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Limited Feedback Unitary Precoding for Spatial
Multiplexing Systems

David J. Love, Member, IEEE, and RobertW. Heath, Jr., Member, IEEE

Abstract—Multiple-input multiple-output (MIMO) wireless systems use
antenna arrays at both the transmitter and receiver to provide communi-
cation links with substantial diversity and capacity. Spatial multiplexing is
a common space–time modulation technique for MIMO communication
systems where independent information streams are sent over different
transmit antennas. Unfortunately, spatial multiplexing is sensitive to ill-
conditioning of the channel matrix. Precoding can improve the resilience
of spatial multiplexing at the expense of full channel knowledge at the
transmitter—which is often not realistic. This correspondence proposes a
quantized precoding system where the optimal precoder is chosen from
a finite codebook known to both receiver and transmitter. The index of
the optimal precoder is conveyed from the receiver to the transmitter
over a low-delay feedback link. Criteria are presented for selecting the
optimal precoding matrix based on the error rate and mutual information
for different receiver designs. Codebook design criteria are proposed for
each selection criterion by minimizing a bound on the average distortion
assuming a Rayleigh-fading matrix channel. The design criteria are shown
to be equivalent to packing subspaces in the Grassmann manifold using
the projection two-norm and Fubini–Study distances. Simulation results
show that the proposed system outperforms antenna subset selection and
performs close to optimal unitary precoding with a minimal amount of
feedback.

Index Terms—Diversity methods, Grassmannian subspace packing,
multiple-input multiple-output (MIMO) systems, quantized precoding,
Rayleigh channels, spatial multiplexing, vertical Bell Labs layered space–
time (V-BLAST) architecture.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless channels, created
by exploiting antenna arrays at both the transmitter and receiver,
promise high capacity and high-quality wireless communication links
[1], [2]. Exploiting the benefits offered by MIMO channels requires
choosing a space–time modulation scheme and receiver algorithm
that provide a sensible performance and complexity tradeoff. Along
these lines, spatial multiplexing, where a bit stream is demultiplexed
into multiple substreams that are sent over different antennas, is a
practical space–time modulation technique that permits a choice of
optimal, near-optimal, and suboptimal receivers. Unfortunately, spatial
multiplexing is sensitive to ill-conditioning of the channel matrix.

Premultiplying the transmitted data streams by a precoding matrix,
chosen based on channel information, is one way to guard against rank
deficiencies in the channel and to improve error rate performance. The
basic idea of precoding is to use some form of channel knowledge at the
transmitter to customize the transmitted signal to the eigenstructure of
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the matrix channel. Precoding has been proposed based on knowledge
of the full channel state information at the transmitter [3], [4], first-
order statistics [5], [6], or second-order statistics of the channel [5],
[7]–[11]. The full gains from precoding are achieved with full channel
state information since this allows the transmitted signal to be cus-
tomized based on the eigenstructure of the matrix channel. In time-di-
vision duplex systems with suitable ping-pong time, full channel state
information may be available. In frequency-division duplex systems,
however, full channel state information must be conveyed through a
feedback channel. This is impractical, though, due to the number of
channel coefficients that need to be quantized and sent back to the trans-
mitter over limited bandwidth control channels.
In this correspondence, we propose a solution to the problem of pre-

coding for spatial multiplexing systems with limited feedback capacity.
The essential idea is that the transmit precoder is chosen from a finite
set of precoding matrices, called the codebook, known to both the re-
ceiver and the transmitter. The receiver chooses the optimal precoder
from the codebook as a function of the current channel state information
and sends the binary index of thismatrix to the transmitter over a limited
feedback channel.Weaddress two key problems in this correspondence:
i) selection of the optimal precoder from the codebook and ii) design
of optimal codebooks. We assume that the channel is statistically de-
scribed by the narrowband uncorrelated Rayleigh matrix fading model
and that there is zero delay in the feedback channel. For codeword se-
lection, we propose selection criteria based on the error probability [3],
[12]–[14] and mutual information [15]–[17]. We consider both max-
imum-likelihood (ML) (optimal but high implementation complexity)
and linear receivers (suboptimal but lower implementation complexity).
The optimal precoding matrix can be easily chosen using our selec-
tion criteria by simply searching through all codebookmatrices.We ad-
dress codebook design for each of the proposed selection criteria. By
bounding the average distortion, we show that the codeword selection
criteria imply that codebooks should be designed such that the con-
stituentmatrices aremaximally spaced. The distancemeasure is not Eu-
clidean distance but rather subspace distance on the Grassmann man-
ifold. Specifically, we show that, depending on the receiver, optimal
codebook designs are subspace packings in the Grassmann manifold
using either the projection two-norm or the Fubini–Study distance.
Limited feedback precoding has been considered in the past exten-

sively for the cases of transmit beamforming [18]–[20], precoding for
space–time block codes [21]–[23], and covariance quantization [24],
[25]. As well, antenna subset selection can be viewed as an important
example of limited feedback precoding where the optimal subset of
transmit antennas is computed and conveyed to the transmitter (see, for
example, [12], [15], [17], [26]–[28]). The random vector quantization
work in [29] is another form of limited feedback precoding. Our cor-
respondence proposes a natural generalization of this existing limtied
feedback work.
This correspondence is organized as follows. Section II reviews the

precoded spatial multiplexing system model. Criteria for choosing
the optimal matrix from the codebook is presented in Section III.
Design criteria for creation of the precoder codebook are derived in
Section IV. Section V illustrates the performance improvements over
no precoding, unquantized precoding, and antenna subset selection
using Monte Carlo simulations of the symbol error rate. Conclusions
are presented in Section VI.

