
Smartphone Energy Drain in the Wild: Analysis and Implications

Xiaomeng Chen
Ning Ding

Abhilash Jindal
Y. Charlie Hu
Maruti Gupta

Rath Vannithamby

TR-ECE-15-03
March 1, 2015

School of Electrical and Computer Engineering
1285 Electrical Engineering Building

Purdue University
West Lafayette, IN 47907-1285

Smartphone Energy Drain in the Wild: Analysis and
Implications

Xiaomeng Chen†∧ Ning Ding†∧ Abiliash Jindal†∧

Y. Charlie Hu†∧ Maruti Gupta? Rath Vannithamby?

†Purdue University ∧Mobile Enerlytics ?Intel Corporation

ABSTRACT
The limited battery life of modern smartphones remains a lead-
ing factor adversely affecting the mobile experience of millions
of smartphone users. In order to extend batter life, it is critical
to understand where and how is energy drain happening on users’
phones under normal usage, for example, in a one-day cycle.

In this paper, we conduct the first extensive measurement and
modeling of energy drain of 1520 smartphone in the wild. We make
two primary contributions. First, we develop a hybrid power model
that integrates utilization-based model and FSM-based model for
different phone components with a novel technique that estimates
the triggers for the FSM-based network power model based on net-
work utilization. Second, through analyzing traces collected on
1520 Galaxy S3 and S4 devices in the wild, we present detailed
analysis of where the CPU time and energy is spent across the 1520
devices, inside the 800 apps, as well as along several evolution di-
mensions, including hardware, Android, cellular, and app updates.
Our findings of smartphone energy drain in the wild have signifi-
cant implications to the various key players of the Android phone
eco-system, including phone vendors (e.g., Samsung), Android de-
velopers, app developers, and ultimately millions of smartphone
users, towards the common goal of extending smartphone battery
life and improving the user mobile experience.

1. INTRODUCTION
The smartphone market has been growing at a phenomenal rate.

eMarketer [2] estimates the smartphone users worldwide surpassed
the 1 billion mark in 2012 and will total 1.75 billion in 2014, and
expects smartphone adoption to continue on a fast-paced trajectory
through 2017.

Despite the phenomenal market penetration of smartphones, the
user experience has been severely limited by the phone battery life.
For example, a survey in May 2014 by research company GMI [7]
of 1000 Britons shows 89% rated long battery life as an “impor-
tant” factor when buying a new smartphone – long battery life rated
higher than all the other features.

To improve the mobile experience of billions of smartphone users,
it is critical to study ways of extending smartphone battery life.
As the rechargeable battery technology has remained stagnant and
seems unlikely to deliver the energy requirements, optimizing the
energy drain is the more promising approach. Tackling this prob-
lem requires a thorough understanding of where energy drain is oc-
curring inside the phone over the course of a typical battery recharge
cycle, for example over a period of a day.

Understanding the energy drain of smartphones in normal users’
daily life however cannot be easily done via controlled experiments
in the lab, since the energy drain for a given device is affected by
external conditions and user behavior in significant ways. First,

the energy drain of wireless interfaces such as WiFi or cellular
data, which accounts for a significant fraction of the total device
energy drain, can be affected by the different signal strength the
device experiences throughout the day [9]. Second, different users
set very different device configurations (e.g., notification and WiFi
settings). Third, different users spend differing amounts of time
each day on the phone. Fourth, different users install and play with
different apps on their devices, which can have very different en-
ergy drain behavior. Fifth, even for the same app, different users
can have very different usage patterns, resulting in different energy
drain rates.

In this paper, we undertake to our knowledge the first effort to-
wards performing such an energy analysis of smartphones in the
wild. Conducting such a study faces two major challenges. First,
to enable the measurement of hardware components and apps and
services running on the phones in the wild, we need an accurate
power model for smartphones that (1) does not rely on triggers that
can only be collected by modifying the Android framework or the
kernel of the phones, (2) does not rely on packet-level trace (e.g.,
from tcpdump) which would require users to root their phones, vi-
olating the service plans for carriers such as AT&T and Verizon;
and (3) can capture details on activities such as WiFi beaconing,
cellular paging, and SOC suspension. We overcome this challenge
by developing a hybrid model that combines utilization-based and
FSM-based model for different phone components and estimates
the triggers for the FSM-based network power model based on net-
work utilization. The key insight is to strike a careful balance be-
tween the estimation error and granularity of the utilization logging
which directly affects the estimation error and logging overhead.

A second challenge is to collect triggers for driving such a power
model of real users’ phones under the normal usage in their daily
lives, while incurring low logging overhead. To this end, we devel-
oped a free app that performs logging and released it to Google Play
so volunteers can download and contribute to the data collection.

We summarize our contributions and highlights of our findings
as follows.

• We developed a hybrid power model for estimating energy drain
of the hardware components and apps and services running on the
smartphones in the wild. The model relies on light-weight logging
that can be performed without modifying the Android framework
or rooting the phones and hence is readily deployable.
• Through a carefully designed free app that performs low overhead

logging, we collected all the triggers needed to drive our power
model from 1520 Galaxy S3 and S4 devices, geographically dis-
tributed over 56 countries, covering a total of 49326 days and 199
mobile operators.
• Our in-depth analysis of the CPU usage time on the 1520 devices

shows that: (1) During screen-on periods, the CPU on average,

1

is Idle for 80.0% of time, signifying that user activities do not
use a lot of computational power. (2) On average, the total CPU
busy time during screen-on and screen-off periods is 10.2% and
14.4% respectively, suggesting a significant portion of the total
CPU busy time is spent during screen-off periods running apps
and services in the background. (3) Out of the total CPU busy time
(24.6%), background services which run on behalf of the apps ac-
count for about 6.2% (in absolute), which testifies to the unique-
ness of the Android programming environment where much of the
common tasks are abstracted and provided by the system as ser-
vices which can be directly called by apps and hence simplifies
app programming. (4) On average, the devices spent 45.5% of
the time connected to WiFi, 32.2% of the time connected to Cel-
lular, and 22.5% of the time disconnected from both, showing a
significant period of time the user has no network connectivity.
• Our analysis of the energy drain across the 1520 devices shows

that: (1) On average the SOC suspend state, cellular paging, WiFi
beacon, and WiFi scanning account for a total of 27.1% of the
daily energy drain, of which cellular paging is a significant energy
hog using up 14.6%. (2) Additionally, background apps and ser-
vices during screen-off contribute to 12.6% of the total energy. (3)
Overall, on average a whopping 41.2% of the total energy drain
in a day occurs during screen-off periods. (4) Out of the 59.8%
energy incurred during screen-on periods, a little less than half,
27.4%, is spent on the screen. (5) The energy drain from active
networking over cellular (LTE and 3G) and over WiFi are 11.8%
and 1.5%, respectively, showing cellular drains significantly more
energy than WiFi. Further, a significant portion of the energy
drain, 10.6% out of 11.8% for 3G/LTE and 1.38% out of the 1.5%
for WiFi, are tail energy.
• We further study the 800 apps running on the 1520 devices which

show that (1) Background energy can be significant for apps: ac-
counting for more than 50% of the total energy for 22.5% of the
apps, with an average of 27.1% across all 800 apps. (2) Within
the foreground app energy, screen energy is the largest portion, at
62.3% on average across the apps. (3) Within either foreground
or background periods, CPU and GPU dominate networking en-
ergy – the average ratios are 2.7x and 2.8x, respectively, across the
800 apps. (4) We further studied the app energy drain by different
Google Play app categories and gained much insights into energy
bottlenecks of the apps in different categories.
• Finally, we analyzed the energy drain of the 1520 devices along

several evolution dimensions, including hardware evolution, An-
droid evolution, cellular evolution, and app evolution. Our analy-
sis shows that (1) the average CPU time of S4/Jellybean devices
is 8.1% longer than S3/Jellybean devices, which translates into
11.3% energy drain increase; (2) the average CPU time of S3 and
S4 KitKat devices are 33.2% and 22.5% higher than the corre-
sponding Jellybean S3 and S4 devices, which translates into only
9.7% and 8.0% energy increase. (3) popular apps such as Face-
book and Chrome have many different versions running in the
wild, and their average power draw during foreground runs fluc-
tuates by up to 150.8%.

The detailed analysis and findings of the smartphone energy drain
in the wild from our study have significant implications to the vari-
ous key players of the Android phone eco-system, including phone
vendors (e.g., Samsung), Android developers, app developers, and
ultimately millions of smartphone users, towards the common goal
of extending smartphone battery life and improving user mobile
experience.

The remaining paper is organized as follows. §2 presents the
power model we developed for estimating the detailed energy drain
of smartphones in the wild. §3 then presents the CPU time and en-
ergy analysis of the 1520 Galaxy S3 and S4 devices in the wild
using the traces collected from these phones. §4 zooms into the

apps and services running on the devices and analyzes their energy
drain behavior, and §5 analyzes the energy drain of the 1520 de-
vices along several evolution dimensions, including hardware, An-
droid, cellular, and app evolutions. We discuss related work in §6
and conclude in §7.

2. POWER MODELING FOR PHONES IN
THE WILD

The simplest way to measure the battery drain of a smartphone
is to use a power meter [5]. However, such an approach suffers two
drawbacks: (1) it cannot be used to measure phones in the wild;
and (2) it cannot measure the energy drain of individual apps and
services concurrently running on the phone since the power meter
outputs the total power draw of the phone. To measure the battery
drain of apps and services of smartphones in the wild, we developed
a hybrid power model that requires no modifications to the Android
framework or the kernel or rooting the phone.

2.1 Background
Power models for mobile devices in general and wireless compo-

nents such as WiFi, 3G and LTE radios have been actively studied
in recent years, and the proposed power models fall into two major
categories.

The first category of power models known as utilization-based
models for smartphones (e.g., [21, 24]) are based on the intuitive
assumption that the utilization of a hardware component (e.g., NIC)
corresponds to a certain power state and the change of utilization
is what triggers the power state change of that component. Conse-
quently, these models all use the utilization of a hardware compo-
nent as the “trigger” in modeling power states and state transitions.
Such models thus do not capture power behavior of modern wire-
less components that do not lead to active utilization such as the
promotion and tail power behavior of 3G and LTE [19, 12], and
thus can incur high modeling error.

