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Abstract—Proportional poppet-type cartridge valves are the key
elements of the energy-saving programmable valves, which have
been shown to be able to achieve good motion control performance
while significantly saving energy usage in our previous studies. Un-
like costly conventional four-way valves, the cartridge valve has a
simple structure and is easy to manufacture, but the complicated
mathematical model of its flow mapping makes the controller de-
sign and implementation rather difficult. Although off-line indi-
vidually calibrated or manufacturer supplied flow mappings of the
cartridge valves can be used, neither method is ideal for wide in-
dustrial applications. The former method is time-consuming and
needs additional flow sensors while the latter may lead to signif-
icantly degraded control performance due to the inaccuracy of
the manufacturer supplied flow mappings. Furthermore, due to
inevitable system worn out and/or changing working conditions,
actual cartridge valve flow mapping may change significantly over
the life span of the system and need to be updated periodically in
order to maintain the same level of control performance. Some-
time, it may be even impractical to do off-line calibrations once
the valve leaves the manufacturing plant. To solve this practically
significant problem, this paper focuses on the automated onboard
modeling of the cartridge valve flow mappings without using any
extra sensors and removing the valves from the system. The es-
timation of flow mappings is based on the pressure dynamics of
the hydraulic cylinder with the consideration of effects of some un-
known system parameters such as the effective bulk modulus of the
working fluid. Localized orthogonal basis functions are proposed
to bypass the lack of persistent exciting identification data over the
entire domain of the flow mapping during onboard experiments.
Experimental results are obtained to illustrate the effectiveness and
practicality of the proposed novel automated modeling method.

Index Terms—Electrohydraulics, nonlinear system identifica-
tion, onboard modeling, parameter estimation, valves.

I. INTRODUCTION

THE energy-saving programmable valves, a combination
of five independently controlled cartridge valves (Fig. 1),

have been shown in our previous studies [1], [2] to success-
fully achieve the dual objectives of high-level motion control
performance and significant energy saving. Such a capability
comes from the decoupled meter-in and meter-out flows, the
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Fig. 1. Energy-saving programmable valves.

true cross port regeneration flow, and the increased flexibility
and controllability of a multiple-input system. The key physical
element of the programmable valves is the proportional poppet-
type cartridge valve, which is a low accuracy but fast response
valve widely used in industry due to its small size and low
cost [3], [4].

The programmable valves are designed and proposed as low-
cost and energy-saving alternatives of expensive servo valves.
They are used in precision motion control applications in hy-
draulic and manufacturing industry. The faster response of the
poppet-type cartridge valves makes it more reasonable to neglect
valve dynamics in the overall controller design process [5]; ne-
glecting valve dynamics significantly simplifies the design of
advanced nonlinear adaptive robust controllers [6] and has been
a common practice in almost all recently developed advanced
controls of electrohydraulic systems. With this simplification,
the proportional cartridge valve can be modelled as a static
nonlinear flow mapping from the input signal and the pressure
drop across the valve into the flow rate through the valve. How-
ever, unlike the conventional four-way valves, the mathematical
model of the cartridge valve flow mapping is much more compli-
cated and cannot simply be described by some analytical nonlin-
ear equations [7]–[10]. Cartridge valves have desirable physical
properties (e.g., faster response) and the ability of bypassing the
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sandwiched deadband control problem of the conventional four-
way valves when connected as in the proposed programmable
valves [5], but their uses have been traditionally limited to low-
cost applications where precision motion control is not of major
concern due to the practical problem of modeling them accu-
rately with analytical nonlinear functions similar to those used
in four-way valves. Our previous researches on the control of the
programmable valves are based on either the individually cali-
brated valve flow mappings or the manufacturer supplied flow
mapping. Using the individually calibrated flow mappings of the
cartridge valves and a properly designed adaptive robust con-
troller (ARC), it was shown in [2], [5] that a control performance
similar to that using expensive servo valves can be achieved.
However, in addition to the need of a flow calibration system that
increases cost, individually calibrating each of the five cartridge
valves is a very time-consuming task, which would prohibit the
widespread use of the programmable valves in industry. Further-
more, the cartridge valve flow mapping may change significantly
as the system ages and gets worn-out [11], and need to be up-
dated regularly to maintain consistent control performance. For
some applications, it may not even be possible to disassemble
the valves from the systems for the time-consuming off-board
calibrations. However, though the manufacturer supplied flow
mapping can be used to design stable adaptive robust controllers
as done in our previous study [12], the large modeling error of
the manufacturer supplied flow mapping significantly limits the
achievable control performance in practice. Thus, automated
and yet accurate onboard modeling of cartridge valve flow map-
pings without taking the cartridge valves off the system becomes
the key to the widespread use of programmable valves without
having a compromised control performance, which is the focus
of the paper and serves as a practical example of the integrated
mechatronics design philosophy of trading system hardware
complexity with advanced software modeling and controls.