Notation

Weuse T to denote transposition, � to denote conjugate transposition,
�1 to denote matrix inversion, + to denote the matrix pseudo-inverse,
IIIM to denote theM�M identitymatrix, k�k2 to denote thematrix two-
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Fig. 1. Block diagram of a limited feedback precoding MIMO system.

norm, k � kF to denote the matrix Frobenius norm, tr(�) to denote the
trace of a matrix, det(�) to denote the determinant of a matrix, m to
denote them-dimensional complex vector space, CN (0; �2) to denote
the complex normal distribution with independent real and imaginary
parts distributed according to N (0; �2=2), U(Mt;M) to denote the
set of Mt � M matrices with orthonormal columns, �ifAAAg denotes
the ith largest singular value of AAA, argminA (argmaxA) to denote a
function that returns a global minimizer (maximizer) over the set A,
and card(�) to denote the cardinality of a set.

II. SYSTEM OVERVIEW

The proposed system is illustrated in Fig. 1. A bit stream is sent into
a vector encoder and modulator block where it is demultiplexed into
M different bit streams. Each of theM bit streams is then modulated
independently using the same constellation W . This yields a symbol
vector at time k of sssk = [sk;1 sk;2 . . . sk;M ]T . For convenience, we
will assume that Esss [sssksss

�
k] = IIIM .

The symbol vector sssk is then multiplied by anMt �M precoding
matrixFFF (which is chosen as a function of the channel using criteria to

be described) producing a lengthMt vector xxxk = E

M
FFFsssk where Es

is the total transmit energy,Mt is the number of transmit antennas, and
Mt > M . We assume throughout the correspondence thatMr � M .
Assuming perfect timing, synchronization, sampling, and a memory-
less linear matrix channel, this formulation allows the baseband, dis-
crete-time equivalent received signal to be written as

yyyk =
Es
M
HHHFFFsssk + vvvk (1)

whereHHH is the channel matrix and vvvk is the noise vector. We assume
that the entries ofHHH are independent and identically distributed (i.i.d.)
according to CN (0; 1) and the entries of vvvk are independent and dis-
tributed according to CN (0;N0). The received vector is then decoded
by a vector decoder, assuming perfect knowledge ofHHHFFF , that produces
a hard decoded symbol vector sssk .

In this correspondence, the receiver chooses a precoding ma-
trix FFF from a finite set of possible precoding matrices F =
fFFF 1; FFF 2; . . . ; FFFNg and conveys the index of the chosen precoding
matrix back to the transmitter over a limited capacity, zero-delay
feedback link. We assume that each FFF 2 F has unit column vectors
that are orthogonal. This assumption is not especially restrictive since

it follows from the form of the optimal, full channel knowledge pre-
coders derived in [3] assuming a maximum singular value constraint
on FFF . Thus, the proposed codebook will satisfy F � U(Mt;M).
To simplify implementation, we will typically assume that B bits
of feedback are available; thus, the codebook consists of N = 2B

matrices in U(Mt;M). The fact that the set F is discrete allows the
receiver to solve forFFF by computing the selection metric of interest for
each of theN = 2B codebook entries. The limitation of the codebook
to 2B matrices allows the system designer to constrain the precoding
overhead and to take full advantage of the limited feedback channel.
To illustrate the concept, consider a codebook that corresponds to

antenna subset selection [12]. Such a codebook would consist of the
M

M
matrices consisting of M columns of IIIM . Notice that each set

ofM columns of IIIM is an element of U(Mt;M). Naturally, antenna
selection precoding can be directly implemented in a limited feed-
back system because a total feedback of only dlog

2

M

M
e bits is re-

quired. Unfortunately, the performance is highly limited because i) the
columns ofFFF are restricted to beingM columns of IIIM and ii) the size
of the codebook is limited byM andMt. It is of interest to remove any
restrictions about the nature of the elements of the codebook as well
as the number of elements in an effort to come closer to the gains of
approximately optimal precoding.
The primary goal of this precoding is to improve the overall system

performance using a suboptimal receiver (though we do consider op-
timal ML decoding as well for completeness). For example, precoding
can allow an easily implemented linear receiver to outperform optimal
decoding at the expense of i) using more transmit antennas and ii) re-
quiring channel information at the transmitter. It should be noted that
depending on the signal-to-noise ratio (SNR) and the antenna config-
uration, feedback may not be needed. Using feedback to improve the
data rate of the forward data path can cause a significant overhead on
the reverse path. When the SNR is high, it is well known that feedback
is not needed to achieve capacity and the feedback overhead will be
detrimental. We do not consider the effect of feedback overhead on the
system.
As well, we assume thatM is fixed. We do not vary the dimension-

ality of the transmitted data vector as a function of the channel matrix.
This kind of adaptation will cause a large increase in both transmit and
receive complexity. It should be noted, however, that varying M can
dramatically improve the system performance. Readers are referred to
[30] for discussion on this kind of adaptation.
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Problem Statement

The objective of this correspondence is to solve the two key problems
that are needed to effectively design and implement a limited feedback
precoding system as proposed in Fig. 1. The first is to develop algo-
rithms for selecting the optimal FFF from F as a function of the error
probability or mutual information. This is the codeword or precoder
selection problem. The second is to determine how to select a good
codebook F , based on a distortion measure that accounts for the fact
that the channel is uncorrelated Rayleigh fading. This is the codebook
design problem.