The second category of power models capture the non-utilization-
based power behavior of wireless components using finite state ma-
chines (FSMs), (e.g., [8, 15, 18, 16, 17, 9] for WiFi and 3G and [12]
for LTE. In a nut shell, the built-in state machine of the wire-
less radio, e.g., the RRC states and transitions in LTE, is reverse-
engineered and represented in the finite state machine which an-
notates each power state or transition with measured power draw
and duration values. The triggers for the state transitions are either
packet-level traces [19, 12] or networking system calls [17].

2.2 Challenges
The smartphone power model we need to enable measurement of

energy drain of hardware components of and apps and services run-
ning on the smartphones in the wild needs to satisfy the following
requirements:

• The model cannot rely on triggers (e.g., system calls) that can only
be collected by modifying the Android framework or the kernel of
the phones.
• Similarly, the model should not rely on packet-level trace (e.g.,

from tcpdump) which would require users to root their phones.
Rooting the phones would void the phone’s warranty and violate
the service plans for carriers such as AT&T and Verizon.
• Since we also want to measure the energy drain during screen-

off periods, the model needs to incorporate behavior such as WiFi
beaconing, cellular paging, and SOC suspension as they add up to
significant energy drain over time.

2.3 Modeling Overview

2

Table 1: Summary of power model.
Hardware component Model trigger

power draw
CPU frequency + utilization
GPU frequency + utilization

Screen brightness level
WiFi FSM + signal strength

3G/LTE FSM + signal strength
WiFi beacon WiFi status

Cellular Paging cellular status
SOC Suspension constant

Hardware components modeled. We focus on Galaxy S3 and
S4 phones in our measurement study due to their popularity, ac-
counting for 11% of the total Android phone market share [1]. We
determined the set of phone components to be modeled by mea-
suring the maximal power draw of all the major components using
microbenchmarks one at a time, while keeping the load on other
components steady. For example, to gauge the GPU power, we
kept the CPU at a fixed frequency, and ran the GPU benchmark
app [4] that performs 2D rendering. Based on these initial power
measurements, we selected the set of components showing signif-
icant power draw, as shown in Table 1. We further confirmed the
components are largely independent – our model described below
which assumes different components are independent and add up
to the total power drain of the phone has an error less than 10%.

When actively used, GPS can drain a non-trivial amount of power.
We do not model GPS in our study as logging GPS requires explicit
user permission and we found many users feel reluctant to give out
this permission for privacy concerns.

A hybrid model. To accurately capture the power behavior of
all the identified components, we developed a hybrid utilization-
based and FSM-based power model that satisfies the above model
requirements yet achieves good modeling accuracy. In particular,
we resort to utilization-based modeling to capture power behavior
of CPU and GPU whose power draw depend on utilization, we use
FSM-based modeling for wireless interfaces such as WiFi/3G/LTE,
and we model WiFi beacon and cellular paging as constant power
draws by averaging their power spikes over time, and finally we
model SOC suspension power as a constant power draw.

In summary, the triggers for modeling all the components are
shown in Table 1, and can be collected on unmodified user phones.

2.4 Modeling Details
Before we start, we distinguish two classes of programs consum-

ing CPU time and energy on the smartphones: apps and system ser-
vices. System services include kernel processes (with UID < 1000)
and framework processes (with UID between 1000 and 9999) such
as LocationManagerService which are exported from the An-
droid framework for use by apps. Apps can be user-level programs
or system apps such as Calendar and Clock and have UIDs >
10000, and an app can potentially invoke services exported by the
Android framework or the kernel. In this paper, we simply refer to
system services as services.

CPU. As specified in previous section, we used CPU microbench-
marks to obtain the relationship between the CPU power draw and
CPU operating frequency and also devised a methodology for ac-
counting for multiple cores running at different frequencies. Fur-
ther details can be found in Appendix A.

Screen. To model the power draw of Galaxy S3/S4 which are both
AMOLED screens, we derived a power model based on screen
brightness and ignored screen content to reduce our overhead. De-
tails can be found in Appendix A.

GPU. We developed a power model for GPU based on the differ-
ent power states as well as accounting for the operating frequency
during each state. Details can be found in Appendix A.

To use the GPU power model, we log the duration of each GPU
frequency and state combination every 1 second, and predict the
GPU power draw of each interval based on the GPU model.

SOC during suspension. When the CPU and other hardware com-
ponents are offline, the entire SOC is suspended and draws a con-
stant current. We turn the screen and WiFi off, set the phone in air-
plane mode; soon after the SOC is put in suspension by the Linux
power manager, and we measure the SOC base power draw in this
state. The measured constant power draw of the SOC suspended
state are 3.8 mA and 5.1 mA for Galaxy S3 and S4, respectively.

WiFi Beacon. When the WiFi radio is associated with an AP and
in power saving mode, the WiFi radio wakes up at fixed intervals to
receive beacons from the AP. Each beacon thus results in a power
spike of the WiF radio, and we noticed that the width and shape of
the spikes are independent of the WiFi version, channel frequency,
or the AP. We average the energy of 50 spikes over the duration
of the spikes and then model the WiFi beacon power as constant
current over time over the base SOC power – 1.1 mA for screen off
and 3.3 mA for screen on for both Galaxy S3 and S4.

WiFi scanning. When WiFi is enabled on the phone, whether in
connected or disconnected state, it performs scanning, i.e., to try
and connect to a suitable network. In associated state, we account
for the energy draw using WiFi beacon process above. In disasso-
ciated state, the WiFi radio needs to search all possible channels
until it finds one to connect to. For example, the 2.4 GHz band
(802.11/bg) has 11 channels and the 5GHz (802.11ac) band has 22
channels and all may have to be searched. Galaxy S3 and S4 de-
vices are capable of both bands, though we found most of WiFi
hotspots seem to operate at 2.4GHz. Our measurements showed
that WiFi scanning on these two phones has a duration of 3.4 sec-
onds and average power draw of 64 mA. When scanning completes,
Android generates an event, android.net.wifi.SCAN_RESULTS
Thus we can find out how many scanning events happened by log-
ging such events.

Cellular paging. On a celluar network, the base station periodi-
cally broadcasts a message during the 3G/LTE Idle state to signal
incoming downlink data or voice call or SMS. This is called pag-
ing. The power meter shows paging results in a power spike on the
phone modem every 1.28s, and this happens regardless whether the
phone has a SIM or not, and with or without mobile data enabled.
As with WiFi beacon, we average the spike energy over time and
model the cellular paging as a constant current over time over the
base SOC power – 8.3 mA on S3 and 2.3 mA on S4.

WiFi, 3G, LTE State Machine Models. WiFi, 3G, and LTE inter-
faces have multiple power states (see Appendix A) and the power
draw and duration at the Active state is affected by the wireless
signal strength [9]. Further, as in [11], we noticed signficant CPU
power draw during pure data transfer workload, due to interrupt
handling and TCP/IP stack processing, and therefore we need to
carefully decouple CPU power draw from the wireless interface
power draw in training the model. To develop signal-strength-
aware power models for the wireless interfaces for our phone, we
connected the phone to the power meter and ran data transfer mi-
crobenchmarks. While the power meter collects the power profile,
we also recorded the packets via tcpdump alongside signal strength
values via Android APIs as well as core frequencies and the CPU
utilization. We varied the signal strength received by the phone
by adjusting the distance between the phone and the AP for WiFi
experiments and changing the location of the phone for 3G/LTE
experiments. In post-processing, we synchronized the power pro-

3

file from the power meter, tcpdump and signal strength traces. We
derived the power draw by the radio interface(s) by subtracting the
CPU power from the total power. We inferred the different power
states of WiFi, 3G, LTE following the procedure in [12, 9] and
derived the various parameters of the signal-strength-aware power
state machine for each interface. Tables 10 in Appendix A shows
the WiFi and LTE power draw for Galaxy S3 and S4 under different
signal strength.

Estimating network events from network usage. The above power-
state-machine models for wireless interfaces are driven by network
events collected in a packet trace or a network system call trace.
However, on an unmodified user phone, we can only collect net-
work usage information periodically. Thus we need a way to con-
vert network usage to network events. Specifically, our objective is
to convert the number of bytes sent Nsnd and received Nrcv logged
at each logging interval T into a sequence of network send and re-
ceive system calls, each with a time ti and the number of bytes sent
ni
snd or received ni

rcv .
To decide the rules of convertion, we first found out the distribu-

tion, timing and message sizes in popular apps. We played top 20
apps in Google Play on a Galaxy S3 phone many times and logged
the network system calls using systemtap which requires modify-
ing the Android framework. We found the average message size
is 600 bytes with a variance of 200 bytes for a send call and 6200
bytes with a variance of 2000 bytes for a receive call. The timings
of receive system calls in each interval across different apps fol-
low a randomly uniform distribution. Thus in our heuristic, we as-
sume system call timings to follow a random uniformly distribution
within each interval, and rely on controlling the logging interval T
to be small enough so that the estimation error is acceptable. We
further found in the apps we played that a receive call will always
be preceded by a send call which agrees with the natural client-
server communication model.

BAsed on the above observation, we convert the network usage
(N i

snd, N i
rcv) within a interval Ti to a sequence of K = dNrcv/6200e

network system calls {(ni
snd, ni

rcv , ti)}, where i = 1, ..., K, ni
rcv =

6200 if i < K, ni
rcv = Nrcv mod 6200 if i = K, and ni

snd =
Nsnd/K; ti = random(0, T).

The logging interval T determines the tradeoff between the esti-
mation accuracy and the logging overhead. To determine the net-
work logging interval T , we performed what-if analysis and cacu-
late the network energy estimation error under different values of
T against the network energy derived from the actual system call
sequence we logged. We found T = 1 second gives an acceptable
error of 5.1% during screen-on intervals and T = 5 second gives an
acceptable error of 7.4% during screen-off periods. We therefore
used these two parameters in the field pexeriment. In future work,
we plan to improve the estimation accuracy, by customizing the pa-
rameters according to app categories and individual user behavior.

2.5 Logging App Design
We have designed a free android app called Anonymo 1 that

when downloaded to a user’s phone, performs logging of all the
required information needed for driving our power model. All the
information collected (summarized below) are anonymized before
uploaded to our server.

In principle, the more fine-grained utilization information we
collect, the more accurate the power model will be in estimating the
energy drain of each app by the CPU, GPU, and wireless interfaces,
but also the higher the logging overhead. In designing the app, we
carefully chose logging intervals to strike a balance between these
two objectives.

1The app’s actual name is anonymized.

