eise

12 { Make Sphit

13 return{FALSE) }

}

FIG. 20. Procedure for implementing stopping criteria.

plny, LES) =05 x 0.0 = 0.0

plrm, LFS)) = 0.5 x 0.9818753 = 0.490933
plng) = 0.5 x 0.0009062 = 0.5009062
plm) = 0.0 + 0.4909377 = 0.4909377
p(LFS, | n) = 0.9981909

P(LES: | ny) = 0.0018091

p(LES, | ny) = 0.0

PLFS: | m) = 1.0.

Equation (24) then leads to the following estimates for
H(Hg):
Hinm) = 0.0132318, H(n) = 0.0,

Also

pln; | root) = p(n;, root)p(root) = p(nyipiroot)
= p(n)/1.0 = p(ny.

LFs 1, [LES 2
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These estimates lead to the following value for E:
E = 0.0066279.

Identical computations would be carried out at every
quantization step along the @, and g, axes. Assuming, for
the sake of argument, that every attribute is quantized
into @ levels, we will have 2Q such calculations for the
discovery of the best test. For the example here, as it
turns out, the test a, = 120 yields optimal splitting at the
root node since it results in the smallest value for the
average entropy, £.

Besides the splitting criterion, also needed are stopping
criteria that stop the growth of the tree at a node. The
Stopping_ Procedure shown Fig. 20 is based on the fol-
lowing three criteria:

1. If a node is pure, meaning that its bin intersects with
the distribution of only one LFS, no further purpose
would be served by splitting such a node. Enforcement of
this criterion is effected automatically by our entropy-
based node splitting procedure since the average entropy
E computed at such a node for any split would not be less
than the node entropy H. This manner of stopping the
growth of a tree corresponds to line 2 in the procedure
Stopping_Procedure shown in Fig. 20.

2. The other reason for not splitting a node is that if
two or more LFS class distributions completely cover the
region of the attribute space corresponding to this node.
Consider the tree shown in Fig. 21, where the root node
and node n, give rise to the tests ¢ and #2, respectively.
For the sake of illustrating this splitting criterion, we will
assume that we have only two LFS classes and that only
one attribute is involved. The tests £ and #; are assumed
to be located as shown in Fig. 21a with respect to the
distributions for the two classes. It is therefore clear that
the portion of the attribute axis belonging to node »; will
be the interval between the points ¢, and /> shown in Fig,

b rooi node

FIG. 21. (a} Distributions of model LFSs 1 and 2 over the attribute a axis. (b) A decision tree using tests on attribute a at thresholds 1,, and 1,.
Boxes indicate terminal nodes, and brackets at each terminal node contain the labels of LFSs residing at that node.
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root node

(a) Distributions of model L¥Ss 1 and 2 over the attribute @ axis. (b} A decision tree using tests on attribute a at thresholds ¢, #;, and

t;. Boxes indicate terminal nodes, and brackets at each terminal node contain the labels of LFSs residing at that node.

21a. Since the two class distributions overlap this interval
completely, it would be pointless to split node s, further
because the children resuiting from any possible split
would still point to both LFSs.

3. Since the number of bins in the hash table grows
exponentially with the depth of a decision tree, it 1s im-
portart to also add an additional stopping criterion that
invokes a memory constraint. If the proposed test to split
a node results in the number of bins in the corresponding
table to exceed the maximum desired, the node is labeled
terminal and not split further. The number of bins in a
hash table corresponding to a tree can be calculated by