III. PRECODING CRITERIA

In this section, we discuss the criteria used for choosing the optimal
precoding matrix from a given codebook. We outline criteria based on
minimizing the error rate for the ML or linear decoder and on max-
imizing the mutual information. When illustrative, we derive the op-
timal matrix over U(Mt;M).

A. ML Receiver

The ML receiver solves the optimization problem

sssk = argmin
sss2W

yyyk �
Es
M
HHHFFFsss

2

2

: (2)

A closed-form expression for the probability of symbol vector error is
difficult to derive. One approach is to observe that the probability of
symbol vector error can be upper bounded for high SNRs using the
vector Union Bound [31]. This approach is motivated by the fact that
the Union Bound provides an adequately tight prediction of the prob-
ability of error for large SNR. Since we assume Es=N0 to be fixed,
the Union Bound is solely a function of the receive minimum dis-
tance dmin;R of the multidimensional constellation WM [13], which
is given by

dmin;R = min
sss ;sss 2W :sss 6=sss

Es
M
kHHHFFF (sss1 � sss2) k2: (3)

The computation of dmin;R requires a search over card(W )
2

vectors.
Using (3), the minimum Euclidean distance criterion is to pick FFF

from the codebook F for a givenHHH assuming thatW and Es=N0 are
fixed according to the following criterion.

ML Selection Criterion (ML-SC): Pick FFF such that

FFF = argmax
FFF 2F

dmin;R: (4)

Deriving a closed-form solution to ML-SC is difficult since the min-
imum distance depends on the constellation as well as the channel
realization.

B. Linear Receiver

Linear receivers apply an M �Mr matrix GGG, chosen according to
some criterion, to produce sssk = QQQ (GGGyyyk)whereQQQ(�) is a function that
performs single-dimensional ML decoding for each entry of a vector.
Criteria will be presented for two different forms ofGGG: zero-forcing and
minimum mean-square error (MMSE). For a zero-forcing (ZF) linear
decoder,GGG = (HHHFFF )+. When a MMSE linear decoder is used

GGG = [FFF �HHH�HHHFFF + (MN0=Es)IIIM ]�1FFF �HHH�:

1) Minimum Singular Value: We will characterize the average
probability of symbol vector error performance using the substream
with the minimum SNR following the results given in [12]. It was
shown in [12] that the SNR of the kth substream is given by

SNR(ZF)k =
Es

MN0[FFF
�HHH�HHHFFF ]�1k;k

(5)

for the ZF decoder and

SNR(MMSE)
k =

Es

MN0[FFF
�HHH�HHHFFF + (MN0=Es)IIIM ]�1k;k

� 1 (6)

for theMMSE decoder, whereAAA�1k;k is entry (k; k) ofAAA
�1. In [12], it is

shown that in order to minimize a bound on the average probability of a
symbol vector error, the minimum substream SNRmust be maximized.
Using a selection criterion based on the minimum SNR requires the

computation of the SNR of each of the M substreams and the esti-
mation of Es=N0. The computational complexity combined with the
possibility of estimation error makes the minimum cumbersome to im-
plement. For this reason, [12] shows that the minimum SNR for ZF can
be bounded using

SNR(ZF)min = min
1�k�M

SNR(ZF)k (7)

��2minfHHHFFFg
Es

MN0
(8)

where �minfHHHFFFg is the minimum singular value ofHHHFFF .
We use (8) to obtain a requirement for choosing FFF from F for a

givenHHH . We have assumed that F and Es=N0 are fixed.
Minimum Singular Value Selection Criterion (MSV-SC): Pick FFF

such that

FFF = argmax
FFF 2F

�minfHHHFFF ig: (9)

This criterion provides a close approximation to maximizing the
minimum SNR for dense constellations. The reason for this is that as
card(W) grows large, the probability of an error vector lying collinear
to the minimum singular value direction goes to one.
Optimal Unquantized Precoder:
For comparison purposes, we also derive FFF opt 2 U(Mt;M)

that maximizes �minfHHHFFF optg. Note that when the feasible set1 is
U(Mt;M), FFF opt is not unique. For example, if FFF opt maximizes
�minfHHHFFF optg then so does FFF optUUU for any U(M;M).
Let the singular value decomposition ofHHH be given by

HHH = VVV L���VVV
�
R (10)

where VVV L 2 U(Mr;Mr), VVV R 2 U(Mt;Mt), and ��� is anMr �Mt

diagonal matrix with �kfHHHg denoting the kth largest singular value of
HHH at entry (k; k).

Lemma 1: An optimal precoder over U(Mt;M) for MSV-SC is
FFF opt = VVV R where VVV R is a matrix constructed from the first M
columns of VVV R.

Proof: Let ~FFF = [FFF opt
~fff1 . . . ~fffM �M ] where ~FFF

� ~FFF = IIIM .
It is clear that the matrix ~FFF

�
HHH�HHH ~FFF is a Hermitian matrix and

FFF �optHHH
�HHHFFF opt is obtained from ~FFF

�
HHH�HHH ~FFF by simply taking the

principle submatrix corresponding to the first M rows. By the Inclu-
sion Principle [32]

�minfHHHg =�M fHHHg

��minfHHHFFF optg

=�MfHHHFFF optg

��MfHHHg:

Here the M th singular value refers to the singular value at entry
(M;M) of the ordered diagonal matrix ���. For the case where
Mr � Mt, there will be Mr different singular values. Because
M � Mr , the M th singular value is well defined. This upper bound
can thus be achieved if FFF opt = VVV R.