Coarse-grained logging (every 5 minutes). Coarse-grained log-
ging happens every 5 minutes, where the app logs app-wise CPU
usage (from /proc/[pid]/stat), and the per-core CPU usage
(from /proc/stat) and the duration staying on different frequen-
cies (from /sys/devices/system/cpu/cpu[id]/).

Fine-grained logging (every 1 or 5 seconds). Fine-grained log-
ging happens every 5 seconds during screen-off when CPU is on
and every 1 second during scree-on, where the app logs the net-
work usage (in bytes) of all apps that had data transfer during the
interval, by reading /proc/uid_stat/[uid]/.

Dynamic event logging. Finally, dynamic events are logged on de-
mand. These include WiFi, mobile data, and screen being switched
on and off, WiFi being associated and scanning, WiFi and cellular
signal strength change, battery level change (1% granulairty), and
every app’s start and stop.

Logging overhead. We mesured three types of logging overhead
of Anonymo, CPU time, network bytes and total energy. On aver-
age across the 1520 devices where we collected traces (details in
§3), the average overhead of Anonymo per day are: (1) CPU time
214.7s, 2.4% of total. (2) Network bytes 190 KB, 0.3% of total. (3)
Energy 7.3 mAh, 0.6% of total.

2.6 Model Validation
We experimentally validated our power model by measuring the

model accuracy in both screen-on periods and screen-off periods
on a small set of user devices that have Anonymo installed and run-
ning. The devices are connected to a Monsoon power meter, whose
reading serve as ground truth. We note for our energy study en-
ergy estimation accuracy is much more relavent than instantaneous
power estimation accuracy.

Component model validation. We first validate the component
models for Galaxy S3 and S4 by generating synthetic workload
on each component and comparing the predicted energy against
the power meter reading. We run each experiment for 10 min and
repeat 3 times, and show the cumulative energy over time by model
prediction and by power meter, as well as the cumulative energy
error rate. Due to space limit, we only shows the results for Galaxy
S3; results for Galaxy S4 are similar hence are omitted.

Note that for WiFi, LTE and GPU we are comparing the com-
ponent energy plus CPU energy since running benchmark requires
the CPU to be on.

CPU: For CPU validation we turn off the screen, run worker
processes on each core and set each core to random frequencies
every 10s. We log the frequency and utilization of each core and
apply the CPU model to predict the CPU energy consumption. Fig-
ure 1(a) shows that the cumulative energy error rate starts at 5.0%
and smoothes to 1.9% for 10 min duration.

CPU+Network: For network we place the phone at a medium
signal strength location, turn off the screen, and run a simple C
socket program to continuously download from a local server for
10 min. To minimize the CPU power in downloading, we only
enable one core and set it to lowest frequency, 384MHz. We log the
network traffic and CPU frequency and utilization, and apply the
network and CPU models to predict the total energy consumption
for downloading. The total energy error rate is 1.9% for WiFi and
5.7% for LTE, as shown in Figure 1(b)(c).

CPU+Screen+GPU: For GPU we leave the display on and run
2 GPU benchmark apps [3] for 10 min. We log the GPU frequency
and state, CPU frequency and utilization, and screen brightness,
and apply the GPU, CPU and screen models to predict the total en-
ergy consumption. The overall energy error rate is 1.2% for bench-
mark 1, and 11.0% for benchmark 2. The Figure 1(d) shows the
result for benchmark 1.

4

 0

 10

 20

 30

 40

 0 2 4 6 8 10
 0

 10

 20

 30

 40

E
n

e
rg

y
 (

m
A

h
)

C
u

m
u

la
ti
v
e

 e
rr

o
r

(%
)

Time (min)

Predicted
Measured
Error rate

(a) CPU

 0

 10

 20

 30

 40

 0 2 4 6 8 10
 0

 10

 20

 30

 40

E
n

e
rg

y
 (

m
A

h
)

C
u

m
u

la
ti
v
e

 e
rr

o
r

(%
)

Time (min)

Measured
Predicted
Error rate

(b) WiFi

 0

 20

 40

 60

 80

 0 2 4 6 8 10
 0

 10

 20

 30

 40

E
n

e
rg

y
 (

m
A

h
)

C
u

m
u

la
ti
v
e

 e
rr

o
r

(%
)

Time (min)

Measured
Predicted
Error rate

(c) LTE

 0

 20

 40

 60

 80

 0 2 4 6 8 10
 0

 10

 20

 30

 40

E
n

e
rg

y
 (

m
A

h
)

C
u

m
u

la
ti
v
e

 e
rr

o
r

(%
)

Time (min)

Predicted
Measured
Error rate

(d) GPU
Figure 1: Model validation for CPU, WiFi, LTE and GPU – energy drain over time by estimation and by the power meter, and the
relative estimation error as a function of duration (right y-axis).

Table 2: Trace statistics.
Devices > 10 days trace 1520
Aggregate trace duration 49326 days
Median trace duration 34.0 days
Countries of origin 56
Mobile operators 191
Unique phone types 2
Rate of mobile RSSI reading when signal changes,

effective: 1/min
Rate of network usage reading screen-on: every 1 second,

screen-off: every 5 seconds

Whole phone energy estimation.
Screen-on: In screen-on tests, we installed 25 top apps on Google

Play including 11 games, 7 online chat apps, 4 music apps and 3
news apps. The games are CPU-intensive and the rest are network-
intensive. A normal user performed similar operations for the same
type of apps, 2-3 minutes each, under WiFi and under LTE. Figure 2
shows the cumulative estimated energy drain over time closely matches
that of the power meter output, with relative error converges to be-
low 10% under WiFi and 10.3% under LTE beyond 20 min.

Screen-off: In screen-off tests, we installed the same 25 apps
phone and logged in to the apps if necessary (e.g., Facebook) using
a normal user account. We then left the phone screen-off for 1 hour
with either WiFi or LTE connectivity. At the end of each test, we
compard the estimated energy from the power model and the power
meter output to caculate the model accuracy. Figure 2 shows the
cumulative estimated energy drain over time closely match that of
the power meter output, with the relative error converges to below
4.1% under WiFi and 5.0% under LTE beyond 20 min.

3. CHARACTERIZING ENERGY DRAIN IN
THE WILD

In this section, we first describe the trace collection and then
present the energy analysis of the 1520 user phones in the wild
using the power model developed in §2.

3.1 Trace Collection
We used the data collected through voluntary and anonymous

contributions from users of the Anonymo app 2. We collected traces
from 670 Galaxy S3 and 850 Galaxy S4 devices worldwide. Each
user trace ranges from 10 days to 2 months in length, with an av-
erage of 32.5 days (median 34.0 days). The detailed characteristics
of the trace are shown in Table 2.

3.2 Trace Overview
We start with an overview of the general usage behavior of smart-

phone users. Figure 3 shows the distribution of the average daily
2Anonymo received exemption from the full requirement of 45
CFR 46 or 21 CFR 56 by the IRB of our organization, and was
released Anonymo in Google Play on March 12,2014

0 500 1000 1500
0

5

10

15

20

Users

T
im

e
 p

e
r

d
a
y
 (

h
o
u
r)

Screen on

Screen off

Figure 3: Distribution of to-
tal screen-off/screen-on time
across all users.

0 0.5 1 1.5 2
0

20

40

60

80

100

Time (hour)

C
D

F
(%

)

Screen on

Screen off

Figure 4: CDF of all screen-
off/screen-on intervals for all
users and all days.

screen-off and screen-on time across the 1520 users in the sorted
order. The average, 10th percentile, and 90th percentile screen-
on time are 129.5, 41.5, and 232.5 minutes, respectively. This is
consistent with a recent study by Flurry [6], an app analytics firm,
which found that users are spending 162 minutes per day on mobile
devices, out of which mobile app usage accounts for 139 minutes.

Figure 4 shows the CDF of the duration of individual screen-off
and screen-on intervals for all users across all days, truncated at 2
hours. We observe that as expected, the screen-off intervals tend
to last much longer than screen-on intervals: the average, 10th per-
centile, and 90th percentile durations are 23.0 minutes, 15.0 sec-
onds, and 45.6 minutes for screen-off intervals, and 5.2 minutes,
5.5 seconds, and 5.9 minutes for screen-on intervals, respectively.

Next we calculate the time spent by each device connected to
different cellular technologies. We find that although it has been
5 years since LTE first started entering the commercial market, a
majority of the devices, 8 and 960, respectively, could only connect
to 2G and 3G from time to time, but majority of the network traffic,
about 90%, are transmitted over 3G and LTE.

Finally, Table 3 shows the breakdown of Android versions on
the 1520 phones. We see 47.8% of the phones ran Android 4.2
Jellybean and 52.2% of the phones ran Android 4.4 KitKat, and no
phone in our trace ran the latest Android 5.0 Lollypop.

Table 3: Android version breakdown.
Android version Percentage on S3 Percentage on S4

4.2 Jellybean 77.8% 24.0%
4.4 KitKat 22.2% 76.0%

3.3 CPU Time Analysis
Since a primary source of energy drain is the CPU, before we

break down the energy drain, we first study the CPU time break
down. To help understand the CPU time breakdown, we first briefly
explain how a device enters screen-off and screen-on periods.
CPU time breakdown. The above discussion suggests that to see
the complete picture of how the CPU time is spent, we need to
break down the total CPU time, e.g., in a day, into the following
seven main components:

5

0 20 40 60
0

100

200

300

400

500

600

Time (minute)

E
n
e
rg

y
 (

m
A

h
)

0

100

200

300

400

500

600

0

10

20

30

40

A
c
c
u
m

u
la

ti
v
e
 e

rr
o
r

ra
te

 (
%

)Predicted

Measured

Error rate

(a) Screen-on, using WiFi

0 20 40 60
0

100

200

300

400

500

600

Time (minute)

E
n
e
rg

y
 (

m
A

h
)

0

100

200

300

400

500

600

0

10

20

30

40

A
c
c
u
m

u
la

ti
v
e
 e

rr
o
r

ra
te

 (
%

)Predicted

Measured

Error rate

(b) Screen-on, using cellular

0 20 40 60 80
0

2

4

6

8

10

Time (minute)

E
n
e
rg

y
 (

m
A

h
)

0

2

4

6

8

10

0

10

20

30

40

A
c
c
u
m

u
la

ti
v
e
 e

rr
o
r

ra
te

 (
%

)Predicted

Measured

Error rate

(c) Screen-off, under WiFi

0 20 40 60
0

5

10

15

20

Time (minute)

E
n
e
rg

y
 (

m
A

h
)

0

5

10

15

20

0

10

20

30

40

A
c
c
u
m

u
la

ti
v
e
 e

rr
o
r

ra
te

 (
%

)Predicted

Measured

Error rate

(d) Screen-on, using cellular

Figure 2: Battery drain estimation error during screen-on and screen-off. Shown are energy drain over time by estimation and by
the power meter, and the relative estimation error as a function of duration (right y-axis).

