
Master for Co-Simulation Using FMI

Jens Bastian Christoph Clauß Susann Wolf Peter Schneider
Fraunhofer Institute for Integrated Circuits IIS / Design Automation Division EAS

Zeunerstraße 38, 01069 Dresden, Germany
{Jens.Bastian, Christoph.Clauss, Susann.Wolf, Peter.Schneider}@eas.iis.fraunhofer.de

Abstract

Co-Simulation is a general approach to simulate
coupled technical systems. In a master-slave concept
the slaves simulate sub-problems whereas the master
is responsible for both coordinating the overall simu-
lation as well as transferring data. To unify the inter-
face between master and slave the FMI for Co-
Simulation was developed. Using FMI a master was
implemented with simple and advanced algorithms
which can be applied depending on the properties of
the involved slave simulators. The master was tested
amongst others by coupling with SimulationX.

Keywords: co-simulation; FMI; master

1 Introduction

Modeling problems in natural sciences and engineer-
ing often leads to hybrid systems of differential and
algebraic, time continuous and time or event discrete
equations. Often complex multi-disciplinary systems
cannot be modeled and simulated in one simulation
tool alone or subsystem models are available only for
a specific simulation tool. Sometimes sub-problems
shall be simulated with the simulator which suits best
for the specific domain. Thus for the simulation of
multi-disciplinary problems or for hardware-in-the-
loop simulation it is often reasonable or even neces-
sary to couple different simulation tools with each
other or with real world system components.

Simulator coupling is used in various fields of
application like automotive engineering, microelec-
tronics, mechatronics etc.

Up to now simulator coupling is nearly always a
point-to-point solution tailored to the involved simu-
lators. These special solutions cause high effort so a
generally accepted interface for simulator coupling
supported by many simulation tools is desirable.

2 Co-Simulation

Co-simulation is an approach for the joint simulation
of models developed with different tools (tool cou-
pling) where each tool treats one part of a modular
coupled problem. Intermediate results (variables,
status information) are exchanged between these
tools during simulation where data exchange is re-
stricted to discrete communication points. Between
these communication points the subsystems are
solved independently.

2.1 Coupling of simulators

A simulation tool S can be coupled if it is able to
communicate data during simulation at certain time
points t, cf. Figure 1. Here input variables are
denoted by u and output variables by y.

Figure 1: Block representation of a simulator S

Simulators have different capabilities which have
an influence on the algorithms that can be used for
their coupling. Such capabilities are:
 The simulator can handle variable

communication step sizes.

 The simulator can handle events.

 It is possible to undo a time step, i.e. the
simulator can reject time steps.

When using simulator coupling the original
problem is divided into N subproblems each handled
by a simulator. Typically, N is small, i.e. below 20.
Thereby the simulators do not have to be different.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

115

The signal flow for the coupled simulators can be
described by a directed graph with the simulators as
the nodes and the exchanged data as the edges.

If there is feedback in the graph then cycles exist.
A cycle is a path in a graph with the same node as
start and end point. Cycles can be eliminated if the
simulators in a cycle are combined into a super-
simulator i.e. a simulator superior to the simulators
of the cycle.

Figure 2 shows an example of such a graph.
Simulator A has the highest priority. The simulators
B, C, and D form a cycle. E, F, and G are
subordinated to this cycle. That means simulator A is
executed first of all. Then the cycle of B, C, and D is
finished. Afterward simulators E and F are executed
whereat both simulators can be run in parallel. At
last G is processed.

Figure 2: Example graph of coupled simulation tools

For simulation, the whole graph is analyzed first.
If cycles are detected then they are combined into a
super simulator. The simulators are coupled with
directed data flow. A priority is assigned to each
simulator with 0 representing the highest priority.
Simulators with the same priority can be executed in
parallel. All simulators in cycles either have to be
processed iteratively or with small enough time steps
and error control.

Figure 3: Master-Slave structure

Instead of direct coupling, a master is assumed to
be located between the single simulation tools which

synchronizes, controlles and manages them [1]. Each
edge of the graph is regarded as to go “through” the
master, cf. Figure 3. The master serves as an
interface, establishes connections and exchanges data
between the simulators which are called slaves.
Slaves are assumed to communicate with the master
only.

2.2 Basic Co-simulation computational flow

The whole co-simulation can be divided into several
phases.

1. Initialization phase

All simulation tools are prepared for starting the co-
simulation. The master receives the properties of the
slaves. Furthermore the master receives the connec-
tion graph. The slaves and models are initialized and
parameters are set. The communication links be-
tween master and slaves are established. The master
chooses its algorithm based on the capabilities of the
slaves as well as the connection graph and user input.