To model the valve flow mappings, the input signal to the
valve, the pressure drop across the valve, and the flow rate go-
ing through the valve need to be determined. The input signal
and the pressure drops are usually known or measured. How-
ever, there are no sensors to measure the flow rate in an actual
system. In [13], an attempt was made to build a flow rate ob-
server based on the pressure dynamics of the controlled system
via the sliding mode observer design technique. As the flow rate
appears in the input channel and is not a state in the pressure dy-
namics, the resulting flow rate observers are subject to effects of
certain unavoidable parametric uncertainties (e.g., the effective
bulk modulus of hydraulic fluid) due to the changing working
conditions. In this paper, a conceptually different approach will
be taken into account. Namely, instead of determining the model
parameters of the flow mapping based on the explicit flow rate
measurement or estimation, the flow mapping model parame-
ters and other unknown system parameters will be determined
simultaneously from the pressure dynamics of the controlled
system via certain intelligent integration of online parameter es-
timation algorithms and neural network type nonlinear function
modeling techniques.

Another obstacle encountered in any onboard modeling at-
tempt is due to the limited experiments that can be run on an

actual machine. Unlike off-board modeling where deliberate
tests can be performed to cover the entire working range of a
valve, the loading conditions of any onboard experiment may be
limited, making it impossible to obtain sufficient experimental
data needed for an accurate estimation of all model parame-
ters of a valve over its entire working envelope. To bypass this
unique practical problem associated with the onboard modeling,
localized orthogonal basis functions along with smooth blend-
ing and extrapolation are proposed in this paper. Experimental
conditions for an accurate parameter estimations in a local re-
gion are carefully examined to obtain practical onboard tests that
can be run for accurate modeling of all valve flow mappings in
the active working regions of the overall system. Comparative
experimental results are presented to illustrate the effectiveness
and the achievable control performance of the proposed method
in implementation.

II. PROBLEM FORMULATION

Neglecting the valve dynamics, all valves can be modeled as
a static function mapping the input signal and the pressure drop
across the valve into the metered flow rate

Q(u,∆P ) = CdAv (xv (u,∆P ))
√

2
ρ

√
∆P (1)

where Q(u,∆P ) is the metered flow rate through the valve
orifice, Cd is the discharge coefficient, Av (xv ) represents the
orifice flow area, which is a function of the valve spool or poppet
displacement xv , and xv depends on the input signal u and the
pressure drop ∆P across the orifice, ρ is the fluid mass density.

For the conventional four-way valves such as the servo valves
or the proportional directional control (PDC) valves, Av is a
linear function of xv , which is only a linear function of input
u and not affected by ∆P . Therefore the flow mapping model
for four-way valves can be simplified to an analytical nonlinear
function as

Q = kqu
√

∆P (2)

where kq is the lumped valve parameter. As the above flow
mapping involves at most one unknown parameter kq , it is quite
easy to obtain a reliable estimate of kq through either off-line or
online parameter estimation algorithm.