0

1

2

3

4

5

6

7

8

T
im

e
 (

h
o
u
r)

Least
active

Less
active

Medium
active

More
active

Most
active

CPU idle time by during screen off
CPU busy time by background services during screen off
CPU busy time by background apps during screen off
CPU busy time by background services during screen on
CPU busy time by background apps during screen on
CPU idle time during screen on
CPU busy time by foreground apps during screen on

(a) Average daily CPU time breakdown of 5 groups of the 1520
users.

34.7%

5.4%

9.0%
1.8%

2.3%

40.7%

6.1%

(b) Daily CPU time percentage breakdown, average over all users.
Figure 5: Daily CPU time breakdown.

• CPU busy time by background services during screen-off;
• CPU busy time by background apps during screen-off;
• CPU busy time by background services during screen-on;
• CPU busy time by background apps during screen-on;
• CPU busy time for foreground apps during screen on;
• CPU idle time during screen-on;
• CPU idle time during screen-off.

Note the rest of the time in a day, where the CPU is neither busy nor
idle, is when the CPU is in suspended state or the phone is powered
off.

Figure 5(b) shows the average percentage breakdown of daily
CPU time across all the users (the legend for different colors are
in Figure 5(a)). We make the following observations about Fig-
ure 5(b). (1) CPU idle: Out of the total CPU time in a day, CPU
is idle for 40.7% during screen-on and 34.7% during screen-off. In
foreground, except for games that can be keeping CPU busy while
the user is idle, most apps are not using the CPU when the user is
not directly interacting with the app (e.g., touch screen activities.)
Thus the large idle CPU time suggests during screen-on periods,
the users are idle for a significant portion of the time, e.g., read-
ing web pages, emails, or thinking. In screen-off periods, CPU idle

time should ideally be close to zero as apps should keep the CPU on
(e.g., by holding wakelocks) only when they are actively computing
something. However, we find that a huge portion of screen-off CPU
time(49.1%) is spent idle(34.7%). (2) Screen-on vs. screen-off:
On average, the total CPU busy time during screen-on and screen-
off periods are 10.2% to 14.4%, suggesting a significant portion of
the total CPU busy time is spent during screen-off periods running
apps and services in the background. (3) Services vs. apps: Out
of the total CPU busy time (25.6%), background services which
run on behalf of the apps account for about 28.1% (7.2% in abso-
lute). This testifies to the uniqueness of the Android programming
environment where much of the common tasks are abstracted and
provided by the system as services which can be directly called by
apps and hence simplifies app programming. We note that during
screen-on periods, we cannot easily infer how much of the back-
ground service CPU time is due to foreground apps and how much
is due to background apps; inferring such causality would require
changing the Android.

3.4 Energy Analysis
Energy breakdown by activities. We first break down the total
energy per day per device among different activities as follows:

• Energy by WiFi beacon, WiFi scanning, cellular paging, and SOC
base power during screen-off;
• Energy by background services and apps, respectively, during screen-

off;
• Energy by background services and apps, respectively, during screen-

on;
• CPU, GPU and network energy by foreground apps during screen-

on during CPU busy and CPU idle, respectively;
• CPU idle energy during screen-on and screen-off respectively;
• Screen energy by foreground apps during screen-on.

Note each app and service energy component includes both CPU
and networking energy. The reason we separate screen energy from
other components is that they only happen for foreground apps dur-
ing screen-on, and depend on non-app factors such as the brightness
level.

For each device, we calculate the average daily energy of the 5
groups of users as before (on left), as well as the average energy
percentage breakdown across all users (on right). We make the
following observations about Figure 6(b). (1) Overall screen-on
vs. screen-off: Overall, on average a whopping 41.2% of the to-
tal energy drain in a day occurs during screen-off periods. This
is rather significant, and countering the expectation that when a
phone is turned off and not used, it should consume little energy.
(2) Suspended state energy: During screen-off periods, on aver-
age, the energy drain while the phone is suspended, i.e., due to SOC

6

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

E
n

e
rg

y
 (

m
A

h
)

Least
active

Less
active

Medium
active

More
active

Most
active

SOC, WiFi beacons, WiFi scanning and cellular paging
CPU idle during screen off
Background services during screen off
Background apps during screen off
Background services during screen on
Background apps during screen on
Screen during screen on
CPU idle during screen on
CPU, GPU and network by foreground apps

(a) Average daily energy drain breakdown of 5 groups of the 1520
users.

27.1%(24.6%
 in screen−off)

4.0%

4.4%

8.2%
2.5% 3.4%

27.4%

5.0%

18.0%

(b) Daily energy percentage breakdown, averaged over all users.

Figure 6: Daily energy breakdown by activities.

base power, WiFi beacon, WiFi scanning and cellular paging activ-
ities, account for 24.6% of the total energy drain throughout a day.
This is rather significant considering the energy drain does not con-
tribute to any useful work. (3) Screen energy: Out of the 58.8%
energy incurred during screen-on periods, a little less than half,
27.4% in absolute, is spent in screen energy. (4) Useful energy
in Screen-on vs. screen-off: The background apps and services
during screen-off together contribute to 12.6% of the total energy
drain, in contrast to the 23.9% by background apps and services
and foreground apps during screen-on. (5) CPU idle energy: Al-
though on average the CPU spends 75.4% of the total CPU time
in idle (Figure 5), it only drains on average 9.0% of the total en-
ergy. Two factors contributed to this contrast: (1) in entering the
idle state, the CPU frequency quickly drops to the lowest possible,
e.g., 384MHz on Galaxy S3, and thus draws minimum power. (2)
There are no networking activities during CPU idle while there can
be networking activities during CPU busy which adds to the energy
drain during CPU busy.

Energy breakdown by components. To dissect energy drain by
different phone components, we replot in Figure 7(b) the average
percentage breakdown of daily energy drain among all users, this
time among phone components. We make the following observa-
tions. (1) SOC: On average the SOC accounts for 6.0% of the daily
total energy drain. (2) Cellular paging vs. WiFi beacon: The en-
ergy drain from cellular paging and WiFi beacon are 14.6% and
2.7%, respectively, showing cellular paging is a significant energy
hogger. (3) Screen: The screen energy accounts for 27.4% of the
total phone energy. (4) Cellular vs. WiFi: The energy drain from
active networking over cellular (LTE and 3G) and over WiFi are
11.8% and 1.5%, respectively, showing cellular drains significantly
more energy than WiFi. (Their correlation with traffic volume is
discussed in §3.5.) Furthermore, a significant portion of wireless
interface energy drain are tail energy, 89.3% out of total cellular

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

E
n

e
rg

y
 (

m
A

h
)

Least
active

Less
active

Medium
active

More
active

Most
active

SOC
Cellular paging
WiFi beacon
WiFi scan
Screen
Network (Cellular)
Network (WiFi)
GPU
CPU idle
CPU busy during screen off
CPU busy during screen on

(a) Average daily energy drain breakdown of 5 groups of the 1520
users.

6.0%

14.6%

2.7%

3.8%

27.4% 11.8%

1.5%

1.7%

9.1%

7.1%

14.4%

(b) Daily energy percentage breakdown, averaged over all users.

Figure 7: Daily energy breakdown by components.

0 500 1000 1500
0

20

40

60

80

100

Users

B
ri
g

h
tn

e
s
s
(%

)

Figure 8: Distribution of aver-
age screen brightness level.

0 500 1000 1500 2000
0

20

40

60

80

100

Frequency (MHz)

P
e

rc
e

n
ta

g
e

 o
f

c
o

re
−

0
 o

n
 t

im
e

 (
%

)

Core 0 during screen−on
Core 0 during screen−off

Core 1 during screen−on
Core 1 during screen−off

Figure 9: CDF of core-0 and
core-1 time spent in different
frequencies on S3.

energy is 3G/LTE tail energy, and 90.4% out of the total WiFi en-
ergy is WiFi tail energy. (5) CPU: The busy CPU energy during
screen-on executing services and apps is twice that during screen-
off, at 14.4% and 7.1%, respectively. (6) GPU: Finally, the GPU
accounts for 1.7% of the total energy drain, used by foreground
apps during screen-on periods.

3.5 Component Analysis
In this section, we take a close look at the power behavior of

some individual phone components to gain insight into their overall
energy drain in the previous section.

Screen. To understand the 27.4% of the total energy drain by the
screen of the devices on average, we plot in Figure 8 the distri-
bution of the devices’ screen brightness level during screen-on in-
tervals. Since a single device can experience multiple brightness
levels, for each device we calculate and plot the average brightness
level, weighted by the duration spent in each level. We observe an
almost uniform distribution, with the average and median levels be-
ing 59.0% and 58.3%, respectively. Interestingly, about 16.0% of
the devices appear to stay at the 100% brightness level all the time.

CPU. To understand the discrepancy between the CPU busy time
ratio of 10.2% to 14.4% and CPU busy energy ratio of 23.9% and
12.6%, between screen-on and screen-off periods, we plot in Fig-

7

ure 9 the distribution of core-0 and core-1 CPU time spent in differ-
ent frequencies during screen-on or screen-off periods on the 670
S3 devices. Note the fraction of core-1 time in different states and
frequencies is normalized to the total core-0 on time, in screen-on
and in screen-off, respectively. We make several observations. (1)
Core-0 is idle at the lowest 384 MHz for 38.8% of the time during
screen-on but 65.7% of the time during screen-off. This high idle
time in screen-off happens because often in screen-off background
apps/services wake up and acquire some wakelocks and then wait
for responses from remote severs during which time the CPU can-
not sleep but to stay idle. (2) Core-1 is turned off during 61.3%
of the core-0 on time during screen-on, but 78.0% of the core-0 on
time during screen-off, i.e., during screen-on the chance of core-1
running when core-0 is running is higher than during screen-off. (3)
Both core-0 and core-1 tend to be busy at higher frequencies dur-
ing screen-on than during screen-off periods. For example, core-0
stays on less than 486 and 1242 MHz for 51.7% and 91.9% of the
time during screen-on, and 74.5% and 96.2% during screen-off pe-
riods, respectively. Similarly, core-1 stays on less than 486 and
1242 MHz for 18.6% and 35.8% of the time during screen-on, and
18.9% and 21.8% during screen-off periods, respectively.