#atiributes

(# of unique tests in tree on a; + ). (28)

i=1

These then are the stopping criteria we currently use in
MULTI-HASH. It is possible to make the second stop-
ping criterion more sophisticated by actually going ahead
and splitting a node with completely overiapping LFS
distributions to yield child nodes that point to the same
LFSs but with different probabilities. To explain this idea
in greater detail, we have shown in Fig. 22a and two LFS
class distributions of Fig. 21a, except for the presence of
one more test, ¢, for splitting node »;. This test will be
found by the same splitting procedure as in our tree grow-
ing procedure since the average entropy at node n; for 13
will be less than the average entropy for any other choice
of the test, assuming of course equiprobable LFSs.
Shown in Fig. 22b is the resulting tree. At the child node
ns, since P(LFS; | ns) = P(LFS; | ns), the LFS entries at
node ns will be stored as an ordered list {LFS,, LFS;}.
Similar arguments dictate that we store the ordered list
{LFS,, LFS} at node ny. The advantage of ranking the

LFS entries at the terminal nodes is that the hypothesis
verification c¢an be carried out first with the highest-
probability LFS. Shown in Fig. 23 is the extended
Stopping_Procedure that includes this modification of
the second stopping criterion.

4.4, Translating a Decision Tree into a Hash Table

The nodes in the decision tree grown give us a set of
tests on the attributes, To construct a hash table, these
tests are output info a file; the order in which the tests are
listed for each attribute is not important. Subsequently,

stopping  procedure(node n, test)
{ if {{E{n,test) - H(n)] < Zero_Difference)
{ Stop Splitting
return{ TRUE) }

L LI

th

if total bin count with test > MAX_BINS
{ Stop Splitting
7 returi{ TRUE) }

"

8 it all of the LFS distributions falfing in n totally overlap
9 { if 3 child n; and LFS; where
P(LFS;|n) > Absolute_Thresh

AND
¥k P(LFS;|n;) - p{LFSy | n;} > Diff_Thresh
{ Make Split
10 return{fFALSE)} }
11 else
12 { Stop Splitting
13 returi{TRUE) }
}
14 else
15 { Make Split
16 . return{FALSE)} }

}

FIG. 23. Stopping procedure extended to include splitting of nodes
containing totally overlapping model LFS distributions.
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FIG. 24. Hash table and the corresponding look-up tables (LUT),
one for each attribute used in the table. A look-up table (LUT) is a
mapping from the guantization intervais to bin segments along a partic-
ular attribute axis.

the bins of the hash table are carved out by partioning the
attribute space using these tests. While it is true that in
the decision tree a test at a node partitioned only that part
of the attribute space that corresponded to that node, in
the hash table the same test partitions the entire attribute
space, This point was made earlier with the help of Fig,
14, where the solid partitions correspond to the tests at
the nodes and their continuations by dashed lines to the
resulting bin boundaries for the hash table,

A hash table is represented by a one-dimensional array
of bins, with the index of each bin calculated by a lexico-
graphic ordering of all the bins with respect to all the
attribute axes. The idea is illustrated very simply for the
case of a two-dimensional attribute space. For this case,
for which the table index of each bin is displayed by a
circled number in Fig. 24, the index of a bin that contains
the point {(ay, a;) in the attribute space is given by

Table Index{a,, a;) = LUT_axa,) ¥ Num_Seg_q,
+ LUT_ala;))

where a, and a, are the LFS attributes used in the
example table of Fig. 24. LUT_a;is a look-up table which
maps an attribute value into its appropriate segment
along the attribute axis, where a segment is the interval
between successive partitions along an attribute axis.
Num_Seg_a is the number of segments along the attri-
bute a axis. A LUT for an attribute is created by parti-
tioning the range of values it can take into intervals of
size A,, where A, is the interval between two successive
quantization levels. This generalizes to N attributes in an
obvious manner.

After the structure of the table has been set up, the bins
must be filled with pointers to the model LLFSs which fall
in them, A model LFS is said to fall in a bin if its uncer-
tainty distribution overlaps with the portion of the attri-

(29
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bute space associated with the bin in question. In our
current implementation, these pointers for each bin are
computed by taking the intersection of the bin with the
LFS distributions. These calculations are relatively triv-
ial because of our assumption of truncated Gaussian or
uniform distributions indepeadently for each of the attri-
butes. The intersection calcuiations therefore reduce to
mere comparisons of the bin boundaries and the limits of
the distribations.