For cartridge valves, the flow forces and fluid inertance effects
are in-line with the valve element and therefore play a much sig-
nificant role than that in a spool valve. The relationship between
Av and xv is therefore highly nonlinear and depends on the
specific valve construction structure. Cartridge valves from dif-
ferent manufactures may have different nonlinear functions to
connect xv and Av . It may also change noticeably as the system
starts wears out. Furthermore, the pressure drop ∆P affects the
valve opening significantly, and thus the resulting flow mapping
cannot be simply expressed by analytical nonlinear functions
like (2). In fact, the function xv (u,∆P ) is very complicated and
highly nonlinear, and usually contains some deadband regions
and hard limits [2], [5], [11]. One has to treat the cartridge valve
flow mapping as an unknown nonlinear function Q(u,∆P ) and
seek another approach to deal with this problem.
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There are many ways to approximate an unknown function,
such as the neural network [14], Fourier decomposition [15],
Wavelet decomposition [16], and so on. The basic idea of all
the approximation methods is to decompose an unknown func-
tion into a set of basis functions with certain weighting factors.
With this concept, the nonlinear flow mapping function can be
decomposed as

Q(u,∆P ) = Q̄(u,∆P ) + ∆, Q̄ = ϕT (u,∆P )w (3)

where ϕT = [ϕ1, ϕ2, . . . , ϕn ] is a finite dimension vector of
basis functions, and wT = [w1, w2, . . . , wn ] is a vector of un-
known parameters or weighting factors, and ∆ represents the
approximation error. However, straightforward application of
the above neural network approximation seldom leads to sat-
isfactory flow mapping model due to the following practical
limitation. In order to have a reasonably small approximation
error ∆, a large number of neurons (i.e., large n) have to be used.
This is especially true for the cartridge valve flow mapping due
to the nonsmoothness of the cartridge flows caused by the dis-
continuous frictions of the valve and the difficulty of traditional
neural networks in approximating nonsmooth functions. Con-
sequently, to obtain the flow mapping model Q̄(u,∆P ), a large
number of parameters θ = w have to be adapted or estimated
simultaneously from the limited experimental data sets. This
makes it difficult to use the well-known parameter estimation
algorithms having better converging properties due to the diffi-
culty of running onboard experiments to satisfy the experimental
conditions needed by these algorithms. For example, the least
square estimation (LSE) algorithm needs the persistent excita-
tion condition for convergence of parameter estimates, which,
loosely speaking, can be satisfied only if rich enough data sets
covering the entire working envelope of the control input u and
the pressure drop ∆P are available. However, for onboard flow
modeling where the valves cannot be removed from the actual
system, ∆P depends on the loading conditions of the overall
system and is not an experimental variable that can be freely
controlled. As a result, there may be no way to conduct experi-
ments that cover the entire range of ∆P . To bypass this problem,
localized basis functions will be used as detailed in Section III.

As the actual valve flow rates cannot be measured, they have
to be estimated based on other available onboard measurements
as follows. Neglecting cylinder leakages, the cylinder pressure
dynamics can be written as [17]

V1(xL )
βe

Ṗ1 = −A1ẋL + Q1(u1,∆P1)

V2(xL )
βe

Ṗ2 = +A2ẋL − Q2(u2,∆P2) (4)

where V1(xL ) and V2(xL ) are the total cylinder volumes of the
head-end and rod-end sides including connecting hose volumes
respectively, xL is the displacement of the cylinder rod, βe is
the effective bulk modulus, P1 and P2 represent the pressures
in the head-end and rod-end sides, respectively, A1 and A2 are
the head-end and rod-end ram areas of the cylinder, Q1 and Q2

are the supply and return flow rates, respectively, u1 and u2

are the input signals to the valves, and ∆P1 and ∆P2 are the

pressure drops across the valves. In (4), A1 and A2 are known
parameters, u1 and u2 are control signals sent out by the con-
troller, xL , P1, P2, ∆P1, and ∆P2 are measurable, and V1(xL )
and V2(xL ) are calculable. The effective bulk modulus βe is
usually an unknown parameter and changes significantly with
working conditions and components such as tubes, cylinder
design, and hoses. As the pressure dynamics in the rod-end
side has the same form as the one in the head-end side, in the
following discussion, only the head-end pressure dynamics is
used to demonstrate the method of solving the problem.