GPU. The GPU active power and average screen power (at bright-
ness level 50%) are comparable, yet the energy breakdown shows
that the GPU drains only 1.7% while the screen drains 27.4%. This
is mainly due the fact that most non-game apps use little GPU.

Networking. To understand the high energy drain ratio of cellu-
lar data over WiFi across the devices, we compare the time spent
and bytes transmitted over the two types of wireless technologies.
Figure 10(a) shows the distribution of time each device is spent
in each of the three states: connected to WiFi, connected to mo-
bile data, and connected to neither, across the 1520 devices. We
observed an almost uniform distribution in terms of the percent-
age time spent in WiFi between 0% to 100%. Figure 10(b) then
shows the average percentage breakdown of time in the three states
across the devices: on average, the devices spent 45.5% of the time
connected to WiFi, 32.2% of the time connected to mobile data,
and 22.5% of the time disconnected from both. In all three states,
WiFi rarely performed scanning, accounting for 1.5%, 2.0%, and
1.0% of the total time, respectively. In other words, WiFi did not
perform much more scanning when connected compared to when
disconnected. Figure 10(c) shows on average 63.6% of total traffic
is transmitted over WiFi compared to 36.4% in cellular. Finally,
Figure 10(d) shows on average each device spent 1.4x more time in
WiFi and transmitting 1.8x more bytes in WiFi, but drains 4.2x less
energy in WiFi, excluding WiFi scanning energy. We note this ratio
is lower than the cellular to WiFi energy ratio of 7.6x (11.8% over
1.5%) in Figure 7(b). This is an artifact of averaging percentages;
the percentage breakdowns per device in the two scenarios have
different denominators, i.e., total wireless energy drain versus total
device energy drain. WiFi scanning, however, drains 37.2% of the
total wireless energy, bringing the average total WiFi percentage
energy drain (49.3%) to be almost the same as mobile data (50.7%)
Finally, including WiFi beacon, WiFi scanning and cellular paging
energy, the split between the total energy due to WiFi and due to
cellular are 8.2% and 26.4% (Figure 7).

3.6 Light Users vs. Heavy Users
We have seen the screen-on time and hence usage level across the

1520 users in Figure 3 almost follows a uniform distribution except
an exponential upward slope towards the end. To gain insight into
the energy drain of users with different phone usage intensities,
we divide up the users into 5 groups corresponding to the 5 20-
percentiles in total screen-on time, and denote them as least active,
less active, medium active, more active, and most active groups, re-

spectively. We next compare the CPU time breakdown and energy
breakdown of these 5 groups.

Figure 5(a) shows the average CPU time breakdown of users in
each of the 5 groups. We observe that in moving from the least
active group to the most active group, (1) the time spent in screen-
on periods, in particular, the total as well as time in the 4 different
categories, grow more or less proportional to the total screen-on
time, but the time spent in screen-off periods barely increased. For
example, the total average screen-on time for the most active group
is 7.1x that of the least active group, the corresponding increase
in the average CPU busy time by foreground apps and the average
CPU idle time during screen-on are 9.2x and 5.7x, but the increase
in the total CPU time in screen-off is only 1.6x. (2) As a result,
the ratio of total CPU time during screen-off over screen-on goes
down significantly, from 3.1x for the least active users to 0.7x for
the most active users.

Figure 6(a) and Figure 7(a) shows the average energy breakdown
of users in each of the 5 groups, by activities and by components,
respectively. Here we see while the different portions of energy
during screen-on grows more or less proportional to the screen-on
CPU time as we move from the least to the most active groups,
all the portions of screen-off energy by SOC, WiFi beacon, cellular
paging, WiFi scan, and by the background apps and services during
screen-off, remained largely constant, at 419.3mAh mAh. As a re-
sult, the relative energy drain during screen-off is quite different for
different user groups – for the least active users, on average 65.1%
of total device energy drain happens during screen-off, while for
the most active users, on average only 24.2% of total device en-
ergy drain happens during screen-off. Similarly, the constant en-
ergy drain accounts for a higher percentage for less active users
than for more active users. For example, the absolute SOC energy
drain is a constant, and hence its percentage is high for light phone
users, and low for heavy phone users – the percentage is 10.2% for
the 20% least active devices, but only 2.4% for the 20% most active
devices.

3.7 Implications to Phone Vendors
Table 4 summarizes the highlights from the above energy drain

analysis of the 1520 devices in the wild, which have a number of
implications to the phone vendors, SOC vendors, and cellular carri-
ers. As can be seen from the data, the energy spent in performing no
direct useful work such as SoC suspension, cellular paging, WiFi
scanning receiving beacons etc. is significant at 27.1%. For the
cellular network components, cellular designers need to develop
better air-interface protocols that consume less energy during ac-
tivities designed to maintain connectivity such as paging by com-
ing up with more efficient ideas on managing an always-on con-
nectivity. In addition, since WiFi is much more energy-efficient at
transporting data, than cellular interfaces, a lot more work needs
to go into better energy optimized cellular data transfer, some of
it can include using WiFi more aggressively and others may be a
more rigorous implementation of power management techniques
such as DRX in the cellular domain. Given that the most energy
consuming component in the smartphone is the screen at 27.4%, a
context-aware algorithm to apply the right brightness level that can
be applied for each user would save a lot of energy. Our data shows
a great deal of variability in how power is consumed for each user,
thus simple heuristics may not be enough, algorithms that take into
account user context are essential. Another major area of optimiza-
tion is the amount of energy spent in running background apps and
services by gathering and utilizing user-context information.

4. APP ENERGY ANALYSIS
The whole-device energy analysis in the previous section shows

8

0 500 1000 1500
0

20

40

60

80

100

Users

P
e

rc
e

n
ta

g
e

 (
%

)

Both disconnected

WiFi disconnected + Mobile data connected

WiFi connected

(a) Distribution of breakdown of
time spent in WiFi and cellular
states.

22.5%(1.0%
WiFi scanning)

32.2%(2.0%
WiFi scanning)

45.4%(1.5%
WiFi scanning)

(b) Average percentage break-
down of time spent in WiFi
and cellular.

36.4%

63.6%

(c) Average percentage break-
down of bytes transmitted in
WiFi and cellular.

10.5%(10.5%
WiFi scanning)

62.0%(11.3%
WiFi scanning)

27.6%(15.4%
WiFi scanning)

(d) Average percentage break-
down of energy drain by WiFi
and cellular.

Figure 10: Time and traffic comparison between WiFi and cellular.

Table 4: Highlights of average percentage energy breakdown
across the 1520 devices.

Component Energy Drain
Cellular paging 14.6%
WiFi scanning 3.8%

SOC suspended 6.0%
Screen 27.4%

CPU idle energy (screen-on) 5.0%
CPU idle energy (screen-off) 4.0%

3G/4G energy 11.8%
3G/4G tail energy 10.62%

Apps/services in screen-off 12.6%

across the 1520 devices, on average 38.1% of the daily energy drain
of a device is by apps and services running in the screen-on and
screen-off periods. Since the rest of the energy drain such as SOC,
WiFi beacon and scanning, cellular paging, and screen energy are
largely fixed for a given hardware, in this section, we zoom into
these apps and services running on the devices to study their en-
ergy drain behavior. Understanding app energy drain is important
as it can keep users informed of power-hungry apps and give app
developers hints on where to tighten app energy drain.

Our trace from the 1520 devices consists of a total of 800 apps
with no less than 10 users and no less than 10 minutes total fore-
ground time, which cover 67% of top 100 apps in Google Play. On
average the top 5% most popular apps ran on 1009 devices for 23.7
minutes per day each, while the bottom 80% least popular apps ran
on 20 devices for 56.0 minutes per day each.

4.1 Energy Drain, Screen-on vs. Screen-off
Figure 11(a) shows the total daily energy drain of the 800 apps

in the sorted order. We see that the energy drain follows an expo-
nential distribution: the top 5% of apps drain an average of 133.6
mAh per day, while the bottom 80% drain an average of 6.8 mAh
per day.

A common misconception is that apps only drain energy when
running in the foreground during screen-on periods. Figure 11(a)
further breaks down the total daily energy drain of each app into
foreground and background energy drain. We see that the back-
ground energy drain fluctuates and there is no strong correlation
between background energy and total energy drain of the apps. For
a better view, Figure 11(b) shows the relative energy drain of dif-
ferent components by the apps when running in foreground and in
background, sorted according to the increasing percentage of fore-
ground energy percentages. We see that (1) background energy can
be significant for many apps – the fraction of background energy
is more than 50% for 22.5% of the apps, and the average fraction
of background across the 1520 apps is 27.1%. (2) Within the fore-
ground app energy, screen energy is the largest portion, at 62.3%

0 200 400 600 800
0

50

100

150

200

250

300

350

400

Apps

E
n

e
rg

y
 (

m
A

h
)

Background

Foreground

(a) Absolute breakdown

0 200 400 600 800
0

20

40

60

80

100

Apps

E
n

e
rg

y
 (

m
A

h
)

Background network
Background CPU
Foreground screen
Foreground GPU
Foreground network
Foreground CPU

(b) Relative breakdown

Figure 11: Distribution of daily energy breakdown across apps.

0 100 200 300 400 500 600 700 800
100

200

300

400

500

600

700

800

900

Apps

E
n

e
rg

y
 d

ra
in

 r
a

te
 (

m
A

)

Figure 12: App energy drain rate.

on average out of its total energy; (3) Within either foreground or
background energy, CPU and GPU energy dominates networking
energy – the average ratios are 2.7x and 2.8x for foreground and
background energy, respectively, across the 800 apps.

4.2 App Energy Drain Rate
Since an app’s total energy drain is the accumulation of its power

draw over its runtime, the longer an app is played, the higher its
energy. Thus the highest energy drain app may not be the most
power-hungry app. To compare the power draw of the apps, we
plot in Figure 12 the foreground energy drain rate (EDR), defined
as the total foreground energy drain of an app divided by the total
foreground time. We observe that over 92.6% of the apps have
an average power draw between 200-400 mA. However, the last 4
apps, Speedtest.net, Deezer Music, BBC iPlayer, Kill Shot (0.5%)
have average power draw between 600 mA and 832mA. The first
three apps (one WiFi test app and two music apps) consume 66.8%,
46.5% and 49.7% of total energy on network respectively. On the
other hand, the last app (a game) consumes 39.8% energy on CPU.