1The feasible set of an optimization is the domain that the cost function is
optimized over.
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2) MMSE: Previous work [3] has considered improving the overall
system performance by minimizing some function of the mean squared
error (MSE) matrix

MSE(FFF ;GGG) = E GGGyyy
k
�

Es

M
sssk GGGyyy

k
�

Es

M
sssk

�

where the expectation is taken over sssk and vvvk . When MMSE linear
decoding is used, we express the MSE as

MSE(FFF ) =
Es

M
IIIM +

Es

MN0
FFF
�
HHH
�
HHHFFF

�1

: (11)

Using (11), we derive a selection criterion for choosing FFF from F .
Mean Squared Error Selection Criterion (MSE-SC): Pick FFF such

that

FFF = argmin
FFF 2F

m MSE(FFF i) (12)

where m(�) is either tr(�) or det(�).
Note that minimizing the MSE does not specifically mean a reduc-

tion in the probability of error. In general, if the goal is to minimize the
probability of error MSV-SC should be chosen.

Optimal Unquantized Precoder:
Again, we present the optimal precoder over the unquantized set

U(Mt;M) for subsequent comparisons. In [3], various constraints
on FFF opt were considered along with various mean squared-error
cost functions based on MSE(FFF opt). Since we restrict our search to
FFF opt 2 U(Mt;M), we will consider the constraint in [3] where the
maximum eigenvalue of FFF optFFF

�
opt is unity. Note that all matrices in

U(Mt;M) satisfy this constraint, but belonging to U(Mt;M) is not a
necessary condition for this constraint.

It was shown in [3] that FFF opt that minimizes tr(MSE(FFF opt))
or det(MSE(FFF opt)) under this maximum eigenvalue constraint is
FFF opt = VVV R. Therefore, we can state the following lemma as a
consequence.

Lemma 2: (Scaglione et al. [3]) A matrix FFF opt 2 U(Mt;M)
that minimizes either of the two cost functions tr(MSE(FFF opt)) and
det(MSE(FFF opt)) is FFF opt = VVV R.

Once again FFF opt is not unique because tr(MSE(FFF opt)) =
tr(MSE(FFF optUUU)) and det(MSE(FFF opt)) = det(MSE(FFF opt UUU)) for
any UUU 2 U(M;M).

C. Capacity

In the context of antenna subset selection for spatial multiplexing
systems, the mutual information (or capacity) has been used to formu-
late a precoder selection criterion [15], [16]. When the transmitter pre-
codes withFFF before transmission, the equivalent channel isHHHFFF . Thus,
the mutual information assuming an uncorrelated complex Gaussian
source given HHH and a fixed FFF is

I(FFF ) = log2 det IIIM +
Es

MN0
FFF
�
HHH
�
HHHFFF : (13)

Therefore, we can state a capacity inspired selection criterion as fol-
lows.

Capacity Selection Criterion (Capacity-SC): Pick FFF such that

FFF = argmax
FFF 2F

I(FFF i): (14)

Note that we call this selection criterion “Capacity-SC” for consistency
with previous works [15], [16].

Optimal Unquantized Precoder:
It is possible to find the optimal unquantized precoder FFF opt 2

U(Mt;M) for the Capacity-SC criterion.

Lemma 3: A precoder matrix FFF opt 2 U(Mt;M) that maximizes
I(FFF opt) is given by FFF opt = VVV R.

Proof: Note that maximizing

log2 det IIIM +
Es

MN0
FFF
�
optHHH

�
HHHFFF opt

is equivalent to maximizing

det IIIM +
Es

MN0
FFF
�
optHHH

�
HHHFFF opt

and thus minimizing

det IIIM +
Es

MN0
FFF
�
optHHH

�
HHHFFF opt

�1

:

The latter expression differs from det MSE(FFF ) by a constant scale
factor. It therefore follows from Lemma 2 that FFF opt = VVV R maximizes
I(FFF opt).

Because of the relationship to MSE-SC, it is easily seen that
I(FFF opt) = I(FFF optUUU) for any UUU 2 U(M;M).

IV. LIMITED FEEDBACK PRECODING:
MOTIVATION AND CODEBOOK DESIGN

In the preceding section, we derived criteria for selecting the op-
timal precoding matrix. It is important that the codebookF is designed
specifically for the chosen criterion. To understand the codebook de-
sign problem, we first perform a probabilistic characterization of the
optimal precoding matrix. We then use this characterization to derive
codebooks that maximize average bounds on each of the performance
criteria.

A. Probabilistic Characterization of Optimal Precoding Matrix

Let the eigenvalue decomposition ofHHH�
HHH be given by

HHH
�
HHH = VVV R���

2
VVV
�
R (15)

with VVV R and ��� defined as in (10). In [33], it is shown that, for a
MIMO Rayleigh-fading channel, VVV R, the right singular vector matrix
is isotropically distributed on U(Mt;Mt), the group of unitary ma-
trices. An isotropically distributedMt�M matrixVVV is a matrix where
����VVV

d
= VVV for all ��� 2 U(Mt;Mt) with

d
= denoting equivalence

in distribution [34]. As stated in Section III, the optimal precoder for
MSV-SC, MSE-SC, and Capacity-SC is constructed by simply taking
the firstM columns of VVV R. Using the isotropic distribution of VVV R, it
is possible to derive the distribution of FFF opt.

Lemma 4: For a memoryless, i.i.d. Rayleigh-fading channel HHH ,
FFF opt = VVV R is isotropically distributed on U(Mt;M).