4.5. On the Optimality of the Hash Tables

It is important to realize that no claim is being made
thai the hash tables constructed by growing decision
trees, in the manner we have described in this section,
are optimal. In fact, we do not believe that it is possible to
coastruct a provably optimal hash table without running
into exponential complexity.

Ours is a heuristic procedure that uses locally optimat
decisions for constructing a decision tree, meaning that
the decisions are the best they can be at cach individual
node. It goes without saying that this local optimality
does not necessarily translate into global optimality. De-
spite this lack of guarantee about global optimality, we
are convinced that MULTI-HASH is capable of generat-
ing good hash tables for all computer vision problems of
practical interest. As we will show in Section 5.2, in com-
parison with a manually specified fixed-structure hash
table described earlier in [26), MULTI-HASH's perfor-
mance was much superior, in the sense that a smaller
number of object hypotheses were generated by MULTI-
HASH.

Since MULTI-HASH carries no guarantee of global
optimality, one is of course curious about how close the
bin partitions produced by MULTI-HASH might be to
the ideal. In other words, how “‘far’’ is the hash tabte
output by MULTI-HASH from the globally optimum
hash table that one might construct by exhanstive search
over all possible partitions of the attribute space. Since
exhaustive search involves exponential complexity, for
obvious reasons we did not seek a direct answer to this
question. However, we did try to answer the question by
altering the bin partitions produced by MULTI-HASH
and computing the average entropy, our measure of
global optimality. In Section 5.2, we will present an ex-
ample for real data that resuited in the hash table shown
in Fig. 31. The plot shown in Fig. 25 is of the average
entropy associated with the different tables produced by
displacing the bin partitions. At the displacement-param-
eter £ = 0, the average entropy shown is for the original
table constructed using the partitions of Fig. 31. At other
values of 4, each threshold partition in Fig. 31 is dis-
placed as

New partition| = partition’ + k % span_attribute;, (30)
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FIG. 25. Variation in the average entropy associated with a table as
the partitions are moved by & times the range of each attribute. Atk =0,
the partitions shown in Fig. 31 are used. Note at & = 1, the table
consists of only one populated bin.

where partitionj- is the ith partition along the jth attribute
axis and span_attribute; is the entire span of values that
the attribute «; can take. The extreme case of & = 1, is the
case where the table consists of one populated bin.

5. EXPERIMENTAL RESULTS

In Section 5.1, we will first present some of the more
relevant details about the special structured-light scanner
that was built for MULTI-HASH,; this will be followed by
a brief discussion of the low-ievel processing steps end-
ing in a discussion of feature extraction. Subsequently, m
Section 5.2, we will discuss the performance of MULTI-
HASH on real scenes containing objects from the data-
base of Fig. 1.

5.1. Data Collection and Low Level Processing

Because color must be extracted from a scene in addi-
tion to depth information, a special structured-light scan-
ner was constructed that allows measurement of color at
each point where the depth information is calculated. As
is common in structured-light range imaging, the scene is
scanned with a thin laser stripe for the calculation of
range information. All the scene points illuminated with
the laser stripe are then illuminated with a white light
stripe. Since white light cannot be focused as sharply as
laser light, the white light stripe is wider than the laser
stripe.* A color camera then samples the white-light-illu-