9

0

10

20

30

40

50

60

70

Apps

E
n
e
rg

y
 (

m
A

h
)

M
e
d
ic

a
l

S
h
o
p
p
in

g

P
h
o
to

g
ra

p
h
y

F
in

a
n
c
e

B
u
s
in

e
s
s

H
e
a
lt
h

W
e
a
th

e
r

E
d
u
a
ti
o
n

P
ro

d
u
c
ti
v
it
y

T
ra

n
s
p
o
rt

a
ti
o
n

T
o
o
ls

T
ra

v
e
l

B
o
o
k
s

S
p
o
rt

s

L
if
e
s
ty

p
e

M
u
s
ic

E
n
te

rt
a
in

m
e
n
t

C
o
m

m
u
n
ic

a
ti
o
n

N
e
w

s

M
e
d
ia

S
o
c
ia

l

P
e
rs

o
n
a
liz

a
ti
o
n

G
a
m

e

Background network
Background CPU
Foreground screen
Foreground network
Foreground GPU
Foreground CPU

Figure 13: Average daily app energy drain by Google Play cat-
egory.

4.3 App Categories
Next, we study the app energy drain by different app categories,

where the categories follow from Google Play’s classification.
Figure 13 shows the average foreground and background energy

drain and the 6-way splits as before of the apps in each of the 23 app
categories. We make the following observations. (1) Total energy:
On average, apps in two app categories, Games and Personalization
(e.g., Candy Crush and Cover Lock Screen), drain far more energy
each day than apps in the rest categories, e.g., about 2.1x high than
those in Social, Media and News categories, and about 9.7–8.2x
high than those in Finance, Business, and Health categories. (2)
Background energy: The fraction of background energy varies
significantly across app categories and have little correlation with
the total energy drain. For example, the Health, Weather, Ed-
ucation, Productivity categories have comparable EDR, but their
average fractions of background energy, 32.5%, 76.9%, 5.3%, and
39.0%, are quite different. (3) Screen energy: The screen en-
ergy remains the dominating chunk of the total energy across all
categories, ranging from 73.6% for Medical and 68.3% for Educa-
tion to 13.0% for Weather and 22.3% for Media. (4) GPU energy:
Game apps draw on average 12.9% of total energy on GPU, much
higher than all other app categories, (5) CPU energy: The highest
CPU energy draining categories are Game, Travel, and Finance, at
28.6%, 24.8%, and 24.1%, respectively. (6) Network energy: The
top network energy draining app categories are Media and Music,
where on average the network accounts for 62.8% and 45.1% of the
total app energy drain.

5. EVOLUTION STUDY
In this section, we analyze the energy drain of the 1520 devices

along several evolution dimensions, including hardware evolution,
Android evolution, cellular evolution, and app evolution, and draw
implications to the various key players of the Android phone eco-
system, including phone vendors (e.g., Samsung), Android devel-
opers, app developers, and ultimately phone users.

5.1 Device Evolution: S3 vs. S4
Since both S3 and S4 devices could be running Android Jelly-

Bean and KitKat, to decouple of the impact of Android versions
from device versions, we separately plot the daily CPU time break-
down and energy breakdown for four groups of devices: S3 devices
running Jellybean (S3/JB), S3 devices running KitKat (S3/KK), S4
devices running Jellybean (S4/JB), and S4 devices running KitKat
(S4/KK). The results are shown in Figure 14.

We first compare S3 devices with S4 devices. Figure 14(a) shows
the average CPU time of S4/JB devices is 8.1% longer than S3/JB

devices. The increase mainly comes from increased screen-on time
(14.7%), within which CPU idle time increases by 72.3% and CPU
busy time by foreground apps, background apps and background
services shrink by 62.7%, 48.8% and 71.3% respectively.

The increase of screen-on time suggests users with S4 are more
active. The decrease of CPU busy time during screen-on is mainly
due to the faster CPU of S4 with more cores and higher maximum
frequency and the CPU tends to turn on all the cores when there are
tasks during screen-on period which we observe in the traces. On
the other hand, during screen-off periods the CPU usually keeps
one core on to process background tasks to save battery life, which
explains the little change of background CPU busy time. We ob-
served similar trend of changes between S3/KK and S4/KK de-
vices.

Figure 14(b) shows that the 8.1% increase in total CPU time of
S4/JB over S3/JB devices translates into 11.3% energy increase.
In particular, during screen-on, the 72.3% CPU idle time increase
translates to 15.1% energy increase, because the CPU power draw
is minimal during CPU idle, but the 62.4% CPU busy time decrease
translates to only 1.6% energy reduction, due to the faster CPU of
S4 than S3; S3 has a dualcore 1.5GHz Krait CPU, and S4 has a
quadcore 1.9GHz Krait 300 CPU. For the same amount of com-
putation, more cores and higher frequency translate into less CPU
time but also higher instantaneous CPU power, and the total CPU
energy given by their product can be either higher or lower which
determines the CPU energy efficiency.

To better understand the CPU efficiency of S3 and S4, we further
break down foreground app energy into CPU, GPU and network in
Table 5. If we assume users using different devices have similar
behavior, the amount of computation for foreground apps can be
measure by screen-on time. Figure 14(a) shows S4/JB devices have
14.7% more screen-on time than S3/JB, while the foreground app
energy of S4/JB devices is 16.3% higher than S3/JB. This indicates
the CPU of S3 is slightly more energy efficient than S4.

Finally, the SOC, WiFi scanning, WiFi beacon and cellular pag-
ing energy of S4 increases by 39.1% since S4 has a higher SOC
suspended power.

Table 5: Average daily CPU, GPU and network energy of fore-
ground apps of the four groups of devices.

Devices CPU GPU Network
(mAh) (mAh) (mAh)

S3/JB 109.8 14.4 122.2
S4/JB 127.3 21.1 71.2
S3/KK 121.5 71.2 61.0
S4/KK 133.4 27.7 57.1

5.2 Android Evolution: Jellybean vs. KitKat
We next measure the impact of Android versions on the usage

pattern and energy drain of the devices. Figure 14(a) shows the av-
erage CPU time of S3/KK and S4/KK devices are 33.2% and 22.5%
higher than the corresponding S3/JB and S4/JB. The increase ap-
pears to be mainly coming from increased background CPU time
during screen-off, 37.6% and 38.4%. To understand the reason for
the increase, we calculated the average numbers of apps/services
on the S3/JB, S4/JB, S3/KK and S4/KK devices which come out
to be 67.2, 79.3, 79.0 and 86.4, respectively. Such higher num-
bers of apps/services on KitKat devices explain their higher back-
ground CPU busy time since more apps/services are likely to in-
troduce more background tasks and traffic. It also indicates users
with newer devices (e.g., S4 compared to S3) tend to install more
apps likely because of the perception of their faster CPU and larger
storage.

The 33.2% and 22.5% increase in total CPU time of S3/KK and
S4/KK over S3/JB and S4/KK devices translates into only 9.7%

10

0

1

2

3

4

5

S3/JB S4/JB S3/KK S4/KK

T
im

e
(h

o
u

r)

CPU idle time during screen off
CPU busy time by background services during screen off
CPU busy time by background apps during screen off
CPU busy time by background services during screen on
CPU busy time by background apps during screen on
CPU idle time during screen on
CPU busy time by foreground apps during screen on

(a) Total CPU time breakdown

0

500

1000

1500

S3 / JB S4 / JB S3 / KK S4 / KK

E
n

e
rg

y
 (

m
A

h
)

SOC, WiFi beacons, WiFi scanning and cellular paging
CPU idle during screen off
Background services during screen off
Background apps during screen off
Background services during screen on
Background apps during screen on
Screen during screen on
CPU idle during screen on
CPU, GPU and network by foreground apps

(b) Total energy breakdown

Figure 14: Comparison of CPU time and energy breakdown among Galaxy S3, Galaxy S4, JellyBean and KitKat.

and 8.0% energy increase. This is because the main contribution
of CPU time increase, background apps and services, (about 40%)
only result in energy increase of 34.6% and 26.8% during screen-on
and 3.4% and 37.8% during screen-off, respectively.

KitKat offer a new API that allows apps to specify networking
(or background activities) to happen within a window so the sched-
uler may co-locate them and thus aggregate CPU wakeups as well
as networking activities which in turn translates into few network
tails, saving network energy. Since in screen-off periods, our CPU
logging is infrequent and network logging is every 1 second, we
use networking activity per interval to estimate whether the CPU
woke up in the interval. We calculated the number of wakeups dur-
ing screen-off periods per day and found on average KitKat devices
have 68.2% fewer wakeups than Jellybean devices. We further ob-
served the number of 3G/LTE tails during screen-off per day to
be 64.7% lower on KitKat devices. Finally, the aggregated net-
work activities leads to the lower average normalized network en-
ergy of KitKat devices of 0.71mAh/MB compared to 2.07mAh/MB
of JellyBean devices.

Finally, KitKat brings significant performance improvements on
GPU acceleration and make it easily accessible: any apps that use
RenderScript on a supported device will benefit from GPU acceler-
ation, without any code updates or recompiling, and RenderScript
functionality can be accessed directly from native code. Table 5
shows the average GPU energy drain of S3/kk and S4/kk are 5x
and 1.3x faster than those of of S3/JB and S4/JB, respectively.

5.3 Cellular Evolution: 3G vs. LTE
We next study the impact of mobile data technology evolution

on the energy drain of devices. The power model comparison of
3G and LTE in Appendix suggests that the tail time of 3G and LTE
are similar while the tail power of LTE is much lower than that of
3G. Since a same device can be using 3G and LTE during different
time of the day, we first compare the average daily energy drain
(excluding paging), bytes transmitted, and duration during connec-
tivity with 3G and LTE across the 1520 devices. Figure 15(a) shows
that although LTE accounts for 29.0% of total bytes are transmit-
ted, it only accounts for 8.7% of the time connected to 3G/LTE and
only consumes 6.9% of the total 3G/LTE network energy.