Defining θβe
= 1/βe , and assuming that the nonlinear flow

rate Q1(u1,∆P1) is decomposed into the form given by (3), the
head-end pressure dynamics can then be rewritten as

A1ẋL = −V1(xL )Ṗ1θβe
+ ϕ (u1,∆P1)T θ + ∆. (5)

Defining ϕT
new = [−V1(x)Ṗ1 ϕ (u1,∆P1)T ] and θT

new =
[θβe

θT ], (5) can be written in a compact form as

A1ẋ = ϕT
new · θnew + ∆. (6)

Equation (6) is in the standard linear regression form with re-
spect to the unknown parameter θnew with A1ẋ being the model
output and ∆ the model error; both the model output and the
regressor can be calculated based on the onboard sensor mea-
surements. Thus, the original problem of automated onboard
flow mapping modeling in the presence of unknown system pa-
rameters is transformed into the tractable problem of accurate
parameter estimation based on the linear regression model (6).
The rest of the paper thus focuses on the selection of suitable
basis functions ϕ(u1,∆P1), the design of experiments, and the
use of the LSE to minimize the effect of model error ∆ for
accurate parameter estimation.

III. LOCALIZED BASIS FUNCTIONS AND SMOOTH BLENDING

FOR APPROXIMATION OF TWO-DIMENSIONAL FUNCTIONS

To better explain the underlying working principles of the
proposed method, for time being, it is assumed in this sec-
tion that the valve flow rate Q(u,∆P ) is available for the flow
mapping modeling, i.e., assuming that certain onboard exper-
iments that cover all possible actual working conditions have
been performed with the inputs and the measured valve pressure
drops and the valve flow rate given by {u(t),∆P (t), Q(t), t =
1, 2, . . . , N} respectively, where N represents the total number
of sample data from all experiments. In this case, if the neural
network type flow mapping model given by (3) is used, then

[Q] = Φθ + [∆] (7)

where [Q] = [Q(1), Q(2), . . . , Q(N)]T is the vector of flow
rate measurements, Φ = [ϕ(u(1),∆P (1)), ϕ(u(2),∆P (2)),
. . . , ϕ(u(N),∆P (N))]T can be calculated based on the in-
put and the measured valve pressure drops, and [∆] =
[∆(1),∆(2), . . . ,∆(N)]T is the vector of neural network ap-
proximation errors which are bounded but unknown. If Φ has
full-column rank, then the optimal estimation of θ in the sense
of the LSE error is given by

θ̂ = Φ+[Q] (8)
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Fig. 2. Cutting the u − ∆P surface into small blocks.

where Φ+ = (ΦT Φ)−1ΦT is the pseudo inverse of Φ. Substitut-
ing (7) into (8), the LSE parameter estimation error θ̃ = θ̂ − θ
is given by

θ̃ = Φ+[∆] = (ΦT Φ)−1ΦT [∆] (9)

As discussed in the problem formulation, with the above tra-
ditional neural network model, to have a reasonable small model
approximation error [∆], the dimension of the basis function n
has to be very high, especially when the unknown function to
be approximated has discontinuity or nondifferentiable points.
This fact plus the additional practical limitation of not being able
to run onboard experiments to excite the system for a variety
of pressure drops makes it impossible to satisfy the condition
needed to apply the above LSE algorithm—Φ being full column
rank, or equivalently, ΦT Φ being invertible. To solve this prob-
lem, in the following discussion, localized basis functions with
smooth blending will be used.