2. Simulation phase

The master forces the slaves to simulate the time in-
terval from start time to stop time by stepwise solv-
ing master subintervals which are also called com-
munication steps. Their boundaries are called com-
munication points. In case of event iteration the
communication step size can be zero. The simulation
is performed independently for all subsystems re-
stricting data exchange between subsystems to these
communication points.

Before simulating a subinterval a slave receives
its input values and possibly their derivatives with
respect to time as well as the communication step
size from the master. After finishing the communica-
tion step the master receives the output values of the
slave and possibly their derivatives with respect to
time. Furthermore the slave status has to be trans-
ferred to the master. If the slave simulation fails fur-
ther communication is necessary.

3. Closing phase

The master stops the complete simulation and is re-
sponsible for proper memory deallocation, terminat-
ing and resetting or shutting down the slaves.

2.3 Accuracy and stability

Co-simulation can lead to problems regarding stabil-
ity and accuracy of the simulation [2] – especially if
feedback exists between simulators, cf. the example
given in section 4.4. If a simulation tools provides an

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

116

interface for co-simulation at all then usually it is not
possible to reset a simulator so that a time step can
be repeated e.g. with a smaller step size.

So co-simulation should often be used as a last
resort as long as iterative methods have to be used
for stability and simulators only provide a rudimental
co-simulation interface. Hopefully this will change
in future with the introduction of a standardized co-
simulation interface like the one proposed in the next
section.

3 Functional Mock-up Interface
(FMI) for Co-Simulation

The Functional Mock-up Interface (FMI) for Co-
Simulation [3], [4], [5] is an interface standard for
the solution of time dependent coupled systems con-
sisting of subsystems that are continuous in time or
time-discrete. It provides interfaces between master
and slaves and addresses both data exchange and
algorithmic issues. Both simple as well as more so-
phisticated master algorithms are supported. How-
ever, the master algorithm itself is not part of FMI
for Co-Simulation.

FMI for Co-Simulation consists of two parts:
 Co-Simulation Interface: a set of C functions for

controlling the slaves and for data exchange of
input and output values as well as status infor-
mation.

 Co-Simulation Description Schema: defines the
structure and content of an XML file. This slave
specific XML file contains “static” information
about the model (input and output variables, pa-
rameters, …) and the solver/simulator (capabili-
ties, …).

The complete interface description can be ob-
tained from [3].

The capability flags in the XML file characterize
the ability of the slave to support advanced master
algorithms which use variable communication step
sizes, higher order signal extrapolation etc.

A component implementing the FMI is called
Functional Mock-up Unit (FMU). It consists of one
zip file containing
 the XML description file and

 the implementation in source or binary form
(dynamic library).

A master can import an FMU by first reading the
model description XML file contained in the zip file.

Coupling simulators by FMI for Co-Simulation
hides their implementation details and thus can pro-
tect intellectual property.

FMI for Co-Simulation version 1.0 was published
in October 2010. Currently it is planned to combine
FMI for Co-Simulation with FMI for Model Ex-
change to an FMI standard.

4 EAS Master

MODELISAR [6] is a research project within the
European ITEA2 program. It is aimed to develop the
FMI as well as to support it by involved tool ven-
dors. Use cases will show the benefits of applied
FMI. Master algorithms are not standardized with
FMI but developed in the MODELISAR project e.g.
by tool vendors. A prototypical implementation of a
master has been provided by EAS for the MODELI-
SAR consortium. The package contains the ANSI C
code of the master, a generic “C function” slave, and
a collection of examples.

The “C function” slave provides the basic func-
tionality of FMI for Co-Simulation. The user has
only to provide two functions for initialization (the
number of input and output variables) and the com-
putation of a step with the step size communicated
by the master.

4.1 Configuration

The master is configured by a simple text file. There
are keywords for start and stop time, step size, cou-
pling algorithm, error tolerance etc. The coupled
FMUs with their paths have to appear within the
configuration file, too. The graph of the simulator
coupling has to be supplied by an incidence matrix
and information about the priority of the slaves as
well as occurring cycles.

4.2 Coupling algorithms

The master prototype provides three algorithms for
the simulation with fixed step size:
 data flow between the slaves without iterations,

i.e. simple forward calculation

 fixed point iteration of all cycles within the
graph

 simple implementation of Newton’s method with
Jacobians approximated by finite differences

All master algorithms proceed in macro steps of
fixed step size from start time to end time.