¥ If so desired, the relatively wide white-light stripe can be used to
sample other photometric information such as texture surrounding each
range point.
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minated part of the scene at exactly the points that were
previously illuminated with the laser source. In this man-
ner, registered range and color values are obtained. For
the scene in Fig. 26a, the color-composite light-stripe im-
age produced by our scanner is shown in Fig. 26b. Be-
cause the scanner is mounted high above the work space,
we are dealing with relatively noisy data as illustrated by
the 3D plot of points in Fig. 26¢ for the scene in Fig, 26a.
After computation of 3D depth values using triangula-
tion formulas shown in [77], surface normals at each
point are calculated using an adaptive window technique
described in [8]. In this technigue, the normal at a point is
calculated by fitting a plane in a window surrounding the
point in question. When the window, centered at the
point in question, straddies a boundary between two sur-
faces, the resulting surface normal will be distorted
which will cause a smooth rather than sharp transition in
the normals when traveling across a surface edge. In 8],
this distortion is significantly reduced by adaptive place-
ment of the window when in the vicinity of an edge. The
position of the window is moved so that it still contains
the point in question but as little of the edge(s) as possi-
ble. The criterion minimized in the selection of the win-
dow’s position is the product of the error of the resulting
planar fit and a distance metri¢ between the window cen-
ter and the point in question.
* The next processing step is that of segmentation. The
goal of this step is to segment the range map into smooth
surface patches separated by range and surface normal
discontinuities. There exist many approaches to the gen-
eral problem of 3D segmentation [15, 34, 36, 43, 64]. In
MULTI-HASH, we use the same region-based approach
as reported in (8]. Basically, the segmentation process
recursively grows out a surface region starting from some
pixel in the range map and stopping in a particular direc-
tion when a jump or crease edge is encountered. Detec-
tion of a jump edge in a range map is a fairly reliable
process and, for two adjacent points, p(i,j) and p(k, 1), is
accomplished with the following test:

Ip(i, u) — plk, D| > jump_threshold. 3D

Here p(i, j) is the vector (x(i, j), yUi, j), z(i, 7)) of the
three-dimensional coordinates of the (i, jth point in the
range map. {(For those unfamiliar with structured-light
imaging, the index i refers to the ith stripe in the scan and
the index j refers to the jth camera scan line,} Detection
of a crease edge is more difficult, especially when
smoothly curving surfaces exist in a scene. A crease edge
exists between two adjacent points of a range map when
a relatively sharp change in the direction of the normal
direction occurs. This is detected with the following test:
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COSfI(H,'!j . H,'('[)
IpG, j) — plk, 1)

I = crease_threshold. (32)

Here »;; is the normal vector at p(i, j). The thresholds
used in Egs. (31) and (32) are functions of the surfaces in
the model-base and the scanner resolution; these
thresholds are chosen empirically. The value of the
crease_threshold should be small enough so that a crease
edge between two surfaces can be detected without a
sharply rounded surface being erroneously declared a
crease edge. Once a region can no ionger be grown, a
new region is started with the first point in the raster scan
of the range map that does not already belong to a previ-
ously grown region, meaning that it is currently unlabeled
in the segmentation map. For the scene in Fig. 26a, the
resulting segmentation map is shown in Fig. 26d.

Vertices, edges and surfaces are the features extracted
from the segmentation map. Each segmented region de-
scribes a surface whose vertices and edges are detected
during a traversal around the surface boundaries, The
features in a segmentation map—surfaces, edges, verti-
ces——are represented in exactly the same manner as the
features on model objects, that is, by appropriate attri-
bute-value frames (See Section 2 for representation of
objects.} Again, as was the case for objects, whereas
scene surfaces and vertices are represented explicitly by
attribute-value frames, the scene edges have an implicit
representation via the adjacency pointers in the attribute-
value frames for vertices. Shown below is the attribute-
value frame for surface 8 in the segmentation map of Fig.
26d:

{
(Shape: Planar)

{Arca: 346 pixels)

{Color: 198.30148, 154.60211, 41.20289)

{Principal Direction: —0.09823, —0.75356, 0.65000)
{Planar Parameter: 0.410341}

{Adjacent Surfaces: {/4, I18})

a / ]
'iurf:i e] ormil ;