Due to the fact that the cartridge valve can only accept
bounded input signal u ranging from 0 to 10 V and the pres-
sure drop is also limited, the flow mapping is defined only on a
compact support. It is reasonable to cut the support on u − ∆P
surface into small blocks. Each block is named after the indices
of u and P , e.g., Iij , as shown in Fig. 2, where uN x and PN y

represent the maximal values of u and ∆P , respectively. The
distances between ui and ui+1 or Pi and Pj+1 do not have to be
equally spaced. As the function approximation will be done on
each small block instead of on the entire region, a priori knowl-
edge about the flow mapping can be used to choose the spacing
to have a reasonable good model approximation accuracy while
minimizing the number of blocks needed. For example, it is
known that the deadband may happen around some input val-
ues though the exact value is not known. Thus, relatively small
spacing should be used in regions near those input values. How-
ever, at the regions where one knows the flow mapping may
not change drastically, relatively larger spacings can be used to
reduce the computation load.

On each small block Iij , the valve flow rate does not change
drastically and may be approximated by a Taylor series with

respect to the nominal point

Q(u,∆P )|(u,∆P )∈Ii j

= Q(ūi ,∆P̄j ) +
∂Q

∂u

∣∣∣∣
(ū i ,∆P̄j )

ũ +
∂Q

∂∆P

∣∣∣∣
(ū i ,∆P̄j )

P̃

+
1
2

∂2Q

∂u2

∣∣∣∣
(ū i ,∆P̄j )

ũ2 +
1
2

∂2Q

∂∆P 2

∣∣∣∣
(ū i ,∆P̄j )

P̃ 2

+
1
2

∂2Q

∂u∂∆P

∣∣∣∣
(ū i ,∆P̄j )

ũP̃ + ∆ (10)

where (ūi ,∆P̄j ) represents the nominal working point in the
block of Iij , ũ = u − ūi and P̃ = ∆P − ∆P̄j , and ∆ represents
the lumped effect of all higher order terms and modeling error. A
priori knowledge about the flow mapping as well as the required
model approximation accuracy can be used to determine how
many terms to keep. For simplicity, in this paper, all terms up to
second order are kept while all higher order terms are considered
as modeling error. The valve flow rate in the block of Iij is thus
approximated by a model given by

Q̄(u,∆P )|(u,∆P )∈Ii j
= ϕT

ij θij (11)

where

ϕT
ij =

{
[1, ũ, P̃ , ũ2, P̃ 2, ũP̃ ], (u,∆P ) ∈ Iij

[0, 0, 0, 0, 0, 0], otherwise

and

θij =

[
Q(ūi ,∆P̄j ),

∂Q

∂u

∣∣∣∣
(ū i ,∆P̄j )

,
∂Q

∂∆P

∣∣∣∣
(ū i ,∆P̄j )

∂2Q

∂u2

∣∣∣∣
(ū i ,∆P̄j )

,
∂2Q

∂∆P 2

∣∣∣∣∣
(ū i ,∆P̄j )

∂2Q

∂u∂∆P

∣∣∣∣
(ū i ,∆P̄j )

]T

∈ R
6.

As ϕij = 0 when its arguments ũ and P̃ are outside the block
Iij , ϕ

T
ijϕkl = 0 if either i �= k or j �= l. Thus, the basis functions

ϕij are orthogonal.
With the above local approximations, the approximated flow

mapping model for the entire region is

Q̄(u,∆P ) =
Ny∑
j=1

Nx∑
i=1

ϕT
ij θij . (12)

Equation (12) is in the form of (3) with

ϕT = [ϕT
11, ϕ

T
12, . . . , ϕ

T
1Ny

, ϕT
21, . . . , ϕ

T
ij , . . . , ϕ

T
Nx Ny

]

and

θT = [θT
11, θ

T
12, . . . , θ

T
1Ny

, θT
21, . . . , θ

T
ij , . . . , θ

T
Nx Ny

].

However, unlike (3), the basis functions ϕij in (12) are local-
ized, which enables accurate parameter estimations to be carried
out for individual blocks where sufficient data exist and the con-
dition for applying the LSE algorithm is satisfied. These regions
normally correspond to the actual active working ranges that
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the system is likely to operate, and thus precise flow modeling
in these regions is important for good control performance. The
details are given below.