The computation of a time step from ti to ti+1
within cycles is performed in the following way:
Every slave makes an assumption for its input value
u at time ti+1. Currently this is done using constant
interpolation ii tutu 1 , i.e. in each macro step

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

117

all terms that couple the subsystems are frozen. Thus
synchronization and update of the exchanged values
with computed output 1ity is done at the end of
the time step. Because no slave depends on the cur-
rent output of another one, the slaves can run in par-
allel. This iteration scheme is called to be of Jacobi
type.

Another approach would be to simulate a time
step with every slave of a cycle one after another and
to use the output 1ity just calculated as input

 1itu for the following slaves. These staggered al-
gorithms which handle the subsystems sequentially
are called of Gauß-Seidel type. This method was
used within a first master implementation. The
drawback of this approach is that the slaves within
the cycles cannot run in parallel and the behavior of
the iteration depends on the calling sequence of the
slaves. However, an example exists where this ap-
proach converges while the first method does not
converge.

4.3 Simple slave test examples

A collection of examples using the “C function”
slave is provided together with the master. They
cover different types of coupling – with or without
cycles, nonlinear equations, ODEs, DAEs – and
demonstrate the usage of the configuration file.
Some of the examples can be solved with all master
algorithms, some only with Newton’s method.

One of these examples is BspK6. It consists of
four coupled slaves which exchange 4 values (0, 1, 2,
3) of type fmiReal and 2 values (4, 5) of type
fmiInteger, cf. Figure 4. The slaves S0, S1, and
S2 form a cycle.

S0

S1 S2

S3

0

4 5

1 2 3

u

u4u3

y

y1 y2

y

u1

y1

u2

y2

u

Figure 4: Example BspK6 from collection

Input, output, and internal variables of the slaves
are related by the following equations.

Slave S0:

02
d

d
21 uux

t

x

else

10
:

else

10
:

2

3
2

1

4
1

xu

u
y

xu

u
y

Slave S1:

 01001πsin1000

0π3sin
d

d

2

1

10
2

utxy

tux
t

x

Slave S2:

 01001πsin1000

0π2sin
d

d

2

1

10
2

utxy

tux
t

x

Slave S3:

else0

2πsin1

else0

πsin1

2
1

2

2
1

1

t
y

t
y

Figure 5 and Figure 6 show simulation results for
constant step size 10-4 and Newton’s method as itera-
tive method for the cycle. The other two methods do
not converge for this example.

-0.0004

-0.0002

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0 0.2 0.4 0.6 0.8 1

t

BspK6

0
3

Figure 5: Simulation results for exchanged values 0
and 3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

t

BspK6

1
2
4
5

Figure 6: Simulation results for exchanged values 1, 2,
4, and 5

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

118

4.4 Coupling with ITI SimulationX

Another example shows coupling of SimulationX [7]
with a “C function” slave via the EAS Master.

The original SimulationX model is shown in
Figure 7. It is a simple plant with a controller driven
by the “speed” function

else0

s 1s 2.0rpm 100 t
tf

Figure 7: Full SimulationX model

This model has been split into three FMUs: two
SimulationX FMUs for the controller and the plant
and one “C function simulator” FMU for the speed
input, cf. Figure 8. The SimulationX FMUs contain
the model as well as the solver as a DLL. They were
created via the code export option of SimulationX.

Plant

Controller Speed

Figure 8: Coupling of three FMUs

-2

 0

 2

 4

 6

 8

 10

 12

 0 0.5 1 1.5 2

time (s)

Plant.sensor1.om (rad/s)

SimulationX
Coupling

Figure 9: Simulation results

The coupled FMUs have been simulated by the
prototypical master with fixed step size 10-3 with the
simple algorithm for forward calculation without
iteration. Results of this calculation as well as of the
original simulation model are presented in Figure 9.

As it can be seen, the angular velocity of the plant
shows a small but fast decaying oscillation in the
original model after the speed has been switched to 0
after 1 s. In contrast, the oscillation is larger and does
not decay in the simulator coupling. For larger step
sizes the amplitude of this oscillation is even larger
(not shown).

At the moment, SimulationX cannot discard steps
so a simulation with iterative methods was not possi-
ble. With iterative methods we expect the oscillation
to decay like in the original model.

4.5 Efficiency

Efficiency and simulation speed strongly depend on
the problem which has to be solved.

Clearly, the most efficient approach would be to
use only one simulation tool and do without co-
simulation. If this is not possible then problems de-
scribed by graphs without feedback can be simulated
most efficiently using the non-iterative method. If
there are cycles within the graph and no iterative
methods can be used because the simulators cannot
discard steps then accuracy and numerical stability
may be poor. Anyway, the macro step size has to be
very small then and thus the computational costs
strongly increase.