FIG. 27.
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{Angles: between surface 8 and 14: 1 560425 radians,
between surface 8 and 14: 1.560425 radians)
t

in the frame shown above, the principal direction for a
planar surface is defined as its normal vector, for a ¢ylin-
drical surface the direction of its axis. and for a conical
surface as its axis of revolution {7}

There are many approaches to classifying the shape of
a surface [1, 36, 42, 66]. Currently, the system classifies
the shape of a surface as cither planar, cylindrical, coni-
cal, or unknown, and this classification has been success-
fully used by other 3D object recognition systems |7, 19].
Surface shape classification is performed as in [8] by first
attempting to fit a plane to the data peints of the surface.
if the fitting error is less than an empirically chosen
threshold, the surface shape is classified as planar, Other-
wise, the surface is tested to see if it is cylindricai, coni-
cal or other through the use of an extended Gaussian
image of the surface [37, 41] which is created by mapping
the surface normals belonging to the surface in question
onto a Gaussian sphere. Classification of surface shape
into the categories of ¢ylindrical, conical or other is made
by examination of the distributions of the normals
mapped onto the Gaussian sphere.

As discussed in [8], the surface normals of a planar
region should ideally map to a point on a unit sphere, the
radial vector to the point being in the same direction as
the normal to the plane, as shown in Fig. 27a. And, the
conjcal and cylindrical surface normals should ideally
map to curves on a unit sphere. The curve created for a
cylindrical surface should fall along a great circle of the
unit sphere and the orientation of its axis shouid be paral-
lel to the orientation of the cylinder’s axis (see Fig 27b).
Similarly, the curve created for a conical surface will fall
along a minor circle (radius < 1) of the unit sphere such
that its axis is parallel to the axis of revolution of the cone
(Fig. 27c). Note that only part of a cylinder or cone will
be visible in the scene and thus only an arc of the corre-
sponding circular curve on the unit sphere will appear.

Mappings of surface normals to an EGI for (a) a plane, (b) a cylinder, and (c) a cone.
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(a) Gaussian distributions truncated at three standard deviations from the mean for three model LFSs. (b) Decision tree grown. (c)

Corresponding table. LFS, is from a red object, LFS; from a white object, and LFS; from a wood-colored object.

5.2. Performance of MULTI-HASH

We will now present the results of modeling the uncer-
tainties in the training data, the resulting tree grown, and
the corresponding table. Because of space limitations, we
will first go over a smaller example and then present the
results on the modei-base of Fig. I.

For our smaller example, consider Fig. 28a, which de-
picts the truncated Gaussian distributions of three model
LFSs over a space defined by two attributes, the red and
green components of color. LFS, is an LFS from a real
red-colored 3D object, LFS; an LFS from a white-col-
ored object of the same shape, and LFSy an LES from a
wood-colored object, again of the same shape. Each at-
tribute can take on values from 0 to 253, and the smallest
quantization interval for each attribute axis is set to 1.
The uncertainties are modeled by Gaussian distributions

a auribute
reen color)
ILFS
attribute 1
(red color)
WmLrs, OLFs, CILFS,

rogf vode

truncated at three standard deviations from the means.
Figure 28b illustrates the tree grown and Fig. 28c shows
the corresponding hash table. Note that no further parti-
tions of the table would lead to ““purer” bins and, for this
example, the table produced is optimal, in the sense of
minimizing average entropy, and, under the constraint of
optimality, contains the smailest number of bins. Note
that the look-up tables shown in Fig. 28¢ for each attri-
bute are actually more finely partitioned but, are dis-
played here with a coarser partitioning simply for ease of
illustration. Figure 29 illustrates similar results for the
same attribute space, but this time LFS; is an LLFS from a
real red-colored 3-D object, LFS; an LFS from a yellow-
colored object, and LFS; an LFS from a pink-colored
object,

We will now present experimental results for the case
of the model-base shown in Fig. {. Training samples were

c atiribte 2

D

T amquie

A Adq LA [T

, Y
197261
atribute 1
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aitribute I