Regroup the sample data according to the blocks they be-
long to. For simplicity, assume that {u(t),∆P (t), Q(t), t =
1, 2, . . . , Nij} are the set of sample data falling into the block
Iij , i.e., (u(t),∆P (t)) ∈ Iij ,∀t = 1, 2, . . . , Nij where Nij rep-
resents the number of points. From (10) and (11), a similar form
as (7) can be obtained for the block Iij

[Q(u,∆P )]|(u,∆P )∈Ii j
= Φij θij + [∆] (13)

where [Q(u,∆P )]|(u,∆P )∈Ii j
represents the vector of the

measured valve flow rate and Φij = [ϕij (1), ϕij (2),
. . . , ϕij (Nij )]T . If ΦT

ijΦij is invertible—a condition that can
be satisfied relatively easily due to the small number of param-
eters to be estimated, then, the experimental data are sufficient
to give a good LSE estimate of θij on the block Iij

θ̂ij =
(
ΦT

ijΦij

)−1
ΦT

ij [Q(u,∆P )]|(u,∆P )∈Ii j
. (14)

In practice, one can check the condition number of ΦT
ijΦij

instead of its invertibility to make sure that the above estimation
is numerically well-conditioned for reliable estimations.

For the blocks where ΦT
ijΦij is not invertible or ill-

conditioned, it is impossible to have an accurate estimate of
θij as the experimental data obtained do not provide enough
information on Iij for flow modeling. Therefore one should not
force the system to estimate θij . The flow mapping in these
regions should be obtained via other means such as the extrap-
olation based on the flow models obtained for the blocks where
accurate and sufficient data are available. The aim of the paper is
to obtain a suitable model for control design. If a well-designed
system ID experiment cannot excite the system in some regions,
we do not expect the system would normally operate in those re-
gions too. Therefore, the accuracy of the model in those regions
is insignificant for control purpose, and it is not the focus of the
paper to have an accurate model in those regions. The important
issue that the paper cares about is to make sure that the lack of
rich data sets in those poorly excited regions does not affect the
system ID accuracy of the other regions. This is guaranteed by
the localized estimation technique presented, which is the novel
idea and key contribution of the paper.

The idea in the above-mentioned method is to pass a signal
through a discontinuous rectangular window defined on each
block Iij that would result in discontinuous estimation of the
discontinuities that happen at the block boundaries. To avoid
these discontinuity artifacts, it is necessary to use smooth win-
dows [16]. The lapped projectors, which split signal in orthog-
onal components with overlapping supports [16], are used to
smooth the discontinuous estimation.

For simplicity, two orthogonal projectors that decompose
any f ∈ L2(R) in two orthogonal components P+f and P−f
whose supports are [−1,+∞) and (−∞, 1], respectively are
constructed for demonstration, as illustrated in Fig. 3.

P+f(t) = β(t)[β(t)f(t) + β(−t)f(−t)]

P−f(t) = β(−t)[β(−t)f(t) − β(t)f(−t)] (15)

Fig. 3. Lapped orthogonal projectors.

where β is a monotonously increasing profile function having
the properties that

β(t) =
{ 0 if t< − 1

1 if t>1

and β2(t) + β2(−t) = 1 ∀t ∈ [−1, 1].
1) Theorem 1: (Coifman and Meyer): The operators P+ and

P− are orthogonal projectors, respectively, on W+ and W−. The
spaces W+ and W− are orthogonal and P+ + P− = Identity.

The proof of the theorem can be referred to in [16]. The pro-
jectors can be easily shifted to [a − η,+∞) and (−∞, a + η]
or repeated at different locations to perform a signal decompo-
sition into orthogonal pieces whose supports overlap. It is also
straight-forward to extend the projectors from one-dimensional
(1-D) to two-dimensional (2-D). There exist several well-known
lapped orthogonal bases, such as the family of local cosine func-
tions [16].

In the above development, predetermined or fixed blocks are
used for local parameter estimations. In general, at the expense
of increased complexity, these blocks do not have to be fixed
and real-time measurement data can be used to online cut the
working range for a better local function approximation and
parameter estimation, which is a topic of future research. For
specific applications, like the identification of cartridge valve
flow mapping detailed in the next section, enough a priori in-
formation exists to predetermine the necessary blocking. The
use of fixed blocks may be more desirable due to its simplicity.