S1 S2

S3

Figure 10: Disadvantage of current OpenMP approach
compared to thread programming

By using OpenMP [8] slaves of the same priority
can run in parallel. However, the current implemen-
tation of this approach has a disadvantage compared
to thread programming which will be explained with
the help of Figure 10. Here S1 has a higher priority
than S2. S3 can have the same priority either as S1 or
S2. Thus either both S3 and S1 can run in parallel
and the simulation continues with S2 after both S1
and S3 have finished or S2 and S3 can both run in
parallel after S1 has finished. Instead it would be
better to handle S1 and S2 as a “super slave” which
runs in parallel with S3, i.e. synchronization takes
place at the start of S1 and S3 and after S2 and S3
have finished. However, either a more complicated
data structure has to be used for this purpose if
OpenMP should be used or platform dependent
thread programming has to be used.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

119

4.6 Summary of properties

The implementation of the EAS Master is as plat-
form independent as possible. Platform dependent
code – mainly for dealing with dynamic libraries –
could happily be collected as preprocessor defines
within a single header file. Thus the master runs on
multiple platforms (MS Windows, Linux, Sun So-
laris).

Slaves can run in parallel if they have the same
priority. Platform independence also was the reason
to use OpenMP instead of explicitly dealing with
thread programming for this purpose. OpenMP is
supported by newer version of the major C compilers
(gcc, Visual Studio). Parallelization is realized by
one #pragma directive in front of a “for” loop so that
compilers without OpenMP support simply compile
the code for serial execution. However, the OpenMP
approach has the drawback compared to explicit
dealing with threads that only slaves of the same pri-
ority and not across different priorities can run in
parallel.

Currently the three algorithms mentioned in sec-
tion 4.2 are available.

4.7 Future enhancements

A commercially available version of the master will
have the following features:
 The graph will automatically be analyzed for the

priority of the slaves and cycles.

 Newton’s method will be improved. A better
Jacobian update strategy will be used so that the
high cost of calculating a new Jacobian by finite
differences will be reduced.

 Broyden’s method will be available as another
iterative method.

 A step size control will be implemented based on
results in [9] so that variable macro steps can be
used.

 Polynomial interpolation of data besides the cur-
rently used constant interpolation will be sup-
ported.

5 Conclusions

Co-simulation is a powerful method to simulate het-
erogeneous systems where each subsystem is simu-
lated by its own specialized simulator. However, cur-
rently simulation tools have their own interface for
coupling – if at all. Additionally, they are often not
able to discard steps and thus not suitable for itera-
tive methods.

The Functional Mock-up Interface (FMI) for Co-
Simulation as a proposed standard for simulator cou-
pling will hopefully be widely used because it re-
places current point-to-point solutions and thus eases
the reuse of models tailored to special simulators.
The protection of intellectual property is also possi-
ble with FMI.

Providing the prototypical master implementation
will hopefully help to promote the FMI for Co-
simulation.

Acknowledgements

The SimulationX model and FMUs were kindly pro-
vided by T. Blochwitz from ITI.

This work is supported by the German BMBF within
the ITEA2 MODELISAR project.

The authors thank the reviewers for valuable re-
marks.

References

[1] Wolf, S.; Blochwitz, T.: Master Slave Simu-
lator Coupling. ITI Symposium 2010.

[2] Schierz, T.; Arnold, M.: Advanced numerical
methods for co-simulation algorithms in ve-
hicle system dynamics. 1st Conference on
Multiphysics Simulation, Bonn 2010.

[3] Functional Mock-up Interface for Co-
Simulation v1.0, MODELISAR consortium,
2010. http://functional-mockup-interface.org

[4] Arnold, M.; Blochwitz, T.; Clauß, C.; Neid-
hold, T.; Schierz, T.; Wolf, S.: FMI-for-
CoSimulation. 1st Conference on Multiphys-
ics Simulation, Bonn, 2010.

[5] Enge-Rosenblatt, O., Clauß, C.; Schneider,
A.; Schneider, P.: Functional Digital Mock-
up and the Functional Mock-up Interface –
Two Complementary Approaches for a
Comprehensive Investigation of Heterogene-
ous Systems. 8th International Modelica Con-
ference, Dresden, 2011.

[6] http://www.modelisar.org

[7] http://www.simulationx.com

[8] http://www.openmp.org

[9] Schierz, T.; Arnold, M.; Eichberger, A.; Frie-
drich, M.: Study on Theoretical and Practical
Aspects of Communication Stepsize Control.
MODELISAR, sWP203 report, 2010.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

120