Proof: First note that

FFF opt = VVV R = VVV R

IIIM

0(M �M)�M
(16)

where 0(M �M)�M is an (Mt �M)�M matrix of zeros. Since VVV R

is isotropically distributed

����FFF opt =����VVV R

IIIM

000(M �M)�M

d
=VVV R

IIIM

000(M �M)�M

=FFF opt:

Lemma 4 will allow the effect of the codebook on average distortion
to be studied, with distortion to be defined later.
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B. Grassmannian Subspace Packing

Before stating design criteria for each of the precoding matrix se-
lection criteria, we present some relevant background about finite sets
of matrices in U(Mt;M). The set U(Mt;M) defines the complex
Stiefel manifold [35] of real dimension 2MtM � M2. Each matrix
in U(Mt;M) represents anM -dimensional subspace of M . The set
of all M -dimensional subspaces spanned by matrices in U(Mt;M)
is the complex Grassmann manifold, denoted as G(Mt;M). Thus, if
FFF 1; FFF 2 2 U(Mt;M) then the column spaces of FFF 1 and FFF 2, PFFF and
PFFF , respectively, are contained in G(Mt;M). Note that the Grass-
mann manifold can be analyzed using a real or complex Stiefel mani-
fold [35], however, we will only make use of complex subspaces in this
correspondence. Our codebookF , which consists of a finite number of
matrices chosen from U(Mt;M), thus represents a set, or packing, of
subspaces in the Grassmann manifold. Designing sets of N matrices
that maximize the minimum subspace distance (where distance can be
chosen in a number of different ways [36]) is known as Grassmannian
subspace packing.We will use the interpretation of the precoding code-
book F as a packing of subspaces to simplify notation and analysis.

A normalized invariant measure � is induced on G(Mt;M) by the
Haar measure in U(Mt;M). This measure allows the computation of
volumes within G(Mt;M). Subspaces within the Grassmann manifold
can be related by their distance from each other [36]–[38]. A number
of different distances can be defined [36], [39], but we will only make
use of three. The chordal distance between the two subspacesPFFF and
PFFF is

dchord(FFF 1; FFF 2) =
1p
2
kFFF 1FFF

�
1 � FFF 2FFF

�
2kF

= M �
M

i=1

�2i fFFF �1FFF 2g:

The projection two-norm distance between two subspaces PFFF and
PFFF is

dproj(FFF 1; FFF 2) = kFFF 1FFF
�
1 � FFF 2FFF

�
2k2 = 1� �2minfFFF �1FFF 2g:

The Fubini–Study distance between two subspaces PFFF and PFFF is

dFS(FFF 1; FFF 2) = arccos jdet (FFF �1FFF 2)j :
Each of these distances corresponds to different ideas of distance

between subspaces. The chordal distance generalizes the distance be-
tween points on the unit sphere through an isometric embedding from
G(Mt;M) to the unit sphere [37]. Maximizing this distance corre-
sponds to minimizing the sum of the eigenvalues of FFF �2FFF 1FFF

�
1FFF 2 or,

similarly, kFFF �1FFF 2k2F . The projection two-norm distance is maximized
by minimizing the smallest singular value of FFF �1FFF 2, while the Fu-
bini–Study distance is maximized by minimizing the product of the
singular values of FFF �1FFF 2. Note that

kFFF �1FFF 2k2F �M�2minfFFF �1FFF 2g �M jdet (FFF �1FFF 2)j2 (17)

thus,

dchord(FFF 1; FFF 2) �
p
Mdproj(FFF 1; FFF 2)

�
p
M sin (dFS(FFF 1; FFF 2)) : (18)

Let S = fPFFF ;PFFF ; . . . ;PFFF g be the packing of column spaces of
the codebook matrices wherePFFF is the column space ofFFF i. Similarly
to binary error correcting codes [36], a packing can be characterized by
its minimum distance

� = min
1�i<j�N

d(FFF i; FFF j)

where d(�; �) is a distance function on G(Mt;M).
Consider the open ball in G(Mt;M) of radius 
=2 defined as

BFFF (
=2) = fPUUU 2 G(Mt;M) j d(UUU;FFF i) < 
=2g:
This metric ball can be defined with respect to any of the distance func-
tions on G(Mt;M). Note that if dchord(FFF 1; FFF 2) < 1� �2, with
0 � � � 1, then we are guaranteed that dproj(FFF 1; FFF 2) < 1� �2

and dFS(FFF 1; FFF 2) < arccos(�M ). This follows by restricting the
largest M � 1 singular values of FFF �1FFF 2 to be unity in order to find a
lower bound on the minimum singular value. This observation yields

Bchord
FFF (�proj=2) Bproj

FFF (�proj=2) (19)

and

Bchord
FFF 1� cos2=M(�FS=2) BFSFFF (�FS=2) (20)

where the superscript indicates the distance used.
The density of a subspace packing with respect to a distance 
 (
 �

�) is

�(
) = �

N

i=1

BFFF (
=2) =

N

i=1

� (BFFF (
=2))

where BFFF (
=2) can be defined with respect to any distance function
on the Grassmann manifold. The density of a packing is a measure
of how well the codebook matrices “cover” G(Mt;M). The density
allows the probability of the isotropically distributed VVV R falling in one
of the set BFFF (
=2), with 
 � �, to be expressed as

Pr VVV R 2
N

i=1

BFFF (
=2) = �(
): (21)

Furthermore, (19) and (20) yield

�chord(�proj) � �proj(�proj) (22)

and

�chord 2 1� cos2=M(�FS=2) � �FS(�FS) (23)

where the subscript indicates the distance used. Notice that the factor of
2 in (23) follows from the fact that the Fubini–Studyminimum distance
is halved inside of the cosine function. For largeMt it has been shown
in [36] that