FIG. 29. Same as in Fig. 28, except that LFS, is now from a yellow object and LFS; from a pink object.
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Altributes red_round ([7,10,9) square_white  {2,1,10} square_pink {4,310}

mean std min max mean std min max mean skd in max
shape [ Q 0 0 0 [t} [t} I\ (] ¢ 1} (]
ri 23580 4.11 227.0 2420 | 16384 43| 153.0 1720 | 19030 477 17% 199
gl 61.54 4.1 55.0 71.0 14598 1.94 140.0 151.0 | 12485 3.4 117.0 131.0
Bl 6530 4.4 0.0 770 12828 313 121.0 1360 | 11195 410 1040 1210
shape? 0 0 0 0 0 0 0 0 0 0 0 0
r2 235.02 400 227.0 2420 | 15850 7103 148.0 171.0 | 18556 3.53 178.0 195.0
§2 61.75 363 53.0 68.0 148.17  2.31 143.0 153.0 | 12896 266 121.0 135.0
b2 66.57 327 &0.0 73.0 13221 6.2} 1210 1440 | 115.84 425 104.0 123.0
shaped 0 0 0 [ 0 0 0 0 ] o 0 0
3 23199 829 208.0 242.0 | 16231 553 148.0 1680 | [89.64 3.66 181.0 198.0
g 65.94 816 54.0 87.0 14726 191 1430 1530 | 1IMos 309 120.0 1320
3] 7284 11.07 60.0 1000 | 12869 540 i21.0 144.0 | 11182 368 101.0 121.0
angle! 1.58 0.03 1.3 1.8 1.57 n.02 1.4 1.8 0.76 0.02 0.6 1.0
angled 1.57 004 13 1R 1.57 a0 1.4 18 157 0.01 14 1%

FIG. 30. Gaussian parameters (mean, std) and uniform distribution parameters (min, max) fix to the training data collected for a few of the LFS
in the model-base of Fig. 1. The left column is the LFS involving surfaces 7, 10, and 9 for the red object of Fig. 1b. The middle column is the LFS
involving surfaces 2, 1, and 10 for the white object of Fig. 1a. The right column is the LES involving surfaces 4, 3, and 10 for the pink object of Fig.
la. Note that shape is a qualitative attribute where 0 indicates a planar surface, 1 indicates a ¢ylindrical surface, and 2 indicates other.

collected for the LFSs of the objects in the model-base.
The number of samples collected for each LFS ranged
from 14 to 44. The different samples corresponded to
different poses. Figure 30 shows the parameters for the
two cases of using Gaussian and uniform distributions for
the uncertainties associated with a few of the model
LFSs. In the table, the attributes shapel, ri, gi, bi refers
to the ith surface in the LFS. For example, shapel, rl,
gl, b1 are for the surface marked 7 in the LFS character-
ized by the surfaces (7, 10, 9) in Fig. 30; shape?, #2, g2,
b2 are for the surface marked 10, and so on. Figure 31
lists the unique tests along each attribute axis used in the
decision tree grown from the training data modeled with
Gaussian distributions. Note that the entry none means

Atiribute | Range Tests

shapel 0,1,2 none

ri 0.0-2550 | 173.0

2! 0.0-255.0 | 1020

b1 0.0-255.0 | 73.0,104.0
shape2 0,1.2 none

r2 0.0-255.0 | 193.0

g2 0.0-255.0 | 68.0, 136.0, 140.0
b2 0.0-255.0 | 40.0,73.0,134.0
shape2 0,1,2 none

r3 0.0-255.0 | none

83 0.0-255.0 | 1350

b3 0.0-235.0 | 73.0,104.0
angle! 0.0-30 11

angle? 0.0-3.0 1.1 ]

FIG. 31, Unique tests used in decision tree grown using the Gaus-
sian distributions derived from the training data collected for the model-
base in Fig. 1. A memory constraint requiring the resuitant table 1o
possess Jess than 10,000 bins was used. The entry “‘none’” indicates no
test was specified along this attribute axis.

that no test was specified for that attribute; in other
words, that attribute was found to be irrelevant for the
desired discriminations. The actual tree is not shown due
to space limitations.