IV. AUTOMATED ONBOARD MODELING OF VALVE FLOW

MAPPINGS

As discussed in the problem formulation, the actual valve
flow rate is not measured in onboard experiments. However,
with ϕnew and θnew in (6) defined as

ϕT
new = [−V1(x)Ṗ1, ϕ

T
11, ϕ

T
12, . . . , ϕ

T
1Ny

, ϕT
21, . . . ,

ϕT
ij , . . . , ϕ

T
Nx Ny

]

and

θT
new = [θβe

, θT
11, θ

T
12, . . . , θ

T
1Ny

, θT
21, . . . , θ

T
ij , . . . , θ

T
Nx Ny

]

the same estimation technique as in the previous section can
be used to obtain the estimates of θβe

and θij simultaneously
for the blocks where the local persistent excitation condition is
satisfied.

In practice, although xL , ẋL , ∆P1, and V1(xL ) are measur-
able or calculable, Ṗ1 is neither measurable nor calculable by
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Fig. 4. Estimation of a 2-D function.

differentiating P1 due to the very noisy pressure measurement.
The well-known low-pass filtering technique in adaptive control
can be applied here to solve the problem [18]. Specifically, in
order to make (6) implementable for parameter estimation algo-
rithms, a low-pass filter, such as the one in (16), can be applied
to the regressor ϕnew as well as the virtual output A1ẋ

Hf (s) =
ω2

n

s2 + 2ζωns + ω2
n

(16)

where ζ and ωn are the damping ratio and natural frequency of
the low-pass filter, respectively. Applying the linear filter (16)
to both sides of (6) leads to

A1ẋLf = ϕT
newfθnew + ∆f (17)

where ẋLf , ϕT
newf , and ∆f represent the filtered ẋL , ϕnew, and

∆. With (17), the effect of measurement noise is reduced and
the same estimation technique as in the previous section can still
be used to obtain the estimates of θβe

and θij simultaneously
for the blocks where the local persistent excitation condition is
satisfied.

V. SIMULATIONS AND EXPERIMENTS

Simulations and experiments were done to illustrate the ef-
fectiveness of the proposed automated onboard modeling tech-
nique for input nonlinearities. In the simulation, a nonsmooth
2-D nonlinear function was identified by the proposed method.
Fig. 4 shows the simulation results, where the continuous curves
represent the true value of the function while the X’s represent
the estimated values. As a priori knowledge may provide infor-
mation about where the deadband would occur, e.g., between
u = 1 and u = 2 in this simulation, relatively small spacing was
chosen in this region. And relatively large spacing was set where
the function does not change drastically.

In the experiments, the programmable valves were used to
control the boom motion of a three-degree-of-freedom electro-
hydraulic robot arm in the Ray W. Herrick Laboratories. The

Fig. 5. Blocking and location of the experimental data.

TABLE I
ESTIMATED FLOW MAPPING VERSUS CALIBRATED ONE

working mode selection and energy-saving controller design
can be found in [2]. The boom motion was controlled to track a
swiped sinusoidal reference trajectory, whose frequency varied
from 0.1 to 0.5 Hz over 80 s. Fig. 5 shows how the blocks were
generated and where the experimental data were located. The
fine grids between 1 and 4 V for the control input were for more
accurate flow estimation to deal with the unknown deadband in
this region.

It was obvious that the obtained onboard experiment data did
not cover the entire region, and it was impossible to have flow
estimates in the blocks which suffered low data or no data at all.
However, with the localized orthogonal basis functions and by
checking the condition number of ΦT

ijΦij on each block, one
could easily control the estimation process with the proposed
method. For example, by setting the threshold for the condition
number as 1 × 108 and only estimating the flow mappings for
blocks having the condition number less than the threshold, the
estimated flow mapping was compared with the individually
calibrated one as shown in Table I. In this table, the flow rate
has a unit of liters/minute, the upper row of numbers represent
the estimated flow mapping (the label “N A” indicates the block
where the conditional number is larger than the set threshold)
and the lower row of numbers were individually calibrated flow
mapping. It is seen that both values were quite close to each
other for the blocks where the condition numbers satisfy the set
threshold, illustrating the reasonable modeling accuracy of the
proposed method over the active working range of the system.
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Fig. 6. Estimated cartridge valve flow mapping.