�chord(�) � N
�

2
p
M

2M M+o(M )

: (24)

C. Codebook Design Criteria

We now derive the codebook design criteria for each specific se-
lection criterion using the distribution of the optimal unquantized pre-
coding matrix derived in Section IV-A and the Grassmannian subspace
packing results in Section IV-B.
ML-SC, MSV-SC, and MSE-SC (With Trace Cost Function): We

will show that the ML-SC, MSV-SC, and MSE-SC (with the trace cost
function) selection criteria all relate to maximizing the average min-
imum singular value of the effective channel matrixHHHFFF . We will use
this result to derive a codebook design criterion that relates to subspace
packing on the Grassmann manifold using the projection two-norm
distance.
Using (3), we can bound

dmin;R � Es
M

min
sss ;sss 2W :sss 6=sss

ksss1 � sss2k2 �minfHHHFFFg: (25)
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Thus, maximizing the lower bound on dmin;R is equivalent to max-
imizing �minfHHHFFFg. Thus this bound shows ML-SC requires maxi-
mizing �minfHHHFFFg.

MSE-SC using the trace cost function chooses FFF 2 F that
maximizes

tr
Es
M

IIIM +
Es

MN0
FFF �HHH�HHHFFF

�1

:

For high SNR, this can be approximated by N0tr (FFF �HHH�HHHFFF )�1 ,
and we can bound

min
FFF 2F

N0tr (FFF �iHHH
�HHHFFF i)

�1 � min
FFF 2F

MN0

�2minfHHHFFF ig : (26)

The bound in (26) uses the fact that the maximum eigenvalue
of (FFF �HHH�HHHFFF )�1 is the inverse of the minimum eigenvalue of
FFF �HHH�HHHFFF . Minimizing the bound approximately minimizes the trace
of the MSE matrix. Therefore, maximizing the �minfHHHFFFg is an
approximate method for minimizing the trace of the MSE matrix.

Based on (25) and (26), we can relate the selection of the optimal
codeword in a given codebook for the ML-SC and MSE-SC (using the
trace cost function) cases to selection of the optimal codeword based
on MSV-SC. To define a notion of an optimal codebook, we need a
distortion measure with which to measure the average distortion. To
design codebooks for the ML-SC, MSE-SC, and MSV-SC case we will
use the error difference

�2minfHHHFFF optg � �2minfHHHFFF ig
which is nonnegative for any choice of FFF i 2 F . Thus, we will choose
our codebook to minimize the average distortion

EHHH �2minfHHHFFF optg � max
FFF 2F

�2minfHHHFFF ig

= EHHH �2MfHHHg � max
FFF 2F

�2minfHHHFFF ig : (27)

Evaluating the expectation exactly in (27) is difficult; therefore, we will
minimize an upper bound on the average distortion.

Using the singular value representation used in Section III and the
properties of Grassmannian subspace packing,

EHHH max
FFF 2F

�2minfHHHFFF ig =EHHH max
FFF 2F

�2minf���VVV �
RFFF ig

�EHHH max
FFF 2F

�2minf���VVV �

RFFF ig

�EHHH �2MfHHHg EHHH max
FFF 2F

�2minfVVV �

RFFF ig
(28)

where��� is the matrix constructed from the firstM columns of���. The
result in (28) follows from the fact that singular values and singular
vectors of complex normal matrices are independent [33], [35]. Due to
the results in (27) and (28) we obtain

EHHH �2minfHHHFFF optg � max
FFF 2F

�2minfHHHFFF ig

�EHHH �2MfHHHg EHHH 1� max
FFF 2F

�2minfVVV �

RFFF ig

�EHHH �2MfHHHg

� �2proj
4

�proj(�proj) + (1��proj(�proj)) (29)

EHHH �2MfHHHg

� 1 +N
�proj

2
p
M

2M M+o(M ) �2proj
4

� 1 : (30)

The bound in (29) is a result of partitioning the possible outcomes into
two cases: i) the subspace of VVV R falls within a codeword metric ball
of radius �proj and ii) the subspace of VVV R does not fall within a code-
word metric ball. The codewords fall within a metric ball with proba-
bility�proj(�proj) andmust have distance less than �proj=2 from some
codeword when they fall within a metric ball. Substituting the density
bound in (22) and the approximation in (24) results in (30). Differenti-
ation and making the assumption that 2MtM + o(Mt) > 2=3, gives
the following design criterion. We always have that �proj < 1 so the
function is a decreasing function of �proj.
Codebook Design Criterion: A codebook F for a system using

ML-SC, MSV-SC, or MSE-SC (using the trace cost function) to select
FFF from F should be designed by maximizing the minimum projection
two-norm distance between any pair of codeword matrix column
spaces.
MSE-SC (WithDeterminant Cost Function) andCapacity-SC: Sim-

ilarly to the above, we will show that theMSE-SC (with the determinant
cost function) andCapacit-SC selection criteria requiremaximizing the
average system Capacity-SC. This result will be used to derive a code-
book design criterion that relates to subspace packing on the Grass-
mann manifold using the Fubini–Study distance.
Selecting FFF 2 F usingMSE-SC with the determinant cost function

requires solving for FFF that minimizes

det
Es
M

IIIM +
Es

MN0
FFF �HHH�HHHFFF

�1

=
Es
M

M

det IIIM +
Es

MN0
FFF �HHH�HHHFFF

�1

:

This is equivalent to solving for the FFF that maximizes

~I(FFF )
:
= det IIIM +

Es
MN0

FFF �HHH�HHHFFF

the same expression maximized in Capacity-SC. Using the singular
value decomposition (SVD) representation ofHHH

~I(FFF ) = det FFF �VVV R IIIM +
Es

MN0
���T��� VVV �

RFFF

� det VVV
�

RFFF
2

det IIIM +
Es

MN0
���
T
��� :

To define a notion of an optimal codebook, we need a distortion
measure to measure the average performance loss in this case. Since
FFF opt that maximizes the mutual information over U(Mt;M) gives
~I(FFF opt) = det IIIM + E

MN
���
T
��� , we will use the error difference

~I(FFF opt)� det VVV
�

RFFF
2

det IIIM +
Es

MN0
���
T
���

which is nonnegative for any choice of FFF i 2 F . Thus, we will choose
our codebook to minimize the average distortion

EHHH det IIIM +
Es

MN0
���
T
���

� max
FFF 2F

det VVV
�

RFFF i

2

det IIIM +
Es

MN0
���
T
��� (31)

=EHHH det IIIM +
Es

MN0
���
T
���

� 1� EHHH max
FFF 2F

det VVV
�

RFFF i

2

(32)

where (32) follows from the independence of ��� and VVV R [33], [35].
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The distortion cost function can be bounded as

EHHH det IIIM +
Es

MN0
���
T
���

� 1� EHHH max
FFF 2F

det VVV
�

RFFF i

2

� EHHH det IIIM +
Es

MN0
���
T
���

� 1� cos2 (�FS=2)�FS(�FS) (33)

EHHH det IIIM +
Es

MN0
���
T
��� 1�N cos2 (�FS=2)

�
1� cos2=M(�FS=2)

M

2M M+o(M )

: (34)

The result in (33) follows from the facts that the subspace of VVV R lies
within a codeword metric ball with probability�FS(�FS) and that all
subspaces within the metric balls have distance less than �FS=2. Using
the density bound in (23) and the approximation in (24) yields (34).
Differentiating this bound, and assuming that Mt + o(Mt)=(2M) �
(21=M�1), tells us that we want to maximize �FS in order to minimize
the distortion cost function.We can now state the following.

Codebook Design Criterion: A codebook F for a system using
MSE-SCwith the determinant cost function or Capacity-SC to selectFFF
fromF should be designed by maximizing the minimum Fubini–Study
distance between any pair of codeword matrix column spaces.

Discussion: In summary, thinking of the codebook F as a packing
of M -dimensional subspaces rather than a set of Mt � M matrices
allows us to bound the distortion for each of the selection criteria
proposed in Section III. The distortion bound for ML-SC, MSV-SC,
andMSE-SC with the trace cost function is minimized by maximizing
the minimum projection two-norm distance between any pair of
codebook subspaces. The Capacity-SC andMSE-SC with the determi-
nant cost function bound is minimized by maximizing the minimum
Fubini–Study distance between any pair of codebook subspaces.
Thus, the codebook design is equivalent to subspace packing in the
Grassmann manifold.

Observe that both design criteria make assumptions on the relation
between Mt, M , and the o(Mt) term. Numerical experiments have
shown that for mostMt > 2 the assumptions are satisfied. WhenM =
1, it is also known that the o(Mt) term is always�2 and (24) is an exact
expression [20].

Finding good packings in the Grassmann manifold for arbitraryMt,
M , and N , and thus finding good codebooks, is difficult (see, for ex-
ample, [37], [38], [40]). The problem is exasperated by the use of the
projection two-norm and Fubini–Study distances instead of the more
common chordal distance [36], [39]. For instance, in the simplest case
of M = 1 where the Rankin lower bound on line packing correla-
tion [38] can be employed, packings that achieve equality with the
lower bound are often impossible to design. One simple method for
designing good packings with arbitrary distance functions is to use the
noncoherent constellation designs from [41]. We have found that the
algorithms for constellation design in [41] yield codebooks with large
minimum distances and can be easily modified to work with any dis-
tance function on the Grassmann manifold.

Note that this work generalizes the analysis in [20]. When M =
1, both the projection two-norm and Fubini–Study distance criteria
minimize max1�i<j�N fff�i fff j where the codebook is given by F =
ffff1; fff2; . . . ; fffNg. This would be expected because the probability
of error and capacity cost functions are both functions of the effective
channel gain kHHHfffk22 when M = 1.

V. SIMULATIONS

Monte Carlo simulations were performed to illustrate the perfor-
mance of Grassmannian precoders. The codebooks were designed
using the criteria proposed in Section IV-C. To optimize the criteria,
the codebooks were designed using the noncoherent constellations in
[41]. Example codebooks can be downloaded at [42]. For each of the
precoding systems usingMt transmit antennas andM substreams, we
also plotted the M � Mr spatial multiplexing results with both ZF
and ML decoding. In addition, we simulated the unquantized MMSE
precoding using the trace cost function and both the sum power and
maximum singular value constraints [3] and maximum minimum
singular value antenna selection [12]. As well, we use the notation
Mt �Mr to denote anMt transmit andMr receive antenna system.

A. Comparisons Between Receiver Architectures

This simulation used binary phase-shift keying (BPSK) modulation
and two substreams on a 4 � 2 wireless system. The results are shown
in Fig. 2. We simulated 6–bit limited feedback precoding using Ca-
pacity-SC, MSV-SC, and ML-SC. ZF decoding and precoding using
Capacity-SC provided more than a 4 dB performance gain at a proba-
bility of symbol vector error of 2 � 10�3 over unprecoded decoding
using ML decoding. Precoding using MSV-SC provided a 0.5 dB gain
over Capacity-SC. Unquantized MMSE precoding with the sum power
constraint performs approximately 1.5 dB better than limited feedback
precoding using MSV-SC. As expected, ML decoding combined with
ML-SC provided a large performance gain and outperformed unquan-
tized MMSE precoding at a probability of symbol vector error of 10�3

by around 2.5 dB.