Since the two technologies offer different data rates, we also
compare the energy drain normalized by the traffic volume under
the two technologies. Figure 15(b) shows on average 3G drains
5.9x, 5.3x, and 5.1x more energy per MB transmitted under good,

Duration Byte Energy
0

20

40

60

80

100

P
e

rc
e

n
ta

g
e

(%
)

LTE

3G

(a) Percentage energy, bytes, and
duration

0

1

2

3

4

5

6

7

8

9

G
oo

d

M
ed

iu
m

Poo
r

G
oo

d

M
ed

iu
m

Poo
r

3G LTE

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 (

m
A

h
 /

 M
B

)

(b) Normalized energy by bytes

Figure 15: Traffic volume, duration and energy drain in 3G
and LTE.

medium and poor signal strength, respectively, which are defined
as -85dBm, -95dBm and -105dBm for 3G and -90dBm, -100dBm,
and -110dBm for LTE.

5.4 App Evolution: App Updates
Finally, we study how the energy drain rate of apps change with

app versions, e.g., from different app updates. We pick 4 popu-
lar apps, Facebook, Dropbox, Gmail, and Chrome, and calculate
the average app energy drain rate across their foreground runs on
all the devices, as shown in Figure 16. We omit the background
energy drain analysis due to page limit. We make the following
observations. (1) Across the different versions of the 4 popular
apps, the average power draw fluctuates by up to 150.8%, 70.9%,
33.1%, 99.6%, respectively. (2) Facebook has more than 120 ver-
sions used by 1520 users within the two-mouth trace period, with
the foreground power ranging from 184.4mA to 462.6mA with an
average of 307.3mA. The fluctuating and high foreground power
happens mainly due to its frequently updated new features. (3)
Dropbox and Gmail have less foreground power variation across
their few versions (10 and 10, respectively) and a low average fore-
ground power, 250.6mA and 254.9mA, respectively. This is mainly
because these two apps usually synchronize with servers in back-
ground, minimizing foreground network energy. On the other hand,
they both have simple UI which helps to lower the foreground CPU
and GPU energy. (4) The Chrome foreground power has some re-
peating fluctuation among its earlier 9 versions but appears to sta-

11

20 40 60 80 100 120
0

500

E
n
e
rg

y
 d

ra
in

ra
te

 (
m

A
)

Facebook

1 2 3 4 5 6 7 8 9 10
0

500

E
n
e
rg

y
 d

ra
in

ra
te

 (
m

A
)

Dropbox

1 2 3 4 5 6 7 8 9 10
0

200

400

App versions

E
n
e
rg

y
 d

ra
in

ra
te

 (
m

A
)

Gmail

2 4 6 8 10 12 14 16
0

500

E
n
e
rg

y
 d

ra
in

ra
te

 (
m

A
)

Chrome

Figure 16: Comparison of average foreground energy drain
rate of 4 popular apps over different versions.

bilize in the more recent 8 versions. Since it is difficult for browsers
to prefetch network traffic, the foreground power of Chrome, 311.0mA
on average, is higher than that of Dropbox and Gmail.

6. RELATED WORK
Power modeling of smartphones. We already discussed various
previous work on power modeling of smartphones in §2.1.
Measurement study. There have been a number of work on mea-
surement studies of smartphone apps and traffics. In [10], Falaki
et al. characterize the smartphone traffic based on traffic trace
collected from 43 users. In [14], Huang et al. study the 3G net-
work performance using 3GTest data. In [23], Xu et al. study the
smartphone usage pattern via network measurement from cellular
network provider. AppInsight [20] monitors the performance of
mobile apps in the wild by instrumenting app binary. In [22], Som-
mers and Barford study the WiFi and cellular performance using
the Speedtest.net data. None of the work above however study the
energy drain of mobile apps in the wild.

A few work study the energy consumption of mobile apps. In [13],
Huang et al. collect traffic from 20 users and study screen-off radio
energy consumption. In [21], Shye et al. derive a regression-based
power model for HTC G1 phone which only has 2G EDGE and
study component energy breakdown from a 20-user trace which
does not include any app energy analysis. Different from these
work, we collected trace from a much broader user base, developed
a power model that captures both utilization-based and FSM-based
components (for WiFI, 3G and LTE), and performed detailed ac-
tivity and energy analysis across devices, components, apps, and
technology and app evolutions.

7. CONCLUSIONS
In this paper, we undertook one of the first efforts in understand-

ing where and how energy drains happens in smartphones running
in the wild. We developed a hybrid utilization-based and FSM-
based model that accurately estimates energy breakdown among
activities and phone components without changing the Android frame-
work or rooting the phone. Our analysis of traces collected on 1520
Galaxy S3 and S4 devices in the wild covering 800 apps gained
much insight on energy drain across devices (users), device com-
ponents, apps, and multiple technology and app evolutions. These
insights in turn allow us to draw implications to the phone ven-
dors, SOC vendors, cellular carriers, and app developers on better

system, network, and app design to extend battery life.

8. REFERENCES
[1] AppBrain, top android phones.

www.appbrain.com/stats/top-android-phones.
[2] eMarketer, smartphone users worldwide will total 1.75 billion in

2014. www.emarketer.com/Article/
Smartphone-Users-Worldwide-Will-Total-175-.

[3] Gpu benchmark 3d. play.google.com/store/apps/
details?id=com.kortenoeverdev.GPUbench.

[4] GPU benchmark app. play.google.com/store/apps/
details?id=name.duzenko.farfaraway.

[5] Monsoon power monitor.
www.msoon.com/LabEquipment/PowerMonitor/.

[6] TechCrunch, mobile app usage increases in 2014, as mobile web
surfing declines.

[7] theGuardian, your smartphone’s best app? battery life, say 89% of
britons.
www.theguardian.com/technology/2014/may/21/
your-smartphones-best-app-battery-life-say-89.

[8] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani.
Energy consumption in mobile phones: a measurement study and
implications for network applications. In Proc of IMC, 2009.

[9] N. Ding, et al. Characterizing and modeling the impact of wireless
signal strength on smartphone battery drain. In SIGMETRICS, 2013.

[10] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin.
A first look at traffic on smartphones. In Proc. of IMC, 2010.

[11] A. Garcia-Saavedra, P. Serrano, A. Banchs, and G. Bianchi. Energy
consumption anatomy of 802.11 devices and its implication on
modeling and design. In CoNEXT, 2012.

[12] J. Huang, et al. A close examination of performance and power
characteristics of 4g lte networks. In Proc. of Mobisys, 2012.

[13] J. Huang, F. Qian, Z .M. Mao, S. Sen, and O. Spatscheck. Screen-off
traffic characterization and optimization in 3g/4g networks. In IMC,
2012.

[14] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl.
Anatomizing application performance difference on smartphones. In
Proc. of Mobisys, 2010.

[15] C.-Y. Li, et al. Energy-based rate adaptation for 802.11n. In Proc. of
ACM MobiCom, 2012.

[16] R. Mittal, A. Kansal, and R. Chandra. Empowering developers to
estimate app energy consumption. In Proc. of ACM MobiCom, 2012.

[17] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent inside
my app? fine grained energy accounting on smartphones with eprof.
In Proc. of EuroSys, 2012.

[18] F. Qian, et al. Profiling resource usage for mobile applications: a
cross-layer approach. In Proc. of Mobisys, 2011.

[19] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck.
Characterizing radio resource allocation for 3g networks. In Proc. of
IMC, 2010.

[20] L. Ravindranath, et al. S. Shayandeh. Appinsight: Mobile app
performance monitoring in the wild. In OSDI, 2012.

[21] A. Shye, B. Scholbrock, and G. Memik. Into the wild: studying real
user activity patterns to guide power optimizations for mobile
architectures. In MICRO, 2009.

[22] J. Sommers and P. Barford. Cell vs. wifi: On the performance of
metro area mobile connections. In IMC, 2012.

[23] Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and S. Venkataraman.
Identifying diverse usage behaviors of smartphone apps. In Proc. of
IMC, 2011.

[24] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. Mao, and
L. Yang. Accurate Online Power Estimation and Automatic Battery
Behavior Based Power Model Generation for Smartphones. In Proc.
of CODES+ISSS, 2010.

[25] Y. Zhang, X. Wang, X. Liu, Y. Liu, L. Zhuang, and F. Zhao. Towards
better cpu power management on multicore smartphones. In Proc. of
HotPower, 2013.

12

www.appbrain.com/stats/top-android-phones
www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-
www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-
play.google.com/store/apps/details?id=com.kortenoeverdev.GPUbench
play.google.com/store/apps/details?id=com.kortenoeverdev.GPUbench
play.google.com/store/apps/details?id=name.duzenko.farfaraway
play.google.com/store/apps/details?id=name.duzenko.farfaraway
www.msoon.com/LabEquipment/PowerMonitor/
www.theguardian.com/technology/2014/may/21/your-smartphones-best-app-battery-life-say-89
www.theguardian.com/technology/2014/may/21/your-smartphones-best-app-battery-life-say-89

Appendix A: Power Model Details
A.1 Power Models for Galaxy S3 and S4
We present the detailed power model of various phone components,
derived by following the procedures described in §2.4.
CPU Power Model.. In training the power model for Galaxy S3’s
dual-core CPU, we first ran CPU microbenchmarks while using the
power meter to measure the power draw of the CPU under differ-
ent frequencies with only core-0 turned on. We then repeated the
process with both cores turned on 3. Table 6 shows the CPU power
draw at 100% CPU utilization for Galaxy S3 under a range of fre-
quencies. Single-core results are shown with core-1 turned off.

Table 6: Dual-core CPU power model for Galaxy S3, shown for 6 sam-
ple frequencies per core. The unit of CPU power is mW.

Core 0 (MHz) Core 1 (MHz)
0 384 594 810 1026 1242 1512

384 296 744 766 818 873 977 1047
594 359 766 814 866 921 1036 1103
810 411 818 866 918 973 1080 1154
1026 455 873 921 977 1029 1136 1217
1242 555 981 1029 1084 1140 1199 1277
1512 633 1062 1106 1158 1221 1273 1351

In modeling the quad-core CPU on Galaxy S4, we follow the
procedure in [25]. The power draw of the quad-core CPU is mod-
eled as PCPU = PB,Nc +

∑Nc
i ui · P∆(fi), where PB,Nc is the

baseline CPU power with Nc enabled cores, P∆(fi) is the power
increment of core i at frequency fi, and ui is its utilization.