In the above study, neither the valve control input u nor the
pressure drop ∆P was arbitrarily controlled. This resulted in
lack of data in quite a large number of regions. For more ac-
curate flow mapping estimation, one can simplify the 2-D flow
mapping into a series of 1-D mappings, i.e., fix the control input
u and estimate the 1-D function described as follows:

Q(u,∆P )|u=ui
= Qi(∆P ), i = 1, 2, . . . , Nx. (18)

Fig. 6 shows one of the experimentally estimated flow mappings
with this simplified 1-D method.

To illustrate the effectiveness of the proposed method and
check the accuracy of the estimated flow mapping, the above
estimated flow mappings (a series of 1-D mapping) along with
the individually calibrated one [2], [5] or the manufacturer sup-
plied one [12] were used in the same ARC to control the boom
motion of the hydraulic arm respectively. The ARC has an on-
line adaptation loop to reduce the effect of modeling error and
improve the tracking performance, especially steady-state er-
ror. The adaptation for the modeling error in the experiment
was shut off for a better reflection of model inaccuracy. The
control task was a smooth point-to-point motion trajectory as
shown in Fig. 7. The trajectory included high acceleration and
high speed tracking periods as well as constant positioning reg-
ulation periods, and reflected both of the two typical control
problems—tracking control and positioning control. It was a
very good evaluation to check the accuracy of the identified
model. The tracking performances are shown in the second plot
of Fig. 7. Although the controller with the experimentally es-
timated flow mappings performed not as good as the one with
individually calibrated flow mappings, it did perform better than
the one using the manufacturer supplied flow mappings.

One of the most important applications of the automated mod-
eling technique is to update the valve flow mapping to address
the issues of system aging and worn-out and change of working
conditions or parameters. Due to the limitation of experimental
setup, it is difficult to run experiments to show how well the
proposed technique performs with a worn-out system or dif-

Fig. 7. Comparative tracking results with different flow mappings.

ferent working conditions. However, as the proposed technique
is independent of system conditions, it is expected to achieve
similar control performance after an update of flow mappings.

VI. CONCLUSION

Automated onboard modeling of the proportional cartridge
valve flow mapping provides a simple and yet effective solution
to obtain a suitable valve model for control design and to update
the valve flow mapping to address the issues of system aging,
worn out and changing parameters or working conditions after
the system leaves the manufacturing plant. It is of significant
importance for widespread industrial use of the valve in ap-
plications involving both precision motion control and energy
saving. Due to the rather complicated and uncertain model struc-
ture of the cartridge valves, it was impossible to formulate the
modeling of their flow mappings into some simple parameter es-
timation problems, not to mention the unavailability of the flow
rate measurement and the uncertain parameters in the system
dynamics. This paper proposed an approach to decompose and
approximate the unknown flow mapping with some localized
orthogonal basis functions. The weighting parameters of the ba-
sis functions as well as the unknown system parameters were
then estimated simultaneously based on the pressure dynamics
of the cylinder for regions where sufficient onboard measure-
ment data were available. Smooth blending and extrapolation
are subsequently applied to obtain the onboard estimation of
the flow mapping over the entire working envelope of the sys-
tem. Experimental studies have been obtained to demonstrate
the feasibility of the proposed method for the automated on-
board modeling of the cartridge valve flow mappings and the
improvement of control performance with the estimated flow
mappings. The paper thus serves well as a practical example of
the integrated mechatronics design philosophy of trading sys-
tem hardware complexity with advanced software modeling and
controls. The strategy is general in principle and may be used in
other systems with unknown static input nonlinearities of one
or two dimensions.
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