B. Feedback Allows Lower Complexity Decoding

We simulated three substream precoding on a 6 � 3wireless system
in this experiment using 16-QAMwith results shown in Fig. 3.We used
limited feedback precoding with 6 bits of feedback. Limited feedback
precoding with Capacity-SC and withMSE-SC (using the determinant
cost function) performed approximately 0.25 dB better than antenna se-
lection. Limited feedback precoding usingMSV-SC andMSE-SC with
the trace cost function both performed approximately the same. They
both provide around a 0.25 dB improvement overCapacity-SC and per-
formwithin 1 dB of unquantized optimal precoding using ZF decoding.
Note that all selection criteria outperformed unprecoded spatial multi-
plexing using an ML receiver. This shows though the power of pre-
coding: near-ML or better than ML performance with low-complexity
receivers at the expense of feedback.

C. Comparison With Direct Channel Quantization

The purpose of this experiment is to demonstrate the problems as-
sociated with directly quantizing the matrix channel HHH . The results
are presented in Fig. 4. This experiment considered a 4 � 2 wire-
less system using two substrems and 16-QAM. Directly quantizing the
channel with 16 bits of feedback performs approximately 4.7 dB worse
than a 6-bit limited feedback precoder at a probability of symbol vector
error of 10�2. The limited feedback precoder obtains performance ap-
proximately identical to that of the unquantized MMSE precoder with
the maximum singular value power constraint.

VI. CONCLUSION AND FUTURE WORK

We proposed a system for precoding when only a limited feedback
channel is available to convey channel state information. The essential
component of this system is a codebook of precoding matrices that is
known to both the transmitter and receiver. The codebook is designed
offline based on the distribution of the channel. Observations of the
channel at the receiver are used to determine the optimal precoder in
the codebook and this index is conveyed to the transmitter.
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Fig. 2. Probability of symbol vector error comparison of various precoding schemes for a two substream 4 � 2 system using BPSK.

Fig. 3. Probability of symbol vector error comparison of various precoding schemes for a three substream 6 � 3 system using 16-QAM.
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Fig. 4. Probability of symbol vector error comparison for direct channel quantization, unquantized MMSE, and limited feedback precoding on a two substream
4 � 2 system using 16-QAM.

In this correspondence, we presented solutions to the problems of
precoder selection and codebook construction. We presented criteria
for choosing the optimal precoder from the codebook according to dif-
ferent performance criteria and found that they were related directly to
the unquantized codebook design criteria in [3] and the antenna selec-
tion criteria in [12]. We defined a notion of average distortion and used
this to propose a codebook design criterion that minimizes a bound on
the average distortion. We showed that the proposed design essentially
relates to the problem of packing subspaces in the Grassmannmanifold
using the projection two-norm and the Fubini–Study distances. This
problem of spacing subspaces is a famous problem in applied mathe-
matics known as Grassmannian subspace packing [36], [37].

One important point of future work that is not addressed in this cor-
respondence is the effect of delay and errors in the feedback channel.
This will lead to a degradation of the bit-error rate performance com-
pared with ideal channels. This analysis is currently being studied in
the IEEE 802.16E standards body.

REFERENCES
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Quadratic Forms on Complex Random Matrices and
Multiple-Antenna Systems

T. Ratnarajah, Associate Member, IEEE, and Rémi Vaillancourt

Abstract—In this correspondence, the densities of quadratic forms on
complex random matrices and their joint eigenvalue densities are derived
for applications to information theory. These densities are represented
by complex hypergeometric functions of matrix arguments, which can be
expressed in terms of complex zonal polynomials. The derived densities are
used to evaluate the two most important information-theoretic measures,
the so-called ergodic channel capacity and capacity versus outage of
multiple-input multiple-output (MIMO) spatially correlated Rayleigh-
distributed wireless communication channels. We also derive the prob-
ability density function of the mutual information between transmitted
and received complex signals of MIMO systems with a finite number
of transmit and receive antennas. Numerical results show how channel
correlation degrades the capacity of MIMO communication systems.

Index Terms—Capacity versus outage, complex random matrices,
ergodic channel capacity, quadratic form on complex random matrices,
Rayleigh-distributed MIMO channels, zonal polynomials.

I. INTRODUCTION

Let ann�m (n � m) complexGaussian (or normal) randommatrix
XXX be distributed asXXX � CN(0;�1 
�2) with mean EfXXXg = 0 and
covariance covfXXXg = �1
�2, where�1 2

n�n and�2 2
m�m

are positive-definite Hermitian matrices. Here we read the symbol “�”
as “is distributed as,” CN denotes the complex normal distribution,
and 
 denotes the Kronecker product. The quadratic form SSS on XXX
associated with the positive-definite Hermitian matrix A is defined by

SSS = XXX
H
AXXX:

Here, we study the distribution of SSS, denoted by CQn;m(A;�1;�2),
and its application to information theory.We also derive the joint eigen-
value densities of SSS, which are represented by complex zonal poly-
nomials. Complex zonal polynomials are symmetric polynomials in
the eigenvalues of a Hermitian matrix, see [17], and they enable us
to represent the derived densities as infinite series. The distributions
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