We first model the core-0 using the same method as with Galaxy
S3. We then vary the number of cores online, but fix all online cores
to the same frequency and 100% utilization. The increased power
when turning on core-i is considered as the busy power for core-i at
this frequency. Then we vary the frequency and repeat the process
to obtain the busy power for each core at each frequency. For idle
power, the procedure is the same except we keep the online cores
idle instead of 100% busy. Table 7 shows the CPU power draw at
100% CPU utilization for Galaxy S4 under a range of frequencies
with varying number of online cores.

Table 7: Galaxy S4 CPU power model for 3 sample frequencies with
varying number of online cores. The power unit is mW.

384MHz 1026 MHz 1890 MHz
PB,Nc P∆(fi) PB,Nc P∆(fi) PB,Nc P∆(fi)

1 86 207 86 438 86 1358
2 269 70 363 228 647 811
3 351 72 464 239 917 891
4 472 75 577 243 1205 962

To use the CPU model, we logged the frequencies of the each
core as well as the utilization of each app active during the log-
ging interval. In post-processing, we estimated the energy of each
app over each interval based on the logged CPU frequency and the
app’s utilization, i.e., as the power draw at that frequency under
100% utilization weighted by the app’s actual utilization. Finally,
we summed up the CPU energy consumed by that app in each in-
terval to arrive at the total CPU energy consumption for the app.
Screen Power Model. Galaxy S3 and S4 phones have AMOLED
screens, and thus in principle the screen power model should have
two triggers: the brightness, and the content displayed on the screen.
However, logging the content will impose unacceptable performance
overhead. Further, we compared screen power of 10 popular apps
3In running the benchmarks, we kept the screen display (a wallpa-
per) static with a fixed brightness level and subtracted the constant
screen power which is easy to measure separately.

and games under typical brightness settings and found the screen
power differ by less than 18.5% for different displayed contents.
This is much lower than the 45.5% to 77.0% power draw difference
between lowest and highest brightness levels (fixing the displayed
content). For these two reasons, we strike a balance between model
accuracy and logging overhead by deriving a screen model solely
based on the brightness using the following method: we use a set of
wallpapers with various color tones, ranging from the darkest (pure
black) to the brightest (pure white), and for each wallpaper we mea-
sure the screen power draw under each brightness level. Finally,
for each brightness level, we use the average power draw across all
wallpapers as the screen power under this brightness value.

Table 8 shows the screen power draw for Galaxy S3 and S4 for 6
sample brightness levels. S4 draws more screen power than S3 due
to its larger screen size and high resolution.

Table 8: Galaxy S3 and S4 screen power for 6 sample brightness levels.
Brightness 0 51 102 153 204 255
Power on S3 (mW) 417 452 484 511 542 573
Power on S4 (mW) 507 562 616 671 725 780

GPU Power Model. The GPUs on both Galaxy S3 and S4 has
three power states: Active, Nap and Idle, and can be in four dif-
ferent frequencies. Thus the GPU power draw differs in different
power state and frequency combination. In GPU power modeling,
we run GPU microbenchmarks to generate workload and in the
meanwhile measure the power draw using the power meter. The
measured power consists of three parts: CPU power, GPU power
and screen power. Hence we log the frequency and utilization of
CPUs, the frequency and state of GPU, as well as the brightness
of the screen. In post-processing, we first isolate the power draw
of GPU by subtracting the CPU and screen power (calculated by
the CPU and screen power models) from the total power, and then
calculate the average GPU power draw under each frequency and
state combination to obtain the GPU power model. Table 9 shows
the GPU power draw for Galaxy S3 and S4 under each frequency
and state. The power of Idle state is always 0 hence not shown.

To use the GPU power model, we log the duration of each GPU
frequency and state combination every 1 second, and predict the
GPU power draw of each interval based on the GPU model.

Table 9: Galaxy S3 and S4 GPU power model.
Galaxy S3

Frequency (MHz) 128 200 300 400
Active power (mA) 729 975 1217 1482
Nap power (mA) 78 0 0 78

Galaxy S4
Frequency (MHz) 128 200 320 450
Active power (mW) 293 398 562 1034
Nap power (mW) 0 0 0 164

LTE, 3G, and WiFi Power Models. The LTE interface on smart-
phones has four power states. The power states and their transi-
tions are shown in Figure 17(a): (1) IDLE: The interface is in idle
states when the User Equipment (UE) does not send or receive any
data. The interface consumes little power under the IDLE state, and
periodically wakes up to check whether there are incoming data
buffered at the network. (2) CR: When the UE sends or receives
any data, the interface enters the Continuous Reception (CR) state
and consumes high power. (3) Short DRX: After the UE finishes
data transfer and becomes idle for 200ms, the interface will enter
the Short DRX state, during which the interface consumes little
power but wakes up frequently to check for incoming traffic. (3)
Long DRX: The interface enters the Long DRX state after staying
in Short DRX for 400ms without receiving any data. Long DRX

13

(a) LTE (b) WiFi

Figure 17: WiFi and LTE state machines for Galaxy S3 and S4.

 0

 1000

 2000

 3000

 0 2 4 6 8 10 12 14 16

P
o
w

e
r

(m
W

)

Time (sec)

Data transfer starts

Data transfer ends

Short DRX Long DRX

Figure 18: LTE Power states on Galaxy S3

is similar to Short DRX except that the wakeup interval becomes
longer. Note in the power model in Table 10 we refer the periodical
spikes during Short DRX and Long DRX state as Short DRX and
Long DRX, respectively, and refer the low base periods between
spikes as LTE tail base, as shown in Figure 18. Finally, if the UE
stays in Long DRX for 11s without receiving any data, the interface
will return to the IDLE state; otherwise, any data sending or receiv-
ing in Short DRX or Long DRX states will trigger the interface to
enter the CR state.

The 3G interface has three RRC states: IDLE, FACH and DCH,
as well as transition states between RRC states. We refer readers to
[19] and [18] for a comprehensive discussion about the 3G states
and transition rules.

The WiFi interface also has four power states: Tx, Rx, Tail, and
Idle, as shown in Figure 17(b). The interface is in the Idle state
when there is no traffic, and will enter the Tx (Rx) state when it
starts sending (receiving) data. After data transfer, the interface
will stay in the Tail state for 210ms before it returns to the Idle
state. The interface consumes very little power in the Idle state,
moderate power in the Tail state, and high power in the Tx and Rx
states.

For both LTE and WiFi interfaces, the power draw and duration
at each state and state transitions are affected by the wireless signal
strength [9]. We followed the procedure described in §2.4 to derive
all the parameters in the power state machines for the WiFi and LTE
interfaces for Galaxy S3 and S4 phones. The parameters are shown
in Table 10. We note the Tx/Rx power generally increases with
weaker signal strength, but can decrease when the signal strength
is extremely weak, at which point the throughput is significantly
lower. Finally, Figure 18 plots the LTE power states on Galaxy S3
in a 100KB download under good signal strength (-90dBm).

We note the power models for these two phones differ from that
in [12] conducted about three years ago. For example, while the
LTE base has a similar duration of 11s, the tail base power is down
from about 1000mW on the HTC phone used by [12] to zero in
our measurement. An author of [12] has confirmed with us that
they now also observe close to zero tail base power in their LTE
measurements. Thus this difference from [12] is likely due to the
newer LTE deployment.

A.2 Comparing S3 and S4 Power Models
We make the following observations in comparing the power mod-
els for S3 and S4:

Table 10: Parameters of signal-strength-aware power models for WiFi
and LTE on Galaxy S3 and S4. The power unit is mW.

WiFi

RSSI (dBm) Galaxy S3 Galaxy S4
Tx Rx Tail Tx Rx Tail

-50 564 396 242 654 451 289
-60 596 422 242 723 528 289
-70 641 431 242 1019 592 289
-80 704 400 242 1113 633 289
-85 702 382 242 892 514 289

The duration of WiFi tail for both phones is 210ms.
Galaxy S3 3G

promotion DCH tail FACH tail
-85 836mW, 1.6s 783mW, 3.3s 486mW, 6.7s
-95 836mW, 1.6s 1034mW, 3.3s 486mW, 6.7s
-105 836mW, 1.6s 1224mW, 3.3s 486mW, 6.7s

Galaxy S4 3G
promotion DCH tail FACH tail

-85 647mW, 2.1s 577mW, 3.3s 332mW, 1.7s
-95 663mW, 2.1s 679mW, 3.3s 390mW, 1.7s
-105 807mW, 2.2s 722mW, 3.3s 390mW, 1.7s

Galaxy S3 3G Galaxy S4 3G
RSSI (dBm) Tx (mW) Rx (mW) Tx (mW) Rx (mW)
-85 1414 1300 667 843
-95 1737 1718 835 1043
-105 2280 2060 1772 1545

Galaxy S3 LTE
Power(mW) Duration(ms) Periodicity(ms)

LTE promotion 1200 200 N/A
Short DRX 788 41 100
Long DRX 788 45 320

LTE tail base 61 11000 N/A
DRX in IDLE 570 32 1280

Galaxy S4 LTE
Power(mW) Duration(ms) Periodicity(ms)

LTE promotion 1326 200 N/A
Short DRX N/A N/A N/A
Long DRX 585 30 320

LTE tail base 69 11000 N/A
DRX in IDLE 452 24 1280

S3 LTE S4 LTE
RSRP (dBm) Tx (mW) Rx (mW) Tx (mW) Rx (mW)

-85 1218 1085 1177 938
-95 1683 1264 1849 1110
-105 1840 1271 1699 1140

(1) Screen: Due to the larger size and higher resolution, the
screen of Galaxy S4 consumes high power compared to S3. The
difference monotonically increases from 21.6% under the lowest
brightness to 36.1% under the highest brightness.

(2) SOC: Galaxy S4 SOC suspension power is 34.2% higher
than S3 in airplane mode, and 79.4% higher with LTE enabled.
This directly translates into higher power consumption when the
phone is in standby mode.

(3) CPU: Galaxy S4 has a 1.9GHz quad-core Krait 300 CPU,
while S3 has a 1.5GHz dual-core Krait CPU. More cores and higher
frequency on S4 brings better performance, but also higher power
consumption. For example, when both phones have two cores work-
ing at the highest frequency, the CPU power of S4 is 68.0% higher
than that of S3.

(4) GPU: The Adreno 320 GPU used on S4 is much more power
efficient compared to Adreno 225 on S3: it consumes 59.8%, 30.2%
less power under lowest and highest frequency, respectively.

14

	techrpt2