The hash table constructed from the tests in Fig. 31
was used for object recognition on a set of 10 test scenes
composed of objects in random placements in a bin. Ran-
domization was achieved by tossing the objects into the
bin or shaking the bin vigorously. Figure 32 shows the
composition of a typical test scene by displaying its com-
posite colored structured-light image and the resulting
segmentation map.

From the segmentation map, the fiow of control for
object recognition is as shown in Fig. 2. This flow of
control was reviewed in Section 2. The recognition
scheme is set up so that the first object recognized in the
bin is picked up by a Puma robot. Figure 33 shows the
robot picking up the first object recognized in a scene,
Out of the 10 test scenes, an object was recognized and
picked up in 7. In the three scenes where no objects were
recognized, failure was due to either improper segmenta-
tion or due to the fact no objects presented a vertex to the
sensor. The reader will recall that we use a vertex-cen-
tered definition of LLES. So if all the visible objects in a
pile are such that none presents a vertex to the sensor, an
LFS will not be constructed. Figure 34 shows for each
scene the recognition result and a comparison of the
number of hypotheses processed by the current system in
comparison with the earlier, less sophisticated system of
{26}. For these test scenes, every scene LFS processed
retricved from the tabie its corresponding model LFS. It
is important to note that in and of itself MULTI-HASH
does not depend on vertices for the formation of LFS; the
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FIG. 33.

use of vertices for this purpose is merely an implementa-
tion choice at this time.

6. CONCLUSION

Model-based vision is made complicated by the fact
that it can be difficult for a human to specify ali the strate-
gies needed for discriminating between the objects in a
model-base. These strategies, even when they can all be
laid down for a given model-base, may require extensive
and onerous revisions if further objects are added to the
model-base. Therefore, it is not surprising that there is
great interest at this time in systems that are capable of

Robot picking up the first recognized object, a red, round object. The sequence is (a), (b), (c), (d}.

synthesizing, under supervised training of course, all the
recognition strategies. The role of a human in such sys-
tems would be to merely show different object instances
to the vision system and to delineate the correspon-
dences between, say, the different features on the shown
objects and those on the models.

An example of such a system was presenied in this
paper. The human operator shows different objects in
different poses to the sensory system attached to
MULTI-HASH. Before this supervised training takes
place, MULTI-HASH is provided with a list of objects in
the model-base, together with the different local feature
sets for each object. During training, the human operator
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Scene >= | object | #LFSs processed | #LFSs processed
recognized | in Hypothesis in Hypothesis
and picked Generation Generation
up by robot | current system system [26]

[—scene 7 l yes 8 8

scene 2 yes 4 15

(scene 3 ves 367 537

scene 4 yes 197 447

scene S yes 857 2352

scene 6 yes 83 168

scene 7 yes 20 47

scene & no 628 1380

scene 9 no 775 2460

scene 10 no 545 1425

FIG. 34. Experimental results presented on 10 random scenes of

objects from the model-base (see Fig. 1) and others thrown into a pile.

also declares correspondences between the local feature
sets extracted from the scene and the local feature sets on
the models. MULTI-HASH uses all this information to
construct models of uncertainty for the values of the at-
tributes of object surfaces. Using these uncertainty
models, MULTI-HASH constructs a decision tree that
eventually gets transformed into a hash table for fast ob-
ject recognition.

MULTI-HASH is written is C and consists of over
11,000 lines of code, not including the code for low-level
processing and robotic manipulation. MULTI-HASH is
used routinely in the Robot Vision Lab for bin picking of
colored objects of the kind discussed in the paper using a
PUMA 762 robot.
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